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Abstract

By using data collected from Thomas Jefferson National Accelerator (JLab), I will

be observing two specific reactions from the collision of linearly polarized photons with

protons in a liquid hydrogen target. In this work, studies of the reaction γp → π0p

will be presented along with an exploratory study of the Compton scattering process

γp → γp. These reactions were studied by utilizing the fine-grained calorimetry

of the GlueX experiment in order to aid in the understanding of meson production

mechanisms in high-energy photoproduction. The separation of π0 and Compton

events is challenging due to potential merging of the π0 decay photons into a single

shower for large polar angles and high momentum. This merging causes π0 decay

photons with a small opening angle to look like single Compton photon showers.

As a result, electromagnetic shower shape variables are used to study these effects,

and with the introduction of three new width variables, comparisons between data

and Monte Carlo samples are obtained to estimate the signal purity for these two

reactions. These results will provide a stepping stone to ultimately measure the Σ

beam asymmetry for large angle Compton scattering events.
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Chapter 1

Introduction

The GlueX experiment at Jefferson Lab’s Hall D aims to explore the gluonic

degrees of freedom within hadrons through high-energy meson photoproduction. In

high-energy photoproduction, the dominant meson exchange is theorized to be due

to the exchange of massive quasi-particles called Reggeons. Understanding this type

of meson exchange is vital in order to search for gluonic excitations in the meson

spectrum through photoproduction reactions.

To understand how this massive quasi-particle exchange works then, an approach

to observing the theorized quantum numbers for the leading trajectories of the vector

and axial-vector Reggeons needs to occur. These quantum numbers are gathered by

measuring the linearly polarized photon beam asymmetry.

Along with observing the high-energy Reggeon exchange, the exploratory study of

the Compton scattering process may provide the potential for constraining General-

ized Parton Distributions (GPDs) of the proton. These GPDs describe the transverse

position and longitudinal momentum of quarks in the proton.

Using a 9 GeV linearly polarized photon beam, first measurements of the Σ beam

asymmetry (described in detail in Chapter 2.2) for pseudo-scalar production have al-

ready provided insight into the meson production mechanisms at these high-energies.

Calculations taken previously at the Stanford Linear Accelerator Center show a sig-
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nificant dip in asymmetries at around −t = 0.5(GeV/c)2 for γp → π0p, while more

recent π0 measurements at GlueX show no dip [1]. Without this dip, then it is

theorized that there is a strong influence of the vector Reggeon exchange around

this energy. Through this honors project, I will hopefully enhance this endeavour

by exploiting new moment variables and using the newest experimental data (with

considerably better statistics than before) to observe both γp → γπ0 and γp → γp

reactions. With over a year’s work being completed through depletion of background

data and separating the two particle reactions, much progress has been made, but it

is apparent that there is still a significant amount of work to be done.

This Honors thesis report is laid out in the following order: Theory (Chapter

2), Experimental Setup (Chapter 3), Results (Chapter 4), Conclusion (Chapter 5),

References (Chapter 6).
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Chapter 2

Theory

To understand this research, then a broad understanding of several topics are

needed including but not limited to: lattice quantum chromodynamics (lattice QCD),

linearly polarized photon beam asymmetries, and Monte Carlo (MC) simulations.

2.1 Meson production

Mesons are described as subatomic particles composed of one quark and one anti-

quark. For the purposes of this thesis, there is a need to look at spectroscopy within

a specific model called the constituent quark model. In this model, the quark and

anti-quark pair are bound together by the strong interaction and are usually repre-

sented as, qq.

Developed by Murray Gell-Mann, the Eightfold way organizes hadrons (in our

case mesons) accurately, as depicted in Fig. 2.1 [7].
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Figure 2.1: This is the meson nonet as described in Gell-Man’s eight-fold way of
organizing hadrons. The mesons increase in strangeness as you go up the diagram
and increase in charge as you go from left to right.

This diagram in Fig. 2.1 shows the 9 pseudoscalar mesons (a meson with total

spin 0 with odd parity) arranged by strangeness (S= +1,0,-1) and electric charge (Q=

-1, 0, +1). Here, strangeness is defined by

S = −(ns + ns), (2.1)

where ns is the number of strange quarks and ns is the number of strange anti-

quarks. While the electric charge is gathered from the total number of up quarks

(Q=+2/3) and down quarks (Q=-1/3) in the meson.

Mesons can also be described by another property known as the isospin which is

calculated as

I3 =
(nu − nd)

2
, (2.2)

where nu and nd are the number of up and down quarks, respectively. This isospin is

what helps differ some mesons apart when they have the same masses. For example,

the three pions were thought to be the same particle when first discovered, but their

isospin was what made each of them different [8].
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2.1.1 Lattice Quantum Chromodynamics

Lattice QCD is a well established non-perturbative approach to solving quantum

chromodynamics, which is the theory of gluons and quarks. It is a lattice gauge

theory formulated on a grid or lattice of points in space and time that studies the

strong interactions of quarks and gluonic fields. The reason that this research focuses

on lattice QCD is because strong interactions are

(1) Confining

(2) Chirally broken (in regards to chiral symmetry)

The confining portion just means that the strong interaction holds most ordinary

matter together since it ”confines” quarks into hadrons (e.g neutrons and protons).

This confinement is known as non-perturbative which means that all the results can

not be calculated numerically through perturbation theory to arbitrary accuracy on

a computer.

The chirally broken portion just means that the particles are not symmetric.

Essentially, we can define the particle’s spin as something called handedness. When

the particle is massless, as in a photon, then this handedness is the exact same as

chirality. There can be a symmetry transformation between two particles which can be

called parity. So, invariance (i.e. remaining unchanged) under parity transformation

by a fermion is known as chiral symmetry. In most theories for QCD, this chiral

symmetry can be broken, thus making it non-perturbative.

Since lattice QCD is the only approach to hadronic physics that is able to handle

non-perturbative properties from the first principles of quark and gluon interations,

it is a key method for understanding the strong nuclear force.
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2.1.2 Quantum Numbers

In the strong interaction, there are several conserved quantities. Some of the quanti-

ties are listed below:

• Electric Charge (Q)

• Parity (P)

• Isospin (I)

• Angular Momentum (J)

• Strangeness (S)

• G-Parity (G)

• Charge conjugation (C)

In Table 1 below, we can see that some of these conserved quantities are carried

by quarks.

Quark Q J S I
u 2/3 1/3 0 1/2
d -1/3 1/2 0 1/2
s -1/3 1/2 -1 0

Table 1: Quantum numbers of the three lightest quarks. [3]

From the constituent quark model, there can be a total angular momentum de-

noted as J. The total angular momentum can be calculated by

J = L⊕ S (2.3)

where the orbital angular momentum is denoted by L, and the total spin of the quarks

is denoted by S (the total spin would be either 0 or 1 for the qq pair).
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The total angular momentum J must take on the following values:

J = |L− S|, |L− S + 1|, ..., |L + S| (2.4)

.

From these quantities then the JPC quantum numbers of any meson can be cal-

culated.

The first model developed for high-energy γp → π0p by Goldstein and Owens

was based on the exchange of Reggeons with the allowed t-channel quantum numbers

JPC = 1−− and 1+− [1]. This model is described in more context in section 2.1.3. This

model is the representation that will be used when the JPC numbers are extracted

for π0 production. There is currently no model that supports the JPC numbers for

Compton scattering processes so this project will be the first to look for these values.

2.1.3 Mandelstam variables

From theory, Mandelstam variables are numerical quantities that use the energy,

momentum, and angles of particles in a hadronic scattering process. There are three

variables: t-channel (time channel), s-channel (space channel), and u-channel.
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Figure 2.2: This is a Feynman diagram of a simple hadronic interaction. Here, p1,
p2, p3, p4 are all particles. According to theory, there are specific ways in which the
initial states react and produce specific final states.

The variables are defined using the Feynman diagram shown above in Fig. 2.2.

s = (p1 + p2)
2 = (p3 + p4)

2 (2.5)

t = (p1 − p3)2 = (p4 − p2)2 (2.6)

u = (p1 − p4)2 = (p3 − p2)2 (2.7)

Each channel represents a different scattering process. The only channel this

project observes is the time channel shown in Fig. 2.3 below.

Figure 2.3: This is a example Feynmann diagram for a T-channel interaction. For a
reference for my specific reactions, p1 is the incoming γ photon , p2 is the incoming
proton, p3 is the π0 or the produced γ photon, and p4 is the same proton as p2 but
with less momentum as before.
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This diagram represents the process where particle 1 emits the intermediate parti-

cle and becomes the final particle 3, while particle 2 absorbs the intermediate particle

and becomes particle 4.

2.1.4 Reactions

For this research, I will be looking at two distinct reactions. These are γp→ γp

and γp → π0p. What these specifically mean is that by using Jefferson Lab’s accel-

erator, I will be studying the collision of a γ particle and a proton with a production

of either another γ particle, known as Compton scattering, or a π0 particle where the

π0 decays to two photons. Through event selections and precise kinematic cuts, I am

able view these two reactions respectively, but with a lot of similarities, it is hard to

view either reaction by it self.

2.2 Linearly polarized photon beam asymmetries

Understanding the beam asymmetry for the reactions that this work looks at,

gives the ability to extract the crucial quantum numbers (i.e. JPC numbers) from

the distribution produced.

Figure 2.4 is a representation of how the beam asymmetry is extracted. The

polarized photon beam comes into the liquid hydrogen target in the GlueX experiment

parallel to the lab floor. Once the beam collides with the protons in the target,

then mesons are produced from this interaction. The φ angle separating the meson

production plane and the polarization plane is the angle needed to compute the

beam asymmetry. For the GlueX experiment, there are two orientations for the

beam asymmetry: PARA (linear polarization parallel to the floor) and PERP (linear

polarization perpendicular to the floor).

The cross section dσ for the photoproduction of pseudoscalar mesons is the fol-
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Figure 2.4: This graphic shows the angle φ of the beam asymmetry. Here the red
plane is the meson production plane, the blue plane is the lab floor, while the beam
is coming from left to right. Where the meson production plane and lab floor plane
intersect is the liquid hydrogen target.

lowing:

dσ = dσ0(1− PγΣcos(2φ)) (2.8)

Here, dσ0 is the unpolarized cross section, φ is the azmuthal angle mentioned

before, Pγ is the polarization of the photon, and Σ is the linearly polarized beam

asymmetry. As shown, the beam asymmetry has a cos(2φ) dependence. In order to

fit this cos(2φ) dependence to extract Σ, the need for extremely pure samples of the

reactions observed are needed. This is were the challenge lies.

2.3 Monte Carlo simulations

The Monte Carlo method relies on repeated random sampling to obtain numerical

results. The main idea behind this is to use randomness to solve problems that might

be deterministic in principle.

An example can be done by calculating the constant π. As shown in Fig. 2.5, by

drawing a circle that has the same diameter and exact domain as a square, simulated

random x and y points will produce a ratio of points inside the circle and out side it.
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Indeed, there are fewer points outside of the circle than inside of it. The area of this

circle is simply π since the units of the square is 2 units × 2 units.

Figure 2.5: This is an example figure of the calculation of π by the Monte Carlo
simulation. Points are generated randomly within the square. The ratio of the points
inside of the circle and the total number of points is π/4. This is used to estimate π
to almost exactness.

This example shows how Monte Carlo simulations use randomness to calculate

approximate results. At Jefferson Lab, Monte Carlo simulations are conducted simi-

larly to this one in order to produce predictions for outcomes of specific reactions that

can be compared to what the actual data produces. Our Monte Carlo simulations

are produced through a software called Geant3.

2.3.1 GEANT simulations

In this research project, the specific type of Monte Carlo simulations that are used

are produced by a software called GEometry ANd Tracking or GEANT [9]. This

software is designed to cope with many different types of experiments. The software

gathers kinematic generations, tracks the particles trajectories in space, and gathers

the particle’s information from simulated detectors. In order to run the simulation

for a specific experimental setup, GEANT requires some ”description” of the media

the particles are traveling through and the detector specifics.
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Chapter 3

Experimental Setup

Jefferson Lab is located in Newport New, Virginia. On site, it has four exper-

imental halls A, B, C, D; each with it’s own agenda and different focus on how to

explore the nature of matter. Fig. 3.1 shows a diagram of the accelerator side of

JLab.

Figure 3.1: This diagram shows the electron accelerator along with the four halls of
JLab. The electron races around this track picking up speed along to the straight
paths. Each Hall shown can run independently from one another.

In the picture, the race track shape is the electron accelerator path. As the

electron races around the track, it picks up speed on the straight portion where

Radio Frequency cavities are located that accelerate the electrons. Magnets in the

bend sections steer the beam around the arcs. Each hall has an independent beamline

and can be provided with different beam intensities, as required.
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For this honors research project, the focus is in Hall D, home of the GlueX exper-

iment. This hall is very unique because of its large acceptance detector, is the only

hall that uses a linearly polarized photon beam, and is able to reach the maximum 12

GeV energy range unlike the other halls. Below is a diagram of the GlueX detector.

Figure 3.2: This diagram shows the GlueX detector. The beam travels from left
to right. The liquid hydrogen target is shown in the very center where the Central
Drift Chamber, the Barrel Calorimeter, and the super conducting solenoid magnet is
surrounding it.

When the electron beam accelerates to approximately 12 GeV, it is then sent to

Hall D. Note, this electron beam is a continuous beam with pulses every 4 ns. Once

in Hall D, the electron hits a diamond wafer. The reason for this is because once

the electron hits the diamond, Bremmstrauhlung radiation occurs and so a linearly

polarized photon with the same energy is produced along with the same electron but

with less momentum. The electron beam is magnetically bent away from the photon

and sent to an electron dump. The linearly polarized photon will be either polarized in

the parallel orientation or the perpendicular orientation as described earlier in theory

section. Once produced the photon will be tagged and then sent along the beam

13



line where it will eventually collide with a stationary, vat of liquid hydrogen. The

γp collisions happen here since the photons will be colliding with hydrogen atoms,

which are just essentially protons. Surrounding the liquid hydrogen is the central

drift chamber, the barrel calorimeter, as well as a super conducting magnet with

approximately 2T field. These are in place in order to gather several types of data: the

energy deposition of the particles produced, along with the momentum, position, and

various other observables. Further down stream, the detector contains the forward

drift chambers as well as the time of flight and forward calorimeter. These detectors

are in place to observe the particles with smaller decay angles as well as when some

particles travel further than just the barrel calorimeter. In order to view these events,

GlueX reconstructs all the particle trajectories, momentum, energy depositions, etc.

and stores the data in compressed files for later analysis.
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Chapter 4

Results

4.1 Initial Event Selection

As stated in Chapter 2.2, in order to observe the beam asymmetry for any

reaction, an extremely pure sample of the reaction must be available. I initially made

simple vertex cuts, 4-momentum cuts, and energy cuts where needed.

One fix to my analysis dealt with fixing the accidentally tagged linearly polarized

photons.

Figure 4.1: This distribution shows where there are accidentally tagged photons on
the outer edges. On the x-axis is the measured time of the beam subtracted by the
measured time of the radio frequency. On the y-axis is the individual counts. The
actual signal is located in the center and is surrounded by the accidentally tagged
photons.

As seen above in Fig. 4.1, the main signal is focused in the middle and four fake
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signals are shown in the red lined region. The fake signals are where the photons

were tagged incorrectly. I placed a cut to leave only the true signal in the middle as

shown with the red lines.

I was able to take a quick look at the beam asymmetry at this early stage of

background depletion as well. This is shown in Fig. 4.2 where the yield is plotted

versus φp.

Figure 4.2: The beam asymmetry with an unpure sample. Although the distribution
shows the cos(2φ) distribution I would like, there are too many uncertainties in this
current sample to extract an accurate Σ beam asymmetry out.

As can be seen, there is a cos(2φ) distribution. Although the distribution can be

seen and the Σ can be extracted for the beam asymmetry, there is a large uncertainty

associated with it due to a limited understanding of the background contributions at
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this stage of the analysis.

The next big depletion in background data came when thinking about my two

reactions, γp→ γp and γp→ π0p, in the same manner. The data that I am looking

at has both reactions inside of it, so I was observing Compton events along with π0

events at the same time. In order to get a pure sample of Compton events, I had

to get rid of all the π0’s. This is tricky since π0 → γγ around 99% of the time. By

taking into consideration the ∆φ distribution, I knew the following

∆φ = φp − φγ (4.1)

where φp is the φ angle of the proton and φγ is the φ angle of the γ as described

in Chapter 2.

In a Compton scattering process, then the ∆φ distribution should remain around

180◦. The reason this is the case is that this process is called a ”back-to-back”

process where the proton and the photon separation produces a 180◦ angle. This is

just momentum conservation. A small diagram is shown below in Fig. 4.3.
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Figure 4.3: Compton scattering momentum conservation. Here is a schematic showing
the phi angle being 180◦ in Compton scattering. The yellow circle is the BCAL with
’z’ being the beam line.

In π0 production, then the ∆φ distribution may not be 180◦. The reason this is

the case is that since the π0 decays into two photons then the proton and the photon

separation does not produce a similar angle. A small diagram of the process is shown

in Fig. 4.4 below.

Figure 4.4: π0 decay. Here is a schematic showing the φ angle of a π0 production
that would not be 180◦. The dotted γ is a depicted photon that represents a photon
that came from the decayed π0 that has not been detected by the BCAL. The yellow
circle is the BCAL with ’z’ being the beam line.

In looking at the ∆φ distribution along the −t (the negative t channel) then I saw

exactly what I expected in Fig. 4.5.
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Figure 4.5: Here’s the ∆φ distribution with real data. On the x-axis is the Mandelstem
variable t at low GeV 2 and on the y-axis is the ∆φ in degrees. Outside of the main
peak are a large contribution of π0 particles while inside the main peak contains
mostly γ particles. The color bar shows the amount of particles (i.e, purple means a
small amount of particles in the area, but red means a large amount of particles in
the area.) The red lines near the peak of the histogram help with visualization.
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As you can see from the Fig. 4.5 histogram, the x-axis is the −t channel shown in

GeV 2 and the y-axis is in degrees. The 180◦ peak is clearly shown but the distribution

has a wide base since there are π0 particles that don’t have a back-to-back process

like the Compton photons have. To deplete the back ground and gain a purer sample

for Compton events, I placed a cut around the 178◦ and 182◦ so as to not make too

close of a cut yet. This cut is represented with the red lines on the histogram.

After placing the ∆φ cut, I needed a way to view how well this cut took away the

background, so I decided to view the ∆Energy vs. ∆θ distribution. In this case,

∆Energy = PhotonEnergyShower − PhotonMomentum(missing) (4.2)

and

∆θ = θmeasured − θmissing (4.3)

where the PhotonMomentum(missing) and θmissing are what the measurements should

be.

Theoretically, this distribution is supposed to be centered around (0,0), but as

can be seen in Fig. 4.6. this is not the case.
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Figure 4.6: Here’s the ∆E vs. ∆θ distribution before the ∆φ cut has been placed.
This shows that something is being measured incorrectly because there is no conser-
vation of momentum.

When placing the cut on ∆φ as seen in the red bars in Fig. 4.5, this is when I can

start seeing the data being centered at (0,0) in the histogram of ∆E vs. ∆θ like I

theorized. The only problem is that there is still a large background shown between

−6 < ∆E < −1 and 0 < ∆θ < 20. There is some speculation as to what this

background is, specifically just an incorrect PhotonMomentum(missing) and θmissing,

but there’s no concrete evidence to support the idea yet. So, by placing cuts at

∆θ = 2 and ∆θ = −2 as well as at ∆E = −4 and ∆E = 4 as can be seen in Fig. 4.7,

I was able to keep the main signal that kept momentum conserved.
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Figure 4.7: Here’s the ∆E vs. ∆θ distribution after the ∆φ cut has been placed. This
helps fix the large amount of background problem, showing that there is conservation
of momentum. There is still a large amount of background noise that is thought to
be incorrectly calculated values. The cuts that were placed are seen in red lines.

4.2 Shower Shape Variables

The newest portion of my work contains a solution to an old problem occurring

in the GlueX’s calorimeter clustering algorithm. As stated previoulsy, the π0 decays

into two photons 99% of the time. According to GlueX’s current clustering algorithm,

then this decay is addressed by the 1st moment. This 1st moment is defined as:

EBCAL = ΣiEi (4.4)

and

φBCAL = ΣiEiφi (4.5)

Eqs. 4.4 and 4.5 describe the the particles energy deposition into the detectors

in the Barrel Calorimeter (BCAL). Eq. 4.4 just sums over the energies Ei deposited

into each module in the BCAL and Eq. 4.5 is just the sum over the energies along

the azmuthal angle φi. A diagram of two different photon showers is shown below in

Fig. 4.8.
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Figure 4.8: A diagram to explain the GlueX clustering algorithm. Here the azmuthal
angle φ encircles the small sections. The squares represent individual modules of the
BCAL. On the left shows a single photon shower. On the right shows the problem
with the Gluex clustering algorithm when the π0 decays into small angle photon
showers.

Let’s say we have a single photon shower shown on the left hand side Fig 4.8. It

hits the BCAL’s modules and GlueX’s 1st moment clustering algorithm works fine.

Now, lets say that we have a double photon shower extremely close together. This

could easily be from a π0 that had a small angle decay. Now, GlueX’s 1st moment

would combine these two photon showers into one big photon shower. This leaves

a lot of π0’s left unaccounted for in the purification method because currently, they

are being treated as just Compton events. By introducing a second moment into the

picture, this small angle π0 decay problem is fixed.

σ2
trans = σ2

φ = ΣiEi(φi − φ)2 (4.6)

Here the second moment is shown in order to get a more three dimensional look at

the separation of photon showers. With the second moment, there is an introduction

to 3 new shower width variables shown in Fig. 4.9: σlongitudinal, σtransverse, σθ.
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Figure 4.9: A diagram to explain the new shower width variables. The red arrow
signifies σlongitudinal, the energy deposition of photons. The orange arrow signifies the
energy deposition along the azmuthal angle. The tricky σθ is shown with respect to
the side of the BCAL. This variable shows the width of the photon showers from this
point of view.

As shown above, the σlongitudinal variable shows the energy deposition of the pho-

tons radially outward from the target, the σtransverse shows the deposition along the

azmuthal angle, and the σθ is shown to be the width of the photon showers when

looking at the BCAL from the side. Notably, the σtransverse and the σθ variables will

be the most important variables when looking at the separation power. The reason

is that with σlongitudinal being an energy deposition variable, it is a lot harder to work

with.

Looking at the purity of the shower width variables, there could be seen in

σtransverse a double hump structure. It was because of this structure that this shower

width variable was believed to be a great tool to observe the separation of photon

showers. By looking at the Monte Carlos in comparison to the data, this showed not

to be the case. By looking at Fig. 4.10 were the red is the data, the yellow is the

extremely small Compton events, and the green is the π0 events, it is seen that both
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Monte Carlos favor the smaller values of σtransverse.

Figure 4.10: On the x-axis is the σtransverse shower values and on the y-axis are the
individual counts. Here, the red is the data, yellow is the extremely small Compton
events, and the green is the π0 events. This histogram has correct scaling of Compton
and π0 events based off of a likelihood fit.

This could mean one to two things: either the Monte Carlos are incorrect or there

are crucial cuts that are missing making the second hump background data. Instead

of going in and trying to fix the Monte Carlos, I began to go over other possibilities

that could possibly reduce the events in this histogram. Thinking about the how the

BCAL takes in data, the following was observed.

Figure 4.11: Here a wedge of the BCAL is shown. Boxed in red is known as the
pre-shower energy section. The rest of the cells are known as the shower energy
section.
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In Fig. 4.11, when a photon shower hits the BCAL, each individual cell will gather

the energy that was deposited in them. When the energy is deposited in the red box

then it is known as the pre-shower energy, and outside of the box it is known as the

shower energy. By plotting σtransverse vs. the pre-shower energy (similar results can

be seen with σθ) it can be seen that there is background in the top left hand corner

as shown in Fig. 4.12.

Figure 4.12: Here is the plot of σtransverse vs. Photon BCAL PreShower Energy where
σtransverse is on the y-axis and Photon BCAL PreShower Energy is on the x-axis. The
background in the histogram less than 1 was cut in order to observe the depletion of
the background in the σtransverse shower width variable.

Essentially, the main signal is when the photon showers are wider while the small

signal in the left hand corner is when the photon showers are slimmer. Since I wanted

to look at the wider photon showers, I placed a cut at one in order to look at mainly

wider photon shower widths.

Now looking at the ratio of the pre-shower energy and the shower energy along

with the γθ-determined (photon theta), it can be seen in Fig. 4.13 that a cut needs to

be placed on the ratio along 0.4. To describe γθ-determined in more depth, we know

that γθ is the physical polar angle of the photon from vertex when the particle is

produced in the target. So, γθ-determined is γθ but with a hard cutoff at the end of
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the BCAL and makes sure that nothing is smeared out by the collisions that occur in

the target. Applying this allows me to look at any edge effects that may be present.

Figure 4.13: Here is the plot of the γθDet vs. PreShower Energy/ Shower energy
ratio where γθDet is on the y-axis and PreShower Energy/ Shower energy ratio is
on the x-axis. The background in the histogram is less than 0.4 on the ratio and a
cut was made in order to observe the depletion of the background in the σtransverse
shower width variable.
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I placed a cut at the ratio of 0.4 and not around 0.2 where the majority of the

background signal is simply because to me, the background seemed to have a tail that

crossed into actual signal. I wanted to make sure that I depleted all the background

right away knowing later I would go back and optimize that cut I placed.

After this depletion, I then looked at the σtransverse variable to see if the cuts that

were now applied reduced the events any. In Fig. 4.14, it can be see that the cuts

reduced the second hump significantly and so it is observed now that the σtransverse

shower width variable is not a good separating variable based off of the hypothesis

made before.

Figure 4.14: On the x-axis is the σtransverse shower values and on the y-axis are the
individual counts. Notice the large reduction in the second hump to the right from
before.

4.3 Likelihood Fits

The next idea was to see how many π0 events the reaction had left in the current

data. After generating new date Monte Carlo simulations with each of these new

variables included, a likelihood event was taken of each of the variables independently

and then together in two dimensions.

A likelihood is the value of a probability density function evaluated at the measur-

able value of the observable. Essentially what a likelihood fit does is estimates model
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parameters from the Monte Carlo simulations and assigns the a weight such that

when you apply the weight and sum the Monte Carlo results together, you get what

the original data distribution looks like. It finds the maximum agreement between

the Monte Carlos and the actual data In mathematical terms, we use

f(σi) = wπ0 · fπ0MC(σi) + wγ · fγMC(σi) (4.7)

In Eq. 4.7, f(σi) is the function of σi where σi is obtained by summing the π0 and

Compton functions multiplied their respected weights calculated from the estimated

parameters. Also, fπ0MC(σi) and fγMC(σi) are the functions of σi the respected

Monte Carlos and wπ0 and wγ are the weights computed of the respected particle

distributions. In general, this is just trying to find by what scaling factor I can apply

to the π0 and Compton Monte Carlos in order to get the distribution given with

actual data.

The following plots of Fig. 4.15, 4.16, and 4.17 show the fits applied to the

distributions of each individual σ variables.

Figure 4.15: The fit of the σlongitudinal shower width variable. On the x-axis is the
σlongitudinal shower values and on the y-axis are the individual counts. The red is the
actual data while the blue is the likelihood fit. As seen, the fit does not match the
data because all the way since this is an energy deposition shower variable. Since π0

may decay into low energy photons, this variable is not reliable.
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Figure 4.16: The fit of the σtransverse shower width variable. On the x-axis is the
σtransverse shower values and on the y-axis are the individual counts. The red is the
actual data while the blue is the likelihood fit.

Figure 4.17: The fit of the σθ shower width variable. On the x-axis is the σθ shower
values and on the y-axis are the individual counts. The red is the actual data while
the blue is the likelihood fit.
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In these histograms, the red and black dots are the data points of the σ variables

and the blue is a RooFit (a fitting algorithm that can fit Probability Distribution

Functions) that is applied in order to obtain the weights from each variable as ad-

dressed earlier. The separation power can not be seen in the any of these shower

width variables from the likelihood fit. By looking at the data versus the Monte

Carlos scaled with the correct values gathered from the likelihood fits, I can see that

the best view of the separation power is in σθ shown in Fig. 4.20.

Figure 4.18: The fit of the σlongitudinal shower width variable. On the x-axis is the
σlongitudinal shower values and on the y-axis are the individual counts. The red is the
actual data while the yellow is the Compton Monte Carlo and the green is the π0

Monte Carlo. Since both Monte Carlos align on top of each other, there is no way to
separate the events with this variable.
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Figure 4.19: The fit of the σtransverse shower width variable. On the x-axis is the
σtransverse shower values and on the y-axis are the individual counts. The red is the
actual data while the yellow is the Compton Monte Carlo and the green is the π0

Monte Carlo. Since both Monte Carlos align on top of each other, there is no way to
separate the events with this variable.

Figure 4.20: The fit of the σθ shower width variable. On the x-axis is the σθ shower
values and on the y-axis are the individual counts. The red is the actual data while
the yellow is the Compton Monte Carlo and the green is the π0 Monte Carlo. As seen
there is a big difference between the two Monte Carlos.
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To describe the σθ histogram in depth, the yellow Compton signal should only

have a narrow peek because there should only be one observed single photon shower.

The green π0 signal also has a small narrow peek at low σθ because sometimes the π0

decays into different range of energy sizes. If the π0 decays into one photon shower

with 10 GeV and one photon shower with 1 GeV, then the 1 GeV photon will not be

observed inside the BCAL since the giant magnet will bend it out. So, this is what is

happening with the small narrow peek. The broad hump is the opposite of this when

two photon showers are observed leaving a larger range in σθ.

4.4 Scaling Factors for Data and Monte Carlo Agree-

ment

Noticing that the likelihood fit’s were slightly askew from data distribution,

meaning that the Monte Carlo’s were off a bit from data, I placed multiple unbiased

scaling factors to the data. The reason I scaled the data instead of scaling the Monte

Carlo’s is because going in and changing the Monte Carlo’s would take months, so

scaling the data is less time consuming. I took the χ2 of the scaling factors and

the likelihood fits to determine which scaling factor would be best for the data. By

plotting the scaling factors vs the computed χ2 it can be seen that there is a single

point for both histograms of σtransverse and σθ where the χ2 is at a minimum.
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Figure 4.21: The plot of the χ2 values of the scaling factors and the likelihood fits vs
the scaling factors of the data. As can be seen, there is a minimum χ2 value near the
center of the parabolic looking distribution.

As seen in Fig. 4.21, the distribution has a parabolic look to it where the values

tend to the smallest χ2 value and then shoot off to infinity the further away you

get from that value. This is because the further you move the data from where the

Monte Carlo’s are situated, the worse the χ2 value will be. Closing in on the smaller

χ2 values, I can see this parabolic distribution better with the smallest χ2 value at

the bottom in Fig. 4.22. I have placed a polynomial fit on the data to show the

parabola better.
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Figure 4.22: The plot of the χ2 values of the scaling factors and the likelihood fits
vs the scaling factors of the data with the smaller χ2 values plotted. As can be seen,
there is a minimum χ2 value near the center of the parabola.

Looking at σθ is slightly different. Varying the data for σθ affects the Probability

Density Function of the data in the algorithm that I use to create the likelihood fit. In

changing this, then the likelihood fit, as the data is moved towards the right, changes

into a more broader function that seems to correlate with the broadness of the data

distribution, but I know that this is incorrect. So, greater than a scaling factor of one

will not be correct.

Figure 4.23: The plot of the χ2 values of the scaling factors and the likelihood fits vs
the scaling factors of the data. As can be seen, the right hand side of the distribution
looks scattered and does to go to infinity the further out the I go from the histogram.
This is essentially due to the specifics of algorithm that I use to calculate the likelihood
fits.

As it can be seen by looking at Fig. 4.24, the likelihood fit has been affected
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allowing for smaller χ2 values to be obtained. Now focusing on the smaller χ2 values,

a similar thing can be seen.

Figure 4.24: This is the histogram of σθ in red and the likelihood fit in blue with a
scaling factor of 1.15 and a χ2 value of 14.8255. As can be seen, the likelihood fit has
shrunk compared to the original plots shown earlier.

Figure 4.25: The plot of the χ2 values of the scaling factors and the likelihood fits
vs the scaling factors of the data with the smaller χ2 values plotted. As can be seen,
the left hand side of the distribution looks scattered. This is essentially due to the
broadness of the σθ distribution. By varying the data in this range this produced
smaller χ2 values even though the data was not perfectly aligned as I wanted.

This problem on the left hand side of Fig. 4.25 is essentially due to the broadness

of the σθ distribution allowing for smaller χ2 values to be calculated even though the

data was not perfectly aligned. This can be seen in an example outlier on Fig. 4.26
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Figure 4.26: This is the histogram of σθ in red and the likelihood fit in blue with a
scaling factor of 0.85 and a χ2 value of 1.6856. As can be seen, the broadness of the
distribution will affect the χ2 value.

By not focusing on such a broad range of scaling factors as to not incorporate

these problems, I can see the parabolic distribution arise as with σtransverse in the

range of 0.9 to 1.0.

Figure 4.27: The plot of the χ2 values of the scaling factors and the likelihood fits
vs the scaling factors of the data with the smaller χ2 values plotted. As can be seen,
there is a minimum χ2 value near the center of the parabola.

Figures 4.28 and 4.27 show the histogram where the smallest χ2 value was deter-

mined out of the scaling factors. The scaling factors that I applied were: 0.925 for

σtransverse (with a χ2 value of 0.47022) and 0.95 for σθ (with a χ2 value 1.49115 .
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Figure 4.28: The fit of the σtransverse shower width variable with a scaling factor
of 0.925. On the x-axis is the σtransverse shower values and on the y-axis are the
individual counts. The red is the actual data while the blue is the likelihood fit. As
it can be seen, the total number of Compton events rose tremendously.

Figure 4.29: The fit of the σθ shower width variable with a scaling factor of 0.95. On
the x-axis is the σθ shower values and on the y-axis are the individual counts. The
red is the actual data while the blue is the likelihood fit. As it can be seen, the total
number of Compton events rose as well.
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As it can be seen, the likelihood fits accurately describe the data unlike Figures

4.16 and 4.17 before. In doing this, the algorithm I used for the likelihood fit is able

to determine, with better precision, how many Compton events versus π0 events there

are in the data now. Where before there was a minuscule amount of Compton events

contained in the σtransverse, it can be seen that there are much more currently in the

updated version. This can also been seen in looking at the Monte Carlos versus the

data.

Figure 4.30: The fit of the σtransverse shower width variable. On the x-axis is the
σtransverse shower values and on the y-axis are the individual counts. The red is the
actual data while the yellow is the Compton Monte Carlo and the green is the π0

Monte Carlo. It is seen that the Compton and π0 Monte Carlos switch as the updated
scaling factors are applied.

Figure 4.31: The fit of the σθ shower width variable. On the x-axis is the σθ shower
values and on the y-axis are the individual counts. The red is the actual data while
the yellow is the Compton Monte Carlo and the green is the π0 Monte Carlo. It is
seen that there is still a separation attribute due to the Monte Carlos.
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4.5 Purity and Efficiency

Now that all the cuts had been placed, I wanted to see the purity and efficiency

of the best separation variable I observed, the σθ shower width variable. By looking

at both the purity and efficiency of this shower width variable, I would be able to

determine the best place to separate the rest of the π0 events from the Compton events

based off of the Monte Carlos. By definition, the purity is just how pure the reaction

is. In this case, I am looking at the purity of the Compton reaction specifically. To

calculate this I simply compute:

Purity =

∫ σMax
θ

0
ComptonMC∫ σMax

θ

0
ComptonMC +

∫ σMax
θ

0
π0
MC

≤ 1 (4.8)

where σMax
θ is the maximum value of the bin through out each point on the x-axis,

and ComptonMC and π0
MC are the Compton and π0 Monte Carlos respectively. To

explain this in more depth, the purity starting at zero is at a maximum 1. As I

increment through the values on the x-axis the purity starts exponentially decrease

until it reaches the end of the data. This exactly what I observe.

Figure 4.32: A graph of the purity of Compton events in the data. On the x-axis is
the maximum value of the bin while the y-axis contains the actual purity vlaue. The
distribution has an exponential decay as expected.
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By definition as well, the efficiency is just how much events that have been cut.

In this case, I am looking at the efficiency of the Compton reaction specifically. To

calculate this I simply compute:

Efficiency =

∫ σMax
θ

0
ComptonMC∫∞

0
ComptonMC

≤ 1 (4.9)

where σMax
θ is the maximum value of the bin through out each point on the x-

axis, ComptonMC and π0
MC are the Compton and π0 Monte Carlos respectively. To

explain this in depth, from there are no Compton events to get rid of at the start

while looping through the data, so the efficiency values stays at zero. Then, once the

loop starts to add more Compton events then the efficiency raises while maxing out

at around 0.8. This is also exactly what I observe.

Figure 4.33: A graph of the efficiency of Compton events in the data. On the x-axis
is the maximum value of the bin while the y-axis contains the actual efficiency value.
The distribution drops after getting rid of Compton events as expected.

For an analysis like this, finding the best optimized value of the purity versus

efficiency of Compton events is a challenging feat. In Fig. 4.34, both purity and
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efficiency are plotted. It is understood that most might think the best optimization

is located where the two distributions cross, but for this analysis that may not be

the case. On one hand, it is best if we have a very pure sample of our Compton

reaction to obtain the quantum numbers, but if the efficiency is too low and we lose

too many Compton events in making the sample extremely pure, there would not be

enough events left to obtain the beam asymmetry. Similarly, if we have too high of

an efficiency then our sample would not be pure enough and we would have too many

π0 events in the data. So in this case, the best approach is to see where the best

efficiency vs purity ratio is while keeping just enough Compton events to extract the

Σ beam asymmetry.

Figure 4.34: A graph of the efficiency and purity of Compton events. On the x-
axis is the maximum value of the bin while the y-axis contains the actual efficiency
values and purity values. The distribution going from 0.85 and dropping to 0.4 is the
purity of Compton events while the distribution going from 0 to 0.8 is the efficiency
of Compton events.
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Chapter 5

Conclusion/Outlook

In conclusion, many milestones have been completed. Significant background

reduction in both reactions have been made,and a rudimentary beam asymmetry has

been extracted that has the theoretically predicted distribution. Furthermore, this

work has introduced three shower width variables that have helped model the π0

decay better.

By looking at pure samples of the shower width variables, a likelihood fit was

used to determine how many Compton events versus π0 events were in the data.

With much more Compton events located in the data than π0 events, it is noted that

the back ground reduction process has been very successful. While I was hopeful that

all three shower width variables would be beneficial in separating the final events,

this work shows that only σθ will be valuable.

5.1 Future Work

Once an optimal cut has been chosen for the σθ shower width variable, then

the next route would be to go back and look for the most optimal cuts on the other

variables as well (i.e. ∆φ, ∆E, etc.). Once this is complete, the σ variables would

need another rerun of the likelihood fits to tell how many Compton events verses π0

events are in the data based off of the Monte Carlo simulations. If the π0 events were
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low enough, then the Σ beam asymmetry could be extracted and trusted. If not, then

more background reduction would be needed.

After this part of the analysis is complete, then the work could begin to focus on

looking to see if the Compton scattering process has the potential for constraining

Generalized Parton Distributions.
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6.1 Appendex

6.1.1 Code

https://github.com/zabaldwin
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