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Abstract

Recent work in mathematical physics and nonlinear optics has shown that

Hamiltonians that are non-Hermitian but still symmetric under parity and time re-

versal can describe eigenstates of a system with real eigenvalues. Other research has

also showed that the nonlinear Schrodinger equation can be generalized to describe

PT-symmetric systems, which generates novel solutions not described by its Hermi-

tian equivalent. The Hermitian form of the nonlinear Schroedinger equation can also

be extended to describe a particular case of the general PT-symmetric NLS, suggest-

ing a connection between the two. I attempted to generate a unitary operator that

will be useful for unitary quantum algorithms describing a coupled set of nonlinear

Schroedinger equations and the PT-symmetric version of the NLS.



Chapter 1

Introduction

1.1 PT Symmetry

Traditionally, a nonrelativistic quantum system is described by a Hamiltonian

Ĥ of the form

Ĥ =
p̂2

2m
+ V̂ext(~r) +

∑
i,j

V̂ij (1.1)

where p̂ is the momentum operator, V̂ext is the external potential, and the sum of V̂ij

is the interaction term. In order for this operator to give orthogonal eigenstates with

real eigenvalues corresponding to the energy eigenstates of the physical system, it has

usually been assumed that Ĥ be Hermitian. That is,

Ĥ = Ĥ† (1.2)

where † is the ordinary complex conjugate transpose.

This is a sufficient requirement for the eigenstates of the operator to have real

eigenvalues and thus for it to describe quantum mechanics. However, the question

remains as to whether this is a necessary requirement. According to [3] we may

also impose a requirement that encompasses more scenarios than Hermiticity on the

Hamiltonian which still ensures that all of the system’s eigenvalues are real, which is

that it is symmetric under the operation PT , where P is the parity operator and T
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is the time reversal operator, defined as

P : x→ −x, p→ −p (1.3)

T : t→ −t, i→ −i (1.4)

where x, t, and p are position, momentum, and time, and i is the square root of −1.

Note that the time reversal operator must include the complex conjugate in order

to preserve the commutator [x̂, p̂] = ih̄. It has been shown in [3] that all Hamilto-

nians with unbroken PT symmetry, that is [H,PT ] = 0, possess a real spectrum of

eigenvalues and the eigenfunctions of H are also eigenfunctions of PT . Of interest to

us is the PT-symmetric version of the nonlinear Schroedinger equation, which I will

discuss in detail in the next section.

1.2 The Nonlinear Schroedinger Equation

A diverse set of both classical and quantum systems will yield an equation of the form

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
± g|ψ|2ψ (1.5)

Where ψ is a complex scalar field whose physical significance depends on context. For

example, in a Bose-Einstein condensate this equation describes the time evolution

of the aggregate wave function, which is also the order parameter associated with

phase transition. This equation also appears in nonlinear optics, where it describes

the propagation of optical polarizations through a nonlinear medium such as a fiber

optic cable. The NLS also describes the envelope of waves propagating in shallow

water. What is of interest about the NLS is there exist solutions known as solitons

that propagate at a constant velocity without dispersion. In other words, they will

always maintain their shape no matter how far in time they have propagated. This

makes them perfect candidate solutions for testing the efficacy of algorithms that
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solve nonlinear differential equations. When the sign of the potential |ψ|2 is positive,

the solitons will have positive amplitudes and be known as bright solitons, while they

will appear as depressions in a constant, nonzero scalar field and be known as dark

solitons if the potential is negative. For convenience, I will set h̄ = m = 1 for all of

the equations we will be looking at.

The NLS admits several solutions. If we impose the boundary condition that |ψ| → 0

as x→∞, what we get is a soliton travelling with some velocity v described by the

equation

ψ(x, t) = e(µt+vx/2)√µsech[
√
µ(x− vt)] (1.6)

where v is the group velocity of the soliton and µ is a normalization factor that

affects both the amplitude and phase of the soliton. The dynamics of solitons are

well-known, and I will not discuss them here. The important lesson to learn from

this particular case is that solutions of the NLS must conform to a particular length-

amplitude scaling. This will become relevant later.

A more interesting solution to the NLS and one that has not been simulated in

the qubit regime is the Peregrine solution described in [5], which is a soliton whose

amplitude oscillates in time. This solution appears when we impose the boundary

condition that |ψ| approaches some constant, nonzero value as x approaches infinity

and is described by the function

ψ(x, t) = e2it cos(Ωt− 2iφ)− cosh(φ)cosh(px)

cos(Ωt)− cosh(φ)cosh(px)
(1.7)

where φ is the period of the soliton, Ω = 2sinh(2φ) and p = 2sinh(φ). If the period

of the breather is taken to infinity, then we get a solution described by the equation

ψ(x, t) = 1− 4(1 + 4it)

1 + 4x2 + 16t2
(1.8)
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Surprisingly, this function peaks only once, at t = x = 0. This behavior is similar

to the observed behavior of so-called ”rogue waves” in the ocean, and suggests the

existence of similar phenomena in other systems governed by the NLS.

1.3 The Coupled NLS

I will primarily be observing the theoretical behavior of solitons governed by two sets

of equations. One is a set of coupled equations that govern the dynamics of two

coupled optical waveguides, which can be approximated as

iut + uxx + 2|u|2u = −v + iγu (1.9)

ivt + vxx + 2|v|2v = −u− iγv (1.10)

where u and v are the polarizations of the optical field and each subscript is a deriva-

tive with respect to the variable in question. These coupled equations admit breather

solutions. Because these equations are non-Hermitian, there is no guarantee that a

unitary algorithm will properly simulate them. The first method for getting around

this is provided by Barashenkov in [2]. He makes two successive transforms. The first

is to do a simple rotation of coordinates:

a =
eiθu− v

2ω0

(1.11)

b =
e−iθu+ v

2ω0

(1.12)

where

θ = arcsinγ (1.13)

ω0 = cosθ (1.14)

To start the multi-timescale expansion, he makes an additional substitution:

a(x, t) = ε1/2A(x, t) (1.15)

b(x, t) = ε1/2B(x, t) (1.16)
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If we make these two substitutions, we end up with the equations for A and B:

iAt + εAXX − ω0A+ 2ε(|A|2 + 2|B|2)A+ 4ie−iθεγA2B∗ + 2e2iθεA∗B2 = 0 (1.17)

iBt + εBXX + ω0A+ 2ε(2|A|2 + |B|2)B − 4ieiθεγB2A∗ + 2e−2iθεB∗A2 = 0 (1.18)

The basic method for generating the equations we solve for the initial conditions is

to define new coordinates and derivatives:

Tn = εnt (1.19)

Xn = εnX (1.20)

Dn = ∂/∂Tn (1.21)

∂n = ∂/∂Xn (1.22)

We can also expand A and B into different scales such that A = A0 + εA1 + ... and

B = B0 + εB1 + .... This allows us to likewise expand the equations above into

equations for the A and B terms of each order. The zeroth order equation is:

(iD0 − w0)A0 = 0 (1.23)

(iD0 + w0)B0 = 0 (1.24)

which leads to the obvious solutions A0 = e−iw0T0p and B0 = eiw0T0q. We can then

expand out to first order and plug these in to get the first order equations, and then

take the solutions to that to get the second order equations. At all orders, we observe

secular terms that break the ordering, which we set to zero. Adding them together

gives the approximate behavior of the system at orders up to ε2. The equations for p

and q are

ipT + pXX + 2(|p|2 + 2|q|2)p+
ε

ω0

(|q|2 − 2|p|2)|q|2p = 0 (1.25)

iqT + qXX + 2(|q2 + 2|p|2)q +
ε

ω0

(2|q|2 − |p|2)|p|2q = 0 (1.26)

5



One question we might ask is whether these equations admit breather solutions. If

they do, then said solutions will take the form

p = eiµTP (X) (1.27)

q = eiνTQ(X) (1.28)

Plugging these into the original equations for p and q and setting µ = ν gives partial

solutions. To get the solutions we want we need to further expand P and Q to

accommodate for the previous time scale expansion. We eventually get solutions for

p and q of

p =
eiT√

3
sechX[1− ε

102ω0

(6 + sech2X) +O(ε2)] (1.29)

q =
eiT√

3
sechX[1 +

ε

102ω0

(6 + sech2X) +O(ε2)] (1.30)

which can be converted back to u and v via inverting our original transformations.
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Chapter 2

The Qubit Algorithm

To create a method of simulating the behavior of the types of nonlinear Schroedinger

equation I described above on a quantum computer, I will construct a unitary opera-

tor that corresponds to the time evolution operator of the general system. I will test

the accuracy of this operator by applying it to known solutions to both equations,

i.e. the breather solitons discussed in the last section. I will construct operators that

simulate both the coupled and uncoupled equations, the latter of which is simply a

degenerate case of the former.

2.1 Qubits

The basic building blocks of any quantum algorithm are qubits. A qubit is a quantum

object whose wave function φ can be represented as a superposition of two states |0 >

and |1 > such that

φ = α|0 > +β|1 > (2.1)

where α and β are both complex numbers. Note that when a qubit is observed it

will be observed as in either the |0 > or |1 > state, both of which correspond to the

respective 0 and 1 states of a classical bit. The advantage of qubits is that two can

be entangled to represent systems that cannot be described by two classical bits. For

7



example, the state

α|00 > +β|11 > (2.2)

cannot be expressed as a tensor product of two independent qubit states and thus

cannot be generated on a classical computer. By applying a sequence of operators to

a large number of entangled qubits, we can construct circuits that perform various

computations, including the simulation of quantum systems that cannot be directly

simulated on a classical computer.

2.2 The General Method

To begin, consider a generic scalar field governed by the linear one-dimensional

Schroedinger equation

i
∂ψ

∂t
= Ĥψ (2.3)

where Ĥ is the Hamiltonian −1
2
∂2ψ
∂x2

+V (x) and V (x) is some external scalar potential.

The general time dependent solution to this equation, given some initial wave function

ψ0, is

ψ(x, t) = e−iĤtψ0(x) (2.4)

To simulate this on a classical computer, we would apply the unitary time evolution

operator e−iĤ∆t in increments of ∆t to ψ0 and observe its evolution. However, if we

want to simulate this system on a quantum computer we will need a slightly different

method. First, we break up the wavefunction into two separate quantities, q0 and q1.

We then note that for each time step

q0(x, t+ ∆t) = aq0(x, t) + bq1(x, t) (2.5)

q1(x, t+ ∆t) = cq0(x, t) + dq1(x, t) (2.6)
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where a, b, c, and d are complex numbers. This set of equations and thus the time

evolution operator of this system can be represented by the matrix

U(x, t) =

(
a(x, t) b(x, t)
c(x, t) d(x, t)

)
(2.7)

which represents the time evolution of the system over some time ∆t. If the Hamilto-

nian of the system in question is Hermitian and/or PT symmetric, this matrix must

be unitary. Thus, the problem becomes one of finding a matrix U(x, t) that is unitary

such that U(q0(x, t), q1(x, t)) = (q0(x, t+ ∆t), q1(x, t+ ∆t)) +O(ε3).

2.3 The Nonlinear Schroedinger Equation

The qubit case of the discrete time evolution operator for the scalar field equation

expressed in equation 1.5 is

U = e−i∂
2
x∆t/2e−i|q0+q1|2∆t (2.8)

As seen above, the operator is split into two parts: the kinetic energy part, and the

potential energy part. It is notable that these operators do not commute, and thus

we must interleave them together when actually applying the algorithm. As shown

in [1], we see that interleaving the components of this operator properly is enough

for this to approximate the evolution of the system to within second order. First,

consider the unitary collision operator C that locally entangles q0 and q1

√
SWAP =

(
1−i

2
1+i

2
1+i

2
1−i

2

)
(2.9)

and the streaming operators

S∆x,0 = n+ + e∆x∂xn− (2.10)

S∆x,1 = n− + e∆x∂xn+ (2.11)

9



where n± = (1 ± σz)/2, which shift q0 and q1 by a length ∆x. To represent the

movement of qubits on a lattice, we construct the operator Jxγ = S−∆x,γCS∆x,γC.

The operator J2
xγ then represents the total kinetic energy operator acting on the γth

qubit.

Adding in the potential, we get a total operator

J2
x0e
−iε2Ω(x)/2J2

x1e
−iε2Ω(x)/2 (2.12)

where

Ω(x) =

(
cos[Ω∆t] −isin[Ω∆t]
−isin[Ω∆t] cos[Ω∆t]

)
(2.13)

Where Ω is the scalar potential we’re working with. It can easily be shown that

this is the operator that approximates the unitary time evolution operator to within

order ε3. In the NLS case, the potential is |ψ|2. While C is suitable for handling low-

amplitude solutions to the NLS, research has shown that a collision operator based

on the Dirac equation is a better fit for simulating the NLS, which is

CD =

(
cos(pi

4
− 1

8
|ψ|2) −isin(pi

4
− 1

8
|ψ|2)

−isin(pi
4
− 1

8
|ψ|2) cos(pi

4
− 1

8
|ψ|2)

)
(2.14)

This collision operator replaces both the original collision operator C and the the

perturbative terms e−iε
2Ω(x)/2 and e−iε

2Ω(x)/2 in the old algorithm, giving us fidelity at

much higher amplitudes.

2.4 Rescaling

The qubit algorithm presented in the last two sections is perturbative. Hence, we

expect nonphysical behavior of high-amplitude solutions that must be corrected for.

However, due to the nonlinearity of the Manakov equations, this is not a simple matter

of multiplying the amplitude by some factor α. Instead, we also have to multiply x

by some other factor 1/χ, where χ is the characteristic length scale of the function.

10



Now, we must also multiply t by some characteristic time scale 1/τ , but due to the

diffusion ordering of the algorithm we know that 1/χ = 1/τ 2. If we consider some

function αphi(X,T ) where X = x/χ and T = t/τ and plug it into the NLS equation,

we get

iαβ2φt + αβ2φxx + 2α3|φ|2φ = 0 (2.15)

where β = 1/χ. If we make the additional assumption that φ(X,T ) is still a solution

of the NLS equation, then the only way for this expression to hold is if α = ±β. Our

final result is therefore that if phi(x, t) is a solution then so is αφ(αx, α2t).

11



Chapter 3

Numerical Calculations

To test the algorithm, I used code written in Fortran that evolves a starting wavefunc-

tion using the qubit operator detailed in the last section. The code first instantiates

the wavefunction on a grid with 1024 lattice points and then breaks it into the q0 and

q1 qubits. The code applies the Dirac version of the unitary qubit operator to both

qubits on every lattice point at each time step. At certain designated time steps, the

code also plots the sum of the two qubits, which corresponds to the scalar field we

want to recover.

For the algorithm to accurately the equation, it must obey several conservation

laws. These include conservation of unitarity and conservation of energy, which the

coupled NLS can be shown to obey. Thus, in addition to checking the scalar field at

regular intervals, the code also checks the total probability current of the scalar field

and the potential plus the kinetic energy of the system to ensure that the conservation

laws hold. In addition to unitarity, the code must also maintain periodic boundary

conditions throughout the evolution of the system. To do this, the code uses a circular

array shift every time the first and last points on the lattice grid change.

12



Figure 3.1: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 at t0 = 0au colliding at a velocity of .00125. At this speed they
do not exhibit any noise.

Figure 3.2: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 at t1 = 800au.
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Figure 3.3: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 at t2 = 1000au.

Figure 3.4: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 at t3 = 1300au.
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Figure 3.5: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 colliding at a velocity of .125 at t0 = 0au. At this speed they ex-
hibit noise in the form of higher frequency oscillations, which is an artifact of the
algorithm.

Figure 3.6: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 colliding at a velocity of .125 at t1 = 500au.
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Figure 3.7: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 colliding at a velocity of .125 at t2 = 1000au.

Figure 3.8: Absolute value versus position of two solitons with an amplitude of
.0125/2.59075 colliding at a velocity of .125 at t3 = 1300.
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Figure 3.9: Absolute value versus position of the degenerate soliton solution to the
Manakov system at t0 = 0au. In this regime, the system is well-behaved.

3.1 Data Collection

So far, I have taken plots of the collision of two dark solitons governed by equation

1.6. The solitons can be observed to move at a constant velocity and at low velocities

the collision does not cause any interference, as seen in figures 3.1-3.4. However, at

higher velocities the algorithm becomes unstable, specifically around more than one

grid space per time step, as in figures 3.5-3.8. Despite this instability, the algorithm

always remains unitary.

I also simulated the coupled Manakov system detailed in equations 6 and 7 using

the same general qubit method. I first tried a degenerate bright soliton with q = 0

solution moving at a constant velocity as shown in figures 3.9-3.11. I found that

unitarity was conserved in this case. I then checked the case of an inelastic collision

and found that minor solitons travelling in the opposite direction were formed dur-
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Figure 3.10: Absolute value versus position of the degenerate soliton solution to the
Manakov system at t1 = 500au.

Figure 3.11: Absolute value versus position of the degenerate soliton solution to the
Manakov system at t2 = 1000au.
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Figure 3.12: Absolute value versus position of the inelastic collision solution to the
Manakov system, simulated on a 1024-qubit grid at t0 = 0au. The orange wave
function is the norm squared of the q field, while the blue wave function is the norm
squared of the p field. The formation of extra solitons is due to the coupled system
having a degree of freedom with respect to the number of solitons that can be present
before and after collision so long as energy is conserved.

ing collision, particularly in the p wavefunction, as seen in figures 3.12-3.14. The

Peregrine solution to the NLS presents us with an interesting challenge. Rather than

simulating the original solution presented in equation 1.7, I rescaled it using a scaling

coefficient α = 1
200

. The Peregrine solution is expected to diminish to a constant

function, but in my simulation the function dips into what resembles a broadened

dark soliton, as seen in figures 3.15-3.20. The most likely explanation for this is that

there is something wrong with the way my code handles the algorithm, since unitarity

ticks slowly upward over time.

To test my code further, I tried the case of the Ma breather, which is like the

Peregrine breather but with a finite period. In this case, the soliton turned into an

oscillatory solution after a half a period as seen in 3.21. Further work must also be
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Figure 3.13: Absolute value versus position of the general solution to the Manakov
system, simulated on a 1024-qubit grid at t1 = 500au.

Figure 3.14: Absolute value versus position of the general solution to the Manakov
system, simulated on a 1024-qubit grid at t2 = 1000au.
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Figure 3.15: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t0 = 0au. The solution behaves as expected
at first but then dips back after vanishing to a constant solution.

Figure 3.16: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t1 = 5000au.
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Figure 3.17: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t2 = 10000au.

Figure 3.18: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t3 = 30000au.
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Figure 3.19: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t4 = 60000au.

Figure 3.20: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t5 = 78000au.
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Figure 3.21: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t0 = 0au. The solution behaves as expected
at first but then exhibits more and more noise on the sides.

done to prevent the problems shown above.
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Figure 3.22: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t1 = 5000au.

Figure 3.23: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t2 = 10000au.
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Figure 3.24: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t3 = 30000au.

Figure 3.25: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t4 = 60000au.

26



Figure 3.26: Absolute value versus position of the Peregrine solution to the uncoupled
NLS, simulated on a 1024-qubit grid at t5 = 78000au.
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Chapter 4

Conclusions

I simulated dark soliton collisions using a qubit algorithm at various velocities. I

found that at low velocity, which is less than one grid point per time iteration, the

solitons exhibited the exact expected behavior. At high velocity, however, the solitons

exhibit oscillations characteristic of noise in the algorithm. Some ways of fixing

this include using averaging methods or avoiding velocities above what my code can

handle. Meanwhile, the coupled Manakov equations showed minor soliton formation

at the time of collision. This was not changed by any rescaling, suggesting that

we were seeing real physics. The Peregrine and Ma breather solutions to the NLS

exhibited nonphysical behavior, suggesting either that the algorithm was not exact

enough or that the breathers exhibit highly nonlocal behavior that cannot be captured

by the algorithm. In the future I will also test the qubit algorithm on the higher-

order embedding of the Manakov equations to simulate non-perturbative solutions.

A more accurate representation of the streaming operator may also overcome these

problems. For example, Vahala has developed an FFT version of the qubit algorithm

that simulates the NLS equation at higher amplitudes.
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Appendix A

Implementing the Qubit Algorithm
in Practice

I implemented the algorithm detailed in the main part of my thesis in Fortran. The

code below instantiates the p and q wave functions at t = 0 and then applies each part

of the unitary operator individually at each time step. It also prints the normalization,

energy, and wave function data to different output files at a total of 100 different points

in time. Note that this code was based on code written by my research group for a

different project.

A.1 Code sample

The following is the Fortran code which I used to implement the qubit algorithm
for several different initial conditions. The current code will instantiate both p and q
solitons to simulate the pseudocollision case, although any functions can be plugged
in as initial conditions.

! Modeling 1D solitons using a relativistic Dirac collision operator with a phase angle.

! written by Connor S.

! .... periodic boundary conditions, using CSHIFT (and not Armen’s ’stream’-function)

module nls_manakov_nr_mod

implicit none

double precision, parameter :: pi = acos(-1.0); ! Pi~

double precision, parameter :: sq2 = sqrt(2.d00); ! (square root of 2)/2

double complex, parameter :: ii = dcmplx(0., 1.d0); ! complex i

integer, parameter :: GridPts = 1024; ! Number of grid points

integer, parameter :: GridRng = 1024; ! Spatial span along the x direction
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double precision, parameter :: dx = GridRng/real(GridPts,8); ! Grid spacing

integer, parameter :: NumRuns = 30000 ! number of iterations

integer, parameter :: NumOutputs = 100 ! number of outputs

integer, parameter :: OutputTime = NumRuns/NumOutputs; ! Time at which to make an output

double precision, parameter :: s1Dep = 0.0125/2.59075 ! left soliton amplitude

double precision, parameter :: s2Dep = 0.0125/2.59075 ! right soliton amplitude

double precision, parameter :: s1Vel = 0.125; ! left soliton velocity

double precision, parameter :: s2Vel = -0.125; ! right soliton velocity

double complex, parameter :: eps = .1; ! long time perturbation

double complex, parameter :: w0 = 0.8660250; ! resonant frequency

double complex, parameter :: alpha = .0102242;

double complex, parameter :: phi = 1

double complex, parameter :: period = 2*Sinh(2*phi)

double complex, dimension(0:GridPts) :: p, q, p0, p1, p0temp, p1temp, q0, q1, q0temp, q1temp, pcp, qcq; ! wavefunction, qubits and qubit storage

double complex, dimension(0:GridPts) :: pcollide1122, pcollide1221, qcollide1122, qcollide1221;

! unitary collision operator

double precision, dimension(0:GridPts) :: Vp, Vq, vpint, vqint ! potential term = Psi(Psi*)

integer :: i, it; ! iterators i and it, and the initial position of the soliton’s maxima

character(20) :: file_name; ! file name of output files

double precision :: norm0, norm1, min0 ,abt0,qb1,norm0q,norm0p,normtp,normtq ! normalization, initial max amplitude

contains

! ===>

function energy()

double precision :: energy;

double complex :: dp(0:GridPts), dq(0:GridPts);

dp = 0.5*(cshift(p,-1) - cshift(p,+1))/dx ! d/dx(p)

dq = 0.5*(cshift(q,-1)- cshift(q,+1))/dx

energy = dx*sum(conjg(dp)*dp+conjg(dq)*dq -((conjg(p)*p)**2+(conjg(q)*q)**2+4*conjg(p)*p*conjg(q)*q) &

+ (eps/w0)*conjg(p)*p*conjg(q)*q*(conjg(p)*p - conjg(q)*q));

return; ! Output the result

end function energy

! ---===>

! function current()

! double precision :: pcurrent;

! double complex :: dp(0:GridPts);

!

! dp = (cshift(p,-1) - cshift(p,+1))/(2*dx) ! d/dx(psi1)

! !dq = (cshift(q,-1) - cshift(q,+1))/(2*dx) ! d/dx(psi1)

! pcurrent = dx*sum(conjg(p)*dp - p*Conjg(dp));

! !qcurrent = dx*sum(conjg(q)*dq - q*Conjg(dq));

!

! return; ! output the result

! end function current

! =====>

! This function will stream a 1-D qubit along a direction with the exception of the endpoints which are left unchanged.

! Akin to static boundary condition as opposed to periodic d/dx at boundary = 0
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! Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrdinger equation

! Weizhu Bao, Qinglin Tang , Zhiguo Xu

function stream(qubit, dX, BoundaryPts)

double complex, dimension(0:GridPts) :: stream,qubit; ! passed qubit to the function and mqubit = modified quibit

integer :: dX; ! how much along each dimension the qubit is shifted (-1, 0, +1 ..)

integer :: BoundaryPts; ! how many points to keep unchanged at boundary

if(BoundaryPts < 0) then ! in case the value of the boundary is negative, end execution

write(6,*) ’Incorrect BoundaryPts passed to stream function.’;

stop;

endif

stream = qubit;

! I will put the do loops in the if statements rather than the other way around for efficiency

if(dX <= BoundaryPts ) then ! proceed

do i = BoundaryPts - dX, GridPts - BoundaryPts - dX

stream(i + dX) = qubit(i);

enddo

else ! if some other shift combination is sent inform user of improper input

write(6,*) ’Incorrect dX passed to stream function.’;

stop;

endif

return; ! Output the result

end function stream

end module nls_manakov_nr_mod

! MAIN PROGRAM BEGINS HERE

program nls_manakov_nr

use nls_manakov_nr_mod

! Open files for data collection

open(unit=1, file= "1D_nls_p_data0.txt"); ! data file housing the initial abs(psi)

open(unit=2, file= "1D_nls_norm.txt"); ! data file housing the normalization data

open(unit=3, file= "1D_nls_q_data0.txt")

open(unit=4, file= "1D_nls_energy.txt"); ! data file housing the energy data

open(unit=5, file= "Initial Params.txt"); ! data file housing initial parameters

! Output the initial conditions

! write(5,*) ’Depth of left soliton = ’,s1Dep, new_line(’\n’), ’Speed of left soliton = ’,s1Vel;

! write(5,*) ’Depth of right soliton = ’,s1Dep, new_line(’\n’), ’Speed of right soliton = ’,s2Vel, dx;

! close(5); ! Close file housing initial parameters

! write(6,*) ’Depth of left soliton = ’,s1Dep, new_line(’\n’), ’Speed of left soliton = ’,s1Vel;

! write(6,*) ’Depth of right soliton = ’,s2Dep, new_line(’\n’), ’Speed of right soliton = ’,s2Vel;

! Initialize the wavefunction using the analytic solution and output it

! do i = 0, GridPts

! if(i <= GridPts/2) then
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! psi(i) = (1/sq2)*(ii*s1Vel + 2*s1Dep*Tanh(s1Dep*(i - (GridPts/4)))); ! Left dark soliton

! else

! psi(i) = (1/sq2)*(-ii*s2Vel - 2*s2Dep*Tanh(s2Dep*(i - (3*GridPts/4)))); ! Right dark soliton

! endif

! write(1,*) i*dx, abs(psi(i)); ! Output the position and abs(psi)

! enddo

! .... using product wavefunction basis, rather than Armen’s cutoff method

do i=0, GridPts

p(i) = exp(-ii*s2Vel*(i-300)*dx/2)*sqrt(s1Dep)/(Cosh(sqrt(s1Dep)*(i-300)*dx))

q(i) = exp(-ii*s1Vel*(i-900)*dx/2)*sqrt(s1Dep)/(Cosh(sqrt(s1Dep)*(i-900)*dx))

! q(i) = 0

!p(i) = (alpha/sqrt(3.0))*1/(Cosh(alpha*(i-800)*dx))*(1-(eps/(102*w0))*(6+(1/(Cosh(alpha*(i-800)*dx)))**2))

!q(i) = (alpha/sqrt(3.0))*1/(Cosh(alpha*(i-300)*dx))*(1+(eps/(102*w0))*(6+(1/(Cosh(alpha*(i-300)*dx)))**2))

enddo

close(1); ! Close the initial wavefunction file

pcp = p*conjg(p);

qcq = q*conjg(q);

Vp = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

Vq = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

p0 = 0.5*p;

p1 = p - p0;

q0 = 0.5*q;

q1 = q - q0;

norm0p = dx*sum(p*conjg(p));

norm0q = dx*sum(q*conjg(q))

write(2,*) 0, norm0p; ! Output the initial normalization data

write(4,*) 0, energy();

! Main time loop begins here--------------------------------------------------------------------------

do it = 1, NumRuns

! populate the collision operator

pcollide1122 = cos(0.25*pi + Vp); ! the 11 and 22 components of the collision operator

pcollide1221 = -ii*sin(0.25*pi + Vp); ! the 12 and 21 components of the collision operator

qcollide1122 = cos(0.25*pi + Vq);

qcollide1221 = -ii*sin(0.25*pi + Vq);

! Begin collide and stream sequence

! collide the qubits (1)

p0temp = pcollide1122*p0 + pcollide1221*p1;

q0temp = qcollide1122*q0 + qcollide1221*q1;

p1 = pcollide1221*p0 + pcollide1122*p1;

q1 = qcollide1221*q0 + qcollide1122*q1;

!Stream the 0th qubit to the left

p0 = cshift(p0temp, -1);

q0 = cshift(q0temp, -1);

p = p0 + p1

q = q0 + q1

! Update the collision operator----------

pcp = p*conjg(p);

qcq = q*conjg(q);

vpint = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis
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vqint = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

pcollide1122 = cos(0.25*pi + vpint);

pcollide1221 = -ii*sin(0.25*pi + vpint);

qcollide1122 = cos(0.25*pi + vqint);

qcollide1221 = -ii*sin(0.25*pi + vqint);

! ---------------------------------------

! collide the qubits (2)

p1temp = pcollide1221*p0 + pcollide1122*p1;

q1temp = qcollide1221*q0 + qcollide1122*q1;

p0 = pcollide1122*p0 + pcollide1221*p1;

q0 = qcollide1122*q0 + qcollide1221*q1;

!Stream the 0th qubit to the left

p1 = cshift(p1temp, +1);

q1 = cshift(q1temp, +1);

p = p0 + p1

q = q0 + q1

! Update the collision operator----------

pcp = p*conjg(p);

qcq = q*conjg(q);

vpint = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

vqint = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

pcollide1122 = cos(0.25*pi + vpint);

pcollide1221 = -ii*sin(0.25*pi + vpint)

qcollide1122 = cos(0.25*pi + vqint);

qcollide1221 = -ii*sin(0.25*pi + vqint);

! ---------------------------------------

! collide the qubits (3)

p0temp = pcollide1122*p0 + pcollide1221*p1;

q0temp = qcollide1122*q0 + qcollide1221*q1;

p1 = pcollide1221*p0 + pcollide1122*p1;

q1 = qcollide1221*q0 + qcollide1122*q1;

!Stream the 0th qubit to the left

p0 = cshift(p0temp, -1);

q0 = cshift(q0temp, -1);

p = p0 + p1

q = q0 + q1

! Update the collision operator----------

pcp = p*conjg(p);

qcq = q*conjg(q);

vpint = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

vqint = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

pcollide1122 = cos(0.25*pi + vp);

pcollide1221 = -ii*sin(0.25*pi + vpint)

qcollide1122 = cos(0.25*pi + vqint);

qcollide1221 = -ii*sin(0.25*pi + vqint);

! ---------------------------------------

! collide the qubits (4)

p1temp = pcollide1221*p0 + pcollide1122*p1;

q1temp = qcollide1221*q0 + qcollide1122*q1;

p0 = pcollide1122*p0 + pcollide1221*p1;

q0 = qcollide1122*q0 + qcollide1221*q1;
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!Stream the 0th qubit to the left

p1 = cshift(p1temp, +1);

q1 = cshift(q1temp, +1);

p = p0 + p1

q = q0 + q1

! Update the collision operator----------

pcp = p*conjg(p);

qcq = q*conjg(q);

vpint = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

vqint = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

pcollide1122 = cos(0.25*pi + vpint);

pcollide1221 = -ii*sin(0.25*pi + vpint)

qcollide1122 = cos(0.25*pi + vqint);

qcollide1221 = -ii*sin(0.25*pi + vqint);

! ---------------------------------------

! collide the qubits (5)

p0temp = pcollide1122*p0 + pcollide1221*p1;

q0temp = qcollide1122*q0 + qcollide1221*q1;

p1 = pcollide1221*p0 + pcollide1122*p1;

q1 = qcollide1221*q0 + qcollide1122*q1;

!Stream the 0th qubit to the left

p0 = cshift(p0temp, +1);

q0 = cshift(q0temp, +1);

p = p0 + p1

q = q0 + q1

! Update the collision operator----------

pcp = p*conjg(p);

qcq = q*conjg(q);

vpint = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

vqint = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

pcollide1122 = cos(0.25*pi + vpint);

pcollide1221 = -ii*sin(0.25*pi + vpint)

qcollide1122 = cos(0.25*pi + vqint);

qcollide1221 = -ii*sin(0.25*pi + vqint);

! ---------------------------------------

! collide the qubits (6)

p1temp = pcollide1221*p0 + pcollide1122*p1;

q1temp = qcollide1221*q0 + qcollide1122*q1;

p0 = pcollide1122*p0 + pcollide1221*p1;

q0 = qcollide1122*q0 + qcollide1221*q1;

!Stream the 0th qubit to the left

p1 = cshift(p1temp, -1);

q1 = cshift(q1temp, -1);

p = p0 + p1

q = q0 + q1

! Update the collision operator----------

pcp = p*conjg(p);

qcq = q*conjg(q);

vpint = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

vqint = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

pcollide1122 = cos(0.25*pi + vpint);
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pcollide1221 = -ii*sin(0.25*pi + vpint)

qcollide1122 = cos(0.25*pi + vqint);

qcollide1221 = -ii*sin(0.25*pi + vqint);

! ---------------------------------------

! collide the qubits (7)

p0temp = pcollide1122*p0 + pcollide1221*p1;

q0temp = qcollide1122*q0 + qcollide1221*q1;

p1 = pcollide1221*p0 + pcollide1122*p1;

q1 = qcollide1221*q0 + qcollide1122*q1;

!Stream the 0th qubit to the left

p0 = cshift(p0temp, +1);

q0 = cshift(q0temp, +1);

p = p0 + p1

q = q0 + q1

! Update the collision operator----------

pcp = p*conjg(p);

qcq = q*conjg(q);

vpint = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

vqint = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

pcollide1122 = cos(0.25*pi + vpint);

pcollide1221 = -ii*sin(0.25*pi + vpint);

qcollide1122 = cos(0.25*pi + vqint);

qcollide1221 = -ii*sin(0.25*pi + vqint);

! ---------------------------------------

! collide the qubits (8)

p1temp = pcollide1221*p0 + pcollide1122*p1;

q1temp = qcollide1221*q0 + qcollide1122*q1;

p0 = pcollide1122*p0 + pcollide1221*p1;

q0 = qcollide1122*q0 + qcollide1221*q1;

!Stream the 0th qubit to the left

p1 = cshift(p1temp, -1);

q1 = cshift(q1temp, -1);

p = p0 + p1

q = q0 + q1

! end of collide/stream sequence

p = p0 + p1; ! update the wavefunction with the new values

q = q0 + q1;

pcp = p*conjg(p);

qcq = q*conjg(q);

Vp = -0.125*(2.*(pcp+2.*qcq)+(eps/w0)*(qcq-2.*pcp)*qcq); !Our potential term which has a (1/8) factor arising from convergence analysis

Vq = -0.125*(2.*(qcq+2.*pcp)+(eps/w0)*(2.*qcq-pcp)*pcp);

! Data output segment

if(mod(it, OutputTime) == 0) then

write(file_name, fmt = ’(A11,I0,A4)’) "1D_nls_q_data",it/OutputTime,".txt"; ! Generate the file name

open (unit=3, file=file_name); ! Open the write file

do i = 0, GridPts

write(3,*) i*dx, abs(q(i)); ! write the position and wavefunction

enddo

write(file_name, fmt = ’(A11,I0,A4)’) "1D_nls_p_data",it/OutputTime,".txt"; ! Generate the file name

open (unit=1, file=file_name); ! Open the write file
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do i = 0, GridPts

write(1,*) i*dx, abs(p(i)); ! write the position and wavefunction

enddo

close(1); ! close the write file

normtp = dx*sum(p*conjg(p))

normtq = dx*sum(q*conjg(q))

qbt0p = sum(p0*conjg(p0)) ; qbt1p = sum(p1*conjg(p1))

qbt0q = sum(q0*conjg(q0)) ; qbt1q = sum(q1*conjg(q1))

write(6,*) ’time = ’,it, ’ unitarity = ’, qbt0p+qbt1p+qbt0q+qbt1q, ’ normalization = ’,normtp+normtq

write(2,*) it, normt ! Output the normalization data

write(4,*) it, energy(); ! Output the energy data

endif

enddo

! END OF MAIN TIME LOOP--------------------------------------------------------------------------------

close(2); ! Close normalization data file

close(4); ! Close the energy data file

end program
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