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ABSTRACT
Stable isotope techniques were applied to summer flounder, Paralichthys 

dentatus, in Chesapeake Bay to elucidate the relative importance o f different prey groups 
on the growth and productivity of this species. Prior to field application, a laboratory 
diet-shift study was conducted to evaluate methodological assumptions and obtain 
necessary isotopic parameters. Specifically, the goals o f the laboratory study were to 1)

1 -1 1C

determine isotopic turnover rates and fractionations o f 5 C and 8 N  in liver, whole 
blood, and white muscle and 2) estimate the relative importance o f growth and metabolic 
processes on isotopic turnover. Groups of captive juvenile summer flounder (130- 
255mm total length) were monitored for up to 180 days after switching their food to a 
new diet with different stable isotope values. Although differences existed between 
carbon (C) and nitrogen (N), the rate o f isotopic change was consistently ranked 
liver>blood>muscle for the three tissues due to increased metabolic activities o f liver and 
blood. Half lives ranged from 9-21, 20-44, 49-73 days for liver, blood, and muscle 
respectively. Fractionation estimates for 8 15N  in muscle (range: 2.4-4.2%o) corresponded 
with previous research, but estimates for 8 13C (range: 0.1-4.8%o) tended to be greater than 
the traditionally assumed values o f 0-1 %o. Liver and blood fractionation estimates were 
similar to those o f muscle, differing by usually <l%o. A generalized model for predicting 
the time scale o f isotopic turnover from growth-based turnover parameters was also 
developed to help evaluate assumptions o f isotopic equilibrium in the field.

Information obtained from the laboratory study facilitated the use of stable
isotopes as dietary tracers for wild summer flounder (138-624mm total length) in
Chesapeake Bay. Summer flounder tissues (liver, blood, and muscle) and commonly
consumed prey species were sampled seasonally during late spring / early summer (May-
July) and fall (November) in 2006 and 2007. To account for similarity in isotopic
measurements and to apply mixing models, prey species were aggregated into two
trophic guilds: crustaceans (mysid shrimp, sand shrimp, mantis shrimp) and fishes (bay
anchovy, juvenile sciaenids, spotted hake). Lack of S13C differentiation among trophic1 ̂guilds and summer flounder prevented the use o f 5 C as a useful dietary indicator. 
Analysis o f 815N revealed that crustaceans comprised the majority o f summer flounder 
diet, accounting for -85-100% of flounder diets on average, except in spring o f 2006 
when fishes and crustaceans were equally represented in the diet. Summer flounder 
tended to occupy the same trophic level as the other fishes, suggesting more o f a 
competitive relationship than a predatory one. However, a positive trend in 815N with 
length in all tissues indicated that larger summer flounder fed at -1  trophic level above 
smaller flounder. Differences in isotopic values between slow and fast turnover tissues 
did not reveal this ontogenetic dietary pattern at the level of the individual, because the 
changes in feeding were o f small isotopic magnitude and occurred too gradually for 
reliable detection. Based on stable isotopic analysis, growth and production o f summer 
flounder in Chesapeake Bay are highly dependent on assimilation o f mysid, sand, and 
mantis shrimps, more so than previously expected based on stomach content research.



STABLE ISOTOPE DYNAMICS IN SUMMER FLOUNDER TISSUES, WITH 

APPLICATION TO DIETARY ASSESSMENTS IN CHESAPEAKE BAY



CHAPTER 1

TURNOVER RATES AND FRACTIONATIONS OF 5,3C AND 615N IN MUSCLE, 

BLOOD, AND LIVER TISSUES OF JUVENILE SUMMER FLOUNDER



INTRODUCTION

Detailed information on trophic interactions is critical for understanding energy 

pathways within ecosystems (McConnaughey and McRoy 1979, Deegan and Garritt 

1997) as well as ecosystem productivity and resilience (Chapin et al. 1997, Holmlund and 

Hammer 1999). Studies have generally relied on stomach contents to obtain information 

on trophic interactions, but stable isotope analyses have developed as another valuable 

tool to examine diets o f organisms. The application o f stable isotopes to trophic ecology 

relies on the fact that the mass o f a consumer will be derived from the material that it 

consumes. Ratios o f stable isotopes (typically 15N /14N and 13C/12C) from consumers and 

their prey can be compared to establish trophic connections. Several quantitative 

methodologies have developed which calculate the contributions o f different prey sources 

to a consumer using mixing models (Phillips and Gregg 2003, Fry 2006) and estimate the 

trophic level of a consumer within a food web (Vander Zanden and Rasmussen 1999,

Post 2002). These calculations and many general conclusions from stable isotope studies 

are often based on two primary assumptions: 1) that sampled tissues are in equilibrium 

with the diet (Gannes et al. 1997), and 2) that fractionations between the material 

consumed and the material assimilated as tissue are known (Post 2002). However, these 

critical assumptions are often not validated for individual studies.

The assumption that a consumer is in isotopic equilibrium with its diet depends on 

the animal’s isotopic turnover rate and the consistency o f its dietary habits. Since body
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tissues are comprised o f the assimilated portion of the diet, they are reflective o f the 

average diet for the consumer over a prior feeding period. The turnover rate of stable 

isotopes will determine the amount o f time over which this isotopic signal is averaged. 

Turnover generally depends on two factors: the dilution of existing mass by new mass 

synthesized from recently consumed prey (i.e., growth), and the replacement or 

conversion of existing tissue using material synthesized from recent diet (i.e., 

metabolism) (Hesslein et al. 1993). Accordingly, growth and metabolic rates are the key 

determinants o f how rapidly the isotopic signatures of consumed prey will become 

evident in the tissues of the consumer. If the isotopic blend of a fish’s diet has been 

consistent relative to the time scale needed for complete isotopic turnover, then the 

consumer will indeed be in isotopic equilibrium with the diet. However, proper 

consideration o f turnover rates becomes crucial in assessing diets when the consumer 

relies on seasonally abundant prey types (Latour et al. 2008), migrates between differing 

habitats (Cunjak et al. 2005), or exhibits ontogenetic shifts in feeding (Renones et al. 

2002). Generally, any dietary shifts that occur within the time-scale needed for complete 

isotopic turnover have the potential o f hindering proper interpretation o f stable isotope 

data (O’Reilly et al. 2002).

Fractionation is the process of isotopic discrimination in which ratios o f stable 

isotopes change in measurable amounts between two pools, or between prey and 

consumer in the case of trophic studies (Fry and Sherr 1984, Fry 2006). These changes in 

the stable isotope ratios result from the preferential excretion o f ,4N and a slight isotopic 

discrimination against 13C during respiration (Peterson and Fry 1987). For calculating 

source contributions or estimation of trophic position, many studies consistently assume a
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fractionation o f approximately 3.4%o for 515N and 0-1 %o for 5 13C, as promoted by some 

studies and literature reviews (DeNiro and Epstein 1978, DeNiro and Epstein 1981, 

Minagawa and Wada 1984, Post 2002, Sweeting et al. 2007). However, a growing body 

of literature continues to characterize factors that contribute variability to fractionation 

values. For example, fractionation values have been shown to vary among individuals 

(DeNiro and Epstein 1978, 1981), species (DeNiro and Epstein 1978, 1981, Tieszen et 

al.1983, Vander Zanden and Rasmussen 2001), diet (Gorokhova and Hansson 1999), 

tissue types (DeNiro and Epstein 1981, Hobson and Clark 1992b), and feeding mode 

(Vander Zanden and Rasmussen 2001).

The impacts that assumed fractionations can have on estimates of trophic level 

and mixing model results vary. Vander Zanden and Rasmussen (2001) contended that 

assumed fractionations may contribute relatively small amounts of error to trophic level 

calculations provided primary consumers and not primary producers are used as the 

baseline indicator for trophic position estimates. Post (2002), on the other hand, found 

trophic level estimates to be highly sensitive to fractionation values o f nitrogen. For 

mixing models, error introduced by incorrect fractionations is dependent on the isotopic 

separation amongst the contributing sources (Vander Zanden and Rasmussen 2001). 

Consequently, in situations where prey sources have similar stable isotope ratios, errors 

derived from fractionation assumptions can have larger impacts on the resultant 

conclusions.

Potential errors introduced by neglecting isotopic turnover rates and assuming 

fractionation values have helped motivate more rigorous laboratory studies on turnover 

and fractionation (Gannes et al. 1997; Vander Zanden and Rasmussen 2001, Sweeting et
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al. 2005). For fishes, many laboratory studies have focused on larval (Herzka and Holt 

2000, Witting et al. 2004,) or juvenile stages (Bosley et al. 2002, Logan et al. 2006, 

Sakano et al. 2005, Sweeting et al. 2005, 2007), while few have examined adults 

(Hesslein et al. 1993, MacAvoy et al. 2001). With few exceptions, most studies have 

attributed changes in isotopic composition (following a diet shift) to growth as opposed 

to metabolic replacement o f tissues. Unlike endothermic mammals and birds which 

generate heat through metabolism (DeNiro and Epstein 1978, 1981, Tieszen et al. 1983, 

Hobson and Clark 1992a), standard metabolic rates are much lower in ectothermic fishes, 

contributing less to isotopic turnover. With growth thought to be the primary driver of 

turnover in most fishes, slower growing species or age classes can require more than a 

year to completely equilibrate isotopically to a new diet (Hesslein et al. 1993, MacNeil et 

al. 2006).

Most studies measuring stable isotope ratios in fishes tend to only sample muscle 

tissue in larger individuals or analyze the whole body o f small (e.g., larval) specimens. 

However, both turnover rates and fractionation can vary across body tissues of an animal 

(Tieszen et al. 1983, Hobson and Clark 1992a, Hobson and Clark 1992b). Mixed results 

have been reported for fishes; some have documented little difference in turnover rates 

among muscle, blood, and/or liver (Hesslein et al. 1993, MacAvoy et al. 2001, Sweeting 

et al. 2005) while others have suggested that turnover is notably faster in liver, than 

blood, than muscle (Logan et al. 2006, MacNeil et al. 2006). For example, MacNeil et al. 

(2006) reported it would take 166 (liver), 265 (blood), and 422 (muscle) days for the 

different tissues of the ocellate river stingray (Potamotrygon motoro) to almost 

completely express a new diet’s isotopic signature.
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Knowledge o f tissue-specific turnover rates in fishes can benefit researchers in 

several ways. Most importantly, this type of information allows researchers to tailor the 

sampled tissue to the appropriate time-scale o f interest depending on the objectives of an 

isotopic study. For example, tissues with higher isotopic turnover rates can be used to 

address prey utilization on shorter temporal scales (Perga and Gerdeaux 2005), to capture 

finer scale dietary shifts, or to study nutritional contribution o f seasonally available 

migratory prey (MacAvoy et al. 2001). Analyzing isotopic differences among multiple 

tissues of an individual can also theoretically act as an “isotopic clock”, whereby the 

timing o f previous dietary shifts can be determined based on the different turnover times 

o f the tissues (Fry 2006, Phillips and Eldridge 2006).

The primary objective o f this study was to empirically determine the turnover 

rates and fractionations of carbon (C) and nitrogen (N) stable isotopes in three different 

tissues o f juvenile summer flounder, Paralichthys dentatus. Liver, whole blood, and 

muscle were examined with the hypothesis that liver and blood tissues would have faster 

turnover rates than muscle as shown in some other fishes (Logan et al. 2006, MacNeil et 

al. 2006). The secondary objective was to model the relative contributions o f metabolism 

and growth to the process o f isotopic turnover in these tissues. The motivation for this 

laboratory study came from a desire to assess diets o f summer flounder within 

Chesapeake Bay, USA. As a valuable commercial and recreational species, a thorough 

understanding of summer flounder dietary habits is necessary for fisheries management 

to move towards a more ecosystem-based approach (Latour et al. 2003). Summer 

flounder inhabit Chesapeake Bay during the spring and summer months before migrating 

offshore to spawn in the fall and winter (Murdy et al. 1997). Given the residence time of
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summer flounder within the Bay, traditional isotopic analysis o f muscle tissue may be 

inappropriate to categorize which prey groups drive flounder production within the Bay. 

This research was thus ultimately intended to provide information for more accurate 

application o f stable isotope techniques to study the trophic dynamics in wild summer 

flounder, a seasonally migrating fish.



METHODS

General

A diet-shift experiment was conducted to determine isotopic turnover rates and 

fractionation in juvenile summer flounder. Fish with similar isotopic signatures were 

switched to a new diet whose isotope signal differed from the baseline values. As 

individuals assimilated the new food, their isotopic signatures approached the value of 

that new food over time (although slightly adjusted for fractionation). Individuals were 

periodically sampled from the population to monitor the change in their isotopic signals.

Fish rearing

A group o f juvenile, age-0, summer flounder (n=72) was purchased from a 

commercial fish hatchery (GreatBay Aquaculture, Portsmouth, NH). These fish had been 

spawned from wild broodstock and raised on a similar diet o f formulated feed. Hatchery 

fish were transported from NH to the Virginia Institute of Marine Science, VA and 

allowed to acclimate to an experimental tank for 3 weeks while maintaining the previous 

diet. A second group o f juveniles (n=55) was captured from the lower Chesapeake Bay 

using a bottom trawl and maintained in captivity for 2-3 months on a constant diet of 

squid. The squid diet was shown to mimic the isotopic signature o f food items regularly 

consumed by juvenile summer flounder in Chesapeake Bay (A. Buchheister, VIMS, 

unpublished data) and would thus maintain the wild fish at roughly the same isotopic
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values as when they were initially captured. The hatchery (H) and wild (W) fish were 

treated separately throughout the experiment because of the differences in their rearing 

histories and initial isotopic values. The hatchery and wild groups of fish were each 

maintained in a 450-gallon recirculating tank with water held at average temperatures (± 

SD) o f 19.9 ± 0.7°C (wild fish) and 20.4 ± 0.7°C (hatchery fish). Both tanks utilized the 

same re-circulating water, which was obtained from the York River (filtered to 1 pm). 

Average salinity in the tanks was 26.1 ± 0.9. The temperature o f 20°C was chosen to be 

an average representation of bottom water temperatures of summer flounder habitat in 

Chesapeake Bay from May to November which ranges from about 15-25°C. Use of 

water from the mouth of the York River assured that experimental salinities were 

representative of the Chesapeake Bay, which averages near 25 throughout the year based 

on environmental monitoring data from the Chesapeake Bay Program. Fish were kept on 

a 13:11 hour light:dark schedule.

Two days prior to the start o f the diet shift experiment, all individuals were 

marked with a unique coded wire tag (Northwest Marine Technology, Shaw Island, WA) 

inserted into the blind-side musculature, and fish were measured for total length (mm) 

and weight (mg) (Table 1). The minute tags did not appear to affect fish behavior and a 

minimal proportion o f fish (2.6%) did not retain their tags (likely due to insertion error), 

making the coded wire tags ideal for the study. At the start of the experiment, seven fish 

were sacrificed from each group to obtain baseline isotopic signatures for muscle, liver, 

and blood tissues. The remaining fish were all switched to a constant diet of 

commercially-purchased krill, Euphausia superba, (Fishalicious Foods, Custer, WA), 

which was shown to have a different isotopic signature from both the wild and hatchery
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groups. Fish were fed up to 5% of their body weight per day in an attempt to replicate 

realistic growth rates of fish in the wild (Rountree and Able 1992).

To monitor turnover of stable isotopes, 4-6 individuals were randomly sampled 

and sacrificed at specified time periods from each group. Towards the end of the 

experiment, up to 10 individuals were sampled in order to have no fish remaining in the 

tanks. All protocols pertaining to sampling and euthanizing of experimental fish were 

approved by the College o f William and Mary’s Institutional Animal Care and Use 

Committee. Fish were sampled at 7, 13, 24, 35, 49, 67, 89, 126, 155, and 180 days from 

the start o f the experiment. Three samples o f the krill diet were periodically sampled to 

assure consistency in the dietary isotopic signature.

Processing o f  sampled fish

Summer flounder selected for isotopic determination were removed from the 

water at least 12 hours after the previous feeding and measured for total length (mm) and 

weight (mg). Samples o f whole blood (0.5 ml), liver, and dorsal muscle (above the 

pectoral fin) were taken, rinsed with de-ionized water, and dried in pre-combusted glass 

vials at 45°C for at least 2 days. Coded wire tags were recovered from the musculature of 

the fish to identify individuals. Dried tissue samples were ground, and a 0.8-1.2 mg 

subsample was packaged into a 4x6 mm tin capsule for stable isotope analysis.

Prepared samples were analyzed at the University o f Califomia-Davis Stable 

Isotope Facility using a Europa Hydra 20/20 continuous flow isotope ratio mass 

spectrometer. Stable isotope ratios are reported in relation to conventional standards:

s x = ( R s a n , p l e - R s l ,nda rd )x l 0 0 ( )

R standard
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where X is the stable isotope of C or N, and R is the mass ratio o f the heavy to light 

stable isotope (e.g., 15N /14N ) for either the sample or the standard. The conventional 

standards used for the analyses were Pee Dee Belmnite for C and air for N , and §X is 

reported in per mil (%o). Repeated measurements of a calibration standard indicated that 

instrument precision (SD) was 0.15 and 0.08%o for 5 ,3C and 8 15N , respectively.

Lipid correction for livers

i ->
A mathematical correction was used to normalize liver 5 C values, due to the 

high lipid concentrations in this tissue which are known to bias 813C values (DeNiro and 

Epstein 1977, Logan et al. 2008). Twelve liver samples were divided into two aliquots to 

determine 813C both before lipid extraction ( 8 13C n e )  and after lipid extraction (813CLE). 

Lipids were extracted using a solvent mixture o f 65% dichloromethane and 35% 

methanol (Bligh and Dyer 1959) using an ASE-200 Accelerated Solvent Extractor 

(Dionex ®) at 80°C and 1800 psi. Following the extraction, samples were dried and 

analyzed for stable isotope ratios as described above. Following Logan et al. (2008), the 

relationship between elemental C:N (for non-extracted samples) and the change in 5 I3C

1 1 'Xdue to extraction (5 Cle -  8 Cne) was evaluated using four alternative models.

Akaike’s Information Criterion for small sample sizes (AICc) identified the 

McConnaughey and McRoy (1979) model as the best fit to the data (see Logan et al.

2008 for competing models). This model takes the form of:

(2) 8'3C le -  5'3C ne = D (6 + — ^ — ) where
1 + Zo / / L,

L -  ____________
l + (0 .2 4 6 x C :N -0.775)"' '
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In equation (2), L represents the sample lipid content as a function of C:N, while D 

represents protein-lipid discrimination. The parameters D and 0 were estimated (± SE) as 

D = 6.2883 ± 1.3519 and 0 = 0.0612 ± 0.1527. Equation (2) was used to adjust all liver

13 135 C values based on C:N. Lipid corrections were not applied to muscle and blood 5 C 

values due to the relatively low C:N values and limited variability across individuals 

(mean C:N ± SD: muscle, 3.40 ±0.13; blood, 4.12 ± 0.39; liver, 14.54 ± 4.68).

Growth-based modeling

Changes in stable isotope ratios were modeled as a function of relative growth 

since the diet switch. The growth-based model predicts the isotopic value o f a fish as 

(Fry and Arnold 1982):

(3) 5WR= 8 f + (5 j- 8 f)WRc ,

where 5f is the expected isotopic value when completely equilibrated to the new diet and 

5j is the initial isotopic signature prior to the diet shift. The average isotopic value for the 

seven fish sacrificed before the diet shift was used as the estimate for 8j in the model.

The relative increase in weight of each fish ( W r)  is calculated as the final wet weight 

divided by the initial wet weight. The variable 8 w r  is the measured isotopic value for a 

fish given its increase in weight, and c is a turnover rate constant. Both 5f and c were 

estimated using nonlinear regression (SAS Version 9.1, SAS Institute 2002). In this 

model, if  c = -1, growth is entirely responsible for turnover, whereas if  c < -1, 

metabolism is contributing to turnover of the stable isotope in the tissue, with more 

negative values representing greater contributions by metabolism (Fry and Arnold 1982).
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The fractionation estimates of 8 l5N and 8 13C between the diet and each tissue 

(Ajissue) were calculated as (Minagawa and Wada 1984):

(4) T̂ISSUE = —̂ d

where 8 d is the mean stable isotope signature for samples o f krill diet. Standard errors for 

the fractionation estimate were based on errors associated with the model estimate o f 5f 

(SE5f) and the standard error o f the mean for Sd (SEs ):

(5) s e a = J s e 6 2+ s e (
\  /  ^TISSl/E  \  *

2

By rearranging equation (3), the amount of relative growth needed to achieve a a

1 1C
% turnover of 8  C or 8  N (Ga/ioo) was calculated as:

l n ( l - a / 1 0 0 )
(6 ) = exp(----------------- ) .

c

The growth-based half-life (G0.5) is obtained when a  = 50% and represents the amount of 

growth needed for a 50% conversion between the initial and final isotopic values. The 

fractions o f new tissue derived from growth (Dg) and derived from metabolism (Dm) were 

calculated at the midpoint between the old and new isotopic values (Witting et al. 2004):

(7) D = 2 ( G 0. 5 - 1 )

G0,

(8)
Go,

However, note that the equations originally published by Witting et al. (2004) were 

misprinted (D. A. Witting, pers. comm.).

The Fisher-Behren’s test statistic was used to test for significant differences in 

parameter estimates across tissues and between groups (Quinn and Deriso 1999). A t-test 

was used to test c against a null hypothesis of c = -1 (Zar 1999).
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Time-based modeling

Changes in stable isotope ratios were also modeled as a function of time since the 

diet switch. The time-based exponential model (Hesslein et al. 1993) describes the 

isotope value o f a fish at time t (8t) as:

(9) 5, = 5 f +(8i - 8 f)e“<k+n')t,

where 8f and 8j are as previously defined and m is the metabolic turnover constant. The 

group-specific growth rate constant, k ', was estimated by fitting an exponential growth 

model to the available data (Ricker 1979):

(10) Wf = W ie k\

where Wi is a fish’s initial wet weight and Wf is the final weight when sampled on day t. 

Due to different initial sizes and different growth rates between groups, the k' parameter 

was estimated separately for the wild and hatchery groups using nonlinear regression 

(SAS version 9.1, SAS Institute 2002). In equation (9), if  turnover is due to growth 

alone, then m = 0. The values o f 8t, Si, and t were measured or calculated, and 8f and m 

were estimated using nonlinear regression.

Diet-tissue fractionations (± SE) were also derived from time-based model estimates 

of 8f using equations (4) and (5). The length of time needed to achieve a a  % turnover of 

S13C or 815N was calculated as (Tieszen et al. 1983):

( i i ) — (k +m )

Half life ( T 0 . 5 )  is obtained when a  = 50%.
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The relative contributions o f growth ( k') and metabolism (m) were calculated as 

the ratio o f each parameter to the sum of the two parameters. This calculation yields the 

proportion of turnover attributable to growth (Pg) and the proportion attributable to 

metabolism (Pm). The Fisher-Behren’s test statistic was used to test for significant 

differences in parameter estimates across tissues and between groups (Quinn and Deriso 

1999). A t-test was used to test m against a null hypothesis of m = 0 (Zar 1999). To 

assess growth patterns o f the wild and hatchery populations over the duration of the 

experiment, specific growth rates (k) were calculated for each individual using the 

exponential growth model, equation (10), by substituting k for k' (Ricker 1979).

Model fitting and selection.

Growth- and time-based models were fitted to each tissue, for each isotope and 

for each group. For both types o f models, the regression assumption of normality was 

supported by histograms o f the residuals and by Kolmogorov-Smirnoff tests conducted at 

different levels o f the independent variable. Levene’s tests and residual plots indicated 

that homogeneity o f variance was not supported for the growth- and time-based models 

of 815N for muscle and liver, nor for 813C turnover in liver. These models were weighted 

by the inverse o f the variance o f the response variable as a way to account for the 

heteroscedasticity in the estimation and fitting procedures (Neter et al. 1990). Due to 

heteroscedasticity, equation (10) was also fitted by weighted least squares, using the 

inverse o f the Wf variance (calculated at each time period) as the weighting factor (Neter 

et al. 1990).
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An information-theoretic (IT) approach was used to help assess the importance of  

metabolism and growth to the turnover process. Both growth- and time-based turnover 

models were re-parameterized to not allow metabolism to contribute to turnover. In this 

alternate parameterization, growth alone would be entirely responsible for isotopic 

turnover within each tissue (i.e., c = -1 in equation (3); m = 0 in equation (9)). The IT 

approach evaluates the strength o f evidence for competing models and determined 

whether a model parameterized for growth only performed better than a model which 

allowed for a metabolic contribution to turnover. Akaike’s Information Criterion 

(corrected for small sample sizes), AICc, was calculated for each of the two competing 

models according to the equation:

. tz-'i , ,RSSX 2K(K + 1)(12) A IC c = n x ln (  ) + 2K + —  --------
n n - K - 1

where n is the sample size, K is the number of estimable parameters in the model, and 

RSS is the residual sum of squares as determined from the nonlinear regression 

(Burnham and Anderson 2002). AICc differences (AAICc) between the two competing 

models were calculated as:

(13) AAlCc = A I C ,-A I C mln

where A IQ  is the A ICc of model i, and A IC mjn is the lowest A IC c of the competing 

models. The best model, or the model with the most support, will have AAICc = 0. As a 

general rule of thumb, AAIC c values from 0-2 indicate substantial support for the model, 

AAICc from 4-7 suggest considerably less support, and AA ICc >10 indicate essentially no 

support for that model (Burnham and Anderson 2002).
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RESULTS

Growth rates

Specific growth rates (k) varied across individuals, across time, and between 

groups (Fig. 1). Overall, individual growth rates ranged from -0.010 to 0.024 d'1, and 

only three fish experienced negative growth rates, or a loss of weight. Hatchery fish 

tended to grow more rapidly than wild fish, exhibiting the highest k values, particularly in 

the first 50 days o f the experiment. Group-specific growth rates ( k ') reflected this 

difference between groups with k'values (± SE) of 8.16 x 10"3 ± 1.65 x 10'4 d*1 and 6.51 

x 10'3 ± 2.51 x 10‘4 d’1 for hatchery and wild groups, respectively. Growth rates tended to 

increase initially in both groups before leveling off and then decreasing slightly towards 

the end o f the experiment. The decrease in growth rates was particularly evident in the 

relative growth (WR) trends of wild fish over time (Fig. 2). Declines in individual growth 

rates corresponded with reduced consumption rates that were observed during the second 

half o f the experiment, particularly for the wild fish.

Isotopic turnover and fractionation

Turnover of both C and N isotopes was clearly evident in all tissues over the 

duration o f the experiment. Isotope values of the experimental krill diet were between 

5.9 and 11.9%o removed from the mean initial isotopic signatures of the wild and 

hatchery fish tissues (Table 2). Initial 513C values of hatchery and wild fish were similar,
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but hatchery fish exhibited more depleted 515N values due to the different diets on which 

each group was raised.

Turnover and fractionation o f S13C

i 'i
Isotopic turnover of 5 C in summer flounder tissues was well represented by both 

growth- and time-based models. For a given group, turnover was most rapid in liver 

followed by blood then muscle, as indicated by the more negative values o f c (growth- 

based model, Table 3) and higher values o f m (time-based model, Table 4) relative to the 

other tissues. However, the magnitude of these parameters for liver and blood were 

similar, translating into small differences in isotopic trajectories by growth (Fig. 3 A, 3B) 

or over time (Fig. 4A, 4B).

Half lives for 813C in liver, blood, and muscle tissue were estimated as 21, 23, and 

69 d for hatchery fish, and 16, 20, and 49 days for wild fish, respectively (Table 4). A 

95% isotopic turnover in liver and blood could occur in as little as 69 or 89 days, whereas 

almost complete turnover in muscle could take up to 298 days. In terms of growth, a 

50% turnover was reached in liver, blood, and muscle tissues when hatchery fish had 

grown 1.25, 1.37, and 3.04 times their initial size (Table 3). Wild fish needed to grow 

1.11, 1.18, and 2.13 times their initial size to attain 50% turnover in liver, blood, and 

muscle tissues, respectively.

For blood and liver tissues, estimates of the asymptotic isotopic value, 8f, were 

relatively consistent between modeling methods and between experimental groups. 

Differences in 5f estimates between the time-based and growth-based models were 

relatively small (<0.6%o) for blood and liver, although the growth-based estimates tended
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to be lower than the time-based estimates (Tables 3, 4). For these two tissues in any 

given model, 8f estimates between wild and hatchery groups differed by less than l%o. 

Unlike liver and blood tissues, there was a high degree of variability in 8f estimates for 

muscle tissue, with differences up to ~3%o between growth- and time-based models.

Also, differences in 5f estimates between H and W groups were about 1.7%o for each 

modeling method. The uncertainty in these estimates was reflected in the higher SE of 

these parameters.

Fractionation estimates for 5 ,3C varied by tissue, group and by the model used. 

Liver fractionation values were the most consistent ranging from 2.8 to 3.1 %o (Tables 3, 

4). Fractionation estimates for blood ranged from 2.4-3.4%o, while muscle fractionation 

varied from 0.1-4.8%o. Due to 5f values that were consistently more depleted in the 

hatchery group, the fractionation estimates for this group were always lower than for the 

wild group.

Turnover and fractionation o f SI5N

Turnover rates of 815N reflected the same general patterns seen for 513C with liver 

rates being the fastest (Figs. 3A, 3B, 4A, 4B). Values for m were approximately one 

order o f magnitude greater for the liver than for the other tissues (Table 4). Half life was 

about 10 days for liver compared to approximately 38 and 70 days for blood and muscle, 

respectively. Growth-based estimates o f c also indicated a much more rapid turnover in 

liver with a doubling in weight resulting in approximately a 95% turnover to the new krill 

diet (Table 3). Turnover rates o f 815N for blood were intermediate between liver and 

muscle, with muscle tissue consistently responding the slowest to the dietary change.
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Muscle tissue required over 290 days (Table 4) or over a 14-fold increase in weight 

(Table 3) to attain 95% of 815N turnover, given the observed growth rates.

Estimates of 8f for liver were similar between time- and growth-based models, but 

differences between models reached 1.1 -1 .3%o for blood and muscle. Differences 

between W and H groups (for a given tissue and method) varied, but were greatest for 

blood (1.6-1.7%o). Again, the magnitude o f the difference between group or method 

estimates o f 8f seemed to be related to the SE o f the parameter estimates.

1 r  i q

Fractionation estimates for 8 N were more variable than the estimates for 8 C. 

Depending on the model used and the experimental group, fractionation estimates for 

liver, blood, and muscle varied from 1.5-2.3%o, l.l-3.9% o, and 2.4-4.2%o, respectively 

(Tables 3, 4). Fractionations of 815N also exhibited a group-related trend with higher 

estimates for the wild group, due to consistently higher 8f values relative to the hatchery 

group.

Metabolic contributions to turnover

The relative importance of metabolism and growth varied by tissue, as indicated 

by several analytical techniques. For liver and blood, models that were parameterized to 

include metabolism were more supported by the data, yielding much lower AICc values 

(Tables 5,6). The very large AAICc o f the competing model with no metabolism suggest 

that there is practically no evidence that growth is solely responsible for isotopic turnover 

in these tissues. The importance o f metabolic processes to turnover in liver and blood 

was further indicated by the estimates o f m and c being significantly different from 0 or - 

1, respectively (Tables 3, 4). According to the growth-based model, metabolism
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accounted for over 45% of 813C turnover in blood while metabolic contributions reached 

80% for liver 813C turnover (Table 3). Metabolic contributions to 5 ,5N turnover 

remained comparable, except for blood tissues of hatchery fish which appeared to be 

predominantly growth-driven. Time-based models generated slightly greater estimates of 

metabolic contributions to isotopic turnover in blood and liver with values generally over 

75% (Table 4).

In contrast to liver and blood, isotopic turnover of muscle tissue was primarily 

driven by the growth-related process of dilution. Values o f AAICc indicated that models 

accounting for growth alone performed better than, or nearly as well as, models which 

allowed for metabolism, with only two exceptions (Tables 5, 6). For growth-based 

models, no estimates o f c were significantly less than -1 and growth alone accounted for 

over 90% of isotopic turnover in muscle (Table 3). Accordingly, time-based model 

estimates o f m tended to be not significantly different from 0, with metabolism 

responsible for lower percentages o f total turnover in muscle relative to blood and liver 

tissues (muscle Pm: 19-54%, blood and liver Pm: 48-90%; Table 4).
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DISCUSSION

Turnover and fractionation in tissues

Following the experimental dietary shift, both C and N stable isotope trajectories 

approached the dietary signal, and were well-described by the turnover models. Tissue- 

specific turnover rates translated into variable amounts of time needed for tissues to 

reflect the new dietary material. This lends additional credence to criticisms that caution 

against assuming that predators are in isotopic equilibrium with their prey in field settings 

(Gannes et al. 1997), particularly when dealing with migratory species, or species whose 

diet exhibits a large amount o f seasonal variability. Both of these scenarios pertain to 

summer flounder, confirming the utility of this laboratory study. With the observed 

growth rates, it was estimated that summer flounder muscle tissue may require over 300 

days to be almost completely equilibrated (95% turnover) with a new diet, while liver and 

blood require as little as 40 and 89 days, respectively. Consequently, muscle tissue of 

wild summer flounder that exhibit similar growth rates to those in this study may never 

be fully equilibrated to their diets if  the isotopic values of their prey vary through the 

course of their seasonal spawning migrations.

Differences in turnover rates among tissues were driven by variable metabolic 

contributions to the turnover process. Although the metabolic component in the turnover 

models incorporates all turnover processes aside from growth, protein synthesis and 

degradation rates in fish livers have been shown to be 1-2 orders o f magnitude greater
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than in muscle tissues (Smith 1981, Houlihan et al. 1988, de la Higuera et al. 1999). In 

birds, blood plasma proteins, synthesized in the liver, also have high turnover rates that 

translate into short half-lives of isotopes relative to muscle tissue (Hobson and Clark 

1992a, Hobson and Clark 1993). Although some studies have shown little or no 

difference in isotopic turnover rates between liver and muscle of fishes (Hesslein et al. 

1993, Sweeting et al. 2005, McIntyre and Flecker 2006), the majority o f research on 

fishes supports our findings o f faster liver and blood turnover relative to muscle 

(MacAvoy et al. 2001, Suzuki et al. 2005, Watanabe et al. 2005, Logan et al. 2006, 

MacNeil et al. 2006, Guelinckx et al. 2007). We found metabolic contributions up to 

81% and 90% for blood and liver, comparable to the 73% and 83% contributions seen for 

ocellate stingrays (MacNeil et al. 2006). Isotopic turnover in muscle tissue on the other 

hand was predominantly mediated by growth and simple dilution, as shown for most 

fishes (e.g., Hesslein et al. 1993, Herzka and Holt 2000).

Within a given tissue, relative contributions o f growth and metabolism to isotopic 

turnover differed for C and N. Most notably, turnover of 813C was approximately twice 

as fast as the turnover o f SI5N in blood tissues. Isotope-specific turnover rates in fish 

have been reported elsewhere, with turnover o f C more rapid than N in tissues as seen in 

our study (MacAvoy et al. 2001, Suzuki et al. 2005, Guelinckx et al. 2007). Differences 

in turnover of isotopes within a tissue may depend on the proximate composition of that 

tissue, and the catabolic processes operating on each biochemical constituent of the 

tissue. For example, Hobson and Clark (1993) found that cellular and plasma fractions of 

bird blood differed dramatically with regard to 813C turnover rates due to different , 

metabolic activities. Just as turnover rates of a single isotope vary within the fractions of
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the blood, turnover o f C and N  isotopes could also vary as a function o f different 

physiological processes operating on each isotope pool. The specific mechanisms driving 

isotopic turnover within each tissue are still poorly understood, and our results confirm 

the need for considering 5 13C and 5 15N  individually.

Diet-tissue fractionations varied among tissues and between isotopes, consistent 

with previous studies. For muscle tissue, our fractionation estimates (A 15N: 2.4-4.2%o;

13 15A C: 0.1-4.8%o) conformed to the wide range of values reported in the literature (A N:

—1 to 6%o, A13C: -3 to 4%o; Post 2002, McCutchan et al. 2003, Sweeting et al. 2007).

1 ̂However, muscle A C estimates were greater than the traditionally assumed values of 0- 

l%o. Relatively large standard errors in muscle fractionation estimates likely contributed 

to this discrepancy and also to the lack of consistency in estimates between experimental 

groups and modeling methods. More precise fractionation estimates could have been 

obtained if isotopic equilibrium had been reached in blood and muscle tissues, but 

logistical constraints prevented extension of the experiment by the 4-6 months that would 

have been required for this to occur.

Few studies have directly estimated fractionations for liver and blood in fishes. 

Liver estimates for A 15N  ranged from 0-3.5%o in two studies on the European sea bass 

(Sweeting et al. 2007) and the salt marsh mummichog (Logan et al. 2006), corresponding 

with our estimates o f 1.5-2.3%o. Watanabe et al. (2005) demonstrated a fractionation of 

approximately -0.3%o for A 13C of Japanese flounder liver, which was considerably lower 

than our estimates of 2.8-3. l%o. Our estimates for liver (lipid-normalized) and blood 

fractionation contribute to the few studies available on these tissues. To our knowledge, 

our results include the first explicit estimates o f isotopic fractionation of 5 ,3C and 8 15N
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for fish blood. The tissue-specific fractionations we report are influenced by the different 

biochemical constituents of the tissues (e.g., amino acids, proteins, lipids), which have 

been shown to differ in their own fractionations (DeNiro and Epstein 1977, Macko et al. 

1987, McClelland and Montoya 2002). Also, dietary components when assimilated are 

not necessarily allocated equally across all tissues, contributing to tissue-specific 

fractionations (Gannes et al. 1997).

Overall, each of the experimental groups (wild and hatchery) yielded similar 

relative conclusions regarding tissue turnover rates, but rates were consistently higher for 

wild fish (despite slower growth) and fractionations were consistently lower for hatchery 

fish. These patterns could be related to a suite of factors, including differences in initial 

sizes, growth rates, maturity schedules, physiology (Graham and Farrell 1992), 

environmental histories, and genetic diversity. The differences between groups and the 

potential influence o f these factors are reminders that natural populations o f summer 

flounder likely exhibit variability in both isotopic turnover and fractionation. In light of 

the variability between hatchery and wild fish, it may be more prudent for field studies on 

summer flounder to rely on parameter estimates derived from the wild group, but we 

acknowledge the possibility that isotope dynamics may differ between laboratory and 

field settings (Vander Zanden and Rasmussen 2001).

Both time- and growth-based turnover models captured the patterns o f isotopic 

changes experienced by the experimental populations, supporting the mechanistic 

foundations o f the models in which somatic growth and metabolic tissue replacement 

drive isotopic turnover (Fry and Arnold 1982, Hesslein et al. 1993). However, the time- 

based model relies on a single growth parameter value intended to be representative of
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the entire population, and it is assumed to be constant through time (Tarboush et al. 

2006). Summer flounder in our study experienced large variability in individual growth 

rates and irregular growth trajectories. This variability in growth rates of individuals 

likely contributed to a large portion o f the residual error in the time-based model. Not 

surprisingly, time-based model residuals plotted against individual growth rates 

consistently showed a slight negative relationship, indicating that faster growing fish 

experienced greater turnover after a given amount of time than slower individuals.

Relative to the growth-based model, time-based model results may not be as 

applicable to situations that deviate from the experimental conditions. Time-based 

turnover rates have been shown to differ by temperature and feeding rates, due to the 

different growth rates elicited by these environmental conditions (Bosley et al. 2002, 

Witting et al. 2004, Watanabe et al. 2005). Turnover rates derived from growth-based 

models, on the other hand, do not drastically suffer from these problems because any 

variability in growth rates are inherently accounted for by the relative growth variable, 

WR (Bosley et al. 2002, Witting et al. 2004, Watanabe et al. 2005). Consequently, 

turnover parameters derived from growth-based models may be more suitable in field 

conditions where temperatures or growth rates differ from the laboratory setup from 

which results were generated.

Application to field  studies

Knowledge of tissue-specific turnover rates will enable researchers to select 

tissues suitable for the time-scale o f the inferences to be made in field studies utilizing 

stable isotopes. To avoid making an erroneous assumption that a species is in isotopic
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equilibrium with its diet, it is important to be able to predict approximately how long it 

takes for different tissues to equilibrate to the isotopic signature of the organism’s diet. 

The half-lives calculated from the time-based turnover models may be inadequate for 

such predictions if field conditions (and consequently growth rates) differ from the 

laboratory experiment, as described above. Here, we propose a slight reformulation of 

the growth-based turnover model, equation (3), to translate turnover rate constants to the 

more tangible unit o f time for field applications.

Growth can be adequately described with an exponential model (equation (10); 

Ricker 1979), and this can be substituted for Wr in the growth-based model, equation (3), 

yielding:

(14) 8WR= S f + (5 i - 5 f)ek,c

For a given percentage of complete turnover (a), 5wr can be re-written as

(15) 8WR= ^ ( 8 f - 8 i) + 8i

For example, a 50% turnover between the initial and final isotope values would equate to 

a  = 50% and 5wr would be half way between 5; and 8f. After substituting equation (15) 

into equation (14) and rearranging the terms, the following model can be obtained:

. _  ln(l-ct/100)
( 1 6 )  la /100  — ,

where t(x/i00 is the time needed for a% of turnover to be completed. The growth-based 

model fits presented in this paper provide the turnover rate constants, c, for three summer 

flounder tissues. Assuming that c is relatively constant across different specific growth 

rates (k), then the time needed for a given amount of turnover to occur (for a specified 

growth rate) can be modeled using equation (16).
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Plotting this model over a range o f realistic growth rates for juvenile summer 

flounder (Rountree and Able 1992) using turnover estimates of 815N (Table 3) 

emphasizes the differences in time scales represented by various tissues (Fig. 5). For 

example, given a growth rate of 0.01 d"1, muscle tissue requires approximately 60 days 

for 50% turnover, whereas liver tissue will have turned over 90% in the same amount of 

time. Differences in turnover times among tissues are greatest at lower growth rates, 

suggesting that tissue selection is particularly important for researchers working on 

slower growing animals. This model also highlights the important role that growth rates 

have on mediating the time that is necessary for isotopic equilibrium to be achieved.

The assumption that c is constant across different growth rates was supported by 

the lack o f a relationship between growth-based 515N model residuals and individual 

growth rates, k (ranging from approximately 0 -  0.024 d'1). Also, work on larval and 

juvenile flatfish did not reveal significant differences in c between temperature 

treatments, which altered growth rates (Bosley et al. 2002, Witting et al. 2004). We did

i

discover a slight negative relationship between growth-based model 5 C residuals and 

individual k, suggesting that consistency of c across growth rates may vary by isotope.

To our knowledge, no studies have directly examined the relationship between 

individual growth rates or temperature on the consistency o f growth-based turnover 

estimates. Research in this area may provide crucial information to address applicability 

of laboratory turnover rates and equation (16) to the field. However, until more work is 

conducted, this model may be a useful tool for researchers that are unable to conduct the 

necessary laboratory studies prior to a field-based investigation using stable isotopes. 

Using equation (16), researchers can estimate expected turnover times given information
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on the growth rate and turnover rate constants (known or assumed) for their species of 

interest. These estimates will allow researchers to better evaluate whether certain tissues 

will be in isotopic equilibrium with sampled prey in the field.

Conclusion

In summary, increased metabolic activities in liver and blood of summer flounder 

appear to be driving faster isotopic turnover rates in these tissues relative to muscle. 

Specifically turnover rates o f tissues were ranked: liver>blood>muscle. However, the 

degree to which these tissues differ depends on the isotope in question. The estimates of 

tissue-specific turnover rate and fractionation will aid field-based studies o f summer 

flounder by allowing researchers to evaluate the validity of assuming that the fish are in 

isotopic equilibrium with their prey. A generalized model for predicting the time 

necessary for a certain percentage o f turnover (given growth and turnover rate 

parameters) is presented to aid researchers. Continued research on isotope dynamics in 

fish tissues and the factors mediating turnover rates will help reduce errors in field 

applications o f stable isotopes. Knowledge o f tissue-specific turnover rates and 

fractionations will allow researchers to select from a suite of alternative tissues to answer 

scientific questions operating on a variety o f different time-scales. Use of tissues with 

faster turnover rates may be of particular benefit to research focusing on highly migratory 

fishes or species whose diets exhibit a high degree of seasonal variability, as is the case 

for summer flounder.

30



REFERENCES

Bligh, E.G., and Dyer, W.J. 1959. A rapid method of total lipid extraction and 

purification. Can. J. Biochem. Phys. 37: 911-917.

Bosley, K.L., Witting, D.A., Chambers, R.C., and Wainright, S.C. 2002. Estimating

turnover rates of carbon and nitrogen in recently metamorphosed winter flounder 

Pseudopleuronectes americanus with stable isotopes. Mar. Ecol. Prog. Ser. 236: 

233-240.

Burnham, K.P., and Anderson, D.R. 2002. Model Selection and Multimodel Inference: A 

Practical Information-Theoretic Approach. Springer, New York, New York.

Chapin, F.S., Walker, B.H., Hobbs, R.J., Hooper, D.U., Lawton, J.H., Sala, O.E., and

Tilman, D. 1997. Biotic control over the functioning o f ecosystems. Science, 277: 

500-504.

Cunjak, R.A., Roussel, J.-M., Gray, M.A., Dietrich, J.P., Cartwright, D.F., Munkittrick, 

K.R., and Jardine, T.D. 2005. Using stable isotope analysis with telemetry or 

mark-recapture data to identify fish movement and foraging. Oecologia, 144: 636- 

646.

de la Higuera, M., Akharbach, H., Hidalgo, M.C., Peragon, J., Lupianez, J.A., and Garcia- 

Gallego, M. 1999. Liver and white muscle protein turnover rates in the European 

eel {Anguilla anguilla): effects o f dietary protein quality. Aquaculture, 179: 203- 

216.

31



Deegan, L.A., and Garritt, R.H. 1997. Evidence for spatial variability in estuarine food 

webs. Mar. Ecol. Prog. Ser. 147: 31-47.

DeNiro, M.J., and Epstein, S. 1977. Mechanism of carbon isotope fractionation associated 

with lipid synthesis. Science, 197: 261-263.

DeNiro, M.J., and Epstein, S. 1978. Influence o f diet on the distribution o f carbon 

isotopes in animals. Geochim. Cosmochim. Acta, 42: 495-506.

DeNiro, M.J., and Epstein, S. 1981. Influence o f diet on the distribution of nitrogen 

isotopes in animals. Geochim. Cosmochim. Acta, 45: 341-351.

Fry, B. 2006. Stable Isotope Ecology. Springer, New York, New York.

Fry, B., and Arnold, C. 1982. Rapid 13C/12C turnover during growth o f brown shrimp

(Penaeus aztecus). Oecologia, 54: 200-204.

1 ̂Fry, B., and Sherr, E.B. 1984. 5 C measurements as indicators o f carbon flow in marine 

and freshwater ecosystems. Contrib. Mar. Sci. 27: 13-47.

Gannes, L.Z., OBrien, D.M., and delRio, C.M. 1997. Stable isotopes in animal ecology: 

Assumptions, caveats, and a call for more laboratory experiments. Ecology, 78: 

1271-1276.

Gorokhova, E., and Hansson, S. 1999. An experimental study on variations in stable 

carbon and nitrogen isotope fractionation during growth of Mysis mixta and 

Neomysis integer. Can. J. Fish. Aquat. Sci. 56: 2203-2210.

Graham, M.S., and Farrell, A.P. 1992. Environmental-influences on cardiovascular 

variables in rainbow-trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 41: 

851-858.

Guelinckx, J., Maes, J., Van Den Driessche, P., Geysen, B., Dehairs, F., and Ollevier, F.

32



2007. Changes in 8,3C and 515N in different tissues of juvenile sand goby 

Pomatoschistus minutus: a laboratory diet-switch experiment. Mar. Ecol. Prog.

Ser. 341:205-215.

Herzka, S.Z., and Holt, G.J. 2000. Changes in isotopic composition of red drum

(Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to 

settlement studies. Can. J. Fish. Aquat. Sci. 57: 137-147.

Hesslein, R.H., Hallard, K.A., and Ramlal, P. 1993. Replacement of sulfur, carbon, and 

nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a 

change in diet traced by 834S, 8l3C, and 815N. Can. J. Fish. Aquat. Sci. 50: 2071- 

2076.

Hobson, K.A., and Clark, R.G. 1992a. Assessing avian diets using stable isotopes I: 

Turnover o f 13C in tissues. Condor, 94: 181-188.

Hobson, K.A., and Clark, R.G. 1992b. Assessing Avian Diets Using Stable Isotopes II: 

Factors Influencing Diet-Tissue Fractionation. Condor, 94: 189-197.

Hobson, K.A., and Clark, R.G. 1993. Turnover of C-13 in cellular and plasma fractions of 

blood - Implications for nondestructive sampling in avian dietary studies. Auk, 

110:638-641.

Holmlund, C.M., and Hammer, M. 1999. Ecosystem services generated by fish 

populations. Ecol. Econ. 29: 253-268.

Houlihan, D.F., Hall, S.J., Gray, C., and Noble, B.S. 1988. Growth rates and protein 

turnover in Atlantic cod, Gadus morhua. Can. J. Fish. Aquat. Sci. 45: 951-964.

Latour, R.J., Brush, M.J., and Bonzek, C.F. 2003. Toward ecosystem-based fisheries 

management: Strategies for multispecies modeling and associated data

33



requirements. Fisheries, 28: 10-22.

Latour, R.J., Gartland, J., Bonzek, C.F., and Johnson, R.A. 2008. The trophic dynamics of 

summer flounder (Paralichthys dentatus) in Chesapeake Bay. Fish. Bull. 106: 47- 

57.

Logan, J., Haas, H., Deegan, L., and Gaines, E. 2006. Turnover rates of nitrogen stable 

isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a 

laboratory diet switch. Oecologia, 147: 391-395.

Logan, J.M., Jardine, T.D., Miller, T.J., Bunn, S.E., Cunjak, R.A., and Lutcavage, M.E.

2008. Lipid correction in carbon and nitrogen stable isotope analyses: comparison 

of chemical extraction and modeling methods. J. Anim. Ecol. 77: 838-846.

MacAvoy, S.E., Macko, S.A., and Garman, G.C. 2001. Isotopic turnover in aquatic

predators: quantifying the exploitation of migratory prey. Can. J. Fish. Aquat. Sci. 

58: 923-932.

Macko, S.A., Estep, M.L.F., Hare, P.E., and Hoering, T.C. 1987. Isotopic fractionation of 

nitrogen and carbon in the synthesis o f amino acids by microorganisms. Isot.

Geosci. 65: 79-92.

MacNeil, M.A., Drouillard, K.G., and Fisk, A.T. 2006. Variable uptake and elimination 

of stable nitrogen isotopes between tissues in fish. Can. J. Fish. Aquat. Sci. 63: 

345-353.

McClelland, J.W., and Montoya, J.P. 2002. Trophic relationships and the nitrogen 

isotopic composition of amino acids in plankton. Ecology, 83: 2173-2180.

McConnaughey, T., and McRoy, C.P. 1979. Food-web structure and the fractionation of 

carbon isotopes in the Bering Sea. Mar. Biol. 53: 257-262.

34



McCutchan, J.H., Lewis, W.M., Kendall, C., and McGrath, C.C. 2003. Variation in

trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102: 

378-390.

McIntyre, J.K., Beauchamp, D.A., Mazur, M.M., and Overman, N.C. 2006. Ontogenetic 

trophic interactions and benthopelagic coupling in Lake Washington: Evidence 

from stable isotopes and diet analysis. Trans. Amer. Fish. Soc. 135: 1312-1328.

McIntyre, P.B., and Flecker, A.S. 2006. Rapid turnover o f tissue nitrogen of primary 

consumers in tropical freshwaters. Oecologia, 148: 12-21.

Minagawa, M., and Wada, E. 1984. Stepwise enrichment of 15N along food chains: 

further evidence and the relationship between 515N and animal age. Geochim. 

Cosmochim. Acta, 48: 1135-1140.

Murdy, E.O., Birdsong, R.S., and Musick, J.A. 1997. Fishes o f Chesapeake Bay. 

Smithsonian Institution Press, Washington and London.

Neter, J., Wasserman, W., and Kutner, M.H. 1990. Applied linear statistical models:

Regression, analysis o f variance, and experimental designs. Irwin, Boston, MA.

O'Reilly, C.M., Hecky, R.E., Cohen, A.S., and Plisnier, P.D. 2002. Interpreting stable

isotopes in food webs: Recognizing the role o f time averaging at different trophic 

levels. Limnol. Oceanogr. 47: 306-309.

Perga, M.E., and Gerdeaux, D. 2005. 'Are fish what they eat' all year round? Oecologia, 

144: 598-606.

Peterson, B.J., and Fry, B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. 

Syst. 18: 293-320.

Phillips, D.L., and Eldridge, P.M. 2006. Estimating the timing of diet shifts using stable

35



isotopes. Oecologia, 147: 195-203.

Phillips, D.L., and Gregg, J.W. 2003. Source partitioning using stable isotopes: coping 

with too many sources. Oecologia, 136: 261-269.

Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and 

assumptions. Ecology, 83: 703-718.

Quinn II, T.J., and Deriso, R.B. 1999. Quantitative Fish Dynamics. Oxford University 

Press, New York and Oxford.

Renones, O., Polunin, N.V.C., and Goni, R. 2002. Size related dietary shifts of

Epinephelus marginatus in a western Mediterranean littoral ecosystem: an 

isotoope and stomach content analysis. J. Fish Biol. 61: 122-137.

Ricker, W.E. 1979. Growth rates and models. In Fish Physiology. Edited by W.S. Hoar, 

D.J. Randall and J.R. Brett. Academic Press, New York. pp. 677-743.

Rountree, R.A., and Able, K.W. 1992. Foraging habits, growth, and temporal patterns o f 

salt-marsh creek habitat use by young-of-year summer flounder in New Jersey. 

Trans. Amer. Fish. Soc. 121: 765-776.

Sakano, H., Fujiwara, E., Nohara, S., and Ueda, H. 2005. Estimation o f nitrogen stable 

isotope turnover rate o f Oncorhynchus nerka. Environ. Biol. Fish. 72: 13-18.

Smith, M.A.K. 1981. Estimation o f growth potential by measurement o f tissue protein

synthetic rates in feeding and fasting rainbow trout, Salmo gairdnerii Richardson. 

J. Fish Biol. 19:213-220.

Suzuki, K.W., Kasai, A., Nakayama, K., and Tanaka, M. 2005. Differential isotopic

enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax 

japonicus) juveniles: implications for analyzing migration. Can. J. Fish. Aquat.

36



Sci. 62: 671-678.

Sweeting, C.J., Barry, J., Barnes, C., Polunin, N.V.C., and Jennings, S. 2007. Effects of  

body size and environment on diet-tissue 815N fractionation in fishes. J. Exp. Mar. 

Biol. Ecol. 340: 1-10.

Sweeting, C.J., Jennings, S., and Polunin, N.V.C. 2005. Variance in isotopic signatures as 

a descriptor o f tissue turnover and degree of omnivory. Funct. Ecol. 19: 777-784.

Tarboush, R.A., MacAvoy, S.E., Macko, S.A., and Connaughton, V. 2006. Contribution 

of catabolic tissue replacement to the turnover of stable isotopes in Danio rerio. 

Can. J. Zool. 84: 1453-1460.

Tieszen, L.L., Boutton, T.W., Tesdahl, K.G., and Slade, N.A. 1983. Fractionation and

1 ̂turnover o f stable carbon isotopes in animal tissues: Implications for 5 C analysis 

of diet. Oecologia, 57: 32-37.

1 "X 15Vander Zanden, M.J., and Rasmussen, J.B. 1999. Primary consumer delta 5 C and 8 N 

and the trophic position of aquatic consumers. Ecology, 80: 1395-1404.

Vander Zanden, M.J., and Rasmussen, J.B. 2001. Variation in S,5N and 813C trophic

fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46: 

2061-2066.

Watanabe, Y., Seikai, T., and Tominaga, O. 2005. Estimation of growth and food

consumption in juvenile Japanese flounder Paralichthys olivaceus using carbon 

stable isotope ratio 813C under laboratory conditions. J. Exp. Biol. Ecol. 326: 187- 

198.

Witting, D.A., Chambers, R.C., Bosley, K.L., and Wainright, S.C. 2004. Experimental 

evaluation o f ontogenetic diet transitions in summer flounder (.Paralichthys

37



dentatus), using stable isotopes as diet tracers. Can. J. Fish. Aquat. Sci. 61: 2069- 

2084.

Zar, J.H. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River, New Jersey.

38



Table 1. Initial lengths and weights of hatchery (H) and wild (W) summer flounder

sampled for stable isotope analysis.

Total length (mm) Wet weight (g)
Group n Mean SD Min Max Mean SD Min Max
H 66 176 19 130 230 58.8 18.3 26.3 124.9
W 48 215 25 131 255 102.0 33.2 29.3 185.3
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Table 2. Mean initial isotopic values and standard deviations (SD) for tissues of

hatchery (H) and wild (W) summer flounder and for the experimental krill diet.

Group Tissue
513C 5115n

Mean SD Mean SD
H Blood -18.08 0.16 10.60 0.42

Liver -16.84 0.07 9.59 0.36
Muscle -17.48 0.12 12.01 0.15

W Blood -18.16 0.38 14.49 0.60
Liver -16.35 0.42 14.51 0.21
Muscle -17.48 0.37 15.55 0.57

Krill Whole -27.18 0.87 3.71 0.48
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Table 5. Comparisons of AICc between growth-based turnover models that either allow 

for a metabolic contribution to isotopic turnover (model 1) or do not allow for 

metabolism (model 2). Abbreviations and symbols are as follows: H -  hatchery fish; W -  

wild fish; AICc -  Akaike’s Information Criterion corrected for small sample sizes; AAICc 

-  AICc differences. The best o f the two models for a given isotope, tissue, and group is

represented by the lowest AICc or AAICc = 0.

Isotope Tissue Group n
AICc AAICc

Model 1 Model 2 Model 1 Model 2
5,3C Liver H 58 -9.0 127.7 0.00 136.73

W 40 -7.6 79.2 0.00 86.77
Blood H 58 -20.8 1.1 0.00 21.94

W 41 -2.0 25.6 0.00 27.58
Muscle H 58 -89.0 -82.7 0.00 6.31

W 41 -64.4 -66.6 2.17 0.00

815N Liver H 58 5.9 35.3 0.00 29.37
W 40 -1.7 128.8 0.00 130.53

Blood H 58 -88.3 -90.2 1.87 0.00
W 41 -23.0 -9.6 0.00 13.42

Muscle H 58 35.8 33.8 2.05 0.00
W 41 0.6 -1.4 1.95 0.00



Table 6. Comparisons of AICc between time-based turnover models that either allow for 

a metabolic contribution to isotopic turnover (model 1) or do not allow for metabolism 

(model 2). Abbreviations and symbols are as follows: H -  hatchery fish; W -  wild fish; 

AICc -  Akaike’s Information Criterion corrected for small sample sizes; AAICc -  AICc 

differences. The best of the two models for a given isotope, tissue, and group is

represented by the lowest AICc or AAICc = 0.

Isotope Tissue Group n
AICc AAICc

Model 1 Model 2 Model 1 Model 2
5,3C Liver H 59 10.3 166.0 0.00 155.76

W 42 13.0 112.8 0.00 99.73
Blood H 59 4.6 47.6 0.00 42.97

W 44 -6.3 43.5 0.00 49.80
Muscle H 59 -56.7 -57.0 0.38 0.00

W 44 -26.0 -16.7 0.00 9.29

515N Liver H 59 45.6 144.9 0.00 99.29
W 42 16.6 164.0 0.00 147.47

Blood H 59 -26.7 -18.6 0.00 8.06
W 44 -4.3 31.0 0.00 35.29

Muscle H 59 35.4 34.8 0.61 0.00
W 43 15.7 15.9 0.00 0.20
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Fig. 1. Specific growth rates calculated for individual summer flounder for both hatchery 

(open triangles) and wild (filled circles) groups. Estimated group-specific growth rates 

(k ') for hatchery (8.16 x 10'3 d'1) and wild (6.51 x 10‘3 d"1) groups represented by dashed 

and solid lines, respectively.

Fig. 2. Relative growth ( W r )  for individual summer flounder from both hatchery (open 

triangles) and wild (filled circles) groups. Estimated growth trajectories for each group 

were based on group-specific growth rates, k ', (hatchery group -  dashed line; wild group 

-  solid line).

1 1C

Fig. 3. Changes in 8 C and 8 N o f summer flounder tissues as a function of relative 

growth (WR) after a diet switch. Circles denote data for wild fish (A, C) and triangles 

represent hatchery fish (B, D). Data and growth-based model fits are shown for muscle 

(white symbols, dotted line), blood (gray symbols, dashed line), and liver (black symbols, 

solid line). The straight, dashed line indicates the mean value for the krill diet.

1 n t c

Fig. 4. Changes in mean 8 C and 8 N o f summer flounder tissues as a function of time 

(days) since the diet switch. Circles denote data for wild fish (A, C) and triangles 

represent hatchery fish (B, D). Data (mean ± SD) and time-based model fits are shown 

for muscle (white symbols, dotted line), blood (gray symbols, dashed line), and liver 

(black symbols, solid line). The straight, dashed line indicates the mean for the krill diet.
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Fig. 5. Projected time to 50% (A) and 90% (B) turnover of 815N for summer flounder 

muscle (dotted line), blood (dashed line), and liver (solid line), based on equation (16) 

and estimated c parameters for wild fish.

46



Sp
ec

ifi
c 

Gr
ow

th
 

Ra
te

, 
k 

(d
*1

)

Figure 1.

0.03

0.02  -

0.01 -

0.00  -

- 0.01 -

100 120 140 160 180 20020 40

Days Since Diet Change

47



Re
la

tiv
e 

G
ro

w
th

, 
W

,

Figure 2.

5

4

3

2

1

80 100 120 140 160 180 20020 40 600

Days Since Diet Change

48



Figure 3.

O
CO

16

14

^  12 
IS

u f  10
OO

8

6

4

©> V :

V o  u oo ' ”1®0

o  t > ----
•  O

^ ^ 5 —lS—

_1 I L -

A
A A

a A  "*A-A.^  \ A A A

i i * t »

4 5 1 2

Relative Growth (Wr )

49



Figure 4.

-16

-18

\\n
o

, o -22O'
o

-24

-26

-28 J  i_ j  L
T TT T T

16

14

12

10

m 8
to

6

4

0 30 60 90 120 150 180 0 30 60 90 120 150 180

Time s in ce  diet sw itch  (d)

50



Ti
me

 
(d

)

Figure 5.

200

180

160

140

120

100

60

40

20

.000 0.005 0.010 0.015 0.020 0.025 0.030 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Specific growth rate, k (d 1) Specific growth rate, k (d'1)

51



CHAPTER 2

STABLE ISOTOPE ANALYSIS OF SUMMER FLOUNDER DIETS IN

CHESAPEAKE BAY



INTRODUCTION

The summer flounder, Paralichthys dentatus, is an important commercially and 

recreationally fished species within the Northwest Atlantic Ocean. As a valued economic 

resource found from Nova Scotia to Florida, summer flounder receives a lot of 

management attention (Terceiro 2002). As managers attempt to move towards more 

ecosystem-based approaches to fisheries management, accurate understanding of trophic 

interactions for this (and other) species is needed (Latour et al. 2003). Although stomach 

content analyses have generally been used to elucidate trophic relationships, stable 

isotopes have emerged as a valuable tool to compliment these traditional techniques.

Dietary studies involving stable isotope ratios (e.g., 815N, or the ratio of 15N to 14N 

relative to a standard) rely on the fact that an organism’s tissue will be derived from its 

prey, consequently reflecting the isotopic signatures o f the consumed prey. The rate at 

which prey are assimilated into the consumer’s tissue generally depends on the growth 

rate o f the consumer and the metabolic activity o f its tissues (Hobson and Clark 1992, 

Hesslein et al. 1993). As a result, the consumer’s tissue will be a time-integrated dietary 

representation on a scale of weeks to months, unlike stomach contents that reflect feeding 

on the order o f hours. Although stomach content analysis generally provides information 

with greater taxonomic resolution, prey types that are quickly digested and evacuated may 

be under-represented with this method (Hyslop 1980). Additionally, fish with empty 

stomachs contribute no taxonomic information to the characterization of its diet.
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Within the Chesapeake Bay mainstem, stomach content analyses revealed that 

summer flounder consume primarily small crustaceans (particularly mysid shrimp, sand 

shrimp, and mantis shrimp) and small fishes (bay anchovy, weakfish, Atlantic croaker) 

(Latour et al. 2008). With increasing size, the trophic breadth of the diet also increases by 

including a greater proportion of fishes and larger prey. Diets were also shown to vary 

significantly with season, reflecting seasonal fluctuations in presence and abundance of 

different prey groups (Latour et al. 2008). Despite this level of dietary information, it 

remains unclear how each prey group contributes to actual somatic growth. Stable 

isotopes can complement these stomach content assessments by providing additional time- 

integrated information about which prey groups are most assimilated and thus most 

responsible for driving summer flounder growth and production.

The Chesapeake Bay is one o f the primary nursery habitats for juvenile summer 

flounder, responsible for rearing a large fraction of new recruits to the total coastal 

population (Able and Kaiser 1994). Summer flounder larvae, advected from offshore 

spawning waters, settle and metamorphose in the estuarine waters from November to 

April (Olney and Boehlert 1988). Food web productivity o f Chesapeake Bay and other 

estuaries facilitates fast growth during spring and summer, allowing individuals to attain 

230-300 mm total length by the fall, with many reaching sexual maturity in this time 

(Able et al. 1990, Szedlmayer et al. 1992, Bonzek et al. 2007). Adults also utilize 

Chesapeake Bay habitats from spring to fall after migrating from the offshore spawning 

regions (Murdy et al. 1997). The reliance o f both juveniles and adults on estuarine food 

sources emphasizes the vital role Chesapeake Bay plays in regulating growth and
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productivity o f summer flounder and the importance of understanding trophic interactions 

in the Bay.

Although often not addressed, isotopic evaluations of diet commonly assume that 

isotopic signatures o f prey groups remain relatively consistent. But, temporal or spatial 

variability in prey isotopic signatures can confound diet assessments, impairing the 

conclusions drawn. Within Chesapeake Bay, 815N of primary producers and lower trophic 

levels has been shown to vary over space and time (Montoya et al. 1990, Hagy 2002), 

partly due to differences in the biogeochemical cycling of nitrogen (N) and the relative

13importance of nitrification and denitrification (Horrigan et al. 1990). Additionally, 5 C 

tends to exhibit regional variability along the salinity gradient o f the mainstem owing to 

the relative importance o f depleted carbon (C) from freshwater and terrigenous sources 

versus enriched C from marine phytoplankton (Hagy and Boynton 1998, Zimmerman and 

Canuel 2001). As a migratory fish, summer flounder habitat-use patterns vary seasonally 

as individuals move into and out o f the Bay, exposing them to areas that may differ 

isotopically. During the period o f estuarine residency, movements vary greatly by 

individual; some individuals exhibit a high degree o f site fidelity for up to 4 months, while 

others appear to be highly mobile (Fabrizio et al. 2007). Consequently, the combination 

o f summer flounder movements with the shifting isotopic background created by temporal 

and spatial isotopic heterogeneity o f lower trophic levels can prohibit accurate diet 

assessments using stable isotopes.

One way to address potential problems associated with this variability is to sample 

tissues that integrate the diet over different time periods. Recent work, examining tissue- 

specific turnover rates and fractionations in summer flounder, revealed that turnover was
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fastest in liver, followed by blood then by muscle likely due to differing metabolic activity 

in the tissues (Chapter 1). Based on average growth rates o f flounder in the wild (1.5% d' 

Rountree and Able 1992), 815N would equilibrate to the dietary signal in -4 0  (liver), 75 

(blood), and 135 days (muscle) in each of the summer flounder tissues analyzed (Chapter

1 31). Turnover o f 8 C would be similar, if  not faster for liver and blood tissues relative to 

815N (Chapter 1). Liver and blood tissues thus have the potential for alleviating problems 

relating to the assumption o f constant isotopic signatures of prey because diets are 

integrated over shorter time periods. Few studies have examined multiple tissues in fish 

for diet assessments due to the lack of basic isotopic turnover and fractionation 

information on tissues other than muscle (Gaston and Suthers 2004, Estrada et al. 2005, 

MacNeil et al. 2005). The laboratory study on summer flounder facilitates a more 

accurate application of the stable isotope techniques in the field using multiple tissues, 

which can improve the resolution o f the diets and help alleviate the complexities 

introduced by fish movement and temporal heterogeneity o f prey 813C and SI5N.

The objective of this study was thus to utilize the new information on tissue- 

specific turnover and fractionations of 8,3C and 8I5N to 1) characterize summer flounder 

diets in the mainstem of Chesapeake Bay and 2) explore ontogenetic patterns in food 

habits. This isotopic evaluation o f flounder diet complements previous stomach content 

data by demonstrating which prey groups are actually being assimilated and contributing 

to growth. Despite the prominent role of Chesapeake Bay in the life histories o f many 

fishes, few studies have applied stable isotope techniques to address diets of higher 

trophic levels in this estuary. We demonstrate the utility o f isotopic approaches while also
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highlighting the assumptions and complications associated with applying stable isotopes 

to migratory fish species that inhabit dynamic environments.
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METHODS

Sample collection

Summer flounder and commonly consumed prey items were collected from the 

Virginia portion o f Chesapeake Bay where flounder distribution tends to be concentrated 

(Murdy et al. 1997, Latour et al. 2008) (Fig. 1). Samples were primarily obtained from 

the Chesapeake Bay Multispecies Monitoring and Assessment Program (ChesMMAP) 

bottom trawl survey (for description of trawl procedures and gear, see Latour et al. 2003). 

Samples of smaller fishes and invertebrates were augmented with collections from the 

VIMS Juvenile Finfish and Blue Crab Trawl Survey, which uses a smaller, finer-mesh net 

(for description o f trawl procedures and gear, see Fabrizio and Tuckey 2008). In cases 

where samples from the VIMS Juvenile Trawl Survey were required, they were obtained 

from similar locations and time periods as the ChesMMAP collections. When possible, 

stations with both flounder and prey samples were selected, but generally, stations were 

chosen to represent a broad area within Chesapeake Bay to characterize flounder diets on 

the population level.

Common prey taxa were identified based on previous research examining stomach 

contents of summer flounder within the study area. Typical prey items included mysid 

shrimp (primarily Neomysis americana), sand shrimp (Crangon septemspinosa), mantis 

shrimp (Squilla empusa), bay anchovy (Anchoa mitchilli), weakfish (Cynosion regalis), 

spotted hake (Urophycis regia), spot (Leiostomus xanthurus), and Atlantic croaker
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(Micropogonias undulatus), which together comprised -83% of flounder diets by weight 

in Chesapeake Bay (Latour et al. 2008). Collections of prey species were restricted to 

sizes found in the stomach contents o f summer flounder (Table 1, Latour et al. 2008). 

Given difficulties in obtaining mysid shrimp in November 2007, freshly consumed 

specimens were collected from stomachs o f flounder captured in September and October 

of that year (Grey et al. 2002).

For larger fish prey, large samples o f white muscle were excised from the 

musculature below the first dorsal fin and frozen. Smaller fishes and invertebrates were 

frozen whole. For summer flounder, - lm l o f whole blood was withdrawn from the caudal 

vein and placed in a sterile vial, and individuals were subsequently processed for length, 

wet weight, sex, and maturity stage. Otoliths were also removed for sectioning and aging 

in the laboratory. Small samples o f liver and white muscle (from the ocular side above the 

pectoral fin) were excised and bagged individually. All flounder tissue samples were 

immediately frozen for later analysis. Preservation by freezing was selected due to its 

minimal effect on 813C and 6,5N values (Kaelher and Pakhomov 2001, Sweeting et al.

2004). All collection protocols were approved by the College o f William and Mary’s 

Institutional Animal Care and Use Committee.

Collections were made during different time periods to characterize seasonal 

dietary patterns and account for temporal variability in isotopic signatures resulting from 

migration or fluctuations in isotopic signatures of prey. Samples were collected in 2006 

and 2007 during two seasonal periods corresponding with the middle and later parts of 

flounder residency o f Chesapeake Bay. Samples collected in May, June, or July 

represented the spring/early summer and are referred to as “Spring” samples, while
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samples from November are termed “Fall”. In 2006, sampling extended further south than 

in 2007 (Fig. 1).

Stable isotope analysis

In the laboratory, smaller samples (~l-2g) o f white muscle were taken from each 

fish sample collected in the field. Invertebrate samples were measured for length and 

processed whole. For mysid shrimp, multiple individuals were aggregated to obtain 

sufficient mass for stable isotope analysis. All muscle, liver, and whole-body samples 

were rinsed with de-ionized water, dried at 50°C and ground using a mortar and pestle. 

Blood samples were dried and ground in their storage vials. Inorganic carbonates found in 

exoskeletons o f the crustacean prey were removed with added drops of 10% HC1 

(Pinnegar and Polunin 1999). Dry subsamples (l±0.2mg) o f all tissues were packaged in 

tin capsules and analyzed at the University o f Califomia-Davis Stable Isotope Facility 

using a Europa Hydra 20/20 continuous flow isotope ratio mass spectrometer. Stable 

isotope ratios are reported in relation to conventional standards:

s x = (Rampl.-^S dSd) xl()()()
R standard

where X is either 13C or 15N, and R is the mass ratio of the heavy to light stable isotope 

(13C/12C or l5N /14N) for either the sample or the standard. The conventional standards 

used for the analyses were Pee Dee Belmnite for C and air for N. 5X is reported in per 

mil (%0). Repeated measurements of a calibration standard indicated that instrument 

precision (SD) was 0.29%o and 0 .12%o for 513C and 515N, respectively. The mass ratio of 

elemental C and N (C:N) was also obtained for each analyzed sample.

60



1 TA mathematical correction was used to normalize liver 8 C values, due to the high 

lipid concentrations in this tissue which are known to bias §13C values (DeNiro and 

Epstein 1977, McConnaughey and McRoy 1979). Previous laboratory work on summer

1 "Xflounder established a conversion between elemental C:N and the bias on 8 C introduced 

by not removing lipids (Chapter 1). This conversion equation followed McConnaughey 

and McRoy (1979) and Logan et al. (2008), and allowed a lipid-adjusted 8l3C (813Cadj) to 

be calculated as:

7 on
(2) 513Cadj= 5 '3Craw+ D (e + i + 287/L) where

L = ---------------- ” ---------------r .
1 + (0 .246xC : N -  0.775)

In equation (2), L represents the sample lipid content as a function of C:N, D represents 

protein-lipid discrimination, and 813Craw is the 813C of a liver sample whose lipids were 

not extracted. The parameters D and 0 (± SE) were estimated for summer flounder as D = 

6.2883 ± 1.3519 and 0 = 0.0612 ± 0.1527 (Chapter 1). All liver 8I3C values were 

normalized for lipid content based on sample C:N using equation (2). Lipid corrections

i ^
were not applied to muscle and blood 8 C values due to the relatively low C:N values 

(Table 1; Post et al. 2007), limited variability across individuals, and presumably small 

effects on 813C (Kiljunen et al. 2006).

Data analysis

Contributions of prey to summer flounder diets were assessed graphically and 

calculated using mixing models. Summer flounder were classified as either age-0 or older 

(age-l+) to examine ontogenetic changes in diet as found in stomach contents (Latour et
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al. 2008). Prey groups were separated into two trophic guilds that captured the major 

differences in stable isotopic signatures (Phillips and Gregg 2005, McIntyre et al. 2006). 

Prey were classified as either crustacean or fish, alleviating problems associated with 

similarity in prey isotopic signatures and inability to calculate unique solutions to mixing 

models due to an excess of sources. IsoError, a two-source mixing model that accounts 

for variability in both prey and predator isotope values, was used to calculate the mean 

contribution (±SE) o f each trophic guild to summer flounder diets (Phillips and Gregg

j q i c
2001). To apply the mixing models, summer flounder 5 CandS N values were first 

adjusted to account for fractionation, defined as changes in isotopic values occurring 

during physiological processing o f consumed material. Tissue- and isotope-specific 

fractionations o f S13C and 815N (represented as A13C and A15N, respectively) were 

obtained from a laboratory diet shift experiment on summer flounder (Chapter 1), and 

fractionations were subtracted from the flounder 813C and 615N values. The fractionations 

were based on growth-based turnover models o f wild fish, with values o f 2.0%o (muscle), 

3.3%o (blood), and 3.1%o (liver) for 5,3C and values o f 2.9%o (muscle), 2.8%o (blood), and 

2.3%o (liver) for 515N (Chapter 1). Where possible, the mixing model was applied to each 

summer flounder tissue for each combination of year, season, and age group.

A multivariate analysis o f variance (MANOVA) was used to test for significant 

year and season effects on mean isotopic values (8,3C and 815N) o f each trophic guild. 

MANOVA assumptions o f normality and homogeneity o f variance were upheld based on 

residual analysis, Kolmogorov-Smimoff tests, and Levene’s tests. For each trophic guild, 

the following a priori comparisons were tested using the Wilks’ Lambda statistic at an a- 

level of 0.05: season effects were tested within each year, and year effects were tested
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within each season (SAS version 9.1, SAS Institute 2002). MANOVA tests on summer 

flounder 813C and 815N included age as an additional binary factor, in which flounder were 

designated as either age-0 or older (age-l+).

Dietary shifts that occur within the time frame of the slowest turnover tissue, can 

be reflected by differences in isotopic values between tissues (MacNeil et al. 2005, Fry

1 "X 1 ^2006). For each individual, fractionation-adjusted 5 C and 8 N values for muscle were 

subtracted from fractionation-adjusted blood and liver values to examine recent shifts in 

flounder feeding. For example, a recent dietary shift towards feeding on prey with 

enriched 815N would manifest as a positive difference between liver and muscle tissues 

due to the faster turnover of the liver. Mean differences (± SE) between tissue pairs were 

calculated and paired t-tests were used to test for significant differences in 813C and 815N. 

For each tissue, regression analysis was also used to test for significant relationships 

between stable isotope measurements and fish length.
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RESULTS

1 T  1 *sA total o f 59 summer flounder were analyzed for 8 C and 8 N, with most 

individuals ranging from 138-478 mm and 0-3 years of age. However, three outliers 

reached 599-624 mm with ages of 4-7 years. Lengths o f age-0 fish averaged ~150mm 

less than age-l + individuals, but the variability in the older fish was much greater (Table

1). A total of 32 females, 26 males, and 1 fish o f unknown sex were sampled. Larger 

individuals were predominantly females corresponding with the skewed sex ratio o f age- 

1+ summer flounder in the Middle Atlantic Bight and Chesapeake Bay (Morse 1981, 

Bonzek et al. 2007). Blood and liver samples were not collected from summer flounder in 

2006, and individual prey species were not represented in every season/year combination 

mostly due to seasonal trends in species abundances (Table 1).

Stable isotope composition o f  summer flounder and prey

Grouping o f summer flounder prey groups into two trophic guilds (crustaceans and 

fishes) was supported by isotopic separation between the guilds, particularly for 815N (Fig.

2). Fishes generally exhibited 815N values approximately 3%o greater than crustaceans, 

conforming to the traditional assumption of an ~3.4%o shift per trophic level (Post 2002, 

Sweeting et al. 2007). 8,3C was not a useful dietary indicator due to similarity and

13overlap of prey 8 C values and due to the high degree o f variability o f flounder values
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that often extended beyond the constraints o f prey 813C (e.g., Fig. 2D). Consequently, 

mixing models were only applied using 815N values.

After being adjusted for fractionation, isotopic values of summer flounder 

resembled the values of the crustacean prey, suggesting a greater dependence on this 

lower trophic guild. Mixing model results, using only 815N, indicated that the proportion 

of crustaceans in the diets o f summer flounder approached 100% in the fall for both age-0 

and age-l + fish (Table 2). On average, fishes accounted for 15% or less of the total diet 

during fall, but standard errors for the estimates ranged from 8-19%. During spring of 

2006, age-l+ flounder appeared to assimilate equal amounts of fishes and crustaceans, but 

this is confounded by the relatively slow turnover of muscle and the potential variability 

in prey isotopic values. Highly depleted 815N values of flounder tissues in spring of 2007 

prevented the use o f the mixing model in this season (Fig. 2C, Table 2) but the raw 815N 

values placed age-0 summer flounder at a similar trophic level to the crustaceans and age- 

1+ fish as intermediate between the fishes and invertebrates (Fig. 2C).

Temporal variability in stable isotopes

Isotopic values o f trophic guilds were not temporally consistent, exhibiting 

seasonal patterns that differed by year. In 2006, crustacean 813C became more depleted 

while 815N became more enriched from spring to fall, but the opposite pattern was

13observed in 2007 (Table 3). The prey fishes experienced a similar depletion of 8 C and 

enrichment of 815N from spring to fall during 2006, but seasonal differences in isotope 

signatures o f fishes were not significant in 2007 (F=2.69, p>0.05). Seasonal isotopic 

differences within a trophic guild were relatively small and typically less than 1.4%o in
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magnitude; however, standard deviations for group means reached 1.7%o due to inter- and 

intra-species variability.

Isotope means of trophic guilds also tended to vary by year, with most MANOVA 

tests o f interannual difference by season yielding significant results (p<0.05, Table 3). 

Only the isotopic means of prey fishes in spring were found to be similar between 2006 

and 2007. Combined, the lack of consistent seasonal and interannual patterns in prey 

stable isotopes can complicate isotopic diet assessments by creating a shifting isotopic 

background upon which summer flounder 8 ,3C and 8I5N must be pinpointed.

Temporal differences in summer flounder 813C and S15N were primarily driven by 

depleted 815N of age-0 individuals in spring o f 2007. These values were significantly 

lower than age-l+ fish caught at the same time (p<0.05), evident in MANOVA tests o f all 

sampled tissues (Table 4). Increases in 815N for age-0 fish tissues from spring to fall (Fig. 

2, Table 2) also led to significant seasonal differences for muscle, blood, and liver of age- 

0 individuals (Table 4). The significant MANOVA test between age groups in fall 2006, 

was due to differences in 8I3C as opposed to 8 ,5N (Fig. 2).

Summer flounder tissue differences

Sampling o f multiple summer flounder tissues in 2007 was intended to mitigate 

problems associated with the temporal variability found in 813C and 8,5N of prey groups. 

Given that isotopic turnover rates for the sampled tissues rank liver>blood>muscle 

(Chapter 1), differences in isotopic signatures between tissues should reflect temporal 

changes in diets once corrected for fractionation. Blood 813C values were consistently 

more than 1.5%o depleted relative to muscle values (Fig. 3B). Although this could
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potentially indicate more recent feeding on 5l3C-depleted prey, this was not supported by 

the liver tissue which has the fastest turnover rate (Fig. 3). The consistency in the 

depleted blood phenomenon across seasons and ages and the absence o f the signal in the 

liver tissue suggests these depleted values are likely the result o f a bias pertaining to the 

applied 5I3C fractionations for blood.

Excluding blood 813C, isotopic differences between tissues were small (typically 

<l%o). Although some differences were significant, error in fractionation estimates and 

isotopic measurements contribute some uncertainty to the results. There was a stronger 

signal indicating that age-l+ fish in fall o f 2007 may have recently begun feeding on more 

8 ,5N depleted prey, in contrast to the broader ontogenetic trends in 8 ,5N (see below). In 

general, however, summer flounder tissues reflected consistent feeding primarily on 

crustaceans in fall o f 2007 (Table 2), without drastic changes in feeding through the 

previous few months based on the turnover rates of the different tissues.

Ontogenetic trends in SI3C, S15N, and C:N

Positive relationships between S15N and summer flounder length indicate 

ontogenetic changes in feeding towards higher trophic level prey as flounder grow (Fig.

4). This effect was most pronounced in 2007, manifesting itself in all sampled tissues and 

most evident in the spring sampling. Assuming 815N fractionations of 2.3-2.9%o for the 

sampled tissues (Chapter 1), larger individuals were feeding at approximately one trophic 

level above small young-of-the-year fish. This pattern was responsible for significant 

differences in isotopic values between age-0 and age-l+ fish in spring o f 2007 for all 

tissues (Table 4). Larger individuals exhibited 815N values similar to or slightly greater
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than those o f prey fishes (Fig. 4). For each tissue, linear regressions of 815N on flounder 

length were significant (p<0.05) using pooled 2007 data. Removing three outlier fish 

>350mm, slopes were not significantly different among tissues (slope estimates ± SE: 

muscle, 0.0156 ± 0.0026 %o mm'1; blood, 0.0197 ± 0.0024 %o mm'1; liver, 0.0152 ±

0.0026 %0 mm'1). In 2006, however, there was not a significant relationship between 515N 

and length, possibly due to the lack o f age-0 representation in the spring season, when size 

and dietary differences may be most pronounced between age classes.

Relationships between 813C and fish length were not observed, except in 2006 

where there was a slight trend o f more enriched 813C in muscle tissue o f larger fish (Fig.

5). Positive relationships between 813C and salinity (Fry and Sherr 1984, Hagy and 

Boynton 1998) could indicate that in 2006 smaller fish were feeding in less saline waters 

near the rivers. However, the general lack o f strong relationships corresponds with the 

similarity o f 813C among prey species and flounder, indicating that the basal organic 

matter sources remained relatively constant through the sizes examined.

Ratios o f C to N are generally considered to be an indicator of lipid content in 

tissues (McConnaughey and McRoy 1979, Post et al. 2007). Within a tissue, N is 

primarily found in proteins, whereas lipids contain little N and C predominates. 

Consequently, high C:N tends to reflect lower protein content and higher lipid content. 

Across fish sizes, C:N remained relatively constant for muscle and blood tissues.

However, C:N of liver tissues demonstrated a clear pattern with fish length. Liver C:N of 

smaller individuals remained low until fish reached a length of approximately 250mm, at 

which point C:N began to increase (Fig. 6). This C:N range o f 5-14 represents 

approximately a 20-60% lipid content in summer flounder liver tissue (A. Buchheister,
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VIMS, unpublished data), and the point of increase corresponded with individuals 

attaining sexual maturity (Fig. 6).
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DISCUSSION

Chesapeake Bay food web

Few studies have examined stable isotopes in Chesapeake Bay fishes, limiting the 

comparisons to be drawn with our results. However, the 813C and 8I5N of the sampled 

species support the relative trophic positions o f these groups in the generalized food web 

(Baird and Ulanowicz 1989, Hagy 2002). Given the low trophic fractionation associated

j o
with C, 8 C is commonly used to identify sources of primary production (Peterson and 

Fry 1987). The range of 813C of all samples in this study (approximately -22 to -16) was 

consistent with a primarily phytoplankton-dominated source o f C to the food web (Fry and 

Sherr 1984). The high degree o f overlap in 813C values across species implies that the 

sampled prey are reliant on similar organic matter sources, making C a poor dietary tracer 

in this study. The greater fractionation values o f 815N allow 815N measurements to be 

indicators o f trophic level within food webs (Peterson and Fry 1987). Excluding spring of 

2007, prey fishes exhibited 815N that were on average 2.7-2.9%o greater than the 

crustacean guild, a difference indicative of approximately one trophic level. This 

corroborates stomach content work showing the predominance of mesozooplankton 

(particularly mysid shrimp) in the diets o f bay anchovy (Hartman et al. 2004), juvenile 

weakfish (Latour et al. in review), and spotted hake (Steimle et al. 2000). Spot and 

Atlantic croaker, are more benthic and a greater contribution of amphipods, copepods, and 

annelids to their diets may explain their tendency towards intermediate 815N values
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between crustaceans and the other more pelagic fishes (Stickney et al. 1975, Nemerson 

and Able 2004). The values o f 6I5N for our sampled prey also agreed with the sparse 

isotopic data available for these species in Chesapeake Bay or similar environments (bay 

anchovy -  Hagy and Boynton 1998, Litvin and Weinstein 2003; weakfish -  Litvin and 

Weinstein 2003; sand shrimp -  Douglass 2008).

Estimates o f trophic level for our sampled organisms correspond with previous 

research. Trophic levels calculated from stable isotope data rely on measurements o f a 

baseline organism, ideally a primary consumer that integrates temporal variability in 5]5N 

of autotrophs (Post 2002). Samples of blue mussel (Mytilus edulis), a filter-feeding 

bivalve, collected in fall o f 2007 yielded 515N values (±SD) o f 9.76 ± 0.32%o (n=8).

Using this as a baseline for trophic level 2.0 and assuming A15N =3.4%o, crustaceans in 

this time period can be classified as occupying trophic level 2.9, compared to trophic level 

3.8 for the fishes (Post 2002). Hagy (2002) found nearly identical mean (± SD) trophic 

levels for mysid shrimp (2.91), bay anchovy (3.69±0.43), and YOY weakfish (3.92±0.74), 

although estimates varied spatially and temporally. Overall, the isotopic results of the 

sampled prey groups correspond with trophic relationships based on stomach content 

research and support the sparse stable isotope data available for these organisms in 

Chesapeake Bay.

Summer flounder diets and stable isotope dynamics

Stable isotope assessments o f summer flounder diets for smaller individuals agreed 

with those based on stomach contents for Chesapeake Bay flounder. For individuals 

<225mm, mysid, sand, and mantis shrimps dominated stomach contents by weight (79% -
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Latour et al. 2008), corresponding with our mixing model estimates o f mean crustacean 

contributions to age-0 diets (86-100%). The proportion of fishes in the stomach contents 

of summer flounder increased with body size, becoming the dominant prey group for 

flounder >375mm (Latour et al. 2008). Ontogenetic changes in summer flounder feeding 

can also occur at smaller sizes (<60mm, Burke 1995) and on the continental shelf (Link et 

al. 2002). In this study, an ontogenetic pattern in summer flounder feeding was evidenced 

by positive relationships between 815N and fish length for all tissues, showing that larger 

flounder consumed more 815N-enriched prey that presumably occupied higher trophic 

levels. Feeding on fishes by larger summer flounder would have been indicated by tissue 

815N values greater than those of prey fishes, but average 8 ,5N for age-l + flounder were 

not significantly greater (ANOVA, p>0.05), except in spring o f 2006. However, some 

individuals appeared to assimilate appreciable amounts of fishes, driving their 815N over 

one standard deviation above the mean o f the prey fishes (Fig. 4).

Despite the ontogenetic pattern in flounder 8 15N, mixing models could not directly 

support increased reliance on prey fishes for larger and older individuals. The ontogenetic 

isotopic trend was primarily driven by samples collected in spring of 2007 when 

significant differences in isotopic values were found between age groups. However, 

depleted flounder 815N values prevented application of mixing models in this season. 

According to 8I5N values in this season, age-0 flounder occupied a trophic level more 

consistent with the sampled invertebrates with minimal feeding on fishes. This would 

imply that summer flounder were feeding on trophic levels lower than mysid and sand 

shrimps, including smaller zooplankton such as copepods, but there is no stomach content 

evidence that summer flounder (of the sizes examined here) feed on such prey (Grimes et
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al. 1989, Rountree and Able 1992, Latour et al. 2008). Consequently, the sampled prey 

may not have been isotopically representative o f consumed organisms due to regional or 

temporal variability in 815N, creating the disparity between flounder 815N and that of the 

prey. This possibility is supported by the unusually small 815N separation (1.09%o) 

between the crustacean and fish trophic guilds and the higher variability in crustacean 

8,5N in the spring of 2007.

Contributions o f fishes and crustaceans to the diets of summer flounder would be 

mediated by interannual and seasonal variability in prey abundance and availability. For 

example, spring o f 2006 exhibited the highest contribution o f fishes to the diet o f age-l + 

fish (50%), while there was minimal feeding on fishes in spring of 2007. Analysis of 

ChesMMAP diet data for these two years (following Latour et al. 2008) showed that the 

proportion o f fishes by weight in the flounder (250-375mm) diets was -20-45% higher in 

2006 than in 2007 for fish collected in March, May, and July (R. J. Latour, VIMS, 

unpublished data). Although indices o f relative abundance for most prey fishes were not 

significantly different between 2006 and 2007 in Chesapeake Bay (Fisher-Behren’s tests, 

p>0.05; Durell and Weedon 2007, Fabrizio and Tuckey 2008), prey populations can 

fluctuate annually. Changes in relative prey availability and competition amongst 

predators can modify feeding patterns and may help explain the dietary differences 

between years. Interestingly, by fall in each year, consumption of fishes prevailed 

according to stomach contents o f flounder (250-3 75mm), but this was not reflected by 

stable isotope data, even by the liver with the fastest isotopic turnover.

Stable isotopes indicate that crustaceans play a dominant role in the diet of summer 

flounder across the sizes sampled. Low percentages of fishes in mixing model results and
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mostly non-significant 8 ,5N differences between summer flounder and the other fishes, 

suggest more of a competitive relationship instead of a predatory one among the sampled 

fishes. Although some individuals exhibited 8l5N greater than bay anchovy and other 

prey fishes, on average age-l+ flounder assimilated a greater proportion of crustaceans 

than expected based on stomach contents (Latour et al. 2008). Despite temporal 

variability in flounder diets, the majority of flounder productivity was driven by mysid 

shrimp and other crustacean prey. The crustacean trophic guild thus plays an important 

role in energy transfer through the food web as a critical link for juvenile fishes as well as 

larger summer flounder. Mysid shrimp in particular may be most responsible for flounder 

productivity given their preponderance in summer flounder stomachs (Latour et al. 2008); 

however, the presented isotopic data could not clearly distinguish among the mysid, sand, 

and mantis shrimps to support this.

The discrepancy between stable isotope and stomach content analyses (Latour et al. 

2008) could result from several different scenarios. In 2007, the prevalence o f fishes in 

the summer flounder stomach contents was greatest in July and November (R. J. Latour, 

VIMS unpublished data. Tissues sampled for isotopes in fall o f 2007 may not have had 

sufficient time to reflect appreciable assimilation of fishes during this time if  growth rates 

were low. Alternatively, the discrepancy between methodologies could result from under

representation of crustaceans in stomach contents due to differences in prey digestibility, 

assimilation efficiency, and evacuation rates (Hyslop 1980). Although mysid shrimp are 

smaller and slightly less energy dense than bay anchovy and other fishes (Wang and 

Houde 1994, Lankford and Targett 1997, A. Z. Horodysky, VIMS, unpublished data), 

their small sizes and high surface to volume ratios can facilitate digestion and evacuation
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(Lankford and Targett 1997, Andersen 1999). Success rates o f capture are also 

presumably greater when feeding on mysid shrimp than on bay anchovy, potentially 

offsetting the foraging costs associated with eating greater numbers o f individuals to equal 

the mass o f one anchovy. Consequently, feeding on the mysid shrimp may represent a 

more energetically profitable strategy for summer flounder; however, more directed 

research is needed to address this possibility.

Trends in liver C:N of summer flounder potentially reflected different energy 

allocation strategies through ontogeny. Liver C:N, a proxy for lipid content 

(McConnaughey and McRoy 1979, Post et al. 2007), remained low for juveniles and then 

increased as summer flounder began to mature at -250 mm (Bonzek et al. 2007). This 

pattern could result from a preferential allocation of energy towards somatic growth by 

juveniles as a means to maximize the benefits associated with larger body sizes (Sogard 

1997). Once individuals begin to mature, energy may be diverted away from somatic 

growth towards lipid storage in the liver in preparation for the energetic demands of 

gamete production and spawning. Trends of C:N in muscle and blood were likely not 

found because these tissues do not have the same energy storage capacity as livers in 

fishes (Hoar and Randall 1969).

In this study, all three tissues captured the same ontogenetic trend of 515N with 

size, while also producing similar diet estimates. Regression slopes for 815N and length 

were not significantly different among tissues, and each tissue reflected a diet primarily 

comprised of crustaceans. Given the positive relationship between 815N and length, we 

expected to see enriched 815N values for the faster turnover tissues which better-represent 

an individual’s more recent diet while the fish was slightly larger due to growth. This was
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not seen in the blood nor the liver. Instead, 815N values for blood and liver were slightly 

depleted relative to muscle. The lack o f the ontogenetic signal within an individual’s 

tissue likely results from the slow increase in 815N with increasing size. Age-0 fish grew 

~ 100mm during the 4-month period between spring and fall samplings in 2007, and this 

equates to an approximate increase in 815N of 1.5 %o (Fig. 4). This small change in 8 l5N 

would be accrued gradually, and any small differences in 815N among tissues could be 

obscured by isotopic noise introduced by fractionation and measurement errors in the 

tissues and by isotopic variability in prey. Similarity in 815N across tissues indicates that 

the dietary changes exhibited by summer flounder occur gradually as their trophic breadth 

expands with size. Also, there was no evidence of drastic, punctuated changes in diets or 

utilization o f isotopically distinct prey in other habitats.

Temporal and spatial variability in stable isotopes

Temporal variability in stable isotope values o f prey is a potential source o f error in 

isotopic diet analyses, one that is primarily mediated through bottom up effects (Peterson 

and Fry 1987, Cloem et al. 2002). Changes in environmental conditions (e.g., runoff, 

upwelling, temperature, salinity) can alter nutrient pools and biogeochemical cycling 

patterns, which can consequently modify the isotopic values of autotrophs and be 

transferred up the food web. Although significant, seasonal and yearly differences in 8 I3C 

and 815N within trophic guilds were typically small (<1.4%o). These small differences 

could result from trophic averaging whereby isotopic variability in lower trophic levels 

are minimized as those signals are integrated and assimilated over longer time scales 

(O’Reilly et al. 2002). Additionally, temporal differences in trophic guild isotopic
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signatures were likely influenced by the different representative species that were actually 

sampled in a given season. Individual isotopic variability within each species also 

contributed to fluctuations in the means and standard deviations of trophic guild estimates 

o f8 l5N a n d 8 l3C.

Spatial variability in prey stable isotope values is another factor that can introduce 

error into diet estimation, particularly when dealing with a migratory species such as the 

summer flounder. Within Chesapeake Bay and other estuaries, the most consistent spatial 

trend involves a positive relationship between 8I3C values and salinity over large salinity 

ranges (0-25) (Fry and Sherr 1984, Hagy and Boynton 1998). However, sampling only 

occurred in bottom waters with salinity >15, resulting in no significant trend in flounder 

513C with latitude or salinity (linear regression, p>0.05). Spatial differences in 815N are 

controlled by complex biogeochemical processes that operate on more localized scales 

(Cifuentes et al. 1988, Horrigan et al. 1990, Montoya et al. 1990). Consequently, impacts 

o f spatial isotopic variability on summer flounder diet assessments are hard to predict, 

particularly given that some summer flounder can exhibit large movements while residing 

in Chesapeake Bay (Fabrizio et al. 2007).

Both temporal and spatial factors may have contributed to the lack o f congruity in 

815N between summer flounder and their prey in spring of 2007. These factors also 

contributed to variability in isotopic values found within and between sampled species. 

However, the similarity in dietary evaluations among fast- and slow-tumover tissues and 

the relative consistency o f trophic guild stable isotope measurements suggests that such 

variability did not alter the major conclusions of the study.
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Fractionation issues

Applied fractionation values used in this study represented the best available 

science, but contributed to some error in the results. As recommended (Gannes et al. 

1997), fractionation values for 813C and 815N fractionations were empirically determined 

for the same species, same tissues, and similar body sizes (Chapter 1). However, the 

consistent depletion of 813C in flounder blood relative to muscle and lack o f such a signal 

in the liver suggested that the applied 813C fractionation (3.3%o) may have contributed to 

this bias, highlighting a common source o f error in stable isotope analyses. Aside from 

the factors controlled for (species, tissue, size), fractionation values can vary by diet 

(Gorokhova and Hansson 1999), feeding mode (Vander Zanden and Rasmussen 2001), 

and growth rate (Trueman et al. 2005). Additionally, laboratory fractionations tend to be 

larger than field-derived values (Vander Zanden and Rasmussen 2001) as appeared to be 

the case with the blood. Accordingly, relatively minor errors in tissue fractionation 

estimates could have prevented detection o f the small expected 815N differences among 

tissues resulting from the ontogenetic trend in 8i5N. Errors in the applied fractionation 

values would also affect mixing model estimates, particularly since isotopic separation 

between trophic guilds was small (Vander Zanden and Rasmussen 2001). However, the 

815N fractionation estimates used in the mixing models did not deviate greatly from 

previous research, unlike 813C fractionations (Post 2002, Sweeting et al. 2007). Also, 

fractionation errors would not alter the major conclusions due to the similarity of 

unadjusted flounder 813C and 815N with those o f the other sampled fishes, which indicate 

that most o f the sampled fishes feed at the same trophic level.
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Future work and conclusions

Despite the prevalence of stable isotope applications in the ecological literature, 

relatively few dietary studies have concurrently examined multiple tissues of fishes in the 

field (Gaston and Suthers 2004, Estrada et al. 2005, MacNeil et al. 2005, Perga and 

Gerdeaux 2005). In our study, tissue differences were within the noise levels of the 

ambient isotopic environment, but confirmed a relative consistency in dietary trends. Any 

small isotopic differences among tissues resulting from gradual ontogenetic changes in 

feeding were obscured by measurement and fractionation errors. Future studies using 

multiple tissues could benefit from exploring dietary changes that involve isotopic 

changes o f greater magnitude that facilitate detecting isotopic differences among tissues. 

Examples include predation of anadromous fishes by riverine piscivores (Garman and 

Macko 1998, MacAvoy et al. 2001), long migrations of pelagic fishes (Estrada et al.

2005), consumption o f prey whose isotopic values change greatly throughout the year 

(Perga and Gerdeaux 2005), and ontogenetic dietary shifts between more isotopically 

distinct prey. Research that focuses on isotopic turnover and fractionation of different 

tissues (e.g., Logan et al. 2006, MacNeil et al. 2006, Guelinckx et al. 2007) will aid 

application o f multiple tissues to fishes in field settings. However, the factors that 

influence fractionations need to be better understood to minimize errors and reduce the 

isotopic differences that can be accurately detected among tissues. Also, within the 

Chesapeake Bay mainstem where phytoplankton may be the primary source o f organic 

matter, future research may benefit by using additional stable isotopes (e.g., 834S) to better 

distinguish amongst prey groups.
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In conclusion, stable isotopic analysis of multiple summer flounder tissues 

revealed a primary dietary reliance on crustacean prey, including mysid, mantis, and sand 

shrimp. Similar 813C composition o f flounder and potential prey groups prevented use of 

this isotope as a suitable dietary tracer, but 8 ,5N demonstrated that summer flounder 

generally occupied trophic levels that mirrored other small fishes (bay anchovy and 

juvenile sciaenids). These results were in general agreement with diets based on stomach 

contents (Latour et al. 2008), although importance of crustaceans may have been under

represented in stomach contents o f larger flounder. We support recommendations that 

stable isotope methods are best when applied in conjunction with additional techniques 

(Cloem et al. 2002, Fry 2006). Combination o f stomach content and stable isotope 

analyses provide both taxonomic specificity and integrative information on assimilation. 

Together, these methods characterize diets o f fishes more comprehensively and would be 

of greater benefit to resource managers and other researchers.
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Table 3. Mean 813C and 815N values for trophic guild samples collected in the 

Chesapeake Bay mainstem. For each trophic guild, significant MANOVA results 

(p<0.05) are indicated by different letters for the following comparisons: season effect

tested in each year, year effect tested within each season.

Trophic guild Time period n
813C

Mean SD
815N

Mean SD MANOVA
Crustacean

Spring 2006 15 -18.66 0.41 12.41 0.59 a
Fall 2006 14 -19.28 1.15 13.81 0.58 b
Spring 2007 21 -19.17 0.61 13.95 1.11 c
Fall 2007 19 -18.17 0.93 12.95 0.90 d

Fishes
Spring 2006 21 -18.63 0.73 15.11 1.23 a
Fall 2006 26 -19.97 1.66 16.48 1.53 b
Spring 2007 20 -18.29 1.34 15.04 1.14 ac
Fall 2007 23 -18.97 0.89 15.81 0.83 c
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Table 4. F-statistics and p-values for pairwise comparisons following a MANOVA of 

5,3C and 815N measured for three summer flounder tissues. Comparisons were only 

tested for the specified levels of year, season, or age. Significant p-values (p<0.05)

indicated by *, highly significant p-values (p ^).001) indicated by **.

F-statistic p-value
Comparison Year Season Age Muscle Blood Liver Muscle Blood Liver
2006 vs. 2007

— spring 1+ 4.2 0.02*
— fall 0 2.8 0.07
— fall 1+ 1.5 0.24

spring vs. fall
2006 — 1+ 0.4 0.67
2007 — 0 15.7 19.8 33.5 <0.01** <0.01** <0.01**
2007 — 1+ 1.1 2.0 0.3 0.35 0.16 0.76

age-0 vs. age-l+
2007 spring — 5.7 9.1 11.0 0.01* <0.01** <0.01**
2006 fall — 8.1 <0.01**
2007 fall — 0.6 3.0 5.6 0.58 0.07 0.01*
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Fig. 1. Sampling locations for summer flounder and common prey types within 

Chesapeake Bay. Symbol shape indicates sampling year (square -  2006, circle -  2007). 

Symbol color represents season of capture (gray -  spring, black -  fall).

1 1 ̂Fig. 2. Biplots o f 5 C and 5 N for summer flounder and other sampled species collected 

in spring 2006 (A), fall 2006 (B), spring 2007 (C), and fall 2007 (D). Fractionation- 

adjusted isotopic values (mean ± SD) o f individual summer flounder tissues (white -  

muscle, black -  blood, gray -  liver) plotted for age-0 fish (circles) and age-l+ fish 

(triangles). For reference, raw summer flounder tissue means (i.e., not adjusted for 

fractionation) are also plotted with smaller symbols and no error bars. Squares indicate 

means (±SD) o f prey species (black -  fishes, white -  crustaceans), labeled as follows: ba -  

bay anchovy, cr -  Atlantic croaker, ha -  spotted hake, ma -  mantis shrimp, my -  mysid 

shrimp, sa -  sand shrimp, sp -  spot, we -  weakfish.

Fig. 3. Mean differences (±SE) in 815N (A) and 813C (B) between tissues sampled from 

individual age-0 and age-l+ summer flounder collected in spring and fall o f 2007. After 

adjusting for fractionation effects, stable isotope values o f muscle were subtracted from 

blood (black bars) and also from liver (gray bars). Values significantly different from 

zero are noted with an asterisk.

Fig. 4. Individual summer flounder 815N values for muscle (A), blood (B), and liver (C) 

plotted by total length (mm). Symbol shapes represent season of capture (circle -  spring, 

square -  fall) and color indicates year (white -  2006, black -  2007). For reference, 815N
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of prey fishes collected in fall 2007 are plotted as mean (dashed line) ± one standard 

deviation (dotted line).

1Fig. 5. Individual summer flounder 8 C values for muscle (A), blood (B), and liver (C) 

plotted by total length (mm). Symbol shapes represent season of capture (circle -  spring, 

square -  fall) and color indicates year (white -  2006, black -  2007).

Fig. 6. C:N values for individual summer flounder liver tissue collected in 2007 plotted 

by total length (mm). Color indicates maturity status of individuals (white -  immature, 

black -  mature).

95



37 
W

N
 

37 
20

'0'
N 

37 
40

'0'
N 

38 
0'

0"
N

Figure 1.

76'!0'0"W76, 40,0'W 76':20'0"W

Atlantic
Ocean

Kilometers I i I l

76'20'0"W 76'0'0"W76 40'0-W

96



Fi
gu

re
 

2.
>>cu

>> 
CD

jS ft
sz

C /5

CDCD O T3O "O C/5 O L_
C/5 o o O 0
o
E

o
-Q

CD> E JO >
i_r i_T I—'i_r i_T i—" CD 0 0CD CD CDT3 T3 UT3 T3 T3 C C cC C C o =3 ors 3 13 o o oo o O cmcmcmcm5E= cm + + +o o O t- ■»—•c—

CD a) CD CD CD 0O) O) 05 05 05 05
< < < < < <O

r-~
O n

CM 
O) .

C l Q.

X

CO

CM
O)

a

Q.

—  CO

00

C l

COoo
CM

"ro

CO

Oc o
to

o
CM

CM
CM

■X
CM

CO

00

O
CM

CM
CM

CM

a
CO

Tt O

00 CO CM 00 CO CM

NS19 Ns l 9



Figure 3.

1 .0

0 .5  -
B lood
Liver

</)3
EzinT-

COI
Zin

Tco

0.0

- 0 .5  -

- 1.0

- 1 .5  -

- 2.0  -

■ *
i p  * * *

- 2 .5

age-0 age-1 +

Spring

B lood

- 2.0  -

age-0 age-1 +

Fall

98



4.

20

19

18

17

16

15

14

13

20
19

18

17

16

15

14

13

20

19

18

17

16

15

14

13

i—■—i—»—i—'—■—■—i—'—'—i—r
□

□

A. Muscle
.......................................  1 1 • • 1

1 1 1 1 1 1 1 I 1 1 I 1 1 1 1 1 1 1 1 .

■
-

....................... ■  ■ ............... ■

--------------- V # 1  ----------------------------- =
...................i * ..................

™  •

-

#
1 1 1 1 1 1 1 1 1 1

B. Blood 1
i i i i i i i i i

1 1 1 1 1 1 1 1 .

O Spring 2006
□  Fall 2006
•  Spring 2007
■  Fall 2007

J

____________________ -

....................dSjL • .............. ........■ ..........................
■ ■

V *
1 1 1 1 1 1 1 1 1 1 1

C. Liver
. . i i i . . i .

200  300 400  500  600

Length (mm)
99



5.

-15

-16

-17

-18

-19

-20

-21

■15

■16

■17

■18

■19

■20

21

15

16

17

18

19

20

21

n  1-----1-----1----- 1----- 1-----1-----j-----1 i----- 1-----p i 1------ 1------ 1------ 1------ 1------ 1------ r -

A. Muscle

° o
o  .

o

v. t
□

_i i i 1 i i i I i i i I i i i I i i i L

- i  1------ 1------ 1------ 1------ 1------ 1------ 1------ p------ 1------ 1------ 1------ 1------ 1------ 1------ 1 - i  1------ 1------ r -

B. Blood

“J 1----- 1-----1-----1-----1-----1-----1------1—”1---- 1----- fI 1 1 1 1 1 1 1 1 

C. Liver

■

o Spring 2006
□ Fall 2006
• Spring 2007
■ Fall 2007

J i i i L
3 200 300  400  500  600

Length (mm)
1 0 0



Figure 6.

14 -

12 -

10 -

z:
o

O Immature 
#  Mature

600 700300 400 500100 200

Length (mm)

101



APPENDIX

Lipid correction fo r  liver SI3C

Liver 5I3C was corrected for lipid content using the methodology described in

Chapter 1. Using twelve of the collected liver samples, 51 ’C was analyzed both before

and after lipid extraction. In addition to the methodology described in the text (Chapter

1), lipid extract samples were concentrated to 1 ml (Zymark Turbo Vap 500). The weight

of each total lipid extract was determined gravimetrically to calculate the percent lipid

content o f each sample. Following Logan et al. (2008), four competing models were

1 1used to describe the relationship between the bias created by lipid extraction, 8 Cle -  

813Cne, where LE represents samples that had lipids extracted and NE represents samples 

that did not. The following models were fit to the data (the numbering o f equations 

mimics the numbering used in Logan et al. 2008):

t. on
(1) g''CLli- 6 ' 1CNE= D ( e +  • ) where

1 + Z o / / L,

L= 93
1 + (0 .246xC : N - 0.775) 

(la) S"CLE - 8 ''Cnf
C :N  + c

(2) 8,jCle-8 " C ne = P -■13/- -  PXF
C : N

1 0 2



(3) SI,C 1(. - S nC Nli =(30 + p , ln ( C : N)

Each of these four models describes the relationship between the raw C:N and the bias 

introduced by not extracting lipids. The following parameters were estimated using 

nonlinear regression: D and 0 (model 1); a, b, and c (model la); P and F (model 2); (3q 

and (3i (model 3). For explanations of each model, refer to Logan et al. (2008). The 

information theoretic approach was used to identify the model that is best supported by 

the data by calculating AICc (Burnham and Anderson 2002). Under this framework, the 

model with the lowest AICc is the best model of the set.

The percent lipid content of liver samples had a positive relationship with the C:N 

of the samples, supporting the notion that C:N is a suitable proxy for lipid content (Fig. 

Al). All four models captured the trends in 8 , 3 C l f .  -  5 13C n e  (Fig. A2). Model 1 had the 

lowest AICc, but model 2 was nearly indistinguishable from it with regards to AICc

I ̂(Table A l). For simplicity, only model 1 was used to correct 5 C of all liver samples for 

lipid content (i.e. model averaging was not employed). The parameters for this model 

were estimated (±SE) as D = 6.2883 ± 1.3519 and 0 = 0.0612 ± 0.1527 (Table A2).
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Table A l. Model statistics for the competing models used to describe the relationship 

between liver C:N and the bias in 5 I3C introduced by not extracting lipids. Abbreviations 

and symbols are as follows: RSS -  residual sum of squares for the model; N -  sample 

size; K -  number of parameters (including the error term); AICc -  Akaike’s Information 

Criterion corrected for small sample sizes; AAIQ -  AICc differences; wj -  model 

weights, or the probability that each model is the best model of the set.

Model RSS N K AICc AAICj Wj
1 4.778 12 3 -2.050 0.000 0.411
la 4.537 12 4 2.042 4.093 0.053
2 4.789 12 3 -2.022 0.028 0.405
3 5.787 12 3 0.249 2.299 0.130
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Table A2. Parameter estimates and standard errors (SE) for liver 813C lipid-correction

models.

Model Parameter Estimate SE
1 D 6.2883 1.3519
1 0 0.0612 0.1527
la a 5.6965 0.7851
la b -21.7933 3.0509
la c -2.4176 2.0722
2 P 6.4081 0.4821
2 F 2.9370 0.4410
3 Po -0.5532 1.2458
3 p, 2.1277 0.5299
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Figure A2. Relationship between C:N and 5 i3C bias introduced by not extracting lipids 

from liver samples. Bias in 813C was calculated as the difference between 5 ,3C for lipid- 

extracted samples (LE) and non-lipid extracted samples (NE). Model fits are indicated 

by different lines, but model 2 is obscured by the thick line of model 1.
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