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Quantifying the Overwash Component of Barrier Island Morphodynamics:
Onslow Beach, NC



ABSTRACT
A quantification o f the role that barrier island overwash plays in the evolution o f Onslow 

Beach, a barrier island located on Marine Corps Base Camp Lejeune, North Carolina, is 
presented. Ground-penetrating radar (GPR) and sediment vibracores provide an estimate of the 
relevant-sand prism above a silty/peat contact underlying the island. The average thickness from 
the surface, as determined from lidar, to this geologically-defined base, is less than 1 m and 
equates a total volume of approximately 1.8 ± 1.1 x 106m3 over the 4.8 km stretch o f Onslow 
Beach from 1 km north o f the New River Inlet to Riseley Pier (~ 2 km2). Approximately 39% of 
the relevant-sand prism (680 ± 215 x 103 m3) is contained within the area of the island currently 
exhibiting signs o f overwash events (i.e., the active overwash complex). Based upon the average 
cumulative thickness o f distinct washover facies within 12 sediment cores (52 cm) and the 
surface area of the active overwash region, it is estimated that the volume sedimentologically 
distinct washover deposits equals 199 ± 88 x 103 m3 (approximately 29% of the active overwash 
complex or 11% of the entire relevant-sand prism).

A time series o f aerial imagery from 1938 to 2008 details the spatial and temporal trends 
in migration o f both the wet/dry line (a shoreline proxy) and the vegetation line (indicating the 
landward extent o f overwash). Long-term shoreline erosion rates in excess of 3 m/yr occurred 
over the southern portion o f Onslow Beach while the northern portion experienced up to 1.7 m/yr 
o f accretion within the same 80-year time span. Between 1938 and 2008, the vegetation line 
moved an average of 85 m landward over the length of the entire island and over 450 m in 
overwash sites at the southern end o f the island where shoreline erosion rates are highest. A 
comparison with long-term shoreline change rates suggests that a simple linear relationship 
between spatial and temporal variability in shoreline behavior and volume of the relevant-sand 
prism does not exist.

Trends based upon the past 80 years suggest that a positive correlation exists between 
storm frequency and overwash extent. Furthermore, the region experiencing the highest rates o f 
shoreline erosion and the highest occurrence o f overwash does not coincide with the area 
regularly subject to military training activities. These data suggest that natural forcings (sea level, 
wind and wave energy, geology, etc.) exert first-order control on the evolution o f this barrier 
island. The ability to quantify and evaluate the relative importance o f such forces is paramount to 
understanding how, and over what timescales, the nearshore environment responds to changes in 
external forcings (e.g., sea-level rise, storms, etc.) and, in turn, is fundamental to the development 
of reliable forecasts o f shoreline trends and storm susceptibility models.
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CHAPTER 1 
INTRODUCTION
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1.1 Motivation
Barrier islands are dynamic coastal features that migrate in response to changes in natural 

forcings (e.g., sea-level rise, storms, etc.) and anthropogenic activities through a combination of 

mechanisms including aeolian transport, inlet dynamics, and oceanic overwash. These processes 

are, in turn, influenced by factors such as underlying geology, wind and sea energy, and 

anthropogenic activities. Despite concerted efforts, scientists continue to struggle when it comes 

to explaining, much less forecasting, the highly variable, alongshore-response of shorelines over 

seasonal, decadal, and longer timescales. Under the pressure o f rising sea level and increased 

societal impacts o f coastal storms (Scavia et al., 2002), it becomes critical that we determine the 

primary mechanisms driving alongshore variability in shoreline response in order to: 1) improve 

forecasts o f localized shoreline change; and 2) aid in the development of policies that minimize 

hazards and promotes the management o f coastal resources for long-term sustainability. As an 

initial step towards that goal, this research provides a quantification o f one of these mechanisms, 

barrier island overwash, through a combination of geospatial, geophysical, and sedimentological 

analyses o f Onslow Beach, NC.

1.2 DCERP Project
This study is part o f a larger collaborative research project at Marine Corps Base Camp

Lejeune (MCBCL) just outside o f Jacksonville, NC. The Defense Coastal/Estuarine Research 

Program (DCERP) is a multi-year, multi-disciplinary project funded by the Strategic 

Environmental Research and Development Program (SERDP). The program's primary goal is to 

“enhance and sustain the military mission by developing an understanding of coastal and 

estuarine ecosystem composition, structure, and function within the context o f a military training 

environment” (https://dcerp.rti.org). DCERP consists o f five separate research modules: 

aquatic/estuarine, coastal wetlands, terrestrial, atmospheric, and coastal barrier — o f which this 

research falls under the latter. One aim o f the project that is directly addressed in this thesis is the
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need to better quantify short-term barrier evolution related to storms and land-use practices. 

Although outside of the immediate scope of this thesis, one of the longer-term goals o f this 

research is to improve upon large-scale coastal vulnerability models, such as those developed by 

Sallenger et al. (2000) and Stockdon et al. (2007), for this specific site. The higher resolution 

data and tighter constraints on boundary conditions generated through this research can be used as 

input for future model development.

1.3 Study Area
Extensive geologic studies show that the barrier islands lining the coast o f North Carolina 

arrived at their present-day location via landward translation with rising sea level and lateral 

movement through inlet migration, in accordance with the mechanisms proposed by De 

Beaumont (1845) and Gilbert (1885) (Inman & Dolan, 1989). The rate o f landward migration 

slowed drastically around 4,000 years ago when the rate o f eustatic sea-level rise declined to 

approximately modem rates (Horton et al., 2009).

Onslow Beach is situated midway between Cape Lookout and Cape Fear on the coast of 

North Carolina (Figure 1-1). Bordered by Brown’s Inlet to the northeast and the New River Inlet 

to the southwest, the island is approximately 12 km in length and covers an area of about 5 km2. 

An 1872 US Coast and Geodetic Survey topographic sheet shows that Onslow Beach was 

connected to the mainland by a marshy habitat containing narrow, sinuous channels (Figure 1-2). 

In 1932, the landward boundary of the barrier island was drastically altered with the constmction 

o f the Atlantic Intracoastal Waterway (AIWW) (Cleary & Riggs, 1999), which separated the 

island from the mainland with a 60-m wide linear channel. The modem AIWW averages 130 

meters in width and is maintained to a depth o f approximately 3.7 m (12 ft mean low water) by 

the US Army Corps o f Engineers (http://www.saw.usace.army.mil/nav/aiww.htm). The island 

and surrounding lands were purchased by the US Department o f the Navy in 1941 for use as an

5

http://www.saw.usace.army.mil/nav/aiww.htm


East Coast amphibious training facility and are now part of Marine Corps Base Camp Lejeune 

(MCBCL). Although the barrier island and its shorelines are impacted by military training 

activities, the island provides an excellent study area because it is largely undeveloped, and the 

military activities that do occur are much more regulated and documented in comparison to the 

anthropogenic impacts on more highly populated and developed neighboring barrier islands.

Onslow Beach is microtidal, with a mean tidal range of approximately 1 m. Hourly wave 

data for 2008 from the National Oceanographic and Atmospheric Administration’s offshore buoy 

(station 41035 in 10-m water depth), reports a mean significant wave height of 0.91 m and a 

dominant wave period o f 7.4 seconds (http://www.ndbc.noaa.gov). A 20-year wave hindcast 

(1980-1999) performed by the US Army Corps of Engineers (http://www.frf.usace.army.mil/cgi- 

bin/wis/atl/atl_main.html) estimates a similar long-term mean significant wave height of ~1 m in 

this vicinity, placing Onslow Beach in the mixed energy/wave-dominated classification of Hayes 

(1979) (Figure 1-3). The dominant wave direction is from the southeast during the spring and 

summer and from the northeast during the winter, although the impact o f winter storm waves 

approaching from the northeast is limited due to partial sheltering provided by Cape Lookout.

Tropical and extratropical cyclones approaching from the east or south are episodic but 

can have a large impact. Based upon trends over the past 100 years, Barnes (2001) predicts that 

some portion o f North Carolina will be affected by a hurricane about once every four years. 

Predicted wave heights computed for nearby Topsail Island range from 3.3 m for a one-in-50 year 

tropical storm to 3.8 m for a one-in-100 year case (Cleary & Riggs, 1999). To put this into 

perspective, Hurricane Fran (Class III) struck Onslow Beach on September 5th, 1996, with a 

reported maximum storm surge of 2.9 rn on nearby North Topsail Beach (Cleary et al., 2001).

This storm resulted in extensive barrier island overwash along the southern portion o f the study 

area and a reported $3.2 billion in damages for the state o f North Carolina (Barnes, 2001).
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Onslow Beach is located centrally within the cusp of Onslow Bay at a transition zone 

between the lower energy flank o f Cape Lookout to the northeast and the higher energy flank of 

Cape Fear to the southwest. In general, barriers to the north of Onslow Beach are regressive and 

characterized by higher topography and multiple sets of beach ridges in all stages o f modification. 

In contrast, barriers to the south tend to be transgressive, low-lying, characteristically unstable, 

and contain abundant overwash features (Cleary & Pilkey, 1996; Cleary & Riggs, 1999). This 

trend was illustrated in the work of Cleary and Hosier (1979) which depicts areas of moderate to 

severe overwash from south o f Onslow Beach to Cape Fear and little to no overwash north 

towards Cape Lookout (Figure 1-4). A similar trend in morphology and shoreline behavior is 

also present on Onslow Beach itself. The northern half o f the island is characterized by well- 

developed dune ridges (approximately 8-9 m in height in the proximity of Brown’s Inlet) and a 

stable to accretionary shoreline with few overwash fans (Figure 1-5). In contrast, the 

southwestern half of the island (from New River Inlet to Riseley Pier) is characterized by poorly- 

developed segmented dunes, experiences chronic, long-term erosion (>3 m/yr near New River 

Inlet) (Morton & Miller, 2005) and is the site o f extensive active and historical overwash, making 

it an ideal focus site for this research.

Onslow Beach is severely limited in nearshore sediment volume. The elongate shoals at 

Cape Fear and Cape Lookout limit exchange from adjacent embayments (McNinch & Wells, 

1999), and with no significant local fluvial inputs, the accumulation o f recent nearshore sediment 

which is well-developed elsewhere on the southeastern US Atlantic shelf is essentially absent 

here (Cleary & Pilkey, 1968). Over 200 box dredge samples collected on the continental shelf of 

Onslow Bay reveal a patchwork o f primarily relict or residual sediments (Cleary & Pilkey, 1968). 

Recent work by Wadman et al. (2008) affirms this is a sediment-starved nearshore system. The 

only significant nearshore sand is found as a narrow wedge approximately 4-m thick just offshore 

o f Brown’s Inlet that tapers both offshore and towards the southwest. Sidescan and sub-bottom
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data indicate that the rest of the nearshore (water depths up to 11 m) is characterized by either a 

thin (<20 cm) veneer of sand overlying indurated hard bottom; or relict sediments.

1.4 Barrier Island Formation and Geomorphology
A barrier island is uan elongate, essentially shore parallel, island composed dominantly of 

unconsolidated sediment, which protects the adjacent land mass and is separated from it by some 

combination of wetland environments” (Davis, 1994). Barrier Islands make up approximately 

6% of the global open ocean shoreline, the majority of which, (roughly 73% by length) are 

located along trailing edge margins where the broad, gently sloping continental shelf is most 

conducive to barrier-island development (Stutz & Pilkey, 2001). Theories of the primary 

mechanism driving barrier island formation have been debated for over 150 years, beginning with 

Elie de Beaumont’s hypothesis that wave action in shallow waters pile up sediment to form a 

bank or barrier that parallels the original shoreline (de Beaumont, 1845). Forty years later Gilbert 

(1885) asserted that barriers result from agitation in the breaker zone stirring up sediment which 

is transported down-drift, forming a spit which is subsequently breached and converted to a 

barrier island. Shortly thereafter, McGee (1890) shifted the emphasis towards the influence of 

changing sea levels with the hypothesis that barriers result from rising sea level and the drowning 

of former beach ridges. The debate over which of these three dominant competing theories: (1) 

emergent bar, (2) spit elongation, or (3) drowning o f beach ridges is the primary mode o f origin 

continues to some degree to this day. There is, however, a greater acceptance that under various 

conditions each of these mechanisms may, and likely do, take place.

The principal factors affecting barrier island morphology are sea energy (waves, wave­

generated and tidal currents), wind energy (wind-driven currents and aeolian transport), sediment 

supply, substrate gradient and composition, sea level, and anthropogenic activities (Leatherman, 

1979; Davis, 1994). Early classification o f barrier islands followed Davies’ (1964) classic
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distinction between micro, meso, and macro-tidal coasts (Hayes, 1979). Hayes (1979) began to 

emphasize the role that waves play (in addition to tidal range) in shaping barrier islands and thus 

developed the current classification of barrier islands as either wave-dominated, mixed-energy, or 

tide-dominated (Figure 1-6). Wave-dominated islands are long (typically tens of kms or greater) 

and narrow, with few, relatively unstable inlets, large flood tidal deltas and relatively small or 

absent ebb tidal deltas. Mixed-energy islands are generally shorter (only a few kms in length) 

and have numerous, relatively stable inlets with more prominent ebb tidal deltas. Hayes (1979) 

presented the barrier island drumstick model for islands (typically found in mixed-energy 

settings) where the refraction o f waves around an ebb tidal delta results in the reversal of the 

sediment transport direction on the island downdrift of the inlet. The sediments deposited in the 

lee of the delta produce an island with one wide, prograding end and one narrow, transgressing 

end resulting in the characteristic "drumstick” shape. Although rare, tide-dominated barriers do 

exist in places such as the Bay of Fundy and along the coast of Georgia.

1.5 Overwash Processes and Morphologies
The process o f barrier island overwash occurs when wave run-up and/or storm surge 

exceeds dune crest height, resulting in the unidirectional flow of sediment-laden water over the 

beach crest towards the back o f the island (Schwartz, 1975; Leatherman, 1979; Davis, 1994; 

Donnelly et al., 2006). Recent work (Morton et al., 2000; Sallenger, 2000; Donnelly et al., 2006) 

has further refined this basic definition to distinguish between two overwash regimes: 1) run-up 

overwash, and 2) inundation overwash. Run-up overwash occurs under conditions of excess wave 

run-up and is generally associated with lower-magnitude events where water is funneled either 

through a local discontinuity or gap in the beach or dune crest and spreads laterally on the 

backbarrier. Inundation overwash occurs when mean water level exceeds the beach crest and is 

most likely to occur during extreme storms or on low-lying barrier islands with poorly developed
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dune crests. These regimes are not mutually exclusive and may occur together either during 

different phases of a storm or simultaneously over varying distances alongshore.

Although the terms overwash and washover are sometimes used interchangeably, 

Donnelly et al. (2006) distinguishes “overwash” as the physical process by which water and 

sediment is carried over a dune crest across land or in reference to the mass o f water itself, while 

“washover’ refers to the actual material deposited inland of a beach by the action of overwash. 

The degree to which overwash occurs is dependent upon multiple factors, including storm surge, 

magnitude and duration, wind strength and direction, wave height and period, tide, height o f the 

dune crest, presence or absence of vegetation, beach topography, and nearshore bathymetry 

(Donnelly et al., 2006). It therefore follows that the morphology o f individual washover deposits 

wall vary with location and from storm to storm as well as with changes in slope and percolation 

rates of the underlying sediments.

Three common washover morphologies are the washover fan, washover terrace, and 

sheetwash (Figure 1-7). Washover fans generally result from run-up overwash where a gap in the 

dune or beach crest is exploited, tunneling the sediment-laden water mass through the throat or 

neck of the overwash. As the water mass spreads laterally on the back barrier, percolation and 

friction slow the flow velocity, and the entrained sediment is deposited as a lobate or fan-shaped 

feature. If adjacent fans are close enough in proximity that they begin to merge laterally, the 

deposits can form a washover terrace (also known as a washover apron). Sheetwash is formed 

under the inundation regime and dominates a wide lateral extent o f beach with a more expansive 

washover deposit. Sheetwash most commonly occurs on low-lying barriers or spits with poorly 

developed beach or dune crests, although it may also occur on islands with large dunes, which as 

a result o f persistent wave attack, have become susceptible to sheetwash (Donnelly et al., 2006).
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1.6 Objectives, Hypotheses, and Outline
The primary objectives o f this research are to:

1. Calculate the volume of sediment contained on the island above a geologically-defined 

base.

2. Determine if GPR can successfully distinguish sub-surface washover deposits.

3. Approximate the volume of sediment within the active overwash complex composed of 

sedimentologically distinct washover deposits.

4. Characterize changes in subaerial expressions of overwash from 1938 to 2008 and relate 

this to spatial and temporal trends in shoreline change.

The hypotheses being tested include:

1. Longshore variations in the volume of the geologically-defined sand prism is inversely 

correlated with long-term shoreline erosion rates (i.e., smaller prism = more erosion).

2. Volume of washover deposits is positively correlated with beach erosion.

3. Surficial overwash expression has increased in area from the 1938 to 2008.

Chapter 2 focuses on the use o f GPR and sedimentary analyses to quantify the relevant-sand 

prism and washover component of southern Onslow Beach (addressing Objectives 1-3 and 

Hypotheses 1-2). The third chapter evaluates spatial and temporal trends in shoreline position 

and overwash extent (addressing Objective 4 and Hypothesis 3). Chapter 4 provides an overall 

discussion, plans for future work, and conclusions. Chapters 2 and 3 have been written in the 

format o f articles for submission to peer-reviewed journals. Thus additional background and 

motivation for the specific objectives listed above are provided in the introductory sections of 

each of these chapters.
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1.7 Chapter 1 Figures

12



Fi
gu

re
 

1-
1.

13



14



M
EA

N 
TI

DA
L 

RA
NG

E 
(m

)

Figure 1-3.

1 —

100 200
MEAN WAVE HEIGHT (cm )MEAN WAVE

15



Figure 1-4.

MOREMEAD c i t y
JACKSONVILLE

16



(88QAVN 'w ) uo.aBAa|3

(88QAVN 'w ) uoneAaig



Figure 1-6.

F lO O C  TiO A i 
DELTA

NMAVfcJ

W A V E S

WAVE- | 
DOMINATED

MIXED
ENERGY

W A V *
D O M IN A N T
LON G SH O RE
SEDIMENT
TRANSPORT

SEDiMENT 
TRANSPORT 
REVERSAl

BARRIER IS LA N D  
D R U M STIC K  M O D E L

18



Figure 1-7.

B airle rF la t
••*. . *• ^  ■+ * 4 -4. -i -V i- 4 * .+  i  i* 4. y  >  * c * ; - V  4- v * -  +  '*• * *  4  4 •.» 4

V .Wf ,;V ■ ■*• -*- *. * ■ v  _ *  „  _ „ <* 4  •.:•>• *4 4r *•• 4» ■* y >  4  4 '  ^  J. i  i  i '  ■* y  ir -4 4 .'4. ■% i  -♦
4» ■VA‘ ■ 4I - ' ■jr-'b t ‘»' 1 4, v 4  . ,4" , 4  • 4  ” 1* *4 .4 * v #  4  *  •{ *< V "4*' :4* A. -V 4  -' ■*■ "J. ■ ■, A *. j  -i ■»> 4  A

>  W-w- . ■« -  4*\ *- *«r •«“ 4  4  4  v * 4  4. ,*• 4  ’ 4  * 4 4 - *  4 *■ *  4  *  -4..4 4  4 :4  > *  -4-

 v . ;  v , ; . y .
a) W ashover Fan ;  b) W ashover T errace * M  **

  . .  ■■ —!• " ' “"V/ ---------------------------------- / \ /  V ^ N ^ - s
c) Sheetwash

19



CHAPTER 2
WASHOVER VOLUME AND SEDIMENTARY CHARACTERISTICS
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2.1 Introduction
Numerous scientific studies recognize the importance of barrier island overwash as an 

important mechanism for transporting sediments onto and/or behind the barrier surface, 

supporting backbarrier marsh habitats, and maintaining barrier islands in the face of rising sea 

level (Godfrey, 1970; Dolan, 1972; Leatherman, 1983; Kochel & Dolan, 1986; Davis, 1994). 

Despite the fact that washover may be a substantial loss term in the calculation of littoral budgets 

and a potential gain term in the sediment budget of the island itself, limited quantitative data exist 

on total washover volume retained within barrier islands and its net influence on the coastal 

sediment budget remains largely unknown. While traditional field techniques provide reliable 

measures of washover sediments transported via individual storm events or multiple events over a 

small area, they lack the spatial and temporal scope necessary to evaluate the role of overwash in 

island evolution over the time span o f years to decades.

This research improves upon traditional coastal-sand prism estimates by determining a 

geologically-defined base as opposed to simply applying a fixed-depth boundary. The island’s 

underlying stratigraphy was mapped using Ground-Penetrating Radar (GPR) and ground-truthed 

by sediment vibracores, enabling a precise measurement of the depth o f the underlying silty/peat 

contact. This innovative approach not only provides a more accurate constraint on sediments 

readily available for transport, but also captures the spatial variability o f the underlying base, 

which has been largely neglected in previous studies. The volume of sediments within this prism 

exhibiting sedimentary characteristics directly attributable to overwash events is estimated from 

sediment cores. The analysis of washover deposits preserved within the sediment column 

provides the long-term perspective necessary to accurately quantify the importance o f overwash 

as a mechanism for barrier island migration at Onslow Beach, NC. This information is valuable 

on both local and regional scales for advancing the understanding of how barrier islands respond 

to changes in external forcings (e.g., sea-level rise, storms, etc.) and, in turn, will enable further

refinement of models that forecast shoreline behavior.
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2.2 Background

2.2.1 Hurricanes Bertha and Fran
The most recent storm to cause extensive overwash on Onslow Beach was Hurricane

Fran (Class III) which made landfall on September 5, 1996, and generated a storm surge of 2.9 m 

on nearby North Topsail Beach (Cleary et ah, 2001). The effects o f Hurricane Fran were 

amplified by the fact that Hurricane Bertha hit the same region just two months prior (July 12, 

1996) as a Class II Hurricane. This was the first time in 41 years that two hurricanes struck the 

North Carolina coast during the same season (Barnes, 2001). Figure 2-1 shows the expansive 

sheetwash created along the southern portion o f our study area resulting from the delivery of 

significant amounts of sediment to the backbarrier. Channels that previously meandered through 

marsh along the back of the barrier were buried in washover sediments, creating drastic 

alterations to the topography.

2.2.2 Geologically-Defined Sand Prism
Calculating sediment volume of a barrier island or coastal region necessitates the

identification of an underlying surface that represents the base o f the sand prism. Traditional 

studies use cross-shore and alongshore uniform depth of closure-based baselines, which often 

overestimate nearshore-sediment prism volumes and neglect any spatial variability in baseline 

morphology. Recently, Miselis and McNinch (2006) illustrated that in the subaqueous 

environment the use o f geologically-defined baselines, which may vary in depth both alongshore 

and cross-shore, provides a more accurate estimate of the active nearshore sand prism than the 

depth-of-closure method, and more closely corresponds to long-term trends in shoreline 

movement. On transgressing barrier islands, the geologically relevant baseline is most-likely the 

relict underlying marsh platform upon which landward migration occurs. Underlying peat 

deposits exposed on beaches, such as those visible at low tide on Onslow Beach, are indicative of 

this marsh surface and a clear indication o f the sand-prism base (Figure 2-2). The volume of
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sediment above this geologically-defined base, henceforth referred to as the relevant-sand prism, 

represents the sediment that can be actively transported via wind or sea energy and thus provides 

a much more realistic measure of sediment readily available for barrier island migration. Over 

longer geologic timescales the lower-lying depth of ravinement, an erosional transgressive 

surface, could be considered the base of the sand prism. For the scope of this project, however, 

and for timescales of most concern to coastal managers (years to decades) we are focusing only 

on readily available sediments above the upper-most peat layer. In this study, the approach that 

Miselis and McNinch (2006) applied to the subaqueous environment is being applied to the 

barrier island itself by mapping this underlying peat contact using GPR ground-truthed by 

sediment cores.

2.2.3 Previous Overwash Studies
To the best o f our knowledge, there are no prior studies o f wave-dominated barrier

islands in the US that have directly measured the cumulative volume of washover sediments 

within the context of the island’s sediment budget. Research conducted on a barrier spit in the 

northern European Wadden Sea (Christiansen et al., 2004) estimated that washover sediments 

comprise 51% of the spits’ sediment budget above present sea level. Research by Inman and 

Dolan (1989) used aerial extents of washover deposits calculated by Dolan et al. (1979) in 

combination with measurements o f washover thickness (Kochel & Dolan, 1986) to estimate 

overwash transport rates along the Outer Banks, North Carolina, but focused only on the flux of 

sediments without respect to the standing volume of the island itself. For the stretch of coast 

between Cape Henry and Cape Hatteras Inman and Dolan (1989) estimated overwash transport 

rates ranging from 1 -  10 m3 per linear meter o f beach annually, but readily admitted that 

transport rates associated with overwash processes and windblown sands were “probably the least 

accurately known components of the budget.”
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Prior field studies aimed at determining the relative importance o f overwash vs. aeolian 

transport in the vertical accretion o f barrier islands have generated conflicting results 

(Leatherman, 1976; Fisher & Stuable 1977; Rosen, 1979; Cloutier & Hequette, 1998) which is 

likely due to the spatial and temporal limitations of traditional field measurements. Kochel and 

Wampfler (1989) asserted that variations in overwash fan surfaces depend primarily upon the 

frequency and magnitude of overwash and precipitation, as well as local topography. The 

influence of temporally variable climatic factors upon sediment dynamics o f washover fans 

documented by Kochel and Wampfler (1989) underscores the need for long-term observation 

periods (10+ years) and highlights why long-term budgets derived from short-tenn observations 

may produce misleading results.

Without pre and post-storm elevation data, this study is unable to discern if  the amount of 

washover preserved in the sediment column equals the original volume of net sediment 

aggradation, and/or if this volume has been decreased via scour or aeolian deflation. This 

analysis does, however, provide the long-term assessment of washover deposits that Kochel and 

Wampfler (1989) found to be critical in minimizing bias associated with observations spanning 

less than 10 years. This research provides a more spatially and temporarily expansive approach 

to quantifying washover, which cannot be obtained by traditional monitoring efforts, and when 

used in conjunction with geospatial analyses, will aid in the development o f algorithms or models 

to quantify overwash occurrence and deposited sand volume.

2.2.4 Sedimentary Characteristics of Washover Deposits
Washover deposits are often preserved in backbarrier sedimentary sequences and can be

distinguished by alternating layers o f peat and sand or by specific sedimentological characteristics 

such as grain size and mineralogy (Heron Jr. et al., 1984; Davis, 1994; Hippensteel & Martin, 

1999; Buynevich et al., 2004; Donnelly et al., 2004). Washover can extend landward up to a few
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hundred meters, and estimates of the thickness of individual washover units range from a few tens 

of centimeters (Davis, 1994) up to a meter thick (McCubbin, 1982). Multiple overwash episodes 

may result in a composite fan that is meters thick (Davis, 1994). In undeveloped settings, 

washover sequences are likely superimposed upon vegetated backbarrier surfaces, dunes, or 

previously deposited washover sequences, which may have been altered since initial deposition 

by aeolian transport. Identifying the base o f washover deposits is essential for isolating the 

boundaries o f a single storm deposit. Schwartz (1975) found the occurrence of thin, dark, 

organic-rich sandy or silty sediments, occasionally containing vegetation, a useful indicator 

marking the top o f the pre-storm surface.

Washover deposits may include transported shells, mud clasts, and other oceanic debris 

concentrated at the base of each unit, decreasing in abundance and average size upward in the 

unit (McCubbin, 1982). Internal structure of the strata consists of rhythmic alternations of fine 

and coarse sediments and occasional heavy mineral-rich laminae, with the sedimentation units 

typically exhibiting a scour base (Schwartz, 1982). Textural trends reveal normal and inverse 

grading between the sub-units and a coarsening or fining in the direction o f flow (Schwartz,

1982).

Schwartz (1982) analyzed washover deposits from three sites in the US, each with very 

different geomorphic settings: (1) a North Carolina barrier island; (2) a southern California 

mainland beach; and (3) a spit on the shores o f Lake Erie. Despite the different physical 

conditions and forcings, common sedimentary structures were found at each location. Two 

distinct stratigraphies reflect the environment at the time of deposition (Figure 2-3). Fans that 

develop overlying what is normally a subaerial surface tend to be dominated by sheetflow. The 

resultant washover stratigraphy consists of a plane bed and sub-horizontal to low- angle (< 5°, 

landward dipping) planar stratification (McCubbin, 1982). In instances where overwash flow 

continues across the subaerial terrain and terminates into a standing body of water, such as a pond
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or lagoon, delta foreset stratification develops due to slipface migration of the advancing front 

(Davis, 1994). Foreset stratification may either exhibit sigmoidal topset-foreset-bottomset forms 

or truncation by overlying topsets (McCubbin, 1982).

2.2.5 Ground-Penetrating Radar in Geologic Studies
GPR is quickly becoming one of the most important geophysical instruments used in

coastal barrier studies (Jol et al., 1996). Although the use o f pulsed electromagnetic waves in 

subsurface investigations began as early as the 1920s, it was not until the 1980s that commercial 

GPR systems capable o f digital acquisition became readily available, and by the mid-1990s, their 

use in geologic studies skyrocketed (Neal, 2004). The basic principles of GPR are analogous to 

seismic data in terms o f wave propagation, reflection, and refraction in response to subsurface 

discontinuities. GPR, however, can obtain much higher vertical resolutions, on the order of 20 

cm versus > 1 m for traditional seismics (Neal, 2004). The frequency o f GPR systems range from 

10 to 1000 MHz, and systems consist o f either a single antenna that alternates between 

transmitting and receiving modes, or separate transmitting and receiving antennas.

The GPR system emits a short pulse o f very high-frequency electromagnetic energy into 

the ground. When the pulse intersects differences in dielectic properties within the subsurface, 

some of the energy is reflected back to the surface and is detected by the receiving antenna. The 

amplitude and two-way travel time, measured in nanoseconds, of the reflected pulse is recorded. 

Horizontally sequential reflection traces build up a radar reflection profile. The signal 

propagation velocity through the ground can either be calculated using a common mid-point 

survey, correlated with geological logs, or estimated based upon published velocities for given 

substrates (Neal, 2004) to estimate depth of the reflection surfaces. The most common method of 

GPR collection is known as “common offset” where the transmitting and receiving antennae are
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moved in unison along the survey line (Neal, 2004; Woodward et al., 2003). Data can either be 

collected continuously or triggered at fixed distances in a stepwise fashion.

GPR reflections can result from: 1) changes in the amount and type of fluid occupying 

pore spaces; 2) minor differences in porosity; and 3) changes in sediment mineralogy, shape, or 

orientation (Neal, 2004). The basic premise o f using GPR in sedimentary analyses is that the 

majority of the aforementioned properties also change with transitions between distinct 

sedimentary facies, resulting in a direct relationship between the primary radar reflections and 

underlying stratigraphy (Neal, 2004). As with all geophysical instruments, it is important that 

interpretations of GPR reflections are well supported through ground-truthing and evaluated 

critically.

A drawback of using GPR in coastal environments is the likely attenuation o f the 

electromagnetic signal by layers o f salt-marsh peat, silts, clays, and saline water, thereby limiting 

the depth of penetration (Van Heteren et al., 1998; Bristow & Jol, 2003). Despite these potential 

interferences, a number of GPR studies have shown excellent results in coastal settings and 

barriers where a freshwater aquifer exists (Jol et al., 1996; Van Heteren et al., 1996; Moller & 

Anthony, 2003; Buynevich et al., 2004). Moore et al., 2004; GPR offers great advantages over 

traditional methods for determining the depth and internal structure o f washover deposits (such as 

digging pits and trenches or collecting numerous sediment cores), in that GPR offers a 

nondestructive means o f producing high-resolution, continuous images o f underlying sedimentary 

structures in a time and cost-effective manner.

2.3 Methods and Materials
The focus of this study is the southwestern half o f Onslow Beach, south of Riseley Pier, 

which is where overwash is most predominant and also encompasses the area where military 

amphibious training drills take place. GPR was collected in a shore-parallel transect running the
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length o f our study area to map the location o f the geologically-defined base, and additional 

transects were collected, along with sediment vibracores, in four overwash sites. The sites are 

denoted in Figure 2-4, each representing a different environment: (1) a large sheetwash deposit at 

the southern end of island that is largely undisturbed by human activity; (2) a single fan with a 

narrow throat and recovering dune crest, not exposed to vehicular traffic; (3) two adjacent 

overwash fans, or an overwash apron, experiencing some foot/automobile traffic; and (4) an 

overwash fan heavily subjected to regular military training activities and vehicular traffic.

The zone o f active overwash was defined based upon 80 cm resolution IKONOS satellite 

imagery collected in 2008. For the purpose o f this study, the region of active overwash refers to 

the area seaward of the vegetation line and landward of the dune toe but excludes vegetated 

foredune habitat that has been separated from the backbarrier as a result of a shore parallel beach 

access road. Any such isolated vegetation clusters with an area > 20 m2 have been excluded from 

calculations of the zone of active overwash. The dune toe was delineated based upon satellite 

imagery and the change in slope captured by 1 -m resolution bare earth lidar collected in 2007 for 

the National Geospatial-Intelligence Agency or NGA. The vegetation line was selected because 

it is easily distinguishable in aerial imagery and based upon ground surveys, provides a good 

approximation o f the landward extent of recent overwash events. Any historic overwash sites, 

however, which have revegetated prior to 2008 are not included in our estimates. Calculations o f 

total island area extend from the wet/dry line on the seaward edge to the point where land 

intersects water on the landward edge, which for the majority of the study area coincides with the 

AIWW.

2.3.1 Sediment Samples
Twelve sediment vibracores ranging from 102 — 182 cm in length were collected from

four overwash sites both to ground-truth GPR records and to document the sedimentological
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signatures of washover deposits (Figure 2-4). The majority o f cores captured peat deposits, and 

in all but one instance, penetrated to a depth where the sediments transitioned from sand to 

darker, more organic-rich, silty or clayey sediments. This contact is indicative o f a depositional 

environment different from the overlying sediments and was identified as the base of the relevant- 

sand prism. From here on, this contact will be referred to as the sand/silt contact; more detailed 

sedimentological information is provided in Appendices I and IF

Sediment cores were collected using a beach vibracore system with 7.6 cm diameter 

aluminum barrels. Cores were split lengthwise, photographed, and described. The cores were 

sub-sampled at 2 cm intervals and placed in air tight bags for archiving. Grain-size analyses were 

performed upon samples at 10 cm intervals down to the depth of the onset o f the non-sand 

dominated (i.e., silt or peat) substrate. The fine fraction was removed by wet sieving the bulk 

sample through a 62 pm mesh (ASTM No. 230), and the gravel fraction was extracted by diy 

sieving the resultant sample through a 2,000 pm mesh (ASTM No. 10). The proportion of gravel, 

sand, and fine-sized sediments were calculated through comparison to the dry weight of the initial 

bulk sample. The sand-sized fraction (-1 q> — 4 cp) was run through a Rapid Sediment Analyzer 

(RSA) settling tube. A M atlabrM script was developed to analyze the weight distribution of each 

sample to derive hydraulically equivalent grain size distributions based upon the Ferguson and 

Church (2004) hybrid equation. This unique approach reduces to Stokes’ Law for finer sand­

sized particles and a constant drag for coarser sands where Stokes’ Law no longer accurately 

predicts settling rates. Water density and eddy viscosity values were assigned based upon water 

temperature within the settling column at the time each sample was processed and the particle 

density o f quartz (2.65 g/cm3) was assumed. Weight distributions of hydraulic size equivalents 

(in psi) were generated for each sample. Psi is a logarithmic velocity scale equal to log2 x 

velocity (in cm/sec) (Middleton, 1967) which serves as a better representation of sedimentary 

behavior in hydrodynamic environments than do sieve-determined size distributions (Reed et al.,
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1975). Due to the fact that there is not uniform agreement on which formula to use in the 

conversion o f settling velocities recorded by the RSA into equivalent particle diameters (Syvitski 

et al., 1991), as well as the inherent assumptions with such formulas, results are presented in psi.

Settling-velocity distributions were calculated for all samples and standard descriptive 

statistics (mean, median, standard deviation, skewness, and kurtosis) computed using the method 

o f moments. Settling velocities computed using the RSA data assume a grain density o f quartz 

(2.65 g /cn r) and although the carbonate shell hash present in some samples may slightly bias the 

data towards a finer grain size, we chose not to selectively remove carbonate from our RSA 

samples because it is a valid component o f a hydraulically representative washover deposit. For 

reference, 12 samples were soaked overnight in a dilute (10%) hydrochloric acid solution to 

calculate an approximate range of carbonate content. Five surface sediment samples were 

collected from active dune sites and processed using the same RSA approach to aid in 

distinguishing between different depositional environments.

The grain-size analyses described above were used in combination with visual inspection 

o f the split cores to discern facies exhibiting sedimentary characteristics consistent with washover 

deposits. The cumulative thickness o f distinct stratigraphic layers from within each core 

representative of washover deposits was recorded and used as the basis for volumetric 

calculations of washover. Typical distinguishing characteristics included: poorly-sorted 

sediments, which may have contained shell fragments and/or heavy mineral laminae. The basal 

contact tended to be sharp and may have exhibited scour, often coarser sediments were 

concentrated at the base of the deposit which is consistent with prior washover studies (Schwartz, 

1975; McCubbin, 1982; Schwartz, 1982; Kochel & Dolan, 1986). The argument could be made 

that since Onslow Beach formed offshore thousands of years ago and arrived at its present day 

location through barrier island rollover, the entire island is composed o f washover deposits. For 

the context of this research, however, we are concerned with more recent overwash events and
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the modes of sediment transport actively shaping the barrier island today. Thus said, the term 

“washover deposits” refers to the sedimentologically distinct facies within the active overwash 

zone as described above. A first-order estimate of total washover volume was calculated by 

multiplying the average thickness of washover deposits determined from sediment cores by the 

surface area of the island falling within the active overwash region.

To examine changes in sediment water content, ten short cores (from 5 4 -  107 cm in 

length) were collected using a small jackhammer corer with 3.8 cm diameter plastic barrels.

These cores were collected in conjunction with the 200 MHz GPR surveys, sliced open in the 

field, and sampled immediately to detect changes in percent water content which aid in the 

interpretation of GPR data. Sediments were sub-sampled at an approximate 10 cm interval and 

placed into pre-weighed scintillation bottles. Water content was determined by weighing the 

samples before and after drying to determine the mass o f water lost.

To expand depth measurements o f the sand/silt contact seaward, elevations o f the contact 

from the foreshore and backshore were provided by colleagues on the DCEPR project for an 

additional seven cores collected using a jackhammer corer. In addition, Real-Time Kinematic 

(RTK) Differential GPS (DGPS) measurements o f peat exposed in the foreshore were collected to 

provide additional control points for interpolating the baseline o f the relevant-sand prism seaward 

o f GPR measurements.

2.3.2 Ground-Penetrating Radar
A pulseEKKO PRO™ GPR was used to examine the underlying stratigraphy of Onslow

Beach. The resolution of GPR systems, or the finest feature the instrumentation is able to 

resolve, varies depending upon the frequency of the transmitting antennas. Both 100 MHz and 

200 MHz antennas were used in this study. The vertical resolution o f the 100 MHz antenna (20- 

25 cm) was sufficient for defining the base of the geologically-defined sand prism and was used
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to collect a shore-parallel transect running the length of the study area as well as a select number 

of shore-normal transects. GPR surveys within overwash fans were also collected using the 200 

MHz antennas with a vertical resolution of 13-15 cm (Jol, 1995; Sensors & Software, 2003) in 

order to differentiate between small scale (order of 10s of cm) variations in sedimentary 

characteristics indicative o f washover. The accuracy, or closeness o f GPR measurements to true 

values, and the precision, or repeatability of the GPR measurements are addressed in Section 

2.3.4.

The GPR units were mounted to custom sleds with the 100 MHz antennas fixed at a 

distance of 1 m apart, and the 200 MHz spaced 0.5 m apart. The GPR was set to collect 

continuously while towed along the surface either by hand or by a Kubota all-terrain vehicle 

(Figure 2-5). Effort was made to maintain a steady walking/driving pace that would result in 

recorded traces approximately every 25 cm with the 100 MHz, and every 10 cm with the 200 

MHz antennas. A RTK DGPS survey with a vertical and horizontal accuracy of up to 2 cm was 

collected in conjunction with the GPR survey to tie transects to real-world coordinates. The 

beginning and end coordinates of each transect were taken from the GPS and, based upon the 

total length o f each transect, the position of individual GPR traces were linearly interpolated and 

the profiles shifted to account for variations in topography. A total o f over 15 km of GPR 

transects were collected throughout the study area (Figure 2-4).

Standard processing steps were applied including the application of a DEWOW filter to 

remove low-frequency noise resulting from electronics saturation at the surface, a trapezoidal 

bandpass filter (10-40-140-280 MHz and 10-40-325-650 MHz for the 100 and 200 MHz surveys, 

respectively) to remove noise at the high and low end of the amplitude spectrum, and automatic 

gain control (AGC) to compensate for the rapid decrease in radar-signal amplitude from deeper 

depths. The conversion from two-way travel time to depth was calculated by assuming a uniform 

velocity for the propagation o f electromagnetic energy o f 0.1 m/ns. This value falls within the
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published range o f velocities for unsaturated sand of 0.1 - 0.2 m/ns (Neal, 2004). Since profile 

depths were not adjusted to account for the slower travel of electromagnetic energy through the 

deeper, water-saturated sediments, depths beneath the water table only represent an approximate 

elevation, and are likely slightly overestimated.

To enhance geologic interpretation, the GPR profiles were hung in 3D space using 

Interactive Visualization Systems’ (IVS 3D) Fledermaus™ software. Each transect was 

georeferenced and assigned proper elevation values (relative to NAVD88) to create fence plots of 

the entire GPR survey. Figures 2-6 and 2-7 demonstrate how sediment cores were used to aid 

interpretation of the GPR record. The coordinates of the sand/silt contact as obtained from 

sediment cores and DGPS measurements at locations where peat is exposed within the surf zone, 

were also imported into the Fledermaus1 M scene. The measured elevations of the sand/silt contact 

were combined with the GPR reflection profiles to facilitate in the identification o f the reflector 

representative of the sand/silt contact. Due to the large surface area of the southern sheetwash 

site (Site 1), interpretation of the sand/silt contact was dependent largely upon the morphology of 

the GPR reflection surfaces. The GPR revealed a number of buried channels within this site, and 

these reflection surfaces, indicative of past fluvial features, were selected to indicate the base of 

the relevant-sand prism (Figure 2-8). Reflection surfaces were not always continuous across the 

entire length o f the sheetwash, and therefore, fluvial surfaces at the southern end of the site were 

not necessarily the same facies as those observed on the northern end. Overall, the best reflection 

surface at any one location was presumed to be representative o f the sand/silt contact, and its 

elevation recorded (Figure 2-9).

The generation of 3D fence plots not only aided in visualization and facies interpretation, 

but also enabled us to trace individual reflection surfaces and export coordinate data as x, y, z 

ASCII text files. Since the GPR profiles were all georeferenced to common horizontal (NAD83) 

and vertical (NAVD88) datums, the reflection surfaces were exported directly to a GIS for

33



volumetric calculations. The traced GPR reflections were combined with the elevation point data 

o f the underlying sand/silt contact from beach vibracores and DGPS measurements o f peat 

exposed within the swash zone, and the combined datasets were interpolated into a continuous 

raster surface depicting the elevation of the contact throughout the study area. To improve the 

ability of the gridding algorithm to capture the complicated buried channel features at Site 1, 

contours were added at the edges o f the channels seen in March 1996 aerial photographs (Figure 

2-1) and assigned an elevation consistent with the nearest GPR reflection surfaces. Due to the 

lack o f GPR or core measurements along the back side o f the island, a contour was added at a 

distance o f 50 m landward o f the island boundary, and elevations assigned in accordance with the 

nearest GPR data. A similar contour was added 50 m seaward of the wet/dry line (Figure 2-10). 

These contours were added to force the gridding algorithm to interpolate elevations from the 

seaward side o f the island across the width of the island to the AIWW. The extrapolated 

elevations in regions distant from field measurements are less reliable, but since the underlying 

peat surface that weVe mapping is not likely to experience large variations in topographic relief, a 

linear extrapolation was acceptable. A 1-m resolution grid representing the depth o f the sand/silt 

contact was generated using the ArcGIS1M “Topo to Raster” tool which utilizes both point and 

contour data in an iterative finite difference interpolation algorithm to generate a continuous 

elevation model (Figure 2-11). Subtracting this sand/silt contact elevation model from bare earth 

lidar (collected in 2007 for the National Geospatial-Intelligence Agency or NGA) provides an 

estimate o f thickness of the relevant-sand prism throughout the study area (Figure 2-12). The 

southernmost km of the island is known to be dominated by inlet dynamics, based upon an 1872 

T-sheet, and as a result, was excluded from analyses.
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2.3.3 Spatial Correlation with Shoreline Change
To compare how our measurements o f sand prism thickness and washover volume vary

in the alongshore with long-term trends in shoreline position, GIS data layers from the USGS 

National Assessment on Shoreline Change (Miller et al., 2005) were used. The same shore- 

normal transects (spaced at a 50-m intervals) used by Morton and Miller (2005) to calculate long­

term (1872-1997) and short-term (1973-1997) shoreline change rates were used to calculate 

alongshore variations in the relevant-sand prism and washover volumes. Volume to the depth of 

the sand/silt contact was calculated per square meter o f surface area (m3/m2) along each cross­

island transect. A first-order estimate of alongshore variations in washover volume was 

calculated by multiplying the average thickness o f washover deposits determined from sediment 

cores by the surface area of the cross-island transects falling within the active overwash region 

(the area exhibiting signs of overwash discemable by 80 cm resolution satellite imagery collected 

in 2008).

2.3.4 Uncertainties and Errors
Sediment prism calculations must take into account error introduced through

uncertainties in horizontal positioning (x, y) as well as vertical (z) errors in surface elevations 

and/or depth within the sediment column. Table 2-1 lists the components accounted for in error 

assessment and an explanation of how they were estimated is provided below.

The error associated with delineating the vegetation line and wet/dry line from a 2008 

1KONOS satellite image was minimized through the use o f a GIS-based tool (BeachTools) 

developed by the US Army Corps o f Engineers (Hoeke et al., 2001). BeachTools performs a 

clustered supervised classification based upon mean pixel values within an image and outputs a 

vector polygon encircling pixels of similar values. Although this minimizes human-induced 

error, some variability still remains due to which pixels are selected as the basis for classification.
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The precision of the digitized vegetation line was assessed by repetitively tracing the same 

regions and computing the standard deviations o f the output (5.6 m). Variability in the position 

of the shoreline must also account for the excursion of the wet/diy line over the course o f a tidal 

cycle. Dolan et al. (1980) found that for medium-size sand beaches with slopes similar to the 

study area, the high water line (HWL) migrates within an average o f 1-2 m over a 12-hour 25 

minute tidal cycle. An average o f uncertainty in the vegetation line (5.6 m) for the landward 

boundary in combination with the 2 m variability in position of the HWL for the seaward 

boundary equates a width o f uncertainty o f ± 3.8 m. Surface area uncertainty was approximated 

by calculating the area contained within a swath 3.8 m wide around the perimeter of the region of 

interest.

Vertical errors include accuracy o f the elevation data obtained from lidar (RMSE = 15 

cm) and the offset between the elevation of the GPR surface reflector (calculated based upon two- 

way-travel time) and the elevation as recorded by the DGPS. The latter was assessed by 

differencing surface elevations derived from the GPR profiles, from the DGPS measurements 

recorded at the time of data collection. The difference showed a mean offset o f 25 cm (SD = 8) 

and 32 cm (SD = 6) for the 100 and 200 MHz GPR surveys, respectively. The appropriate offsets 

were applied to each GPR transect to better fit the GPR traces to the same vertical datum as the 

lidar survey (NAVD88). The average standard deviation o f the offset between the GPR and 

DGPS elevations (7 cm) is used in error assessment. The precision with which the GPR 

reflection surfaces were traced in Fledermaus™ was estimated by repetitively tracing the same 

GPR profile and calculating the standard deviation between the outputs (2 cm).

The depth of the sand/silt contact within the sediment cores provides an excellent means 

of ground-truthing the elevation of the sand/silt contact as determined from the GPR profiles. The 

difference between the core and GPR-derived elevations were compared for 15 locations where 

sediments cores were collected within 8 meters of a GPR transect (Table 2-2). The majority of
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measurements (n = 11) show very good agreement between the sediment cores and GPR with a 

mean difference of 6 cm (SD = 15). Four sediment cores collected towards the southwestern 

landward extent of Site 1 exhibit sand/silt contact depths within the sediment cores that are up to

2.5 m shallower than the GPR reflection. This could be the result of core compaction when 

vibracoring through the distal portion of a large sheetwash where increased pore spaces may lead 

to sediment compaction. In addition, three o f these cores (ONSVC25, ONSVC26, and 

ONSVC40) are instances where an actual peat layer was not captured. It is possible that there are 

sediments higher in silt content and/or peat layers deeper than we were able to penetrate with the 

vibracorer, and that the minor silty sediments that we captured in the cores were not significant 

enough to result in a distinct GPR reflection. Due to these reasons, the excessive offset between 

the sand/silt contact depth in the GPR and the sediment cores for this cluster o f samples is not 

considered a reasonable representation o f the error of the GPR and as a result, these values were 

not included in the calculation o f survey error. The RMSE between the GPR versus core-derived 

depth o f the silt/sand contact for the remaining 11 cores (53 cm) was used in error 

approximations.

An additional source of uncertainty that has not been quantified is the interpolation error, 

or the potential error in the elevation o f the sand/silt contact in regions poorly constrained by field 

measurements. This is namely o f concern over the landward side o f the island, and along the 

northern third of the study area where the sand/silt peat contact could not be traced along the 

beach access road due to chaotic, discontinuous reflectors in the GPR record. A limited number 

o f cores were collected along the back side o f the island and in the AIWW by Sproat (1999) but 

since the topographic elevation o f the cores was not recorded at the time of collection, we could 

not accurately georeference them to the same vertical datum as our measurements. In future field 

efforts we hope to collect measurements o f the depth of the sand/silt contact along the back side 

o f the island to minimize this interpolation error, however, it is unlikely that the underlying peat
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surface varies greatly in elevation across the island, thus a linear interpolation provides a 

sufficient approximation. It is also important to note that the active washover volume 

calculations provided are likely underestimates o f total island washover volume because they are 

restricted to the unvegetated surface o f the study area in 2008, derived from 80 cm resolution 

IKONOS satellite imagery. Historic overwash sites which have revegetated are not included in 

these estimates.

2.4 RESULTS
Interpretation of the GPR record demonstrates that it is possible to identify large-scale 

washover deposits overlying lagoonal or marsh sediments. The foreset stratification captured in 

the southern sheetwash region corresponds to sequences documented when a washover fan builds 

into shallow standing water (McCubbin, 1982) (Figure 2-13). Additionally, GPR reflections in 

the individual washover fans at Sites 2, 3, and 4 exemplify the planar sub-horizontal stratification 

consistent with overwash deposited on a subaerial surface (Figure 2-14). In response to Objective 

2, however, we were unable to conclude with any certainty that the GPR could consistently 

distinguish the subtle variations that occur between overwash facies and those deposited by 

aeolian transport (i.e., sand-on-sand deposits), and we were unable to consistently tease out 

reflections that may be the result of changes in water content (Appendix III). As a result, the 

GPR was used to delineate the depth o f the sand/silt contact throughout our study area, but the 

thickness of sedimentologically distinct washover facies within the overwash complex was 

calculated directly from sediment cores.

2.4.1 Sedimentary Characteristics of Washover Deposits
Samples within each core comprised of sedimentologically distinct washover deposits

were distinguished based upon RSA data (Figure 2-15) (Appendix II) and visual inspection o f the 

cores for specific characteristics such as those documented by Schwartz (1982), McCubbin
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(1982), and Kochel and Dolan (1986). Sorting (standard deviation) provided a good indication of 

differences between depositional environments and values greater than 0.5 were generally 

presumed to be representative o f washover sediments. The calculated mean grain-size for 

washover sediments is 1.71 psi (n = 70, SD = 0.38) and the non-washover sediments 2.38 psi (n = 

59, SD = 0.17) (Table 2-3). A two-sided T-test shows there is a significant difference in mean 

grain size between the two populations at the 95% Cl with a P-value o f « 0 .0 5 . A plot o f mean 

grain size versus standard deviation (sorting) begins to separate samples into distinct populations 

where washover and dune sediments represent two end-members (Figure 2-16). The washover 

sediments have a higher standard deviation (less sorting) and a larger mean grain size than dune 

sediments. A similar trend is revealed in a plot of skewness versus kurtosis (Figure 2-17) where 

overwash sediments have lower values o f skewness and kurtosis relative to the dune samples. 

Mason and Folk (1958) found similar results in a comparison between beach and dune sediments 

on a barrier island on the south Texas Gulf Coast. It is not surprising that there is a large degree 

of overlap between the washover and non-washover sediments since washover is comprised o f a 

combination o f offshore, beach, and dune sediments that have been altered since deposition by 

aeolian transport and anthropogenic activities (particularly at the sites close to active military 

egress points).

2.4.2 Relevant-Sand Prism and Washover Volumes
Subtracting the elevation of the interpolated sand/silt surface from 2007 bare earth lidar

gives a total relevant-sand prism volume of 1.8 ± 1.1 * 106 m3. The prism thickness ranges from 

0 to 6 m and averages approximately 90 cm in thickness. This is consistent with depth estimates 

made by Cleary and Riggs (1999) o f < 0.5 m to 2 m along Onslow’s mean high tide line and on 

the same order of magnitude as Sproat’s (1999) estimate of 1 to 2.5 m along the backbarrier. The 

thickness of the relevant-sand prism calculated from the 12 sediment cores is 96 cm (SD = 18)
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and serves as an additional check on accuracy of the interpolated sand/silt contact. The study 

area was divided into three geomorphic settings: (1) from the dunetoe to the vegetation line, 

excluding isolated clusters of dune vegetation covering an area > 20 m2 (i.e., the active overwash 

region); (2) landward of the vegetation line (i.e., backbarrier); and (3) seaward of the dunetoe 

(i.e., beach). The backbarrier contains the largest proportion of the relevant-sand prism volume at 

52%, followed by the active overwash region, 39% and the beach, 6% (Table 2-4).

Further analyses were performed to assess alongshore variability o f relevant-sand prism 

and washover deposit volumes. The thickness of the relevant-sand prism was calculated for 96 

cross-island profiles (50 m spacing) to produce an estimate of volume of sediment per square 

meter of surface area (m3/m2) along each transect (Figure 2-18). These shore-normal transects 

were further divided into the three environments described above: (1) the active overwash region, 

(2) backbarrier, and (3) beach (Figure 2-19). The area-normalized relevant sand-prism volume 

over the entire study area averages 0.9 m3/m2 (SD = 0.5). The prism volume within the region of 

active overwash averages 2.3 m3/m2 (SD = 2.4), while the beach portion averages 1.0 m3/m2 (SD 

= 0.5), and the backbarrier 0.7 m3/m2 (SD = 0.4). T-tests reveal a significant difference (P-value 

«  0.05 at 95% Cl) between area-normalized volumes in the active overwash region in 

comparison to both the beach and backbarrier environments. The estimates for the backbarrier, 

however should be taken only as a rough approximation since field measurements were only 

collected in beach and overwash areas.

The total thickness of sedimentologically distinct washover deposits above the sand/silt 

contact was estimated for each core based upon the aforementioned sedimentary characteristics. 

An average cumulative washover thickness o f 52 cm (SD = 23) (Table 2-5) and a surface area of 

active overwash in 2008 of 383 ± 62 x 103 m2 equates a volume of 199 ± 88 * 103 m3 of 

washover sediments. In other words, sedimentologically distinct washover deposits make up
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approximately 29% of the active overwash complex or 11% of the entire study area’s relevant 

sand-prism.

To assess alongshore variability in the volume of washover deposits, an estimate of the 

volume of washover sediments at each transect was calculated by multiplying the average 

cumulative washover thickness determined from the sediment cores (52 cm) by the length of 

transect falling within an active overwash region (Appendix IV). Linear regression indicates that 

there is a moderately significant relationship (R2 = 0.54) between increased long-term shoreline 

erosion rates and increased washover volume, supporting Hypothesis 2, however, Figure 2-20 

shows that this trend is driven in part by the cluster of data from the large sheetwash at Site 1 and 

not necessarily representative of behavior of the island as a whole. Figure 2-21 shows the 

variation in cross-island volume of the relevant sand-prism with distance alongshore. Figure 2-22 

compares alongshore variations in relevant-sand prism volume to long-term (1872-1997) and 

short-term (1973-1997) shoreline change rates calculated by the US Geological Survey (Morton 

& Miller, 2005). A scatterplot of long-term (1872-1997) shoreline change versus area- 

normalized volume of the relevant-sand prism reveals that a simple linear relationship does not 

exist between the two (Figure 2-23). As a result, the proposed hypothesis that alongshore 

variation in the volume of the geologically-defmed sand prism is inversely correlated with long­

term shoreline erosion rates, Hypothesis 1, is rejected. To determine if relevant-sand prism 

volume estimates were biased by the use o f the back of the barrier island as the landward extent, a 

somewhat arbitrary feature in terms o f geomorphology and largely controlled by the location of 

the AIWW, shoreline change rates were also compared directly to volume within the beach and 

overwash regions. The trend is similar to that o f the overall sand prism and no significant 

correlation is seen between the volumes o f beach or overwash prism sediments versus shoreline 

change (Figure 2-23).
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2.5 Chapter 2 Tables
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Table 2-1.

Sources o f Vertical Error Approximate Error (m. ±)

vertical accuracy o f 2007 lidar

offset of GPR surface reflector from lidar

precision of tracing GPR reflection surfaces 
measured offset between GPR reflections and core facies

0.15

0.07

0.02
0.53

Total Vertical Error 0.56

Sources o f Horizontal Error Approximate Error (in, ±)

precision of tracing vegetation line using BeachTools 

variability in position o f wet/dry line

Landward Lim it 
5,6

2.0

Error in Surface Area Calculations area t  3.8 m buffer
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Table 2-5.

Core ID

Cumulative 
Washover 

Thickness (cm)

Depth of
Sand/Silt Contact 

i (cm) % Washover

ONSVC25 rm +m/ /
Site 1

93 82.8
ONSVC26 66 83 79.5
ONSVC29 57 115 49.6
ONSVC40 72 93 77.4
ONSPC07 56 73 76.7
ONSPC05 88 W A N/A

ONSVC18 38
Site 2

105 36.2

ONSPC04 23
Site 3

122 18.9
ONSVC14 12 110 10.9

ONSVC04 64
Site 4

104 61.5
ONSVC05 39 97 40.2
ONSVC06 29 62 46.8

Average: 51.8 96.1 52.8
Standard Deviation: 23.4 18.0 25.0
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2.6 Chapter 2 Figures
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Figure 2-3.

.  *•»» ^
(Met*)

HORIZONTAL STRATIFICATION

ROND

SCOUR
ZONE

O F ACM
STR A TlFi
CA TION

H oritontal Scot*  
fn M ila n

s m >

W A S H O VER

FO RESET STRATIFICATION

JLttktttr.
f»» /

, *• r*-4T

* (Hitt)

HorUontol S eal*  
In M alan

W A S H O VER

HORIZONTAL STRATIFICATION

BEACH
STRATIFI­
CATION

SCOUR ZONE

51



Fi
gu

re
 

2-
4.

52



Figure 2-5.
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Figure 2-8.
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Figure 2-13.
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Figure 2-14.
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Figure 2-16.
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Figure 2-17.
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Figure 2-20.
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Figure 2-21.

a
I
■g
JSJS

VI

gU

2 .5 08 0 0

7 0 0
2.00

6 0 0

5 0 0 1 .5 0

iyJL4 0 0

1.003 0 0

200
0 . 5 0

100

0 0.00

0 6 020 4 0 8 0 100

vi — -

&

C ro s s -Is la n d  V o lu m e  

(m 3)

• V o l  n o r m a l iz e d  b y  

t r a n s e c t a r e a

( m 3/ m 2)

S W Transect NE

69



Figure 2-22.
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Figure 2-23.

~  3 -0 0  

E
>  2 5 0  

E 2.00

5
E
.u

1.50

1.00*oOJ
dE
i  0.50b
o z

0.00

-3.5 -2.5 -1.5 -0 3  0.5

Long-term Shoreline Change {m/yr}

♦  Cross-Island 
Prism

•  Beach Prism

A Overwash 
Prism

71



CHAPTER 3
SPATIAL AND TEMPORAL TRENDS IN SHORELINE 
MIGRATION AND OVERWASH OCCURRENCE: 1938-2008
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3.1 Introduction
Barrier island overwash is a natural mechanism by which an island migrates in response 

to changes in sea level. Overwash benefits the coastal environment by supplying the necessary 

sediments to backbarrier marsh habitats supporting vegetation growth and providing preferred 

nesting habitat for threatened and endangered birds (Godfrey, 1970; Donnelly et al., 2006). At 

the same time, overwash can result in significant beach erosion, a lowering of the dune crest, and 

a complete reworking o f the topography damaging any structures in its path. The occurrence and 

extent of overwash on a given environment varies due to natural forcings (tide level, wave set-up, 

wind) as well as the localized topography and composition (elevation, vegetation, degree of 

sediment saturation) and, as a result, varies both temporarily and spatially (Kochel & Wampfler, 

1989; Donnelly et al., 2006). With heightened concerns o f rising sea level and increased societal 

impacts o f coastal storms, it is imperative that we improve understanding o f the interplay between 

shoreline erosion and barrier island overwash. Assessing the variability o f barrier island 

morphodynamics over time, (years to decades) and space, (meters to 1 0 s o f kms) will enable 

scientists to improve shoreline susceptibility models, thereby enabling coastal managers and 

residents to best prepare for future climate scenarios.

3.1.1 Motivation
Understanding the driving forces behind alongshore variability in shoreline behavior is of 

utmost importance for scientists working to forecast shoreline behavior and to resource managers 

working to adopt plans for future viability of coastal resources in the face o f rising sea level and 

changing storm conditions. Approximately 30% of the US coast is lined by barrier islands (Stutz 

& Pilkey, 2001) which offer unique and valuable habitats in their own right while simultaneously 

serving as important buffers shielding the mainland from the full force o f oceanic storms. Due to 

their high exposure and low topographic relief, barrier islands are especially susceptible to the 

impacts associated with sea level rise and storm activity. The morphodynamics of barrier islands
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are shaped by a combination o f natural factors such as sea and wind energy, sediment supply, 

substrate gradient and composition, sea level fluctuations as well as anthropogenic activities.

How these forcings vary in time and space and the relative importance o f each must be 

understood in order to develop reliable forecasts of shoreline trends and storm-susceptibility 

models.

3.1.2 Study Area Background
Onslow Beach offers an ideal setting to evaluate the evolution of a barrier island over the

past 80 years. The island has experienced alongshore variability in shoreline behavior as well as 

overwash occurrence over its recorded history. MCBCL is the largest Marine Corps amphibious 

training facility in the world, and high erosion rates (up to 3 m/yr) (Morton & Miller, 2005) 

coupled with the large overwash event at the southern end o f the island during Hurricanes Bertha 

and Fran in 1996 (Figure 3-1) have heightened concerns of long-term sustainability. Although 

military training activities do impact the site, the island provides an excellent study area because 

it is largely undeveloped and the activities that do occur are much more regulated and 

documented in comparison to anthropogenic impacts on the highly populated and developed 

neighboring barrier islands. This setting offers a unique opportunity to evaluate the role of 

overwash as a mechanism for shaping barrier island morphology and influencing shoreline 

migration rates. In addition, evaluating spatial and temporal trends in conjunction with historic 

storm data and well-documented land-use practices will enable us to better distinguish between 

natural versus anthropogenically-induced change.

Figure 3-2 shows an 1872 topographic sheet depicting the island prior to the construction 

o f the AIWW and prior to its purchase by the US Department o f the Navy in 1941. The overlying 

shorelines published by the US Geological Survey (Miller et al., 2005) depict the long-term trend 

o f erosion towards New River Inlet, stability in the central portion o f the island, and slight
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deposition near Brown’s Inlet, suggesting that these general trends in shoreline behavior began 

prior to the AIWW or military activities. Although human activities have undoubtedly affected 

evolution o f the barrier island, these data suggest that natural forces (e.g., wave climate, 

underlying geology, sediment availability, etc.) exert first-order control.

Onslow Beach exhibits distinct differences in morphology between the northern and 

southern portions o f the island. The southwestern half o f the island (from New River Inlet to 

Riseley Pier) is characterized by poorly developed, segmented dunes and is the site of extensive 

active and historic overwash. Dunes increase in elevation along the northern half with well- 

developed dune ridges approaching eight to nine meters in height in the proximity o f Brown’s 

Inlet (Figure 3-3). For a comparison between natural and anthropogenically-induced change, the 

study area was divided up into four zones which reflect the major beach activities within each 

zone (Figure 3-4). Zone 1 is difficult to access at high tide and is largely uninfluenced by 

anthropogenic disturbances barring some off-road vehicle usage in the vicinity of the New River 

Inlet. Zone 2 is where the majority o f amphibious training activities take place. Zone 3 is largely 

used as a recreational area for Marines and their families. Lastly, Zone 4 which extends to 

Brown’s Inlet, is a military impact zone which is completely off-limits to public access. 

Disturbances along this stretch of beach are very infrequent but have the potential to be quite 

large and this is also the location where dredge spoils from the AIWW are occasionally deposited. 

Morton and Miller (2005) calculated long-term (1872-1997) shoreline erosion rates greater than 3 

m/yr for the southern portion o f the island, while the central portion has remained relatively stable 

and the northern portion has been stable to slightly accretional.

3.2 Methods
Geospatial analyses provide a valuable tool for evaluating the evolution of coastlines over 

seasonal to decadal or longer time periods. A series of aerial photographs and satellite images
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depicting six time periods between 1938 and 2008 (Table 3-1) were used to track changes in 

shoreline position and overwash extent along Onslow Beach over the span of 80 years. For the 

purpose of this study, the active overwash region is the area seaward of the vegetation line and 

landward of the wet/dry line (a shoreline proxy) thereby including beach width in our 

calculations. In terms o f geomorphology, the dune toe provides a better representation of the 

seaward boundary o f overwash, however, it is often difficult to distinguish in aerial imagery. As 

a result, the wet/dry line was selected, which is visible in aerial imagery as a tonal change in sand 

color due to differences in water content and is the most commonly used proxy for shoreline 

position (Dolan et al., 1980; Smith & Zarillo, 1990) and closely approximates the High Water 

Line (HWL) ( Dolan et al., 1980). The vegetation line is a feature that is consistently 

distinguishable in aerial imagery, and based upon a Real-Time Kinematic (RTK) Differential 

GPS (DGPS) ground survey, provides a good approximation of the landward extent o f active 

overwash (Figure 3-5). A GIS-based tool (BeachTools) developed by the US Army Corps of 

Engineers for the purpose of delineating features such as the wet/dry line and vegetation line from 

aerial imagery was used to automate digitization o f these features (Hoeke et al., 2001). The 

Digital Shoreline Analysis System (DSAS) (Thieler et al., 2005) was used to generate rates-of- 

change for the time series of shorelines and vegetation lines. Shoreline migration within 1 km of 

New River Inlet is known to be dominated by inlet dynamics (based upon an 1872 T-sheet) and 

as a result, the stretches of beach within 1 km of New River or Brown's Inlet have been excluded 

from analyses.

Uncertainty associated with deriving shoreline change rates from aerial imagery can be 

divided into two categories: 1) errors associated with the original source data; and 2 ) errors 

introduced in measurement techniques. A description o f potential errors is provided below and 

an estimation of their cumulative effects upon our results is provided in Table 3-2. The values 

provided in Table 3-2 were also used within DSAS to generate accuracy statistics at the 90%
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confidence interval for vegetation line and shoreline positions as well as change rate calculations. 

Imagery was georeferenced using what are referred to as secondary or supplemental control 

points. The points differ from primary ground control points in that the coordinate information is 

obtained from other maps, images, or field surveys as opposed to direct field measurements 

(Thieler & Danforth, 1994). An IKONOS satellite image collected in September of 2006 was 

used as the basis by which all other imagery was georeferenced to a common projection and 

horizontal datum (UTM zone 18, NAD83). The 2006 imagery has a resolution of 80 cm and a 

reported horizontal circular error of 2.2 m at the 90% confidence interval (CE 90%). Assuming 

that the National Map Accuracy Standards (NMAS) application factor of 2.146 was used, this 

equates to a horizontal positioning RMSE of approximately 1 m (FGDC, 1998).

A sparsely developed barrier island that has undergone significant alterations as a result 

o f natural processes and human activities provides a challenging setting to locate well-defined 

points present in historical aerial photos as well as 2006 satellite imagery; however, a minimum 

of four control points were selected for each image. Points commonly used for georeferencing 

included the intersections o f roads, comers o f buildings, or distinct features in the marsh or 

meandering channel networks. A first-degree polynomial transformation was performed upon 

each image to estimate the best fit between all control points. The average RMS error for 

computed positions o f control points is listed for each time series in Table 3-2. Thieler and 

Danforth (1994) stress that these map transformation residuals (RMS errors) provide 

unrealistically low error estimates that do not adequately reflect the accuracy of the image. 

Unfortunately, in the absence of proper ground control points (which provide accurate coordinate 

and elevation data obtained by field surveys for well-defined locations in aerial images) and 

without camera calibration reports or the fiducial marks from the original photos, we were unable 

to assess errors introduced through distortion o f the camera lens and/or film or any tilt in the 

aircraft at the time of exposure. The majority o f images used, however, have an adjacent overlap
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of approximately 30%, and whenever possible, data from the center of the photo was used to limit 

the effects of radial or tilt distortion.

The line distinguishing between wet and dry sand (wet/dry line) is the most frequently 

used shoreline for digitizing because it is generally visible on aerial photographs as a significant 

tonal change (Theiler & Danforth, 1994). The wet/dry line serves as a proxy for the high water 

line (HWL) which is nearly equivalent to the mean HWL mapped as the shoreline on historical 

NOS T-sheets (Dolan et al., 1980). When using the wet/dry line to approximate shoreline 

position, a number o f errors must be taken into account including variability o f the position of 

HWL on the shoreface (due to changes in beach slope, waves, tide, and wind) interpretation of 

the wet/dry line on the aerial photograph, and the ability o f the digitizer to accurately annotate 

this line.

The greatest error associated with using the wet/dry line as a proxy for shoreline position 

is the natural migration of the HWL with seasonal and tidal fluctuations (Moore, 2000). The 

position o f the shoreline migrates due to: ( 1) tidal fluctuations; (2 ) seasonal changes in beach 

slope; (3) roughness o f the beach face; (4) wave height and period; (5) storm impacts, and (6 ) 

wind set-up and set-down (Dolan et al., 1980). The natural migration o f the shoreline must be 

taken into account when digitizing a wet/dry line from an aerial photograph which supplies only a 

snapshot of the water level at a given time. Errors due to seasonal variability were minimized by 

only using photographs collected between January and May, with the exception of November 

imagery from 1989 and post-storm imagery was avoided (Figure 3-6). To assess the excursion of 

the wet/dry line over the course of a tidal cycle Dolan et al., (1980) found that for medium-size 

sand beaches with slopes similar to the study area, the HWL migrates an average of 1 -2 m over a 

12-hour 25 minute tidal cycle. In accordance with the measurements o f Dolan et al., (1980) and 

following Smith and Zarillo (1990) this study assumes an uncertainty of ± 2 m in the position of 

the HWL for our long-term assessment o f shoreline change. This estimate does not account for
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larger-scale tidal or seasonal fluctuations and may underestimate short-term variations in 

shoreline position, which based upon monthly beach profiles over a 13-month period (Smith and 

Zarillo, 1990) may reach up to ± 20 m.

Although the error associated with the limitations o f an individual’s ability to visualize 

and digitize minor changes in pixel values was minimized through the use o f BeachTools, there 

remains variability due to differences in adjustments to the brightness and contrast applied to 

imagery as well as which pixels are selected as the basis for classification. BeachTools performs 

a clustered supervised classification based upon mean pixel values and outputs a vector polygon 

encircling pixels o f similar values. This approach minimizes the subjectivity in delineating such 

features and provides highly detailed output. To assess the error associated with the individual’s 

selection of pixels, a repetitive measurement o f the wet/dry line was performed three times over a 

600-m long stretch of beach. Each time, a different set o f pixels were highlighted to perfonn the 

classification analyses and the differences in positioning between the three lines calculated every 

10 m. Errors in an individual’s ability to clearly distinguish a wet/dry line is significantly 

hindered when the contrast o f the images is poor or if other shore parallel features such as tire 

tracks or erosional scarps are present, all of which could ultimately result in human 

misinterpretation of the HWL (Moore, 2000; Crowell et al., 1991).

Mapping the vegetation line also presents a degree o f subjectivity in that the density of 

vegetation which the users defines as the vegetation line must be consistent, and due to variations 

in imagery, selecting a equivalent sample from each time period can be challenging. Due to 

fragmentation of the dunes in all post-1938 imagery, the vegetation line cannot be accurately 

represented by a single line but must also be augmented by a number o f ‘‘vegetation islands” that 

occur seaward of a shore-parallel beach access road that intersects the dunes. The dirt road 

extends through Zones II and III and is only paved in Zone III. Since the aim of this research is 

to distinguish migration of the vegetation line due to overwash or natural processes, the
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vegetation line that coincides with the landward side of the road was not traced. The pockets of 

dune vegetation seaward of the road were considered a better representation of a natural 

vegetation line and although they are somewhat difficult to distinguish in aerial imagery due to 

their limited size, vegetation islands with an area greater than or equal to 2 0  m2 were encircled 

using BeachTools. The result is a segmented vegetation line that is totally absent from stretches 

o f the beach where development has completely eliminated the natural vegetation line.

Shore-normal transects obtained from the USGS National Shoreline Assessment (Miller 

et al., 2005) with an alongshore spacing of 50 m were used to evaluate changes in location of the 

shoreline and vegetation line for each time period. For 201 transects DSAS was used to measure 

the location o f each o f these geomorphic boundaries relative to an offshore baseline so that the 

migration of each feature could be evaluated independently o f one another or in relation to the 

other datasets. In areas where the shore-perpendicular transect intersects either the shoreline or 

vegetation line in more than one location (e.g. where there are multiple pockets of vegetation in 

the foredune), the intersection closest to the offshore baseline was selected for use in DSAS. 

DSAS also generated rate-of-change measurements in the form of linear regression or end-point 

rates as well as estimating the statistical uncertainty associated with each dataset and chosen 

method.

3.3 Results
Figures 3-7 through 3-12 show each set of imagery overlain by the digitized vegetation 

line and shoreline. A visual, qualitative assessment of changes to the barrier island is provided 

from these data. A direct comparison o f the location of the shoreline and vegetation line for each 

step in the time series is shown in Figure 3-13. The series of shoreline and vegetation line data 

was analyzed in DSAS to generate rate-of-change calculations based upon a linear regression, 

weighted linear regression, and end-point rates. In addition, for each shore-normal transect
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DSAS output the distance from the predefined baseline and accuracy assessments o f computed 

shoreline positions and erosion rates based upon the reported accuracy of the input data. Samples 

o f data generated from DSAS are provided in Table 3-3, to receive digital copies of this 

information for our entire study area, contact Jesse McNinch (Jesse.McNinch@usace.army.mil).

From 1938 to 2008 Onslow Beach experienced an average shoreline erosion rate of 

1.08 m /yr based upon a linear regression between all six time periods. A maximum depositional 

rate of 1.65 m/yr occurred near the northeast end o f the island and a maximum erosion o f 3.85 

m/yr at the southwest end (Figure 3-14). These rates are similar to the average short-term 

shoreline change rate of 1.27 m/yr calculated by the USGS (Morton & Miller, 2005) based upon a 

1973 Topo-Sheet and a 1997 lidar-derived shoreline. Morton and Miller (2005) estimated an 

average long-term (1872 -  1997) erosion rate of 0.39 m/yr. Figure 3-15 compares our shoreline 

change rates with those from the USGS on a transect-by-transect basis.

Tracking net movement o f the shoreline and vegetation line (marking the landward extent 

o f overwash) from 1938 to 2008 (addressing Objective 4) reveals that there is a significant 

positive correlation between the two (Figure 3-16; R2 = 0.7, 95% Cl). In addition, there is a 

positive correlation (R2 = 0.7, 95% Cl) between the rate of shoreline and vegetation line change 

(Figure 3-17). This quantitatively confirms what one may intuitively suspect, that the shoreline 

and vegetation line behave in concert with one another. If this were not the case, a divergence of 

the shoreline and vegetation line would result in an infinite widening of the beach, or a 

convergence in the total disappearance of the beach. Figure 3-18 demonstrates how increases in 

the distance between the shoreline (HWL) and the vegetation line serves as a good indication of 

regions where overwash occurs. Locations o f the 4 zones o f predominant beach activity 

(displayed in Figure 3-4) are overlain for reference. Distinct variations in the width between the 

shoreline and vegetation line can be seen between Zones 1 and 2 where overwash is dominant in 

comparison to Zones 3 and 4 where overwash is virtually non-existent. An increase in the
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average distance between the shoreline and the vegetation line from 46 m (SD = 22) in 1938 to 63 

m (SD = 63) in 2008, indicates an increase in overwash extent and supports Hypothesis 3. Figure 

3-19 shows increased distances between the shoreline and vegetation line in both the 1956 and 

1998 which correspond to periods of increased storm frequency (Figure 3-6).
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3.4 Chapter 3 Tables
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Table 3-1.

Imagery Date Pixel Size (m)
B&W Aerial Photo 04/24/1938 1 or 5
B&W Aerial Photo 02/15/19561 1
B&W Aerial Photo 01/22/1979 0.7

Color Infrared DOQ 11/25/1989 1
Natural Color Orthophotos osnmoor 0.3
IKONOS Satellite Image 05/02/2008 0.8

1 Collection of the 1956 photos spanned three dates: Jan-25, Feb-L and March-4.. For consistency, 
a single date of Feb-15 is used in this table and all future references.

* The precise dates within March that die 2CN)S imagery was collected is unknown.
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Table 3-2.

Approximate Errors (m, ±) Time Period
1938 1956 1979 1989 1998 2008

2006 IKONOS Horizontal RMSE 1 1 1 1 1 1
Subsequent Georeferencing RM SE 1 2.2 3.5 5,1 l.S 0.8
Precision o f Digitization 5.6 5.6 5.6 5.6 5.6 5.6
HWL Variability with Tidal Cycle 2 2 2 9 2 2

Total Shoreline Position Error 6.1 6.4 7.0 7.9 6.3 6.1
Total Vegetation Line Position Error 5.8 6.1 6.7 7.6 6.0 5.7



Table 3-3.

Shoreline Change Rates & Associated Errors 
Transect EPR WLR WR2 WSE WCI90 LRR LR2 ISE LCI90 IMS

1 2.07 1.71 0.82 2.43 0 . 8 6 1.65 0.80 24.35 0.87 1.03
2 1.96 1.59 0,77 2.61 0.93 1.52 0.75 26.07 0.94 0,84
3 1 .8 6 1.48 0.77 2.46 0.87 1.42 0.74 24.62 0 . 8 8 0.81

Distance (m) of Shoreline from Offshore Baseline 

Transect 04/16/1938 02/15/1956 01/22/1979 11/25/1989 03/01/1998 05/10/2008

1 190.7 254.1 370.0 405.8 471.4 364.4

2 190.8 258.1 359.8 400.7 466.1 358,3

3 186.9 258.6 359.0 392.8 468.4 360.9

Net M ovem ent (m) of Shoreline from Previous Survey (+ offshore, - onshore) 
Transect 1938-1956 1956-1979 1979-1989 1989-1998 1998-2008

1 -63.4 -116.0 -35.8 -65,6 107.0
2 -67.3 -101,7 -40.9 -65.4 107.8
3 -71.7 -100.4 -33.7 -75.6 107.5
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Figure 3-5.
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Figure 3-15.
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Figure 3-16.
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Figure 3-17.
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Figure 3-18.
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Figure 3-19.
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CHAPTER 4
DISCUSSION, FUTURE WORK, AND CONCLUSIONS
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4.1 Discussion
A number o f significant findings are presented in this research which not only quantify 

the role o f barrier island overwash in the evolution of Onslow Beach, but also have broad- 

reaching implications for the importance o f overwash as a mechanism for barrier island migration 

over seasonal to decadal timescales. The geophysical, geospatial, and sedimentological data 

presented here indicate that: (1) the relevant-sand prism of Onslow Beach is severely limited; (2) 

approximately 1 1 % of the prism is comprised o f sedimentologically distinct washover deposits; 

(3) the southern portion of Onslow Beach is actively undergoing barrier-island rollover; and (4) 

natural forcings have predominately shaped the evolution o f Onslow Beach over the past 80 

years.

The relevant-sand prism of southern Onslow Beach is severely limited. A volume of 1. 8  

± 1.1 x 106 m3 equates an average thickness o f only 90 cm of sand overlying the uppermost peat 

layer. The thickness o f Onslow’s relevant-sand prism is thinner than the prior estimate o f 2-3 m 

for transgressive barrier islands provided by Heron et al. (1984) based upon drill holes collected 

along Core Banks and Portsmouth Banks, NC. This suggests that even in relation to other 

transgressive barrier islands o f the eastern United States, Onslow Beach represents an end 

member in terms o f sediment availability. Approximately 199 ± 8 8  x 1 0 3 m3 o f sediment within 

the active overwash complex is comprised o f sedimentologically distinct washover deposits. In 

other words, approximately 29% of the active overwash complex or 11% of the entire study 

area’s relevant-sand prism consists o f sedimentologically distinct washover deposits. To the best 

o f our knowledge, there are no other such estimates of washover volume relative to barrier island 

prism to compare this estimate with. The closest comparison we can draw is with Skallingen 

barrier spit in the Danish Wadden Sea where Christiansen et al. (2004) estimated that overwash 

comprised 51% of the spits’ standing volume above present day mean sea level. Although our 

research objectives are quite similar, the results are not directly comparable due to the different 

settings and primary modes of formation. Skallingen is a young barrier spit that formed
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approximately 400 years ago through spit elongation ( Davis et al., 1997; Christiansen et al., 

2004) as opposed to the barrier islands of the Outer Banks which originally formed offshore and 

translated landward over time reaching approximately their present day location around 4,000 

years ago (Heron et al., 1984). Furthermore, Davis et al. (1997) and Christiansen et al. (2004) 

attribute the relatively high percentage of washover deposits found at Skallingen to the high- 

energy conditions that existed during the spits' initial formation (prior to any dune development).

The large sheetwash at the southwestern end of Onslow Beach is a textbook example of 

barrier island rollover. The sediments eroded from the nearshore during Hurricanes Bertha and 

Fran were deposited upon and behind the barrier island, enabling it to maintain mass while 

translating landward. As a first order approximation o f how this sheetwash has evolved since 

initial deposition, full feature lidar collected in the fall o f 1997 (www.csc.noaa.gov/digitalcoast), 

one year after Hurricanes Bertha and Fran struck, was subtracted from 2007 NGA bare earth 

lidar. Figure 4-1 indicates that this unvegetated region has accumulated an average o f 40 cm of 

sediment over the 12 years following Hurricane Fran. The sheetwash deposited by Hurricanes 

Bertha and Fran has, in essence, served as a platform upon which aeolian sediments and 

washover from minor events continue to aggrade.

The fact the sediments deposited on the island during storm events are retained within the 

sediment column over the long term demonstrates that overwash offers an important mechanism 

for island preservation in the face o f rising sea-level and increased storm activity. This finding is 

particularly relevant for long-term sustainability o f the island and demonstrates that although 

large storm events may result in shoreline erosion, a significant proportion of sediment removed 

from the nearshore is not lost from the system via offshore transport. Rather, it is deposited either 

on top o f or behind the barrier island. This loss of sediment from the active littoral cells equates 

to a gain for the barrier island itself.
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As is the case for the many coastlines, it is unlikely that the shoreline will be allowed to 

transgress landward indefinitely without some form of interference from coastal development.

For the majority of Onslow Beach, if washover sediments were to reach the back side of the 

island, they would spill into the AIWW. If the position of the AIWW is held static into the future 

through dredging, and the barrier island is unable to transgress landward, an overall narrowing of 

the island will occur. Under the unlikely scenario that the trends in shoreline erosion that have 

occurred over the past 80 years (Figure 3-14) are projected into the future and all other conditions 

remain the same, the shoreline along the central portion o f the island would erode to the present- 

day location o f the AIWW in approximately 400 years. This research, however, exemplifies the 

dynamic nature of shoreline evolution, thereby highlighting the fundamental faults associated 

with applying linear projection rates, such as these, into the future. Forecast models that simply 

project historic shoreline trends into the future, or apply static models of inundation that do not 

take into account the effects of erosion and alterations in topography are likely to generate 

unrealistic predictions.

Regions experiencing an increase in the distance between the shoreline and the vegetation 

line, a likely indication of overwash, are shown to fluctuate through time in accordance with 

storm frequency. More research is necessary to examine overwash impact as it varies with storm 

intensity, tide level, wind and wave-setup, etc., but this reinforces the idea that trends in barrier 

island morphodynamics can be largely controlled by less frequent, high intensity events. This, in 

combination with knowledge that the area o f highest shoreline erosion rates and overwash along 

Onslow Beach coincide with an undeveloped region that is largely uninfluenced by anthropogenic 

activities, underscores the fact that natural forcings (sea level, wind and wave energy, geology, 

etc.) exert first order control on the barrier island morphodynamics of Onslow Beach.

The fact that we document a moderately significant correlation between long-term 

shoreline change and washover volume (Figure 2-20), but do not see a linear trend between
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shoreline change and volume of the relevant sand-prism (Figure 2-23) is somewhat conflicting 

and a bit puzzling. Furthermore, the latter is inconsistent with what Miselis and McNinch (2006) 

found in the nearshore subaqueous environment. This could indicate that the subaerial sediment 

volume of a barrier island may not be directly correlated with nearshore dynamics, at least in the 

case o f severely sediment limited barrier islands such as Onslow Beach. Alternatively, the lack 

of correlation with alongshore variation in the relevant-sand prism may be a result of the 

landward and seaward boundaries used in this study. It is possible that the volume of sediment 

seaward of the shoreline plays a large role and that when our estimates o f barrier island prism 

volume are combined with volume estimates from the nearshore, a stronger correlation may 

appear. Nevertheless, this is a point which warrants further investigation.

4.2 Future Work
Although not addressed in this thesis, our GPR surveys also extended north of Riseley 

Pier in a shore parallel transect running the length of the beach access road to approximately 2.8 

km southwest of Brown’s Inlet (where public access is not allowed) along with three cross-island 

transects in the northern and central portions o f the island. At the time this thesis was submitted, 

no vibracores had been collected to ground-truth the GPR north o f Riseley Pier, thus we limited 

our volume calculations to the southern half o f the island where we had good control. There were 

however, a number of interesting features discemable in the GPR including what looks like a 

historic river outlet ~ 3 km southwest of the present day location of Brown’s Inlet. This could be 

o f great importance when evaluating the long-term evolution o f the island and explaining the 

dramatic differences in morphology between the two ends o f the island. Given a bit more 

ground-truthing, we hope to extend our relevant-sand prism calculations to the entire island and 

to collect cores along the back side o f the island for better landward constraint on the depth o f the 

sand/silt contact. In addition, we plan to extend our volume calculations to include the nearshore 

environment by integrating submerged sediment volumes derived from multibeam bathymetry
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and high-resolution sub-bottom (chirp) profiles that were collected offshore (in depths < 1 0  m) 

and along the back side o f the island in the AIWW in September of 2007 (Wadman et al., 2008). 

These data will be used in combination with GPR collected along the barrier island, both ground- 

truthed by sediment vibracores, to develop a more comprehensive estimate o f the volume of 

sediment available for transport via wind or sea energy.

Although it was not accomplished with this study, it is possible that under proper 

conditions, GPR could resolve finer-scale overwash deposits. Due to the large number of 

properties that can result in horizontal reflection surfaces, and the very fine scale of washover 

deposits, it would be advised that attempts to do so be controlled by numerous sediment samples 

with ample control on changes in water content with depth and, ideally, collected at a time when 

the water table is low.

112



4.3 Major Conclusions

• The volume of the relevant-sand prism south of Riseley Pier is 1 . 8  ± 1.1 x 106 m3 and 
averages -9 0  cm in thickness.

• Sedimentologically distinct washover deposits make up approximately 199 ± 8 8  x 1 0 3 m3

of sediment which equals 29% of the active overwash complex or 11% of the entire study 
area's relevant sand-prism.

• A simple linear relationship between spatial and temporal variability in shoreline 
behavior and volume of the relevant-sand prism does not exist.

• A positive correlation exists between both rates of change and net movement o f the 
shorelines and vegetation lines.

• Changes in the distance between the shoreline and the vegetation line provide a useful 
metric for identifying areas experiencing overwash.

• The average distance between the shoreline and the vegetation line increased from 1938 
to 2008, indicating an increase in overwash area, which appears to fluctuate in 
accordance with storm frequency.

• The region o f Onslow Beach experiencing the highest rate of erosion from 1938-2008 
(3.85 m/yr) is not the region used for military amphibious training activities.

• Large overwash events are a mechanism by which sediments can accumulate on and
behind the island, thereby increasing the relevant-sand prism and decreasing 
susceptibility to future erosion.
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4.4 Chapter 4 Figures

114



Figure 4-1.
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Sample Depth (cm) Water Content (%)

Core ID: OBFDWOl, Coordinates: 286817.83, 3824302.77 (UTM, m)
3-5 3.0

25-27 6.4
55-57 4.7

Core ID: OBFDW02, Coordinates: 286745.80, 3824396.16 (UTM, m) 
10-12 8.8
24-25 17.6
40-42 20.4
60-62 16.4
70-72 17.5

Core ID: OBBWOl, Coordinates: 286250.46, 3824014.31 (UTM, m)
4-6 4.1

25-27 3.9
45-47 16.5

Core ID: OBBW02, Coordinates: 286267.76, 3823969.75 (UTM, m)
5-7 5.5

15-17 4.5
30-32 4.5
53-56 2.9
6 6 - 6 8 11.4
79-81 17.2

Core ID: OBEG4-01, Coordinates: 289262.43, 3825909.92 (UTM, m)
7-9 2.9

2 0 - 2 2 4.5
30-32 3.8
40-42 5.8
50-52 5.8
60-62 8.7
70-72 13.6
75-77 19.4
80-82 21.3
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Sample Depth (cm) Water Content (%)

Core ID: OBEG4-02, Coordinates: 289254.60, 5825918.81 (UTM, m)
0 - 1 0 4.5

2 0 - 2 2 3.7
30-32 7.7
40-42 14.4
50-52 17.8
60-62 19.1

Core ID: OBEG4-03, Coordinates: 289232.73, 3825940.54 (UTM, m)
8 -1 0 6.3
18-20 4.0
28-30 8.9
38-40 11.9
48-50 13.3
58-60 15.8
68-70 19.4

Core ID: OBEG8-01, Coordinates: 288680.55, 3825472.30 (UTM, m)
1 0 -1 2 3.3
21-23 6 .0

31-33 6.3
41-43 8 .2

51-53 16.3
61-63 13.1
65-67 12.3
71-73 17.8
79-81 1 2 .2

82-84 17.8
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Sample Depth (cm) Water Content (%)

Core ID: OBEG-02, Coordinates: 288664.39, 3825504.43 (UTM, m)
8-10 2.8

18-20 4.3
28-30 4.1
38-40 6.0
42-44 6.1
48-50 7.5
58-60 12.0
67-69 16.3
69-71 15.1
77-79 14.4
84-87 16.5
88-90 15.9
95-97 14.2
98-100 12.5
105-107 15.5
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Portion of Relevant- Portion of Relevant-
Total Sand Prism in Sand Prism in Active Washover

Relevant-Sand Prism Beach Area Overwash Region Estimates
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7 8 408 520.07 1.27 20 31.72 1.59 16 3 8 .0 6 2.38 8.32 1.6
7 9 393 584.18 1.49 17 32.39 1.91 33 7 9 .6 4 2.41 17.16 2.9
8 0 376 498.54 1.33 18 37.96 2.11 91 2 0 4 .1 0 2.24 47.32 9.5
81 381 589.87 1.55 16 31.56 1.97 106 2 1 4 .1 8 2.02 55.12 9.3
8 2 373 607.83 1.63 14 26.70 1.91 76 2 3 7 .8 4 3.13 39.52 6.5
8 3 378 590.91 1.56 15 29.83 1.99 52 1 4 1 .3 3 2.72 27.04 4.6
8 4 375 731.62 1.95 13 23.71 1.82 69 1 6 6 .6 0 2.41 35.88 4.9
8 5 369 538.43 1.46 11 17.69 1.61 94 2 1 3 .5 0 2.27 48.88 9.1
8 6 352 540.28 1.53 13 21.84 1.68 86 2 6 4 .0 5 3.07 44.72 8.3
8 7 327 374.77 1.15 11 18.72 1.70 41 1 2 1 .9 3 2.97 21.32 5.7
8 8 353 478.99 1.36 10 16.66 1.67 65 1 4 8 .4 2 2.28 33.80 7.1
8 9 339 523.70 1.54 13 20.38 1.57 47 1 1 2 .5 4 2.39 24.44 4.7
9 0 334 426.79 1.28 9 12.92 1.44 107 2 0 1 .1 7 1.88 55.64 13.0
91 333 480.36 1.44 8 12.83 1.60 93 2 0 0 .1 3 2.15 48.36 10.1
9 2 320 525.66 1.64 6 8.12 1.35 56 1 4 1 .9 0 2.53 29.12 5.5
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93 313 574.36 1.84 5 6.66 1.33 49 118.08 2.41 25.48 4.4
94 311 534.00 1.72 5 4.88 0.98 65 94.48 1.45 33.80 6.3
95 301 380.24 1.26 7 5.11 0.73 73 73.48 1.01 37.96 10.0
96 293 367.34 1.25 4 3.64 0.91 126 137.26 1.09 65.52 17.8
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