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Abstract: 

 

The thyroid hormone receptor (TR) mediates gene transcription in response to thyroid 

hormone (T3) and significantly affects cell growth, development and metabolism. 

Although TR shuttles rapidly between the nucleus and cytoplasm, it is primarily 

nuclear localized at steady state. This state, according to previous research, is 

achieved by the balance of TR nuclear import, export and nuclear retention. The first 

focus of this thesis was on how nuclear receptor corepressor 1 (NCoR1) contributes to 

TR nuclear localization. Using transient transfection assays and fluorescence 

microscopy, we measured the fluorescent intensity of GFP or mCherry-tagged TR in 

the nucleus (N) and cytoplasm (C) of HeLa cells, and then calculated the N/C ratio as 

an indicator of intracellular localization patterns. We discovered that when NCoR1 is 

knocked down by shRNA, the amount of TR in the nucleus decreased significantly 

(lower N/C ratio). Inversely, when NCoR1 is over-expressed, the amount of TR in the 

nucleus significantly increased (higher N/C ratio). An even more dramatic cytosolic 

shift was observed for a TR mutant that cannot bind to NCoR1. Taken together, our 

results suggest that NCoR1 is a key regulator of TR nuclear retention. The second 

focus of this thesis was on developing a model to calculate protein-protein and 

protein-DNA binding rates using fluorescent recovery after photobleaching (FRAP). 

The model was designed to describe the fluorescent recovery curve for a linear 

photobleached region under a uniform laser profile. By fitting the model, we could 

then obtain binding rates for the complexes that interact with TR. These findings will 

contribute to the development of a dynamic mathematical model that aims to predict 



  

 
 

TR’s N/C ratio during the interaction with different complexes, and the effect of 

altered localization on transcriptional output of T3-dependent genes. 
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CHAPTER 1: INTRODUCTION 

 

General Introduction: 

The thyroid hormone receptor (TR) is a member of the nuclear receptor (NR) 

superfamily. It regulates cell metabolism, growth and development by serving as a 

ligand-dependent transcription factor. Since the discovery of its nucleocytoplasmic 

shuttling property in 2001 [Bunn et al., 2001], the lab has been focusing on the 

mechanisms that regulate TR intracellular localization. Currently, with various 

coregulatory complexes and nuclear shuttling pathways discovered, the TR 

localization network has become increasingly clear. This thesis had two major goals. 

The first goal was to examine the effect of nuclear receptor corepressor 1 (NCoR1) on 

TR nuclear localization using NCoR1 overexpression, knockdown of NCoR1, and a 

TR mutant that is defective for binding NCoR1. The second goal was to analyze 

existing fluorescence recovery after photobleaching (FRAP) data and derive 

TR-coregulator binding rates from the data. Results from this thesis research will 

eventually contribute to a mathematical model that could predict the amount of 

nuclear TR under normal and pathological conditions. Since gene regulation is a 

multifaceted process, understanding and predicting TR localization patterns will give 

us insight into developmental disorders and endocrine diseases. 
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Thyroid Hormone: 

Thyroid hormone (TH) is an important ligand that regulates genes responsible for cell 

growth, development and metabolism. The production of TH is regulated by a 

feedback loop in the hypothalamic-pituitary-thyroid (HPT) axis [Yen, 2001; Yen et al., 

2005]. After the thyroid gland receives the signal from the hypothalamus, it produces 

thyroxine (T4), the most abundant type of TH the thyroid gland produces, and 

triiodothyronine (T3), the active form of TH [Gnocchi et al.,2016]. Those two types 

of TH travel in the blood stream and enter target cells directly through facilitated 

transport. Besides interacting with TR after crossing the plasma membrane, it also has 

been discovered that a small proportion of TH interacts with the plasma membrane 

receptor αvβ3 to regulate gene expression [Davis et al.,2011].  

 

T3 and T4 are structurally similar but T4 contains an additional iodine. While T4 is 

the thyroid gland’s major product, it only indirectly participates in gene regulation 

through a cell signaling cascade. In order to directly mediate gene expression, T4 is 

converted to T3 rapidly by iodothyronine deiodinases in the target cells [Marsili et 

al.,2011]. T3 then binds to TR to activate or repress target genes at sites known as 

thyroid hormone response elements (TREs). A TRE is a repeated sequence, 

TAAGGTCA, which is located in the regulatory regions of DNA [Kim et al.,1992]. 

Many NRs tend to be localized to the cytosol in the absence of ligand and only enter 

the nucleus after ligand interaction. For those NRs, ligand interaction is necessary for 

a conformational change that reveals the nuclear localization signal (NLS) 

[Vandevyver et al., 2012]. Different from those NRs, TR can bind to a TRE both 
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when ligand is absent and present. TR usually dimerizes with the retinoid X receptor 

(RXR), and then binds to a TRE. In the absence of T3, a TR dimer can repress gene 

transcription by forming corepressor complexes with NCoR1 and similar variants 

[Brent, 2012].   

 

When T3 is present and binds TR, a conformational change occurs in TR, specifically 

at the helix 12 region located in the ligand binding domain [Wagner et al.,1995]. The 

conformational change reveals a surface that facilitates coactivator binding and 

detachment of corepressors. This structural change in TR ensures that it can only bind 

to one type of coregulatory factor, which facilitates the creation of a mathematical 

model that describes the binding rates. The complex interactions between TR and 

coregulators are critical for gene expression. Studying these relationships will greatly 

facilitate our understanding of TR function. 

 

Thyroid hormone receptor: 

Thyroid hormone receptors have alpha and beta subtypes encoded by THRA on 

chromosome 17q11, or THRB on chromosome 3q24, respectively [García-Silva et al., 

2010]. Due to alternative splicing of the TRɑ and TRβ mRNA transcripts, there exist 

various TR isoforms such as TRɑ1, TRɑ2, TRβ1, and TRβ2 [Selmi-Ruby and Rousset, 

1996]. These isoforms serve various functions in different tissues and during different 

times of development. Most of the TR isoforms are known to be activated upon T3 

binding and regulate cell development and metabolism; however, the function of 

TRɑ2 and TRβ3 still remains mysterious [Jazdzewski et al., 2011]. This thesis focuses 
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on TRɑ1 (Figure 1), which is one of the most abundant isoforms found in the human 

body.  

 

The thyroid hormone receptor shares a similar structure with various nuclear receptors. 

It has an N-terminal transactivation domain that contains activation function-1(AF1), 

a DNA-binding domain, a hinge domain, a ligand-binding domain, and a C-terminal 

region that contains activation function-2 (AF2) [Zhang and Lazar, 2000]. The 

DNA-binding domain and ligand-binding domain are conserved throughout the TR 

isoforms, while the N- and C-terminal regions differ slightly. Therefore, such 

differences may be important for TR isoforms to exert different functions in different 

tissues [Selmi-Ruby et al., 1998]. Similar to the AF1 discovered in other nuclear 

receptors such as the estrogen receptor, TR’s AF1 has transactivation function even 

when the ligand T3 is absent [Duma et al.,2006]. However, the function in general is 

weak until TR is fully activated and AF1 can synergize with AF2. The hinge domain 

of TR is where the primary nuclear localization signal (NLS-1) is located 

[Mavinakere et al., 2012]. Different from TRβ1, which only contains NLS-1 at the 

hinge region, TRɑ1 also contains NLS-2 within the N-terminal transactivation domain. 

This difference in NLSs causes TRɑ1 to be slightly more nuclear localized [Bunn et 

al., 2001; Baumann et al., 2001; Zhu et al., 1998]. The ligand-binding domain is 

critical for T3 binding, coregulator recruitment, and TR dimerization with RXR. The 

conformational change induced by T3 binding leads to corepressor release and 

coactivator recruitment. Then, the coactivator complex leads to corresponding gene 
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transcription. Due to the existence of AF1, it is also possible for TR to activate gene 

transcription when T3 is absent; however, the extent of such activation does not match 

the typical ligand binding activation [Duma et al.,2006].  

 

Nucleocytoplasmic shuttling: 

Since the discovery of TR’s capability of nucleocytoplasmic shuttling [Bunn et al., 

2001], there has been increasing attention on the mechanism of transport and factors 

that could restrict TR’s intracellular mobility. Currently, we know that TR is 

transported between the nucleus and cytoplasm through the nuclear pore complexes 

(NPCs), structures consisting of nucleoporins that reside on the nuclear membrane 

[Pemberton and Paschal, 2005]. Usually, the pore complex has a diameter of 50 nm. 

Molecules that are smaller than 50 kDa can passively diffuse through the NPC or 

enter the nucleus by facilitated transport. For macromolecules such as TR, however, 

they must pass through the pore complex by binding with transport proteins called 

karyopherins. Karyopherins are known to recognize and dock to the 

phenylalanine-glycine rich region in the NPC and carry the cargo across the nuclear 

envelope.  

 

The karyopherins that recognize TR’s NLSs are importin 7, importin β1 and the 

adapter importin ɑ1 [Roggero et al., 2016]. Importin 7 only interacts with NLS-2 that 

explicitly belongs to TRɑ1, causing it to be more nuclear localized compared to other 

TR subtypes. Exportins 4, 5, and 7 [Subramanian et al., 2015] are known to recognize 

TR’s nuclear export signals (NESs) in helix-3, helix-6, and helix-12 of the 

ligand-binding domain and shuttle TR to the cytoplasm [Mavinakere et al., 2012]. 
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From structural studies of importins and exportins, it is understood that there exists 

flexibility in their shape which allows interaction with various cargos [Sorokin et al., 

2007]. The nuclear import and export pathways are regulated by the Ran-GTP/GDP 

cycle. Importin ɑ1 first binds to the NLS of the cargo, and importin β1 interacts with 

the phenylalanine-glycine repeats of the NPC [Gorlich et al., 1995; Hoelz et al., 2011; 

Suntharalingam and Wente, 2003]. Then, the heterodimeric complex shuttles the 

cargo into the nucleus. In the nucleoplasm, Ran-GTP binds to the importin and causes 

the release of cargo [Gorlich et al., 1996]. In the nucleus, Ran-GTP facilitates binding 

between exportins and cargo and shuttles the complex to the cytoplasm [Pemberton 

and Paschal, 2005; Sorokin et al., 2007]. When Ran-GTP passes through the 

cytoplasmic filaments around the NPC, it is hydrolyzed to Ran-GDP, which then 

causes the release of the cargo [Pemberton and Paschal, 2005].  

 

Intranuclear mobility and nuclear retention: 

Although the movement of some macromolecules, protein aggregates, and 

protein-containing vesicles of the secretory system, is facilitated by motor proteins on 

the cytoskeleton [Brangwynne et al.,2008], the model described in this thesis is based 

on the common assumption that proteins in the cytosol and nucleoplasm undergo 

Brownian motion. We also assumed that the cytosol and nucleoplasm are low 

Reynolds number liquids, which means that a liquid’s movement is dominated by 

viscous forces and the movement is smooth and constant. Compared to proteins 

diffusing in diluted buffer solution, proteins studied in vivo tend to experience a 

decrease in diffusion rate due to overcrowding of the cellular environment and 
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potential interaction with other proteins [Roosen-Runge et al., 2011]. Therefore, 

before any model creation, it is important to remember that the assumptions made 

about viscosity of the nucleoplasm and cytosol might be inaccurate. One component 

that significantly affects diffusion rate, according to Einstein’s model of Brownian 

motion in a low Reynolds number liquid, is the hydrodynamic radius of the protein 

[Einstein, 1905]. Therefore, as TR binds with other factors, such as importins, 

exportins, or coregulators, the complex’s diffusion rate will dramatically change. Also, 

when TRs are actively involved in gene regulation, they will interact with DNA and 

become completely immobile, albeit only transiently. Based on the free diffusion 

assumption, protein-protein interactions and DNA-protein interactions are the two 

major aspects that could affect TR mobility and ultimately its localization.  

 

Femia et al. [submitted 2019] and Baumann et al. [2001] demonstrated that 

coregulatory factors, already known to be indispensable for TR-regulated 

transcription activity, are also important for TR’s intracellular distribution and 

mobility. One of the major aims of this thesis was to discover which coregulators 

affect TR localization so that we can eventually model the entire system 

mathematically. The research of Baumann et al. [2001] used a TR mutant that is 

defective in binding nuclear receptor corepressor1 (NCoR1) to provide evidence that 

NCoR1 contributes to TR nuclear retention. We now understand the structure of TR 

better, however, and the mutation selected in Baumann et al.’s research, given its 

localization near NLS-1, could lead to an undesired conformational change and 

potentially affect TR’s binding with other coregulators, importins, and exportins. 
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Baumann et al. [2001] also indicated that the TR mutant’s inability to interact with 

NCoR1 could be explained, in part, by its inability to remain in the nucleus where 

NCoR1 is localized. Therefore, their study remains inconclusive and the role of the 

NCoR1-TR interaction in nuclear retention requires further analysis.  

 

Nuclear receptor corepressor 1: 

The discovery of TR’s capability to repress target gene expression in the absence of 

T3 immediately leads to questions about what molecular mechanism achieves such 

transcriptional silencing. The original hypothesis was that the mechanism involved 

interaction with basal transcription factors, such as the transcription factor II B 

(TFIIB), eventually inhibiting the formation of the preinitiation complex. This 

hypothesis, however, was soon disproved by further data which indicated that TR’s 

C-terminal region, which interacts with TFIIB, is not sufficient for silencing [Horlein 

et al., 1995]. The data also indicated that a region in the hinge domain and part of the 

ligand-binding domain are required for gene silencing. This finding implies the 

existence of an additional interacting complex. Later, Horlein et al. [1995] discovered 

a 270 kDa protein that binds specifically to TR’s hinge domain and ligand-binding 

domain in the absence of T3. Specific TR mutations that interrupt binding to this 

protein also eliminate ligand-independent gene repression. Taken together, data 

suggested that this protein, later known as NCoR1, mediated transcriptional silencing. 

 

After the discovery of NCoR1, a similar corepressor, NCoR2 (originally called 

SMRT), was discovered. The complete crystal structures of NCoR1 and its homolog 
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are still not clear; however, through studying their interaction with TR and retinoic 

acid receptor, a few functional domains have been identified. In NCoR1, there exist 

LXXI/HIXXXI/L sequences that recognize and bind to target NRs. This sequence is 

similar to the LXXLL sequence in coactivators [Perissi et al., 1999; Nagy et al., 

1999].Based on the general agreement in sequence, corepressors and coactivators 

have been proposed to interact with lysine residues in helix 3 and glutamine residues 

in helix12 in TR [Yen, 2001]. The slight difference in the length of the coregulators’ 

interaction domain and the conformational change caused by ligand binding were 

once thought to be the factors that regulate the binding of coregulators [Perissi et al., 

1999]. Currently, a dynamic stabilization model is proposed to explain the selective 

binding. In this model, helix 12 of TR is thought to be dynamic and can be eventually 

stabilized upon ligand binding so that it could interact with coactivators. The model 

also showed that ligand binding could stabilize the overall receptor structure to further 

facilitate transcription. Those two factors combined facilitate the binding of 

coactivators and release of corepressor [Pission et al., 2000; Johnson et al.,2000; 

Weikum et al., 2018]. 

 

NCoR1 also contains a major deacetylase activation domain and three repression 

domains [Figure2a]. The major deacetylase activation domain (DAD) resides between 

P412-P480. The interaction between NCoR1 and a chromatin modification complex 

was first discovered by a group of researchers who used coimmunoprecipitation 

assays to observe the relationship between NCoR1 and histone deacetylase (HDAC) 

activity and discovered an overlap between the two [Heinzel et al., 1997]. There are 
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five HDAC isoforms, HDAC1, 7, 4, 3 and Sirt1, known to interact with NCoR1. Later 

it was confirmed that the HDAC3-NCoR1 interaction is essential for TR regulation. 

Those discoveries support the hypothesis that the TR/NCoR1 silencing complex uses 

histone deacetylation to condense the local chromatin, turning transcription off [Yen, 

2001]. When T3 is added to the system, the repression is removed, coactivators are 

attached to TR and the chromatin is subsequently remodeled to initiate gene 

transcription (Figure 2b). These studies together demonstrated another method by 

which NCoR1 could silence gene expression. Currently, the functions of all 

repression domains are still under study. NCoR1 is known to recruit G protein 

pathway receptor 2 (GPR2) and transducing β-like protein 1 (TBL1). The three 

proteins then form a stable three ways complex that significantly enhances the 

function of HDAC3, which binds at the DAD motif [Oberoi et al.,2011]. The entire 

complex is known to facilitate HDAC3 interaction with inositol phosphates, critical 

elements for histone deacetylation [Watson et al., 2012]. NCoR1 is also known to 

bind with Class IIa HDACs. Instead of interacting with the DAD domain, HDAC4 

and 5 are known to bind with repression domain 3 in NCoR1 [Fischle et al., 2002; 

Hudson et al., 2015]. This discovery further increases the complexity of NCoR1 

regulated transcription silencing. 

 

Previous research has found that NCoR1 interacts with TFIIB and two TATA binding 

protein associated factors [Yen,2001]. Thus, it is likely that NCoR1 at a negative TRE 

affects the recruitment of basal transcription factors. Makowski et al. [2003] 

discovered an NCoR1 homolog that had lost the repression domain. Surprisingly, this 
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truncated NCoR1 not only loses its ligand independent inhibition capability on a TRE, 

but also stops ligand dependent activation of a TRE when T3 is present. This 

interesting discovery reveals the importance of NCoR1 release in TRE activation.  

 

As previously mentioned, Baumann et al. [2000] used a green fluorescent protein 

(GFP)-tagged mutant TR with a NCoR1 binding region mutation, called 

GFP-AHT-TR, to show that NCoR1 affects TR intracellular distribution. The TRβ 

amino acid residues at positions 223-alanine, 224-histidine, and 227-threonine in the 

NCoR1 binding box were substituted to glycine, glycine, and alanine, respectively 

(AHT to GGA). Because the NCoR1 binding box is highly conserved between TR 

isoforms, the same substitutions were made at positions 174, 175, and 178 for TRɑ 

[Figure 1]. After transfecting cells with GFP-AHT-TR, a significant cytosolic shift 

was discovered by Baumann et al. [2001]. From this result, they concluded that 

another function of NCoR1 is to retain TR in the nucleus when T3 is absent. From the 

observation of different TR mutants discovered in cancer or developmental disorders, 

it is also clear that the balance between nuclear export, import and retention is critical 

for normal cell function [Zhang et al., 2017]. However, the exact mechanism between 

this balance and gene transcription remains unclear. After careful examination of the 

AHT mutant used in Baumann et al.’s study, there exists the possibility that the AHT 

mutant could affect TR’s binding with factors other than NCoR1, such as importins. 

Therefore, one major goal of this thesis was to study the TR-NCoR1 interaction 

through overexpression and shRNA-mediated knockdown. If NCoR1 does contribute 

to nuclear retention, we predicted that we would observe a significantly greater 
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nuclear localization of TR when NCoR1 was overexpressed, if NCoR1 is not 

saturated in the system; and that we would observe a significant cytosolic shift of TR 

in the NCoR1 knockdown group. 

 

RNA Interference: 

RNA interference is a biological process that silences expression of a target gene by 

inactivating its messenger RNA (mRNA) product. mRNA inactivation is commonly 

achieved through either exogenous small interfering RNA (siRNA) and short hairpin 

RNA (shRNA) mediated RNA degradation, or endogenous microRNA induced 

translational suppression [Fire et al., 1998]. In this thesis, shRNA was used to achieve 

NCoR1 knock down. Compared to siRNA, shRNA has similar paired antisense and 

sense strands, but it also contains unpaired RNA that eventually forms a loop that 

connects and stabilizes the double stranded RNA. This structure grants shRNA a low 

degradation rate in the cell. After a shRNA plasmid is introduced into the target cell, 

it is transcribed by RNA polymerase. The product, pre-microRNA, is processed by 

Drosha protein and exported from the nucleus by exportin 5 [Elbashir,2001]. In the 

cytoplasm, the precursor is further processed by Dicer and TAR-RNA-binding protein, 

where the shRNA hairpin is removed. The processed shRNA is then loaded into the 

RNA-induced Silencing Complex (RISC). In the complex, the original sense strand is 

degraded, and the antisense strand recognizes the target mRNA by complementary 

base pairing. The RISC can then cleave the mRNA sugar-phosphate backbone to 

affect translation [Maniataki et al., 2005; Moore et al.,2010] 
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Fluorescence recovery after photobleaching (FRAP) and protein binding 

kinetics: 

Many interactions that take place in the cell can be described as a binding-diffusion 

process. As previously mentioned, the two major processes that contribute to TR 

nuclear retention, protein-protein interactions and DNA-protein interactions, can also 

be described using this method. Fluorescence recovery after photobleaching (FRAP) 

is one of the common methods for studying protein mobility and the reaction 

diffusion process in the cell. The target molecules studied in this thesis first were 

tagged with green fluorescent protein (GFP) to allow visualization. During FRAP, in a 

defined region of interest (ROI), confocal lasers in the microscope are used to rapidly 

and irreversibly photobleach the fluorescent fusion protein. The photobleached 

molecules will diffuse and exchange with the surrounding molecules over time. As 

the bleached and unbleached molecules mix in the ROI, an increase in the 

fluorescence levels at the photobleached region is obtained. The fluorescent intensity 

measurement of ROI overtime yields a recovery curve that contains information about 

the kinetic constants of the fluorescent tagged molecule, and its mobile and immobile 

fractions.  

 

As FRAP has transformed from only focusing on lateral diffusion at the plasma 

membrane to basically all fluorescent fusion proteins, the kinetic analysis that can be 

conducted using the recovery curve is also evolving; however, researchers are still far 

from reaching a general agreement on the best analysis and experimental method to 

obtain a robust protein diffusion rate and binding rate [Seiffert and Oppermann, 2005; 
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Kang et al., 2010]. One commonly applied FRAP method uses a circular bleach 

region and calculates diffusion, as well as the binding rate using partial differential 

equations. Previous research in the Allison lab used a linear bleach region (called 

strip-FRAP) to accommodate the rapid diffusion kinetics of TR [Femia et al., and 

Anyetei-Anum et al., submitted 2019]. Therefore, developing a new equation for the 

diffusion rate and binding rate calculation, specifically for a linear bleach region, 

became the other goal of this thesis. Conveniently, we could still apply most of the 

partial differential equation derivation in Aifantis and Hill [1980] and the FRAP 

equation in Kang et al. [2008] to develop a FRAP equation that describes the 

fluorescent recovery curve of our linear photobleached region. 
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  CoR Box 

A174G, H175C, T178A 

AHT-TRα1 

TRα1 A/B Domain DNA binding Domain Hinge Ligand binding domain 

TRβ1 A/B Domain DNA binding Domain Hinge Ligand binding domain 

RID3 

HDAC3 TR HDAC4/5 

GSP2+ 

TBL1 

RD1 DAD RD2 RD3 RID2 RID1 NCoR1 

T3 

CoR 

RXR TR 

Positive 

TRE 

CoA CoR 

RXR TR 

Positive 

TRE 

Thyroid Hormone + 

Figure 1: The structures of thyroid hormone receptor subtypes were adapted from 

Mavinakereet al.[2012], and the AHT-TR mutant comes from Horlein et al.[1995]. 

Comparatively, TRβ1 has a longer A/B domain while the rest of the domains remain highly 

similar. The mutations in AHT-TRα1 are located in the hinge domain, a region that is 

conserved over TR isoforms that interact with corepressors.  

a) 

b) 

Figure 2: (a) NCoR1 contains three repression domains (RD1-RD3) and a deacetylase 

binding domain (DAD). It is known that GSP2 and TBL1 bind atRD1 and interact with 

HDAC3 to activate deacetylation. HDAC4 and 5 function independently and enhance the 

repression. RID3 in NCoR1 binds to TR while the other two interaction domains bind to 

other nuclear receptors. (b) In the absence of T3, NCoR1 (CoR) binds to the TR-RXR dimer 

and represses gene transcription at a positive TRE. When ligand is added, the helix 12 

structure stabilizes to facilitate NCoR1and coactivator (CoA) recruitment to initiate gene 

transcription. 
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Thesis Objective: 

 

The balance of TR export, import, and nuclear retention is critical for proper gene 

silencing and activation [Mavinakere et al., 2012]. Therefore, an 

ordinary-differential-equations model that analyzes this dynamic system could bring 

insight to the behavior of TR and how disturbance could affect the system’s stability. 

Before a TR localization model can be created and analyzed, however, there are two 

obstacles that need to be overcome. First, not all of TR’s binding partners and 

coregulators have been identified, especially those that affect TR localization. Second, 

the binding rates between TR and other coregulators remain unclear. This thesis 

research targets those obstacles through two specific aims: 

1) Evaluate whether overexpression and knockdown of NCoR1 alters nuclear 

retention of wild-type TR. Previously, Baumann et al. [2000] used the AHT-TR 

mutant to demonstrate that NCoR1 contributes to TR nuclear retention; however, 

how the structure of this mutant affects its NESs, NLSs, and binding with other 

coregulators remains unknown. 

2) Develop a mathematical model that calculates protein-protein and protein-DNA 

binding rates from linear FRAP.  

The results from this research will increase our understanding of TR’s nuclear 

retention and provide parameters important for the TR localization model. 
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CHAPTER 2: EXPERIMENTAL METHODS 

 

Plasmids: The EGFP and mCherry expression vectors were obtained from Clontech 

Laboratories. The GFP-NCoR1 plasmid was made by GenScript. mCherry-TR and 

GFP-TR wild-type plasmids were previously prepared [Bunn et al., 2001; Femia et al., 

submitted 2019]. The cDNA for AHT-TR was designed using GeneArt™ gene 

synthesis services, and subcloned into the EGFP expression vector by Vinny Roggero. 

Predesigned SureSilencing™ shRNA plasmid sets, consisting of four different 

shRNA expression plasmids for the target NCoR1 mRNA, were purchased from 

SABioscience, along with a scrambled sequence negative control. 

 

Cell culture and transfection: Hela cells were cultured in Minimum Essential 

Medium (MEM) supplemented with 10% fetal bovine serum (FBS) at 37 °C under 5% 

CO2 and 98% humidity. All cells were grown to approximately 80% confluency 

before seeding into six-well culture dishes. When the optimal confluency was reached, 

cells were displaced with 0.25% trypsin (Gibco). Six-well culture dishes with 22mm 

Coverslips for Cell Growth (Fisher Scientific) were seeded with HeLa (human) cells 

at a density of 2.5 × 105 cells per well. Seeded cells were incubated for ~24 hours. 

Plates were then transfected or cotransfected with:(1) 2μg of GFP-TRɑ1, (2) 2μg of 

mCherry-TRɑ1, (3) 2μg of GFP-TRɑ1+2μg of NCoR1 shRNA, (4) 2μg of 

GFP-TRɑ1+2μg of NCoR1 shRNA, (5) 2μg of mCherry-TRɑ1+4μg of 

GFP-NCoR1, or (6) 2μg of GFP-AHT-TRɑ1. All transfections were facilitated by 

Lipofectamine 2000(Invitrogen) in Opti-MEM 1 reduced serum medium (Invitrogen), 

except for TR-NCoR1 co-transfection, which was facilitated by Lipofectamine 3000 
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(Invitrogen) in Opti-MEM 1. Reagents were used according to the manufacturer’s 

protocol.  

 

Nucleocytoplasmic distribution analysis: For Lipofectamine 2000 transfection, 

transfection mixtures were replaced with 10% FBS-MEM medium after 8 hours of 

transfection. For Lipofectamine 3000, the mixtures were replaced after 18-20 hours. 

After 24 hours of transfection with Lipofectamine 2000 (20-22 hours for 

Lipofectamine 3000), cells were washed with 1x Dulbecco’s phosphate-buffered 

saline (DPBS)and fixed in 3.7% formaldehyde. Coverslips were mounted with 

Fluoro-Gel II mounting medium containing DNA DAPI stain onto a glass slide. The 

slide was visualized using a Nikon Plan Apo 40x/0.95 objective on the Nikon 

ECLIPSE TE 2000-E fluorescence microscope for quantitative analysis. The 

microscope facilitates fluorescence emittance with the following filters: Nikon 

Ultraviolet Excitation via UV-2E/C filter (for DAPI visualization); Blue Excitation 

via B-2E/C filter (for GFP visualization); Red Excitation via T-2E/C filter (for 

mCherry visualization). Image capture and analysis were achieved by the HQ2 CCD 

camera (Photomerics, Tucson, AZ) and NIS-Elements AR software. 

 

Prior to quantitative analysis, slides were blinded to ensure scoring was unbiased. 

Region of interest (ROI) squares were placed in the nucleus and cytoplasm to measure 

the fluorescent intensity. The data for each measurement was exported to EXCEL. All 

experiments consisted of at least 3 biologically independent replicates and at least 100 

cells in each replicate. Due to the low transfection rate in the TR-NCoR cotransfection 
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treatment, 10 replicates were performed with 30 cells scored in each replicate. The 

data were first tested for normality, then a student’s T-test, or its non-parametric 

counterpart, Mann-Whitney-Wilcoxon Test, was used to calculate p-values and 

determine significance.  

 

NCoR1 shRNA knockdown validation: HeLa cells were seeded at 8 × 105 cells 

per 100 mm dish. After 24 hours of incubation, the plate was transfected with 10μg 

NCoR1 shRNA with transfection facilitated by Lipofectamine 2000 in Opti-MEM1 

medium. Transfection mixtures were replaced with 10%FBS-MEM medium after 8 

hours of transfection. The HeLa cells lysates were prepared 16 hours after medium 

replacement. Protein concentration of the lysates was measured using NanoDrop 

amino acid measurement (ND-1000 Spectrophotometer) and 40μg of protein was 

loaded in each lane. Then, a western blot was performed using the primary antibody 

anti-NCoR1, 1:500; and secondary antibody anti-rabbit IgG, 1:50000. (The secondary 

antibody concentration was halved from standard lab protocol to decrease 

overexposure). Protein size was confirmed using Pre-Stained Kaleidoscope Protein 

Standards (Bio-Rad, Hercules, CA). Semi-quantification was used to determine band 

density. 

 

One dimensional line FRAP model: We assumed a system of two reactants and their 

product. The general formula for TR coregulator binding can be described in a 

formula: 

(1) CRTR ⎯→+  

kon 

koff 



  

22 
 

where TR represents thyroid hormone receptor, R represents coregulators, and C 

represents the binding complex. For the reaction kinetics, kon is the binding rate and 

koff is the disassociation rate. To convert (1) to a partial differential equation(PDE), 

we made the following assumptions:1)because the linear bleach region bridges the 

nucleus, the exchange between fluorescent molecules and bleached molecules only 

happens in one dimension, the x axis; 2)the molecules participating in the reaction are 

under Brownian motion; 3)the ROI is small enough so that the entire nucleus can be 

regarded as infinitely large; and 4)the amount of coregulators is large so that the 

binding rate can be described as a pseudo-constant: Rkk onon =
*

. Therefore, we can 

reduce the equation describing R and write a system of first order PDEs:  

(2)               
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Eventually, we can replace onk *
with onk for simplicity. This equation can also 

describe protein-DNA interaction when we set 0=CD . The initial condition of the 

PDE system is: 

)()0,( xCxC i=
    

)()0,( xTRxTR i=
 

where x represents the relative coordinate on the one-dimensional diffusion axis, and 

x=0 is the center of the bleach region. The Dirac delta function, which is represented 

as )(x  in the initial condition, will assume bleached molecules are all located at 

position x=0 and nowhere else. The function )(xL  , which we will use later for 

fluorescent intensity calculation, represents laser intensity profile and c is a laser 

constant. For this thesis, we chose a uniform laser profile where: 
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0L is the initial laser intensity and r is half of the laser’s width. Equation2, with the 

initial conditions described above, has already been solved by Aifantis and Hill[1980] 

using Laplace transformation. Therefore, we can directly apply the one-dimensional 

version of the equation. The analytical solution is: 
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)(1  and )(0  stands for the modified Bessel function. According to Axelrod et al. 

[1976], we can convert the quantity of fluorescent molecules in Equation (3) to 
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fluorescent intensity using integrals and several properties of fluorescent emission 

[Axelrod et al., 1976]. The FRAP formula thus is: 

(4)     
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The first two equations represent the diffusion bleached molecule and the third 

equation captures the recovery. Parameter q is the quantum efficiencies of light 

absorption, emission, and detection; and   is the attenuation factor of the excitation 

laser beam. The relationship between those two parameters and the fluorescent 

intensity is: qCLF iinitial 0=  

By plugging Equation (3) in (4), we found that we only needed to integrate the 

function that contains x, which is the diffusion equation. Thus, we first calculate the 

integration of : 
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Finally, we can use this result in the FRAP equation and obtain: 
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Matlab can then solve the integration numerically when we provide initial values for 

diffusion rate and binding constant. Then, we can compare the simulation result with 

FRAP data to obtain the appropriate parameter for the reaction using least square fit. 

One advantage of this new equation, compared to the equation describing 

DNA-protein binding [Sprague et al., 2004], is that the new model does not need to 

assume the binding complex is immobile, making it suitable for studying the 

NR-coregulator interaction during overexpression.  
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CHAPTER 3: RESULTS 

 

Knockdown of NCoR1promotesTRɑ1export: 

Although TR is known to shuttle rapidly between the nucleus and cytoplasm [Bunn et 

al., 2001], its nuclear localization pattern indicates the presence of factors that retain 

TR in the nucleus. In the absence of T3, NCoR1 binds with a TR-RXR heterodimer 

and anchors it at the TRE of a T3-responsive gene. Therefore, we hypothesized that 

NCoR1 could help retain TR in the nucleus and avoid nuclear export. From studying a 

TR mutant with a defective NCoR1 binding box, previous research suggested that 

NCoR1 and its isoforms could play a key role in TR nuclear retention [Baumann et al., 

2001]. However, due to the potential effect this mutant has on TR-importin and 

TR-coactivator binding, the TR-NCoR1 interaction needed to be further studied. This 

thesis research examined the TR-NCoR interaction through altering NCoR1 

concentration in the cell by shRNA-mediated knockdown of NCoR1. 

 

First, we used western blot to confirm shRNA knockdown of NCoR1 in Hela cells. 

We observed a marked decrease in the amount of NCoR1 in lysates from cells treated 

with NCoR1 shRNA compared with lysates from cells treated with the control shRNA 

(Figure 3a). However, precise quantification was not possible because the molecular 

weight of NCoR1 (270 kDa) required running the protein gel for an extended period. 

At the time the 250 kDa protein molecular weight standard reached the position of 

optimal separation, the 30kDa β-tubulin used as an internal control had run off the end 

of the gel.  
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After transfecting Hela cells with GFP-TR expression plasmids and different 

quantities of NCoR1 shRNA, the nucleocytoplasmic distribution of TR was quantified. 

There was a significantly greater cytoplasmic population in the knockdown group 

(average N/C =3.5 for 2μg shRNA and 2.8 for 4μg shRNA) compared to the control 

group (average N/C = 5.6) (p<0.01). We also observed an increase in the cytoplasmic 

population as the shRNA concentration increased (Figure 3b). This result suggested 

that as the concentration of NCoR1 decreases, nuclear retention of TR is reduced.  

 

NCoR1 overexpression promotes TRɑ1 nuclear localization: 

Based on our results from the NCoR1 knockdown treatment, we hypothesized that 

overexpression of NCoR1would facilitate TR nuclear localization. HeLa cells in the 

treatment groups were cotransfected with mCherry-TRɑ1 and GFP-NCoR1, while the 

control groups were transfected with only mCherry-TRɑ1. The localization patterns of 

TRɑ1 were then analyzed by fluorescence microscopy and N/C ratios were measured. 

We found that TRɑ1 in the control group was mostly localized to the nucleus, while 

cotransfection of NCoR1 led to an even more robust nuclear localization pattern. 

There was a significant shift of TR (p<0.05) toward the nucleus in the presence of 

NCoR1, with an average N/C ratio of 9.5, compared with 8.3 for the control (Figure 

4).  

 

The results from NCoR1 shRNA knockdown and NCoR1 overexpression treatment 

suggested that NCoR1 is one of the factors that contribute to TR’s nuclear retention; 
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there is an increase in TR’s nuclear population when NCoR1 is overexpressed and a 

significant cytosolic shift when NCoR1 is knocked down by shRNA.  

 

AHT-TRɑ1 exhibits a significant cytosolic shift: 

To further explore TR’s interaction with NCoR1, as well as other potential functional 

implications of mutations within TR’s hinge region where NLS-1 resides, we first 

replicated the studies with the AHT-TRɑ1mutant reported by Baumann et al. [2001]. 

We transfected HeLa cells with GFP-AHT-TRɑ1 (treatment) or wild type GFP-TRɑ1 

(control). Consistent with the literature, AHT-TR was significantly more cytosolic 

compared to wild type TR with an average N/C ratio of 3.7, compared with 8.3 for the 

control (p<0.01) (Figure 5). 

 

The one dimensional FRAP model could describe the system but modeled 

molecules tend to diffuse faster: 

After identifying the role NCoR1 plays in TR nuclear localization, developing a 

model that can estimate protein-protein or protein-DNA binding rates was the next 

goal of this thesis. Because FRAP experiments on cells transfected with both NCoR1 

and TR are still in progress (Rochelle Evans, M.S. thesis research), we used our 

model on previous FRAP data from Mediator 1(MED1) and TR cotransfection (Femia 

et al., submitted 2019) to estimate the MED1-TR binding rate. Because we are 

interested in the protein-protein binding rate, we started by estimating free diffusion 

of the molecule of interest. Based on the assumption that protein movement can be 

described with Brownian motion, we first used Stoke Einstein’s model to predict the 
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pure diffusion rate [Einstein, 1905]. Previously, an equation predicting a protein’s 

hybridization radius using its amino acid residues was discovered. Thus, we could 

apply this equation to calculate the radius of coregulators, TR, and their binding 

complex [Wilkins et al., 1999]. Using 
02.029.0)11.175.4( = NRn , we determined that 

the radius of TR is 29.68Å, the radius of MED1 is 42.04 Å, and their binding complex 

is 71.72Å. We use this estimated value in the Stoke Einstein’s equation [Einstein, 

1905],
r

TK
D b

6
= , where temperature was set to 310.15 Kelvin (37°C), and viscosity 

was 0.9mPas[Lippincott-Schwartz et al., 2001; Phair and Misteli, 2000;Kalwarczyk et 

al., 2011]. We determined that the free diffusion rate for TR is
2/453.0 sm , and the 

diffusion rate for the MED1-TR binding complex is
2/019.0 sm . After calculating 

the pure diffusion parameters, we applied them in the linear FRAP model and 

numerically fit the model with previous FRAP data for MED1-TR cotransfection 

experiments [Femia et al., submitted 2019] using Matlab. After fitting the one 

dimensional FRAP model developed for the linear FRAP method, we obtained a 

binding rate of kon = 300and koff = 1 for the TR-MED1 binding reaction (Figure 

6d). 

 

Currently, there exists another FRAP model that is designed for a circular 

photobleached region. Although the geometry is different from our model, the 

fluorescent recovery behavior should be similar between the two models. Therefore, it 

was of interest to observe the predictions of the model. When the diffusion rate and 

binding rate are constant (kon = 300,koff = 1), the two-dimensional model tends to 
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recover slower due to the extra dimension of movement as shown in Figure 6a. The 

recovery curve in the circular FRAP model is more sensitive to binding rate change 

and diffusion rate change, which is shown in Figure 6b and c. Fitting the circular 

FRAP recovery curve with the MED1-TR data, we obtained a binding rate of kon =

270 and koff = 2 (Figure 6d). However, due to the difference between the geometry 

and dimension of the model and that of the experiment, this value does not have any 

real implication in the system we study, and it is only for model behavior comparison. 

In the future, it would be necessary to use a circular photobleached region to refit the 

curve and evaluate the binding rate. One aspect for both models that is worth noticing 

is that the reaction diffusion equation does not account for fluorescent intensity loss. 

Therefore, as time goes to infinity, the predicted fluorescent intensity will eventually 

approach the pre-bleach fluorescent intensity (graph not shown). Therefore, the model 

requires further modifications in the future.  
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Figure3: NCoR1 knockdown leads to a TR1 cytosolic shift. a) Hela cells were transfected with 

4μg expression plasmids for NCoR1 shRNA or 4μg scrambled shRNA (Control). Western blots of 

cell lysates were probed with anti-NCoR1 antibody. A decrease in band intensity was observed in the 

knockdown group, indicating a decrease in levels of endogenous NCoR1.b) Hela cells were 

transfected with GFP-TR1 and 2 or 4μg NCoR1 shRNA. 24 h post transfection, cells were analyzed 

using fluorescence microscopy. A significant decrease of the N/C ratio was observed in the 

knockdown group (KD), indicating a greater cytosolic distribution (p<0.05). A higher concentration 

of transfected shRNA leads to a greater decrease in the N/C ratio (each treatment n=100 with 3 

biologically independent replicates)    
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NCoR1 TRɑ1 DNA 

 

  

Figure 4: NCoR1 overexpression leads to enhanced TRα1 nuclear localization. HeLa cells were 

cotransfected with 4μg GFP-NCoR1 and2μg mCherry-TR1 or with 2μg mCherry-TR1. 24 h post 

transfection, cells were analyzed using fluorescence microscopy. A greater N/C ratio was observed in 

cells overexpressing NCoR1(NCoR-Co) compared to the control (p<0.05), indicating that NCoR1 

contributes to enhanced TR1 nuclear retention (n=30 with 10 biologically independent replicates). 
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Figure 5: AHT-TRα1 is more cytosolically distributed compared to wild-type TRα1. HeLa cells 

were transfected with 2μg GFP-AHT-TR1 or2μg GFP-TR1. 24 h post transfection, cells were 

analyzed using fluorescence microscopy. The distribution for AHT mutants was significantly more 

cytosolic compared to the control group (n=100 with 3 biologically independent replicates). 
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Figure 6: a) As shown in the graph, the 1-dimensional linear FRAP model is blue, 2-dimensional 

circular FRAP model is green and data from MED1-TR cotransfection is red. When DTR =

0.45, DC = 0.019 and kon = 30, koff = 1, the model behavior is similar. However, the predicted 

recovery is faster in the 1-dimensional model compared to the 2-dimensional model. b) The 

2-dimensional circular FRAP model is more sensitive to binding rate change. When diffusion rate is 

constant, kon = 200, koff = 1, there is a bigger change in the curve predicted in the 2-dimensional 

model. c)The 2-dimensional circular FRAP model is also more sensitive to diffusion rate change. 

When DTR = 0.45, DC = 0.0001 and kon = 30, koff = 1, the model’s predicted recovery curve 

experiences a greater change. d) With settings ofDTR = 0.45, DC = 0.019, both models were fit to 

the data from MED1-TR cotransfection FRAP experiments. For the 1-dimensional line FRAP model, 

kon = 300, koff = 1 and for the 2-dimensional circular FRAP model, kon = 270, koff = 2 

 

  c) 

d) 
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CHAPTER 4: DISCUSSION 

 

Previous research by Femia et al. [submitted 2019] and Baumann et al. [2001] 

investigated the effect different coregulators have on TR nuclear retention. These 

discoveries greatly increase the complexity of TR intracellular dynamics. This thesis 

research based on Baumann et al.’s hypothesis that NCoR1 is capable of retaining TR 

in the nucleus, investigated the NCoR1-TR interaction through a different method. 

Using NCoR1 overexpression and knockdown, we confirmed that NCoR1 contributes 

to TR nuclear retention. Future experiments on TRβ1 and NCoR1 cotransfection will 

be of interest. Given TRβ1’s slightly more cytosolic population, we predict that the 

impact of N-CoR1 overexpression on nuclear retention will be even more robust. 

Furthermore, results from the NCoR1 knockdown experiment imply that TR’s nuclear 

localization is sensitive to the degree of NCoR1 knock down by shRNA. Because the 

AHT mutant has a mutation in theNCoR1 binding region, its inability to bind to 

NCoR1 further confirmed the key role that NCoR1 has in TR nuclear retention. As a 

repression complex, NCoR1’s proper binding and release are indispensable for gene 

transcription initiation. A recent discovery in patients with Resistance to Thyroid 

Hormone (RTH) syndrome further emphasizes the significance of the NCoR1-TR 

interaction. This research showed that a TR mutant linked to RTH cannot release 

NCoR1 in the presence ofT3, leading to cell metabolism disorder [Fozzatti et 

al,.2011]. Furthermore, study of a truncated NCoR1 homolog that lacks repression 

ability has strengthened the role NCoR1 has in gene activation and, when 

misregulated, in thyroid cancer [Fozzatti et al.,2013]. Combined with the discovery of 
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NCoR1’s ability to retain TR in the nucleus, it is possible that NCoR1 controls 

T3-responsive gene expression both directly through basal transcription regulation 

and indirectly through maintaining a sufficient nuclear population of TR. 

 

In order to study the intricate TR transport system and eventually model it, the 

binding rates between TR and different nuclear coregulators must be obtained. This 

thesis research developed a one-dimensional linear FRAP model that uses a 

one-dimensional reaction diffusion system to describe the fluorescent recovery curve. 

Using a reaction diffusion system to describe protein-protein interactions is currently 

one of the popular methods [Kang et al., 2010]. The system can easily depict the 

binding interaction between two proteins and provide parameter estimation for the 

reaction. Compared to a previous existing FRAP model [Kang et al., 2008; Kang et al., 

2009], which uses two-dimensional reaction diffusion equations to model the 

recovery curve, the one-dimensional model we developed is tailored for use with the 

linear FRAP experiments used in our lab. However, because the linear FRAP model 

only considers movement of molecules in one dimension, the predicted fluorescent 

recovery is faster compared to the circular FRAP model. Moreover, the 

one-dimensional model is less sensitive to parameter change, making it a 

comparatively less optimal model. In general, the recovery curve has a similar profile 

when compared to the existing model. The fluorescent molecule will first rapidly 

exchange with the bleached molecule in the photobleached region. Then, the recovery 

slows down as the system is closer to equilibrium. The dimension selection sacrifices 
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some accuracy in recovery rate but allows the system to be generalized and applied to 

different photobleached areas.  

 

Currently, a model that is capable of describing the competition between multiple 

protein-protein binding reactions has not been established due to the difficulty of 

obtaining analytical solutions for high dimension reaction diffusion equations. 

Therefore, all the existing FRAP models, including the model presented in this thesis, 

are based on the assumption that during the FRAP experiment, the reaction between 

the two co-transfected proteins is dominant and other minor binding interactions can 

be ignored [Axelrod, 1976; Kang et al., 2008; Kang et al., 2010; Sprague, 2004]. As 

we identify more TR binding partners in the future, it would be worthwhile to study 

TR coregulator reactions by biomolecular binding kinetic assays to remove the noise 

from the system. 

 

The results from various TR mutants discovered in cancer and previous research on 

AHT-TR clearly indicates that proper localization of TR is essential for normal cell 

development and function [Bonamy et al., 2005; Zhang et al., 2018]. Therefore, 

modeling the system of TR shuttling could provide information that is critical for 

future gene expression models. Previously, a binding competition between MED1 and 

exportins for TR has been proposed, after MED1 was discovered to contribute to TR 

nuclear localization [Femia et al., submitted 2019]. Because MED1 binds to the helix 

12 region of TR and a NES resides in helix 12 [Savkur and Burris, 2004; Mavinakere 

et al., 2012; Femia et al., submitted 2019], it is likely that MED1 will block exportins 
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from binding, allowing TR to remain in the nucleus. Because the binding site of 

NCoR1 in helix 3 of TR also could conflict with that of exportins, since NES-H3 

resides in this region, NCoR1 could then be added to the model to explain the system 

better [Yen, 2001; Oberoi et al., 2011]. Here, we here proposed a general binding 

competition model that uses ordinary differential equations to describe the behavior of 

this system: 

 

 

 

 

 

 

 

 

 

 

 

 

 

This system currently involves three reactions. First, TR in the nucleus, represented 

asTRN, could be exported at rate e to the cytoplasm and become TRc. The reaction 

could be reversed by TR nuclear import at rate i. Second, TRN could bind with 

MED1, represented as M, to form activation complex C1 with binding rate kon1. The 

reaction can be reversed at rate koff1. A similar reaction will happen between TR and 

NCoR1 at rate kon2 and  koff2 to either form or destroy the repression complex 

(Figure 7). Once we find reasonable ranges of those parameters, we will be able to 

study the system’s stability and conduct bifurcation analysis. Further, when we give 

initial values for each variable, we could find the numeric solution for the variable of 

interest at certain time points and predict TR’s localization pattern. The transfection 
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process is stochastic because different cells will express transfected genes at various 

levels. Therefore, the ordinary differential equation model could consider including 

stochasticity to model the in vitro experimental outcome better.   

 

In summary, we have observed how NCoR1 affectsTRɑ1 localization using 

fluorescence microscopy and transient transfection assays. We found that the 

knockdown of NCoR1 leads to a TRɑ1 cytosolic shift that is hypothesized to be due 

to the lack of competitor for exportin binding. An increase in TRɑ1 nuclear 

localization was observed when NCoR1 was overexpressed but the increase was 

modest, due to its original robust nuclear distribution. We have also developed a 

model that could estimate the binding rate between TR and coregulators which could 

eventually contribute to a comprehensive TR localization model that we will build in 

the future.   
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Figure 7: A model for TR localization. The cells are assumed to be provided with a limited 

amount of ligand. In the nucleus, corepressor NCoR1 and coactivator MED1 will compete 

for TR binding to either form an activation complex or repression complex. The remainder of 

the nuclear TR is exported at rate e. The exportin binding process in the nucleus is regarded 

as irreversible. In the cytoplasm, TR is available for import at rate i, which is also regarded 

as an irreversible process. In the model, degradation and synthesis are not considered. 
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Future Directions: 

Complete the western blot experiment for NCoR1 knockdown. Because the molecular 

weight of NCoR1 is over 250 kDa, we must run SDS-PAGE for an extensive amount 

of time to obtain a good observation of the NCoR1 band. Currently, the lab uses 

β-tubulin or GAPDH, proteins that exist in all cells, as internal recovery controls and 

normalization factors; however, as the NCoR1 band reaches the optimal position 

during SDS-PAGE, β-tubulin and GAPDH have already run off the gel. In the future, 

we will try three different approaches: 1) improve our western blot protocol and gel 

run time to allow both β-tubulin or GAPDH and NCoR1 to remain in the gel; 2) find 

another protein that could be used as a normalization factor with a molecular weight 

that is high enough to stay in the protein gel as the NCoR1 band reaches the optimal 

position; 3) use gradient gel on NCoR1 western blot. 

 

Search for other coregulators that contribute to TR nuclear localization. Beyond 

MED1 and NCoR1, various other coregulators could contribute to TR nuclear 

retention. Another corepressor, NCoR2 or SMRT, will be a great candidate as it has a 

similar structure and function as NCoR1. Using knockdown and overexpression, we 

could observe how the system reacts to the presence of NCoR2. After examining most 

of the candidates in the system, we could then use statistical analysis on this system to 

choose the coregulators that affect TR localization the most, while selectively 

omitting those coregulators that hardly affect the system. 

 

Conduct circular FRAP experiments on MED1-TR and NCoR1-TR system. Although 

the one-dimensional linear FRAP model could depict the recovery curve, it usually 
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tends to diffuse faster as it completely ignores movement in two dimensions. 

Therefore, it is worthy to repeat the MED1-TR FRAP and NCoR1-TR FRAP using a 

circular photobleached region and fit the existing two-dimensional circular FRAP 

model to obtain the parameters. The circular FRAP model can use Gaussian laser 

profile as initial condition to account for the diffusion that happened before 

photobleach is complete. Furthermore, we could increase the laser intensity and the 

radius of the bleached circle so that the recovery can be easier to capture. Using 

circular FRAP and two-dimensional model could significantly reduce the error from 

calculations and better depict protein-protein interactions. 

 

Conduct biomolecular binding kinetics assays. Currently, the binding partners for TR 

in the nucleus have not been completely identified. Therefore, those potential binding 

partners could affect TR diffusion and eventually stop us from obtaining an accurate 

binding rate using FRAP. Therefore, performing binding kinetics assays on TR and its 

known binding partners will help confirm our parameters estimated using FRAP. 

Once we understand how much the binding rates from those two methods differ, we 

could decide which method we should use for future protein-protein binding.  

 

Analyze AHT-TR mutant’s binding affinity to other protein. As we understand TR’s 

structure and domains better, we began to question if the AHT mutant that was 

previously used to study NCoR1-TR localization will interfere with TR’s interaction 

with other coregulators, exportins and importins. Currently, we have tested 

AHT-TRβ1’s binding with importins because TRβ1 only contains one NLS at the 
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hinge region. The result from coimmunoprecipitation assays and western blotting, 

however, showed no significant difference in binding compared between the AHT 

mutant and wild-type TR (data not shown). Recently, GFP-TR1 and GFP-TR1 

mutants with a hinge domain deletion (GFP-TR1hinge and GFP-TR1hinge) 

were developed. From preliminary transfection experiment, we observed a dramatic 

shift of GFP-TR1hinge to the cytoplasm. In the future, we plan to test if the 

hinge-deletion TR mutant still has affinity for importins and coregulators so that they 

could serve as a negative control for AHT-TR mutants. Furthermore, we could also 

perform coimmunoprecipitation assays and western blotting on other known partners 

that bind to TR’s hinge region to determine if the mutation has any effect on those 

binding partners. Meanwhile, the lab is working on protein structure predictions on 

various mutants. Therefore, we could use existing models to predict the structure of 

AHT-TR and predict its interaction with other proteins using this model.  

 

TR nuclear export and import rate calculation. In the model presented in the 

discussion section, export rate and import rate are the other two significant parameters. 

The nuclear shuttling system can be described with an ODE system; however, we 

must remove all the interfering binding partners if we would like to increase the 

accuracy of the parameter estimation. Currently, more research and literature review 

are required before we could solve this problem. Once the range of the nuclear export 

and import rate is obtained, we could apply these values along with the binding rate to 
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the TR localization model. The model could help us analyze the system’s stability and 

predict the system’s behavior when the parameters change. 
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