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A M OLECULAR ANALYSIS OF ATLANTIC MENHADEN 
CBREVOORTIA TYRANNUS) STOCK STRUCTURE



ABSTRACT

Atlantic menhaden is an ecologically and economically important species along 
the U.S. east coast. As a filter-feeder and key prey fish, it provides a critical link between 
primary production, phytoplankton, and larger piscivorous predators, such as striped bass, 
bluefish, and weakfish. The species is also the target o f one o f the largest commercial 
fisheries in the country. M enhaden are assessed as a single, coastwide stock, and recent 
assessments indicate that it is not overfished. However, there is very limited population 
genetics data to support the assumption o f a single stock. Additionally, the recent 
consolidation o f the fishery and localization o f harvests within and around Chesapeake 
Bay have raised concerns over the possibility o f ‘localized depletion’ o f the species in 
this area. This study used rapidly evolving molecular markers to examine Atlantic 
menhaden stock structure along the U.S. Atlantic coast, specifically to determine the 
potential for the loss o f unique genetic variation resulting from concentrated fishing 
pressure in and around Chesapeake Bay.

Samples were collected from up to three cohorts o f Atlantic menhaden (2005,
2006, and 2007 year classes), at four geographic locations along the U.S. Atlantic coast 
(New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic) in 2006 and
2007. Two independent classes o f molecular markers were surveyed: the mitochondrial 
cytochrome c oxidase subunit I (COI) gene region and seven nuclear microsatellite loci. 
All markers revealed considerable genetic variation. Hierarchical analyses o f molecular 
variance (AMOVA) and examination o f pairwise 0 s t , F s t > and R s t  estimates indicate a 
homogeneous distribution o f genetic variation within Atlantic menhaden (all region 
AMOVAs: & s t =  -0.00873, F s t =  0.00515 (F 5 7  method), F s t  = -0.00666 ( ^ 7  method); 
/?>0.05). The genetic connectivity between the regional collections suggests that 
concentrated fishing pressure in and around Chesapeake Bay will not result in a 
significant loss o f unique genetic variation.
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INTRODUCTION



Atlantic menhaden (Brevoortia tyrannus Latrobe 1802) is a member o f the New 

W orld genus Brevoortia Gill 1861 (Clupeiformes: Clupeidae: Alosinae). The genus 

contains five planktivorous species that form large, dense schools in nearshore 

environments. The four North American menhadens are divided into two groups: large- 

scaled and small-scaled. The large-scaled group includes Atlantic menhaden, distributed 

along the Atlantic coast from Indian River, Florida to Nova Scotia, Canada (Whitehead 

1985), and gulf menhaden (B. patronus Goode 1879), distributed along the G ulf o f 

Mexico coast from Florida Bay to the G ulf o f Campeche, Mexico (Whitehead 1985) 

(Figure 1). The small-scaled group includes yellowfin menhaden (B. smithi Hildebrand 

1941), distributed around the Florida peninsula from Beaufort, North Carolina to 

Louisiana (W hitehead 1985), and finescale menhaden (B. gunteri Hildebrand 1948), 

distributed from Chandeleur Sound, Louisiana to the G ulf o f Campeche, Mexico 

(W hitehead 1985) (Figure 1). Anderson (2007) used mitochondrial DNA sequence and 

nuclear microsatellite data to validate that large-scaled and small-scaled menhadens 

comprise two distinct evolutionary lineages.

Identification o f Atlantic menhaden can be particularly difficult. They are 

sympatric over part o f their range with yellowfin menhaden. But, when compared with 

yellowfin menhaden, Atlantic menhaden have larger scales with notably longer 

pectinations, pale gray fins (as opposed to golden yellow), and a series o f spots behind 

the large shoulder spot (Bigelow et al. 1963). Atlantic menhaden are also 

morphologically similar to gulf menhaden, although their ranges are not believed to 

overlap (Bigelow et al. 1963). When compared with gulf menhaden, Atlantic menhaden 

are larger, have a less convex body shape, as well as a higher number o f predorsal scales,
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vertebrae, and ventral scutes (Bigelow et al. 1963). While the mean values o f some o f 

the morphometric and meristic characters are significantly different between the two 

species, the ranges o f variation are coincident (Dahlberg 1970).

O f the North American Brevoortia , Atlantic menhaden undertake the longest 

coastal migrations and have the most temporally and geographically protracted spawning 

season (Whitehead 1985). The northward spring migration begins from the 

overwintering grounds o ff Cape Hatteras, N.C. and appears to be triggered by seasonal 

ocean temperature changes (Reintjes 1969). The migration distance is age and size 

dependent with the older, larger fish migrating further north (Dryfoos et al. 1973,

Quinlan et al. 1999). By summer, Atlantic menhaden are distributed from northern 

Florida to Maine (Ahrenholz 1991). Some spawning occurs in the northern part o f the 

range throughout the summer and continues as the fish migrate southward in September 

(Rice et al. 1999). By November, most o f the adults have returned to waters off Cape 

Hatteras, N.C. Peak spawning is believed to occur in that region during the winter 

months (Checkley et al. 1988).

Due in part to their spatially and temporally protracted spawning season, Atlantic 

menhaden have the most widely distributed clupeoid larvae in the western North Atlantic, 

occurring from Maine to Mexico, from fresh waters (Kendall and Reintjes 1975) to more 

than 40 miles offshore (Massmann et al. 1961). The Atlantic coast estuaries within this 

range serve as nursery grounds for larval and juvenile Atlantic menhaden. Larvae feed 

within six days o f fertilization and enter the estuaries and metamorphose after 30 to 90 

days (Checkley et al. 1988). Juvenile emigration from the estuarine nursery area is 

triggered by the onset o f sustained low water temperatures, which is coincident with
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autumnal phytoplankton blooms (Friedland and Haas 1988). Tag recoveries suggest that 

Atlantic menhaden o f differing ages and sizes share the overwintering grounds off Cape 

Hatteras (Dryfoos et al. 1973). Large juveniles participate in the northward spring 

migration but few age-1 fish are caught north o f Delaware Bay and none are caught north 

o f New Jersey (Nicholson 1972, Kroger and Guthrie 1973). By two years o f age, most 

fish are mature, migrating adults (Higham and Nicholson 1964). The longevity for 

Atlantic menhaden is estimated at 10-12 years, but few fish have been reported to reach 

that age (Reintjes 1969).

“The M ost Important Fish in the Sea ”

While cultural historian H. Bruce Franklin’s (2007) naming o f Atlantic menhaden 

as “the most important fish in the sea” is a gross hyperbole, Atlantic menhaden do have 

major economic and ecological significance. The commercial fishery for Atlantic 

menhaden generates over $45 million in annual revenue (Southwick Associates and 

Loftus 2006). Atlantic menhaden-dependent recreational fisheries generate $236 million 

in annual revenue (Southwick Associates and Loftus 2006). Additionally, Atlantic 

menhaden have high ecological value as a forage base and consumer o f primary 

production (Goldsborough 2006).

The Atlantic menhaden commercial fishery is divided into two components: a 

smaller bait fishery and a larger reduction fishery. Bait fishery landings have been 

steady, averaging 34,000 metric tons since the mid 1980s, and currently comprise 21% of 

total Atlantic menhaden landings (ASMFC 2006). Reduction fishery landings, however, 

have progressively declined from peak landings in the 1950s (>600,000 metric tons) to
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146,900 metric tons in 2005 (ASMFC 2006). O f the 20 reduction plants once operating 

along the U.S. Atlantic coast, only the Reedville, Virginia facility is currently active. The 

Reedville fleet ranges from New Jersey to North Carolina waters but focuses its efforts 

within Chesapeake Bay and nearby waters. As a result, the proportion o f Atlantic 

menhaden reduction landings taken from inside Chesapeake Bay has increased from 47% 

(1985-1995 average) to 58% (1996-2004 average), although the actual removals from the 

Bay have decreased by 28% over the same period (ASMFC 2005). The 2006 total 

landings continue the downward trend at 13% less than the previous five year average 

(ASMFC 2007). Nonetheless, Atlantic menhaden account for 6 % of all U.S. commercial 

fishery landings (by weight), making the fishery the fifth largest (by weight) in the 

country (NMFS 2005).

Atlantic menhaden are a principal component o f the diets o f many piscivorous 

fishes, including striped bass (Morone saxatilis), bluefish (Pomatomus saltatrix), and 

weakfish (Cynoscion regalis), which support large recreational fisheries (Hartman and 

Brandt 1995). Economically, the value o f these recreational fisheries far surpasses the 

value o f the traditional reduction Atlantic menhaden fishery. In 2005 alone, the Atlantic 

menhaden-dependent recreational fisheries produced $111,507,900 more in Virginia 

income than the Atlantic menhaden commercial fishery (Southwick Associates and 

Loftus 2006).

In addition to their importance as a prey type, Atlantic menhaden may regulate 

water quality. As filter-feeders, Atlantic menhaden remove particulates (plankton and 

detritus) from the water column, which may enhance water clarity and mitigate problems 

associated with eutrophication (Kemp et al. 2005). Durbin and Durbin (1975) suggested
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that large schools o f adult Atlantic menhaden can significantly impact local 

phytoplankton and zooplankton concentrations. This impact, however, may not be 

eutrophication mitigation. Lynch et al. (in review) evaluated the age-specific ingestion 

rates o f Atlantic menhaden and found that age-l+  menhaden consumed zooplankton and 

exhibited no ingestion o f phytoplankton. These findings suggest that older menhaden 

may, in fact, enhance phytoplankton production (and by proxy eutrophication) by 

relaxing grazing pressure.

Atlantic Menhaden Stock Structure Analyses

Though the extensive seasonal migrations o f Atlantic menhaden might suggest 

that the species comprises one homogeneous population, some widely distributed, 

migratory, marine fishes exhibit stock structure (e.g. Atlantic herring, Clupea harengus, 

lies and Sinclair 1982; Atlantic cod, Gadus morhua , Campana et al. 1999). Stocks, 

defined as populations with spatial and temporal integrity, respond independently to 

fishing pressure (Carvalho and Hauser 1994). They are traditionally differentiated using 

tagging, life history, and/or morphometric and meristic data (Carvalho and Hauser 1994). 

Stock structure analyses o f Atlantic menhaden have proposed as few as one and as many 

as three different stocks, principally on the basis o f meristics and morphometries (June 

1958, 1965; Sutherland 1963; June and Nicholson 1964; Nicholson 1972, 1978; Dryfoos 

et al. 1973; Epperly 1989).

Two populations o f Atlantic menhaden, one north and the other south o f Long 

Island, N.Y., have been suggested on the basis o f vertebral counts and transferrin allele 

frequencies (June 1958, 1965; Sutherland 1963; Epperly 1989). Sutherland (1963)



hypothesized that mean vertebral number differences between juveniles were associated 

with water temperature at spawning time and that they were indicative o f reproductive 

isolation. June (1965) related the vertebral differences to two discrete groups o f Atlantic 

menhaden spawners, one occurring in cool, Cape Cod and Long Island waters in the 

spring and the other occurring in the warmer, Long Island and North Carolina waters in 

the fall. Nicholson (1972), however, refuted claims to a distinct northern population, 

citing that the vertebral differences are more likely the result o f phenotypic plasticity due 

to environmental factors (i.e., water temperature at spawning time) than heritable 

characters. Epperly (1989) found allele frequency differences at the transferrin locus to 

parallel vertebral count differences and suggested that Atlantic menhaden comprise at 

least two stocks.

Based on the presence o f two generalized north-south migration tracts, June and 

Nicholson (1964) proposed two major population components o f Atlantic menhaden, one 

occurring north and the other occurring south o f Cape Hatteras, N.C. They found small, 

sexually mature fish in North Carolina waters in late October and early November, well 

before the arrival o f the larger, sexually mature fish from the north, as well as spawning 

fish o ff northern Florida in late winter and early spring (June and Nicholson 1964). 

Dryfoos et al. (1973) and Nicholson (1978) used tag and recapture methodology to 

follow migrations o f Atlantic menhaden. The recoveries indicated that Atlantic 

menhaden stratify by age and size as they migrate northward from Cape Hatteras, N.C. in 

spring and return southward in fall, with the older, larger fish migrating further distances 

(Dryfoos et al. 1973, Nicholson 1978). Because o f  the pattern o f tag recoveries, Dryfoos 

et al. (1973) and Nicholson (1978) recommended that the Atlantic menhaden resource be
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considered a single stock. Citing the phenotypic plasticity o f N icholson (1972) and the 

tag returns o f Dryfoos et al. (1973) and Nicholson (1978), the Atlantic States Marine 

Fisheries Commission regards Atlantic menhaden as one coastwide stock, although the 

transferrin results o f Epperly (1989) suggest that further genetic study is warranted.

Clupeiform Genetic Stock Structure Analyses

Though little work has been done on Atlantic menhaden, genetic studies have 

been used to examine stock structure for other clupeids and engraulids. A genetic stock 

is defined as a reproductively isolated unit that is genetically distinct from other units 

(Waples 1987). Stocks can be distinguished using a number o f different molecular 

markers including allozymes, restriction fragment length polymorphisms (RFLPs), 

microsatellites, and direct DNA sequences.

Initially, allozymes were the main marker used to describe genetic stocks in 

clupeiforms. Allozymes are polymorphic proteins, the alleles o f which can be separated 

primarily by charge using gel electrophoresis. Allozyme analysis identified three stocks 

o f northern anchovy (Engraulis mordax) and differentiated Pacific herring (Clupea 

pallasi) from the Bering Sea and the eastern North Pacific (Vrooman et al. 1981, Grant 

and Utter 1984). Allozyme analysis described panmictic populations o f Atlantic herring 

(C. harengus), cape anchovy (E. capensis), and bay anchovy (Anchoa mitchilli) (Grant 

1984, Jorstad et al. 1991, Grant 1985, Morgan et al. 1995, respectively). The 

discriminatory power o f allozymes, however, is limited because the evolutionary rate o f 

the amino acid sequences o f most proteins is very low (many changes at the DNA level
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do not result in different amino acids) and not all amino acid substitutions result in charge 

changes.

Analysis o f DNA, which investigates changes at the nucleotide level, provides a 

higher level o f genetic resolution than analysis o f allozymes. While proteins are usually 

under intense selective pressure, many regions o f DNA are neutral and can mutate with 

little functional consequence. Originally, restriction fragment length polymorphism 

(RFLP) analyses were used to study DNA variation. In RFLP analysis, restriction 

enzymes are used to cut the DNA strand at specific restriction sites, generating fragments 

that are separated electrophoretically. Individuals with different RFLP patterns have 

different genetic sequences. RFLP studies can be conducted on the entire mitochondrial 

genome or an amplified mitochondrial gene region. This process can be extended to 

include a suite o f restriction enzymes to effectively survey more o f a gene region. Avise 

et al. (1989) used RFLP analysis o f the entire mitochondrial genome to investigate 

genetic relationships o f Atlantic and gulf menhaden, finding two clades that failed to 

resolve the two species. Bowen and Avise (1990) suggested historical isolation and 

secondary contact (recent gene flow) between Atlantic and gulf menhaden around the 

Florida peninsula as an explanation for the paraphyletic, two-clade structure. In another 

RFLP study o f clupeids, Hauser et al. (2001) found evidence o f  genetic differentiation 

between Baltic and Celtic Sea Atlantic herring (C. harengus) using the mitochondrial 

ND3/4  and ND 5/6  regions.

More recently, nuclear micro satellite loci have been favored for investigation o f 

population structure in clupeids because o f their rapid evolutionary rates. Microsatellites, 

also known as variable number tandem repeats, are nuclear loci consisting o f short
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sequence repeats (usually 2-5 nucleotides) which are generally assumed to be selectively 

neutral. Alleles with different repeat numbers are created by slip-strand mispairing. 

Slip-strand mispairing is a DNA replication error in which a DNA polymerase 

disassociates from a repeat and incorrectly rebinds to another repeat on the template 

DNA strand. As a result, copies o f the repeat are either added to or deleted from the new 

strand o f DNA. The fast rate o f mutation seen in microsatellites can lead to homoplasy, 

so they are best suited for intraspecific studies.

The development o f suitable microsatellite primers is a time intensive process. 

Nonetheless, primers have been characterized for a number o f clupeids including: allis 

shad (Alosa alosa ; Faria et al. 2004), American shad (A. sapidissima; Julian and Bartron 

2007), Atlantic herring (McPherson et al. 2001), Pacific herring (O ’Connell et al. 1998, 

Miller et al. 2001, Olsen et al. 2002), Pacific sardine (S. sagax sagax\ Pereyra et al. 

2004), and twaite shad (A. fallax\ Faria et al. 2004). O ’Connell et al. (1998) used 

microsatellite analysis to confirm the separation o f  the Bering Sea and G ulf o f Alaska 

stocks o f Pacific herring. Similarly, Shaw et al. (1999) found significant genetic 

structuring between Icelandic summer-spawners, Norwegian spring-spawners, and 

Norwegian fjord stocks o f Atlantic herring. M icrosatellite analysis has also shown 

significant genetic differentiation between the donor and recipient populations o f 

American shad (Pamunkey and James River, respectively), as well as the potential for 

outbreeding depression in the restoration program (Brown et al. 2000). Some 

microsatellite primers show interspecific amplification. For example, Anderson (2007) 

used American shad microsatellite primers to make inferences regarding the relationships 

o f the North American menhadens.
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Direct sequencing o f mitochondrial genes provides an independent, high 

resolution perspective that complements nuclear microsatellite loci for analysis o f 

population structure. The mitochondrial genome, with its lack o f recombination, 

maternal inheritance, and high evolutionary rates, has proven to be an appropriate 

molecular character for analysis o f intraspecific genetic structure (Avise et al. 1987). 

Evolutionary rates, however, are not equivalent throughout the mitochondrial genome 

(Cann et al. 1984). The non-coding mitochondrial control region is reported to have a 

rate o f evolution two to five times higher than that o f mitochondrial protein-coding genes 

(Meyer 1993).

O f the 13 mitochondrial protein-coding genes, cytochrome c oxidase subunit I 

(COI) is considered to be the most conserved in fishes (Meyer 1993). COI codes for the 

final electron acceptor protein in the electron transport chain o f cellular respiration and is 

under intense selective pressure. In fact, COI is emerging as the standard genetic region 

to sequence in the Barcode o f Life project as a species-specific diagnostic tool for many 

taxa (Ratnasingham and Hebert 2007). Yu ^  al. (2005), surveying cytochrome b and 

COI, did not detect genetic structure in the Japanese anchovy (Engraulis japonicus) 

between the Yellow and East China seas. Tinti et al. (2002) found no evidence for 

genetic stock structure between European pilchards (Sardina pilchardus) from the 

Adriatic and Ionian Seas using direct sequencing o f a cytochrome b gene fragment. On a 

larger scale, Atarhouch et al. (2006) identified genetic differentiation in European 

pilchards between the Bay o f Biscay and M editerranean Sea using mitochondrial control 

region sequence data. Anderson (2007) used mitochondrial control region sequence data 

to validate the large-scaled and small-scaled designations for North American menhadens
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but could not resolve the large-scaled sequences to species (Atlantic and gulf menhaden) 

using this gene region. Garcia et al. (2008), similarly, found evidence o f the existence o f 

only one species o f menhaden, Brazilian menhaden (Brevoortia aurea), and no support 

for a second purported species, Argentine menhaden (B. pectinata), in the southwestern 

Atlantic using cytochrome b sequences.

Direct sequencing o f nuclear gene regions has been used to infer stock structure in 

some fishes, but it has not been reported for any clupeiform. While most protein-coding 

genes do not evolve at a rate fast enough to make them useful for intraspecific 

comparisons, non-coding nuclear gene regions, such as internal transcribed spacer 1 

(ITS-1), have fewer selective constraints and a faster evolutionary rate which can be used 

to investigate population structure (Avise et al. 1987). ITS-1, which separates the 5.8S 

and 18S ribosomal RNA genes, exhibits high variability and a fast rate o f mutation 

(Jansen et al. 2006). For example, Brendtro et al. (2008) used ITS-1 sequencing data to 

determine that four escolar (Lepidocybium flavobrunneum), collected in the Atlantic 

Ocean but assigned to the Pacific Ocean using mitochondrial control region sequencing, 

were a result o f recent rather than historical migration to the Atlantic Ocean.

14



PROJECT OBJECTIVES



The genetic basis o f stock structure for Atlantic menhaden has not been well 

studied. With the recent concentration o f the Atlantic menhaden reduction fishery in and 

around Chesapeake Bay, it is important to understand the genetic stock structure o f the 

species. If  Atlantic menhaden exhibit significant, genetically-based stock structure, there 

will be spatial partitioning o f unique genetic variation, and regional fishing pressure 

could lead to the loss o f unique genetic variation. Depletion o f unique genetic variation 

may reduce a stock’s ability to respond to shifting environmental pressures because a 

portion o f the genetic differentiation among fish populations is considered adaptive 

(Higgins and Lynch 2001, Ryman 1981).

In this study, analysis o f sequence data from the mitochondrial COI gene region 

and allele frequencies o f seven nuclear microsatellite loci were used to investigate the 

temporal and spatial genetic stock structure o f Atlantic menhaden and to evaluate the 

potential for loss o f unique genetic variation resulting from ‘localized depletion’ within 

the Chesapeake Bay region. Young-of-the-year (YOY) and yearling (age-1) fish were 

sampled over a two year period (2006, 2007) from four regions along the U.S. Atlantic 

coast (New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic). G ulf 

menhaden, finescale menhaden, and yellowfm menhaden were sampled as outgroups.

The following null hypotheses were addressed:

Hoj: There is no genetic difference between YOY menhaden recruiting to 

Chesapeake Bay early and late in the season during the same year.
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Ho 2 '. There is no genetic difference between YOY and yearling menhaden 

collected in Chesapeake Bay in successive years (following the 2006 year class in 2006  

and 2007).

Ho, 3 : There is no genetic difference between YOY and yearling menhaden 

collected in Chesapeake Bay in the same year.

Ho, 4 : There is no genetic difference among YOY and yearling menhaden 

(combined) from  fo u r  geographic regions along the U.S. Atlantic coast.

Ho, 5 : There is no genetic difference among large-scaled menhaden (B. tyrannus 

and  B. patronus) from  five  geographic regions along the U.S. Atlantic coast and G u lf o f  

Mexico.
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MATERIALS AND METHODS



Sample Collection

YOY and yearling Atlantic menhaden were sampled from throughout the 

species’s range in 2006 and 2007. YOY gulf menhaden were sampled from the G ulf o f 

Mexico in 2006 and 2007 as an outgroup. Collections were grouped into five broad 

geographic regions: New England (Massachusetts), mid-Atlantic (New Jersey), 

Chesapeake Bay (Virginia), U.S. south Atlantic (South Carolina), and G ulf o f Mexico 

(gulf, yellowfin, and finescale menhaden) (Figure 1). All menhaden were identified on 

the basis o f morphological characters and capture location by local experts (New 

England: Gary Nelson, Massachusetts Division o f Marine Fisheries; mid-Atlantic: 

Heather Corbett, New Jersey Division o f Fish and Wildlife; Chesapeake Bay: Patrick 

Lynch or Troy Tuckey, Virginia Institute o f Marine Science; U.S. south Atlantic: John 

Archambault, South Carolina Department o f Natural Resources; gulf menhaden: William 

Dailey, Texas A&M University; yellowfin and finescale menhaden: Joel Anderson,

Texas Parks and Wildlife Department) (Appendix 1). Voucher specimens were retained 

from all U.S. Atlantic coast regions in 2007 to corroborate field identifications. Fork 

length was measured for each individual to estimate age (Higham and Nicholson 1964, 

Lewis et al. 1972, N icholson 1972) and scale samples were sent to the NOAA Beaufort 

Lab / NMFS for independent age assessments. Muscle tissue samples were either frozen 

or stored in DMSO buffer (Seutin et al. 1991) at room temperature.

Molecular Markers

For any genetic study, it is important to use a molecular marker with an 

evolutionary rate appropriate to the question to be addressed (Lannan et al. 1989). High
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levels o f genetic variation are often needed to describe stock structure relationships, but 

too much polymorphism can be problematic if  sample sizes are not sufficiently large. In 

these cases, it can be difficult to get precise estimates o f genetic relationships because o f 

an incomplete representation o f the total genetic variation. The highly variable 

mitochondrial control region is often used for intraspecific studies (McMillan and 

Palumbi 1997) but J.D. Anderson (personal communication) suggested that it might be 

too variable within Atlantic menhaden and that a more conserved region may prove more 

useful to evaluate population structuring. For that reason, a preliminary study was 

conducted to survey variation in the highly variable control region and the more 

conserved cytochrome c oxidase subunit I (COI). In addition, genetic variation was 

evaluated at the nuclear internal transcribed spacer 1 (ITS-1) and 36 nuclear 

microsatellite loci were screened for variation within Atlantic menhaden. From the 

outcome o f these preliminary surveys, COI and seven microsatellites were selected to 

characterize all samples.

Extraction and Amplification

Total genomic DNA was extracted from each tissue sample using a Qiagen 

DNeasy® Tissue Kit (Qiagen, Valencia, C.A.) following the manufacturer’s protocol. 

The mitochondrial control region, COI, ITS-1, and eight microsatellite loci (Asa2, Asa4, 

A sal6 , Brown et al. 2000; A al6 , Faria et al. 2004; AsaB020, AsaC334, AsaD055, Julian 

and Bartron 2007; SarBH04, Pereyra et al. 2004), were amplified using the polymerase 

chain reaction (PCR) (Table 1, Appendices 2, 3).
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Ten pL sequencing reactions were amplified by PCR. Five pL o f each PCR 

amplification product were run on a 1 % agarose gel, stained with ethidium bromide, and 

visualized under UV light to verify that a single fragment o f the correct size was 

amplified. The remaining 5pL o f the mitochondrial amplification was purified for 

sequencing using column filtration with a QIAquick® PCR purification kit (Qiagen) 

following the manufacturer’s protocol.

Nuclear Cloning

Diploid organisms have two copies o f the nuclear genome, one from each parent. 

While both can be amplified simultaneously using PCR, sequencing can only read one 

copy at a time. As a result, ITS-1 PCR products were cloned to separate the two alleles 

before sequencing. One pL o f the nuclear product was cloned into a plasmid vector using 

the TOPO-TA plasmid cloning system (Invitrogen Corporation, Carlsbad, C.A.) prior to 

sequencing. Fresh PCR product was ligated into the ampicillin resistant TOPO 2.1 

plasmid vector with a lacZ  gene and transformed into competent TOPI OF’ Escherichia 

coli bacterial cells using the m anufacturer’s One Shot Chemical Transformation protocol. 

The E. coli cells were then plated on Luria-Bertani (LB) agar plates containing ampicillin 

(5pg/mL), an antibiotic, and 40pL 5-bromo-4-chloro-3-indolyl-P-D-galactopyranoside 

(X-gal) (40mg/mL), an indicator o f lacZ  expression, and grown up overnight at 37°C. 

Ampicillin ensured that only E. coli cells with the ampicillin resistant vector grew on the 

plates. The X-gal differentiated the colonies containing the recombinant plasmid (a non­

functional lacZ  gene = white colonies) from colonies without the insert (a functional lacZ  

gene = blue colonies). DNA was extracted from only the recombinant colonies via cell
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lysis through boil preparation (Sambrook and Russell 2001) and amplified in a lOpL 

reaction using M l3 primers designed to flank the vector insert region. To verify that the 

insert o f the correct size was recovered, 5pL o f the cloned PCR amplification product 

was run on a 1% agarose gel, stained with ethidium bromide, and visualized under UV 

light. The remaining 5pL o f cloned elutant was purified using column filtration with 

QIAquick® PCR purification kit (Qiagen) following the m anufacturer’s protocol.

Sequence Analysis

The concentration o f each purified ITS-1 cloned PCR product and direct 

mitochondrial PCR product was measured using a BioMate™ 3 Series UV 

Spectophotometer (Thermo Spectronic, Madison, W.I.) prior to sequencing. PCR 

products were prepared for sequencing using the ABI PRISM® Big Dye™  Terminator v 

3.0 Cycle Sequencing Kit (Applied Biosystems, Foster City, C.A.) at a 1:8 dilution o f the 

m anufacturer’s protocol and subsequently sequenced on an 80cm capillary ABI PRISM® 

3130x/ Genetic Analyzer (Applied Biosystems). Samples were sequenced in the forward 

and reverse direction and 20% o f samples were re-analyzed from DNA extraction 

through sequencing.

The chromatographic curves for each 80cm capillary sequence (control region, 

COI, ITS-1) were analyzed using Sequencing Analysis software v 5.2 (Applied 

Biosystems), edited using Sequencher 4.7.2 (Gene Codes Corp., Ann Arbor, M.I.), and 

aligned using the ClustalW  algorithm (Thompson et al. 1994) for multiple alignments in 

Mac Vector 9.0.1 (Mac Vector Inc., Cary, N.C.).
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Microsatellite Analysis

Microsatellite loci were PCR amplified with locus-specific fluorescent labels. 

Following amplification, lpL  o f PCR product for each locus was combined with PCR 

products from three other unique locus/fluorescent label combinations (4pL total), 6pL 

formamide, and 0.3pL 500 Liz Gene Scan Size standard (Applied Biosystems). The 

reaction mixture was denatured at 95°C for 10 minutes prior to sequencing on a 36cm 

capillary ABI PRISM® 3130x/ Genetic Analyzer (Applied Biosystems) according to the 

m anufacturer’s protocol.

The chromatic peaks for each microsatellite sequence were scored using 

GeneMarker AFLP/Genotyping Software v 1.60 (SoftGenetics, State College, P.A.). 

Once scored, M icroChecker 2.2.3 (Van Oosterhout et al. 2004) was used to check for the 

presence o f null alleles and evidence o f scoring errors. To ensure consistency, 20% of 

samples were re-analyzed from DNA extraction through allele scoring.

Descriptive Statistics

Once aligned, the mitochondrial sequences were characterized in Arlequin 3.11 

(Excoffier et al. 2005) to determine the following: number o f haplotypes (Nh); number of 

polymorphic sites (-S), variable base pair (bp) locations within a sequence set; number o f 

transitions (Ts), point mutations from either a purine to a purine (A<-»G) or a pyrimidine 

to a pyrimidine (C<f-»T); number o f transversions (Tv), point mutations from a purine to a 

pyrimidine (A or G ^ C  or T) or a pyrimidine to a purine (C or T ^ A  or G); and number 

o f indels (insertions to or deletions from a sequence). The amount o f sequence variation 

for each mitochondrial gene region within each collection was estimated in Arlequin 3.11
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(Excoffier et al. 2005) using the following diversity indices: haplotype diversity (<h, the 

probability that two randomly chosen haplotypes [gene sequences] are different), 

nucleotide sequence diversity (zr, the mean sequence divergence between two randomly 

chosen haplotypes), and mean number o f pairwise differences (k , the mean number o f bp 

differences between two randomly chosen haplotypes). Net nucleotide sequence 

divergence (3, number o f net nucleotide substitutions per site between populations) was 

calculated in MEGA 4.1 (Tamura et al. 2007) using the Kimura two-parameter model 

(Kimura 1981). For the microsatellite data, Genepop 3.4 (Raymond and Rousset 1995) 

was used to determine observed heterozygosity {Ho)  and expected heterozygosity (He); 

Arlequin 3.11 (Excoffier et al. 2005) was used to determine allelic diversity (A; number 

o f alleles per locus), and Microsatellite Analyzer (MSA) (Dieringer et al. 2003) was used 

to determine the allele size range (a.s.r.). The amount o f microsatellite variation within 

each collection was estimated in FSTAT 2.9.3.2 (Goudet 1995) using the following 

indices: allelic richness (Rs; number o f alleles per locus, corrected for sample size) and 

gene diversity (Z); heterozygosity). To determine if  the distribution o f microsatellite 

genotypes conformed to the expectations o f Hardy-W einberg equilibrium for each locus 

at each collection location, three separate tests (probability, heterozygote deficiency, and 

homozygote deficiency) following the methods o f Guo and Thompson (1992) are 

available in Genepop 3.4 (Raymond and Rousset 1995) and can be adjusted for multiple 

testing using sequential Bonferroni correction (Rice 1989). All three tests share the 

same null hypothesis (random distribution o f alleles) and differ in their alternative 

hypotheses. The probability test is a two-tailed test with the p -value corresponding to the 

sum o f random allelic counts with the same or lower probability. If  the null hypothesis
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for the probability test was rejected, more powerful one-tailed heterozygote excess and 

deficiency tests (in which the p-value considers only one end o f the distribution) were 

performed.

Genetic Relationships

To initially visualize genetic relationships among aligned mitochondrial and 

nuclear sequences, unweighted pair group method with arithmetic mean (UPGMA) trees, 

based on nucleotide base pair similarity matrices, were constructed in MacVector 9.0.1 

(MacVector Inc.). To investigate the possibility o f mutational saturation, graphs of 

nucleotide substitution vs. genetic distance (overall and by third codon position) were 

constructed for mitochondrial control region and COI sequences in DAMBE (Xia and 

Xie 2001).

Phylogenetic trees are used describe the genetic relationships among species. A 

maximum parsimony tree was constructed for all mitochondrial COI sequences and nodal 

support was assessed with bootstrapping resampling (Felsenstein 1985) o f 100 

pseudoreplicates, 10 random addition sequences, with TBR branch swapping algorithm. 

The most appropriate nucleotide substitution model for the region was determined from a 

series o f 56 likelihood ratio tests executed in ModelTest 3.7 (Posada and Crandall 1998). 

The accumulation o f nucleotide substitutions is only roughly linear with time shortly after 

a divergence event (Sullivan and Joyce 2005). The cause o f deviation from linearity, 

however, is not the same in all cases. As a result, a number o f different models have 

been developed to explain the deviations. M odelTest 3.7 (Posada and Crandall 1998) 

matches a dataset with the model that best fits its nucleotide substitution pattern
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according to two sets o f criteria: hierarchical likelihood ratio tests and A kaike’s 

Information Criterion. The selected model was used in PAUP* 4.0 (Swofford 2000) to 

produce maximum likelihood and Bayesian analysis trees (Mr. Bayes; Huelsenbeck and 

Ronquist 2001). Support o f the maximum likelihood internal branches was tested using 

bootstrap resampling (Felsenstein 1985) o f 10 pseudoreplicates, 10 random addition 

sequences, with TBR branch swapping algorithm.

For intraspecific comparisons, networks more accurately describe genetic 

relationships than phylogenetic trees because internal nodes are often extant in population 

level studies (Bryant and Moulton 2002). With a tree, an internal node is a theoretical 

representation o f a common ancestor (no longer extant) between sampled taxa. With a 

network, mutations generally occur from the most common, interior haplotypes (still 

extant). Rarer haplotypes, as a result, are more likely to be related to these common 

haplotypes than to each other. Median-joining networks for COI and control region 

haplotypes were drawn in Fluxus 4.2.0.1 (Bandelt et al. 1999) to investigate population- 

level relationships.

Genetic relationships among collection locations based on microsatellite loci data 

were represented spatially in Genetix 4.04 (Belkhir et al. 2000) and estimated by 

constructing neighbor-joining trees using modified Cavalli-Sforza chord distances (Da; 

Nei et al. 1983) and N ei’s standard genetic distances (Dsf, Nei 1972) calculated in 

M icrosatellite Analyzer (MSA) (Dieringer et al. 2003). Da is one o f the most efficient 

distance measures for tree topology construction; D st is considered more suitable than 

other distance measures for branch length estimation (Takezaki and Nei 1996).
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Population Structure

A hierarchical analysis o f molecular variance (AMOVA) was used to test for 

population structure using mitochondrial COI sequencing data and nuclear microsatellite 

loci data. The AMOVA partitions genetic variance into covariant components at 

predefined levels (individual, sub-region, and region). The fixation indices, 0 s t  for 

haplotypes and F st or R st for microsatellites, are measures o f population subdivision 

(Excoffier et al. 1992). AMOVA calculations based on microsatellite genotypic data 

were analyzed using two different distance methods: F st (Weir and Cockerham 1984), 

based on the distribution o f number o f different alleles (not considering relationships 

among alleles), and R st (Slatkin 1995), based on the distribution and relationship of 

alleles (sum of squared allele size differences). The R s t  algorithm is generally considered 

only appropriate as a measure for microsatellite data when sample sizes are equal or 

larger than 50 (Ruzzante 1998). The AMOVAs, conducted in Arlequin 3.11 (Excoffier et 

al. 2005), partitioned variation across designated groupings: between recruitment times 

within an age class at a location (eg., 2007 YOY menhaden in Chesapeake Bay), between 

years within an age class at a location (eg., the 2006 year class in Chesapeake Bay in 

2006 and 2007), between age classes within a region (eg., YOY and yearling menhaden 

in Chesapeake Bay in 2007), among Atlantic coast regions (eg., New England, mid- 

Atlantic, Chesapeake Bay, U.S. south Atlantic), among large-scaled regions (eg., New 

England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, G ulf o f  Mexico), and 

between putative species (eg., Atlantic and gulf menhaden). Estimates o f population 

pairwise @st and FsPRst were calculated in Arlequin 3.11 (Excoffier et al. 2005) as a

27



measure o f genetic distance between individual groupings and adjusted for multiple tests 

using sequential Bonferroni correction (Rice 1989).
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RESULTS



Evaluation o f  Mitochondrial Gene Region Variability

To determine which mitochondrial gene region would be appropriate to evaluate 

Atlantic menhaden population structure, a 535bp fragment o f the mitochondrial control 

region and a 459bp fragment o f cytochrome c oxidase subunit I (COI) were sequenced 

for 28 individuals in a preliminary study. The mitochondrial control region fragment 

contained 63 polymorphic sites, 55 transitions, 16 transversions, and 1 indel (Table 2).

O f the 28 menhaden sequenced, the control region produced 27 haplotypes, an overall 

haplotype diversity (h) o f 0.997, and a mean nucleotide sequence diversity {k) o f 0.0326. 

The COI fragment contained 44 polymorpic sites, 41 transitions, 8 transversions, and no 

indels (Table 2). O f the 28 menhaden sequenced, COI produced 20 haplotypes, an 

overall haplotype diversity (h ) o f 0.960, and a mean nucleotide sequence diversity (E) o f 

0.0267. The haplotype diversity estimate for COI was high, but not as elevated as the 

control region estimate. Both gene regions revealed similar patterns o f intraspecific 

relationships (Figure 2).

Mutational saturation curves lend some support to the hypothesis that the control 

region may be at risk o f homoplasy. The rate o f transitions appears to plateau and the 

rate o f transversions approaches that o f transitions for the control region data but the 

evidence is less substantial for COI (Figure 3). Based on this qualitative preliminary 

analysis, COI was chosen as the mitochondrial marker for this study and all samples were 

surveyed for this gene region.
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Cytochrome c Oxidase Subunit 1

The COI fragment was sequenced for 339 individuals (Atlantic menhaden, n = 

289, gulf menhaden, n = 50). The fragment contained 99 polymorphic sites overall (97 in 

Atlantic menhaden: 5 first codon positions, 1 second codon position, and 91 third codon 

positions), 101 transitions (99 in Atlantic menhaden), 7 transversions (6 in Atlantic 

menhaden), and produced 124 haplotypes (109 in Atlantic menhaden) (Table 3). 

Haplotype diversity (h) estimates for the Atlantic menhaden sampling locations ranged 

from 0.932 to 0.956, with an overall (pooled) estimate o f 0.941. Mean nucleotide 

sequence diversity (jt) estimates for Atlantic menhaden sampling locations ranged from 

0.0258 to 0.0295, with an overall (pooled) estimate o f 0.0274. The mean number o f 

pairwise differences (k) ranged from 11.8 to 13.5, with an overall (pooled) estimate o f 

12 .6 .

The median-joining network for the 109 COI Atlantic menhaden haplotypes 

showed two extensive star-shaped clusters (clades) separated by 17 nucleotide changes 

with one minor exterior grouping o f three anomalous samples separated by 24 

nucleotides (Figure 4). A contingency table o f Atlantic coast sampling locations 

indicated that the two primary clades were equally represented along the U.S. Atlantic 

coast (x2 = 0.478; Xq05 3 = 7.815 ; p>0.05; Table 4).

For the combined large-scaled menhadens, haplotype diversity (h) estimates 

ranged from 0.879 to 0.956, with an overall (pooled) estimate o f 0.940. Mean nucleotide 

sequence diversity (7r) estimates for Atlantic and gulf menhaden sampling locations 

ranged from 0.0071 to 0.0295, with an overall (pooled) estimate o f 0.0258. The mean
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number o f pairwise differences (k) ranged from 3.24 to 13.5, with an overall (pooled) 

estimate o f 11.8.

The median-joining network for all 124 Atlantic and gulf COI haplotypes showed 

the same star-shaped phylogeny (Figure 5). Clade I, the “ubiquitous large-scaled” clade, 

was composed o f all gulf menhaden samples and 64% of Atlantic menhaden samples. 

Clade II, the “Atlantic-only” clade, comprised 35% o f Atlantic menhaden samples.

Clade III, the anomalous samples, comprised the remaining 1 % o f Atlantic menhaden.

Adding samples from the small-scaled menhadens, the COI fragment was 

sequenced for a total o f 389 individuals (Atlantic menhaden, n = 289, gulf menhaden, n = 

50, yellowfin menhaden, n = 25, finescale menhaden, n = 25). The fragment contained 

105 polymorphic sites, 107 transitions, 7 transversions, and produced 145 haplotypes 

(Table 3). Haplotype diversity (h ) estimates for the sampling locations across all four 

species ranged from 0.879 to 0.956, with an overall (pooled) estimate o f 0.952. The 

overall (pooled) estimate o f mean nucleotide sequence diversity (7r) estimates across all 

species was 0.033. The overall (pooled) estimate o f mean number o f pairwise differences 

(k) was 15.2.

The median-joining network for all 145 COI haplotypes showed three extensive 

star-shaped clusters (clades) separated by 15 and 22 nucleotide changes, respectively 

(Figure 6). Clade I, the “ubiquitous large-scaled” clade was composed o f all gulf 

menhaden samples, 64% o f the Atlantic menhaden samples, and 12% o f the yellowfin 

menhaden samples. Clade II, the “Atlantic-only” clade, was composed o f 35% of the 

Atlantic menhaden samples, 16% o f the yellowfin menhaden samples, and 16% o f the 

finescale menhaden samples. Clade III, the “small-scaled” clade, was composed o f 1%
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of the Atlantic menhaden samples (the anomalous samples), 72% o f the yellowfin 

menhaden samples, and 84% of the finescale menhaden samples. The three anomalous 

Atlantic menhaden were further sequenced for the mitochondrial control region to test for 

possible misidentification. The control region sequences for these individuals were 

included in a network with North American Brevoortia  control region sequences from 

Anderson (2007). The median-joining network o f 214 haplotypes showed the same three 

extensive star-shaped clusters as COI in this study: the “ubiquitous large-scaled” clade, 

the “Atlantic-only” clade, and the “small-scaled” clade (Figure 7). However, using 

control region, the anomalous sequences clustered with the large-scaled clades.

To assess the evolutionary relationships among all COI haplotypes, hierarchical 

likelihood ratio tests were performed in M odelTest 3.7 (Posada and Crandall 1998). The 

analysis selected the HKY+I+T model (k = parameter estimates = 6; Hasegawa et al. 

1985) and A kaike’s Information Criterion selected the K81+I+T model (k = 4; Kimura 

1981) as the most appropriate o f the 56 nucleotide substitution models. Because 

simulation studies have shown that overparameterization is less o f a problem than 

underparameterization for estimating nucleotide substitution (Huelsenbeck and Rannala

2004), the HKY+I+T model was used in this analysis. This model assumes a time- 

reversible mutational process, a non-uniform distribution o f nucleotides, and different 

rates for transitions and transversions. Both maximum likelihood and Bayesian trees, 

using the HKY+I+r model, produced geographically unresolved structures (Figure 8, 9). 

Likewise, a maximum parsimony representation o f the COI haplotypes produced no 

discernable structure among the species (Figure 10).
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Internal Transcribed Spacer 1

The two genetically divergent clades o f Atlantic menhaden haplotypes evident in 

the mitochondrial COI sequence analysis could be the result o f the presence o f two 

sympatric subspecies (or species) or the result o f historical isolation and subsequent 

mixing. To distinguish between these phylogeographic hypotheses, a 500bp fragment o f 

ITS-1, a biparentally-inherited nuclear marker, was sequenced to provide a nuclear 

perspective with which to compare the phylogeographic structure inferred from analysis 

o f COI sequences. Sixty clones from 12 individuals, representative o f both mitochondrial 

clades, were sequenced. O f the 60 sequences, there were 45 haplotypes resulting in a 

haplotype diversity (h) o f 0.979, nucleotide sequence diversity (n) o f 0.0183, and a mean 

pairwise difference (k) o f 10.2 nucleotides (Table 2). The median-joining network o f the 

cloned nuclear ITS-1 sequences differed considerably from the distinct two clade 

mitochondrial structure and revealed no discernable structure among the putative species 

(Figure 11).

Microsatellites

Eight microsatellite loci, A al6 , Asa2, Asa4, A sal6 , AsaB020, AsaD055, 

AsaC334, SarBH04, were amplified for the entire dataset (Atlantic menhaden, n = 289, 

gulf menhaden, n = 50, yellowfin menhaden, n = 25, finescale menhaden, n = 25). For 

the eight loci, sample allelic diversity (A) ranged from 1 to 21 alleles; the allelic richness 

(.Rs) ranged from 1.00 to 15.1; and the gene diversity (D, heterozygosity) ranged from 

0.000 to 0.938 (Table 5). Allele size ranges were similar for B. tyrannus and B. patronus 

(Figure 12). The genotypic distribution o f all loci, except A sal6 , conformed to the
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expectations o f Hardy-W einberg equilibrium. The locus A sal6 , produced a statistically 

significant result in the probability test and subsequently the heterozygote deficiency test, 

suggesting the presence o f a null allele (a mutation in a primer binding site that results in 

non-amplification o f an allele) (Table 6). The Microchecker analysis which examined 

the potential for scoring errors, large allele dropouts, and null alleles also indicated a 

heterozygote deficiency for A sal6. This locus was not included in any o f the population 

structure analyses.

The genetic distance between sampling regions was estimated using two different 

methods. N ei’s standard genetic distances (Dsf, Nei 1972) ranged from -0.0066 between 

the U.S. south Atlantic and New England to 0.844 between B. smithi and B. patronus 

(Table 7). Modified Cavalli-Sforza chord distances (Da; Nei et al. 1983) ranged from 

0.152 between the U.S. south Atlantic and Chesapeake Bay to 0.714 between B. smithi 

and B. patronus (Table 7). The neighbor-joining trees based on N ei’s standard genetic 

distance (Dsf, Nei 1972) and modified Cavalli-Sforza chord distance (Da; Nei et al.

1983) o f microsatellite data separate the four North American menhaden species but do 

not show evidence o f  population structure within Atlantic menhaden (Figure 13, 14, 15).

Analysis o f  M olecular Variance

The AMOVAs o f COI haplotype data and microsatellite genotype data were 

performed to evaluate the temporal and spatial partitioning o f genetic variation within 

Atlantic menhaden. The mitochondrial ( @ s t )  AMOVA between early and late recruiting 

2007 YOY in Chesapeake Bay attributed -0.62% (p = 0.69) o f the variance to differences 

in recruitment time (Table 8). The microsatellite ( F s t  and RSr) AMOVAs attributed
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-0.41% ip = 0.743) and 1.27% ip  = 0.246) o f the variance, respectively, to differences in 

recruitment early or late in the season (Tables 9, 10).

The mitochondrial ( &st) AMOVA between 2006 YOY and 2007 yearling 

menhaden collected in Chesapeake Bay attributed -2.95% (p = 1.00) o f the variance in 

the 2006 year class to sampling in successive years (Table 8). The microsatellite (Rst) 

AMOVA attributed -0.828% (p = 0.730) o f  the variance to sampling in successive years 

(Table 10). The microsatellite (Fst) AMOVA, on the other hand, produced significant 

results, attributing 1.80% (p = 0.0176) o f the variance to differences within a cohort in 

Chesapeake Bay in successive years (Table 9).

The mitochondrial (@st) AMOVA between YOY and yearling menhaden 

collected in Chesapeake Bay in 2006 and also between YOY and yearling menhaden 

collected in Chesapeake Bay in 2007 attributed -0.77% (p = 0.96) and -0.66% (p = 0.97) 

o f the variance, respectively, to differences between cohorts (Table 8). The microsatellite 

(Fst and Rst) AMOVAs attributed 1.06% (p = 0.0929), and -0.923% (p = 0.678) o f the 

variance, respectively, between YOY and yearling menhaden in Chesapeake Bay in 2006. 

Likewise, the (F st and Rst) AMOVAs attributed 0.0052% {p = 0.160), and 0.389% ip = 

0.580) o f the variance, respectively, between YOY and yearling menhaden collected in 

Chesapeake Bay in 2007 (Tables 9, 10).

The mitochondrial (Ost) AMOVA among samples o f YOY and yearling 

(combined) menhaden from four geographic regions along the U.S. Atlantic coast (New 

England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic) attributed -0.87% (p =

1.00) o f the variance to sampling location (Table 8). The Rst AMOVA attributed

36



-0.0665% { p  = 0.634) o f variation due to sampling location (Table 10). The 

microsatellite F s t AMOVA, however, produced significant results, attributing 0.575% ( p  

= 0.000) o f variation to sampling location (Table 9). An examination o f alternate 

groupings (northern and southern sampling locations) with the F st AMOVA also 

produced significant results (0.00535%, p  = 0.00098). No (F srand  R s t )  pairwise 

comparisons, however, revealed statistically significant variation between any two 

sampling regions o f Atlantic menhaden after sequential Bonferroni correction (Tables 11, 

12).

The mitochondrial ( @ s t )  AMOVA among samples o f YOY and yearling 

(combined) large-scaled menhaden from five geographic regions along the U.S. Atlantic 

coast and G ulf o f Mexico (New England, mid-Atlantic, Chesapeake Bay, U.S. south 

Atlantic, and G ulf o f Mexico) revealed significant partitioning o f genetic variation, 

attributing 6.01% ( p  = 0.000) o f the variance to sampling location (Table 8). The 

microsatellite (F^y and R s t )  AMOVAs, likewise, revealed significant partitioning o f 

genetic variation, attributing 4.68% ( p  = 0.000) and 16.89% ( p  = 0.000) o f  variation, 

respectively, to sampling location (Tables 9, 10). Additionally, ( @ s t ,  F s t ,  and R s t )  

pairwise comparisons revealed statistically significant variation between the gulf 

menhaden sampling region and all other sampled regions (Tables 11, 12, 13).
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DISCUSSION



Molecular Markers

The mitochondrial and nuclear markers employed in stock structure analyses need 

to be variable enough to detect spatial and temporal partitioning o f genetic variation, if  it 

exists (Hellberg et al. 2002). This study utilized the mitochondrial COI gene region and 

seven nuclear microsatellite loci, all o f which revealed high levels o f variation.

Previous analyses o f COI sequences have demonstrated that it is typically one of 

the most conserved mitochondrial gene regions, exhibiting low levels o f intraspecific 

variation, and it is often used for phylogenetic analyses (Saccone et al. 1999; Meyer 

1993). However, in Atlantic menhaden, COI exhibited a high level o f intraspecific 

variation. The COI variation noted in this study (h = 0.941) is the highest documented 

intraspecific COI haplotype diversity in vertebrates, indicating its potential utility for 

population level analysis in this species (high literature values include h = 0.598: giant 

otter, Garcia et al. 2007; h = 0.547: green and golden bell frog, Burnes et al. 2006). The 

within-species genetic diversity for Atlantic menhaden (k = 2.74%) is an order o f 

magnitude higher than the average within-species divergence reported for Australian 

marine fishes (tu = 0.39%, Ward et al. 2005), South China Sea fishes (tt = 0.319%, Zhang 

et al. 2007), Canadian freshwater fishes (jr = 0.302%, Hubert et al. 2008) (all values 

calculated using the Kimura-two-parameter model o f nucleotide substitution). 

Additionally, all o f the nucleotide substitutions within the entire dataset were 

synonymous, resulting in identical amino acid sequences that presumably maintain 

identical protein function.

Nuclear microsatellite loci typically exhibit a fast rate o f mutation and high levels 

o f polymorphism and are ideally suited for analyses o f stock structure (O ’Ryan et al.
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1998, Hellberg et al. 2002). All seven microsatellite loci surveyed in this study revealed 

considerable within-sample variation (A = 5-21, Hexp = 0.435-0.923). Literature values o f 

within-sample variation in other clupeids range fromH = 1-56, Hexp = 0.066-0.98 (Table 

14).

Species Identification

Atlantic, gulf, yellowfin, and finescale menhadens are currently recognized as 

four separate species. However, with the broad overlap o f meristic and morphometric 

characters between Atlantic and gulf menhaden, and the ability o f yellowfin menhaden to 

hybridize with both Atlantic and gulf menhaden, species identifications are problematic. 

Proper species identification is a critical first step in the analysis o f intraspecific stock 

structure.

The two small-scaled menhadens, yellowfin and finescale, can be identified on 

the basis o f morphological and molecular characters (Dahlberg 1970, Anderson 2007, 

this study). Yellowfin menhaden are distinguishable from finescale menhanden in having 

a higher number o f vertebrae and scutes and a smaller head; both small-scaled 

menhadens are distinguishable from the large-scaled menhadens by the absence o f a 

frontal groove, rounded scale pectinations, and higher scale counts (Dahlberg 1970). The 

two small-scaled menhadens can also be distinguished from each other and the large- 

scaled menhadens with genetic characters. Anderson (2007) separated yellowfin, 

finescale menhaden, and the large-scale menhadens using sequencing data from the 

mitochondrial control region and four microsatellite loci. Though no fixed differences 

have been established between the North American menhadens, significant allele
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frequency differences have been detected at some loci. Yellowfin menhaden in this study 

(,n = 25) were fixed for allele 130 at locus AsaB020 while this allele occurred at a 

frequency o f 69% in finescale menhaden, 9% in gulf menhaden, and 1 % in Atlantic 

menhaden. Similarly, finescale menhaden (n = 25) were fixed for allele 216 at locus 

Asa2 while this allele occurred at a frequency o f 6% in yellowfin menhaden, 7% in gulf 

menhaden, and 10% in Atlantic menhaden.

Hybridization between yellowfin menhaden and the two putative large-scale 

menhadens has been reported to occur along the Atlantic and G ulf coasts o f Florida 

(Turner 1969, Dahlberg 1970, Anderson and Karel 2007). Putative yellowfin/large-scale 

hybrids, identified on the basis o f intermediate morphological and meristical characters, 

were found in southwestern and southeastern Florida (Turner 1969, Dahlberg 1970). The 

predominance o f males suggested a postzygotic barrier to hybridization that would inhibit 

the establishment o f a stable hybrid population (Dahlberg 1970).

Microsatellite loci and mitochondrial control region sequencing have been used to 

study the directionality o f hybridization and potential for introgression in menhaden. 

Though frequency differences do not allow unambiguous identification o f hybrids, 

Anderson and Karel (2007) identified putative yellowfin/gulf hybrids by major frequency 

differences at locus Asa2 (88% frequency o f allele 195 in yellowfin menhaden; <5% 

frequency in large-scaled menhaden) and Asa 9 (90% frequency o f allele 242 in large- 

scaled menhaden; absent in yellowfin menhaden). However, all potential hybrids 

grouped with yellowfin menhaden based on mitochondrial control region sequences. As 

the mitochondrial genome is maternally inherited, this result indicated that yellowfin 

menhaden was the maternal lineage in every case (Anderson and Karel 2007). Based on
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an analysis o f microsatellite alleles in yellowfin menhaden not identified as F i hybrids, 

Anderson and Karel (2007) concluded that there was a low rate o f introgression between 

yellowfin menhaden and the large-scaled menhadens. This result supports the Dahlberg 

(1970) hypothesis o f a postzygotic inhibition o f a hybrid population. However, Anderson 

and K arel’s (2007) samples sizes (n=  10 -  20) per location (New Jersey, Virginia,

Maine, and North Carolina) may be insufficient to accurately estimate rates o f 

introgression.

Although hybridization o f yellowfin and large-scaled menhadens has been 

reported, there has been no documented case o f hybridization between Atlantic and gulf 

menhaden. This is primarily due to the fact that there is no definitive diagnostic character 

to distinguish between these two putative species. The taxonomic key established by 

Dahlberg (1970) is currently still in use and provides location (i.e. Atlantic Ocean, G ulf 

o f Mexico) as the primary distinguishing feature between the two species. All other key 

characters (i.e., gill filaments, vertebrae, predorsal scales, and ventral scutes) overlap 

between Atlantic and gulf menhaden (Dahlberg 1970). Species range for gulf menhaden 

has also been disputed. As early as Reintjes (1969) and as recently as Anderson and 

Karel (2007), gulf menhaden have been postulated to occur in southeast Florida based on 

morphological and mitochondrial data.

Even molecular characters have not resolved the large-scaled menhadens. In all 

three mitochondrial studies (mitochondrial genome RFLP, A vise et al. 1989; control 

region, Anderson 2007; COI, this study), Atlantic and gulf menhaden formed two well 

defined clades, but not by putative species. As previously mentioned, COI is a conserved 

gene region, but typically exhibits consistent (fixed) nucleotide differences between
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species. It is, consequently, unusual for species to remain unresolved using COI as a 

marker.

COI is currently the standard gene region used for species identification in the 

Barcode o f Life Datasystem. Not only do species tend to differ by one or more fixed 

nucleotide differences in this region, interspecific differences are substantially greater 

than intraspecific differences (Ratnasingham and Herbert 2007). In a survey o f 207 

fishes, all species had different COI sequences and differences between closely related 

species were 25 times higher (on average) than differences within species (Ward et al.

2005). In the present study, however, the nucleotide sequence diversity for large-scaled 

menhadens combined {it = 0.0258) is only 5 times higher than the within-clade diversity 

(7r = 0.0081, 0.0036). In the case o f the menhadens, the high variability o f COI reduces 

its utility for barcoding but not for analyses o f intraspecific population structure.

Based on the preliminary analysis, COI was chosen for this study rather than the 

mitochondrial control region. In both this study and Anderson (2007), the control region 

sequences appeared to exhibit mutational saturation. Similar levels o f saturation were 

detected by Garcia et al. (2008) among cytochrome b sequences in Brazilian menhaden 

(B. aurea).

Mutational saturation is demonstrated by plots o f  the number o f transitions (by 

codon position if  protein coding) and transversions (by codon position if  protein coding) 

with genetic distance. Specifically, if  the rate o f transitions plateaus with increasing 

genetic distance and the rate o f transversions approaches that o f transitions, mutational 

saturation is indicated. In such cases, it is likely that the rate o f transitions has not 

decreased with time, but that the limited number o f character states (purine to purine or
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pyrimidine to pyrimidine) results in “multiple hits” or homoplasy (for example, a series 

o f transitions from A -> G -> A would appear as no change at all). The fact that 

transitions o f the control region plateaued with increasing genetic distance and the rate o f 

transversions approached them suggests that any Atlantic menhaden analyses based on 

control region nucleotide substitutions could be confounded by homoplasy. For 

population studies, genetic drift is a more important driving force, but mutation still 

comes into play.

Although in the initial assessment the COI sequences may have been less suspect 

o f mutational saturation, both COI and control region exhibited high levels o f variation. 

Thus, the same concerns noted for the control region may also apply for COI. Mutation 

saturation plots are a qualitative measure o f homoplasy and not statistically based.

Though it was chosen, COI did not turn out to be an ideal molecular marker for 

this study as it could not resolve the small-scaled and large-scaled menhaden lineages. 

Three Atlantic menhaden grouped with the small-scaled menhadens in the COI 

phylogeny. This result could be from misidentification o f individuals in the field, 

hybridization and introgression, or incomplete lineage sorting using COI as a marker. 

When sequenced for the control region, the three anomalous individuals clustered with 

the “ubiquitous large-scaled” clade. This result does not support misidentification or 

hybridization and introgression for these samples because the control region and COI 

relationships would have the same origin (e.g., the mitochondrial genome has no 

recombination). Since the evolutionary rate o f the control region exceeds that o f COI, 

this outcome suggests incomplete lineage sorting, an inability o f COI to resolve the two 

major menhaden lineages.
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Lineage sorting is the process o f fixation o f gene lineages between taxa. 

Incomplete lineage sorting occurs when ancestral polymorphism is retained in multiple 

taxa, resulting in an inability to distinguish between the groups with a specific gene 

region. Incomplete lineage sorting is a function o f the molecular marker utilized, the 

taxonomic scale o f analysis, and has been found in other lineages including cichlids in 

Lake Tanganyika (short interspersed element insertion data, Takahashi et al. 2001), 

schizorathicine fishes o f Lake Rara, Nepal (proline tRNA and control region sequences, 

Dimmick and Edds 2002), and crotaphytid lizards (ND2 and Cytb sequences, McGuire et 

al. 2007). These conclusions indicate that the control region may have been a more 

appropriate mitochondrial gene region to analyze for Atlantic menhaden population 

structure than COL

While COI sequences may not completely resolve the four species o f North 

American menhaden, the population structure revealed in this and previous mitochondrial 

surveys o f large-scaled menhadens suggests the possibility o f historical isolation between 

the two large-scaled clades. To obtain a nuclear perspective on the genetic differences 

between Atlantic and G ulf o f Mexico large-scaled menhadens, ITS-1 was sequenced for a 

subset o f samples, representing both mitochondrial clades, and seven microsatellite loci 

were analyzed for all samples. If  the nuclear relationships were similar to the 

mitochondrial relationships, the result would indicate that the structure resulted from two 

independent evolutionary lineages (separate species), without contemporary gene flow.

If the nuclear relationships were not consistent with the mitochondrial relationships, the 

result would suggest historical isolation and subsequent unidirectional gene flow.
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Neither the ITS-1 nor microsatellite relationships were similar to the two-clade 

structure revealed by analyses o f mitochondrial gene regions. The ITS-1 phylogeny 

produced no discernable structure, a high level o f haplotype diversity (h = 0.972), and a 

low level o f nucleotide sequence diversity (tt = 0.0122) among the large-scaled menhaden 

clones. Intra-individual variation in ITS-1 phylogenetic studies is widely known to exist 

(Harris and Crandall 2000). In this study with 5 clones per individual, individuals had up 

to five different alleles. It is also important to note that all B. gunteri clones grouped as a 

species; all but one B. smithi sequence fell outside o f the large-scaled group; and with 

that one B. smithi sample, all o f the large-scaled individuals fell within one large 

polytomy. Despite the high intra-individual variation and haplotype diversity, ITS-1 does 

not provide any usable information to compare with the mitochondrial relationships.

The microsatellite results o f this study, like Anderson (2007), did partition the 

North American menhadens into four groups. However, both studies indicated that the 

large-scaled menhadens are very closely related. Anderson (2007) surveyed variation at 

four microsatellite loci, estimating an F st o f 0.110 between Atlantic and gulf menhaden. 

This study screened seven microsatellite loci, estimating an F st o f 0.104 between Atlantic 

(all sampling regions grouped together) and gulf menhaden. Considering each Atlantic 

and G ulf sampling location independently, this study estimated F s t values o f 0.079-0.122 

(p  = 0.000). These F st values are more typical o f differences between populations rather 

than species. For comparison, F st values between genetically distinct stocks based on 

microsatellites range from 0.002 to 0.226 (Table 15). Conversely, F st values between 

North American menhadens include: 0.488 between Atlantic and yellowfin menhaden, 

0.412 between Atlantic and finescale menhaden, 0.411 between gulf and yellowfin
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menhaden, 0.378 between gulf and finescale menhaden, and 0.355 between yellowfin and 

finescale menhaden (Anderson 2007).

Avise et al. (1989) grouped Atlantic and gulf menhaden into a Brevoortia 

tyrannus/patronus complex, noting “the species are very closely related and are of 

questionable taxonomic status.” Bowen and Avise (1990) compared the population 

structure o f the large-scaled menhadens, black sea bass, and sturgeon, three coastal taxa 

present in the Atlantic and G ulf o f Mexico. The black sea bass exhibited reciprocal 

monophyly o f the Atlantic and G ulf haplotypes while both the menhaden and sturgeon 

shared haplotypes between the Atlantic and G ulf o f Mexico. Currently, the Atlantic and 

G ulf congeners have subspecies status for black sea bass and sturgeon, but not for the 

menhadens; the menhaden taxonomy conflicts with the genetic results.

While more morphological and genetic analyses o f large scale menhadens should 

be undertaken, especially around Florida, the genetic data suggest that synonymizing 

Atlantic and gulf menhaden may be warranted. This situation parallels another within the 

genus Brevoortia. Flistorically, the existence o f two menhaden species in the southwest 

Atlantic, Brazilian menhaden (B. aurea Spix & Agassiz 1829) and Argentine menhaden 

(B. pectinata  Jenyns 1842) have been purported (W hitehead 1985). But, recent genetic 

data has confirmed that these two putative species, in fact, comprise only one species, B. 

aurea (Garcia et al. 2008).

Phyl ogeography

Phylogenetic analyses based on mitochondrial genome RFLP as well as control 

region and COI sequence data revealed the presence o f two highly divergent lineages o f
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large-scaled menhadens (Bowen and Avise 1990, Anderson 2007, this study). Bowen 

and Avise (1990) noted the presence o f one clade (a ; “ubiquitous large-scaled” in this 

study) in menhaden collected along the U.S. Atlantic coast and G ulf o f Mexico and the 

other clade (p; “Atlantic-only” in this study) in menhaden only collected from the 

Atlantic Ocean. Based on mitochondrial COI sequences o f this study, the net nucleotide 

sequence divergence (5) between the two clades was 3.70%. This value is somewhat 

smaller than the 5% sequence divergence noted between the two clades by Bowen and 

Avise (1990) based on RFLP analysis o f the entire mitochondrial genome. The slight 

difference between the divergences estimated in the two studies is consistent with the fact 

that the mitochondrial genome contains both coding and non-coding gene regions and 

that COI is a coding region.

Avise (1992) hypothesized that the separation o f two mitochondrial clades 

between the Atlantic Ocean and the G ulf o f Mexico was a result o f historical isolation of 

Atlantic and gulf menhaden by the Florida peninsula during times o f cooler water 

temperatures and subsequent unidirectional gene flow during geologically recent times. 

During a period o f glaciation, sea level was lower and waters were cooler, making the 

Florida peninsula a more formidable barrier to gene flow. This barrier produced a 

phylogeny with an Atlantic clade and a G ulf clade. During a period o f warming, sea 

level was higher, allowing for unidirectional gene flow from the G ulf o f Mexico to the 

Atlantic via the G ulf Stream. Cooling subsequently limited mixing around Florida, with 

the G ulf signature remaining in the Atlantic population.

Anderson (2007) postulated that the distribution o f these two clades in menhaden 

collected along the U.S. Atlantic coast supported very recent gene flow from the G ulf of
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Mexico to the Atlantic because four o f the eight “Atlantic-only” haplotypes in the study 

were collected from the northernmost sampling location. However, the postulated 

geographic cline in the distribution o f the “Atlantic-only” clade was only qualitatively 

addressed and also must be moderated by the small sample size (n = 37) o f Atlantic 

menhaden in that study. In the present study, a more extensive sampling regime for 

Atlantic menhaden (n = 289) refutes Anderson’s (2007) hypothesis o f recent gene flow 

based on a clinal distribution o f the two clades in Atlantic menhaden. A chi-square 

analysis o f Atlantic coast sampling locations indicated that the two mitochondrial clades 

were not heterogeneously distributed among Atlantic coast collection locations. In other 

words, there is no geographic cline in mitochondrial sequences along the Atlantic coast.

While the mitochondrial data suggest unidirectional gene flow from the G ulf of 

M exico to the Atlantic coast in the recent geological past, analysis o f nuclear 

microsatellites indicates a barrier to gene flow at the present time. This study surveyed 7 

microsatellite loci and found an Fst o f 0.104 (p = 0.000) between Atlantic and gulf 

menhaden, a value that agrees well with A nderson’s (2007) Fst o f 0.110 based on the 

analysis o f 4 loci.

Population Structure

Stock structure analyses o f Atlantic menhaden along the U.S. Atlantic coast have 

suggested as few as one and as many as three different stocks based on spawning time, 

spawning location, and migration tracks (June 1958, 1965; Sutherland 1963; June and 

Nicholson 1964; N icholson 1972, 1978; Dryfoos et al. 1973; Epperly 1989). This study 

analyzed the distribution o f allelic variation o f rapidly evolving molecular characters to
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evaluate population structure o f Atlantic menhaden. The resulting AMOV As did not 

attribute any significant portion o f molecular variance to variation between the following 

group comparisons: YOY menhaden recruiting to Chesapeake Bay early and late in the 

season during the same year; YOY and yearling menhaden collected in Chesapeake Bay 

in successive years (following the 2006 year class); YOY and yearling menhaden 

collected in Chesapeake Bay in the same year (comparing 2005/2006, 2006/2007 year 

classes); and YOY and yearling menhaden (combined) from the four geographic regions 

along the U.S. Atlantic coast (New England, mid-Atlantic, Chesapeake Bay, and U.S. 

south Atlantic).

While none o f the five COI&st AMOVAs or five microsatellite Rst AMOVAs 

were significant, two o f the five microsatellite Fst AMOVAs showed a small but 

statistically significant partitioning o f genetic variation between YOY and yearling 

menhaden collected in Chesapeake Bay in successive years (following the 2006 year 

class, 1.80%,/? = 0.0176) and YOY and yearling menhaden (combined) from the four 

geographic regions along the U.S. Atlantic coast (0.575%,/? = 0.0000). Grouping the 

U.S. Atlantic coast sampling regions also produces a slight, but significant, pardoning 

between the northern and southern sampling locations (Fst = 0.00535, p  = 0.00098). This 

significant result from the Fst AMOVA between the four U.S. Atlantic coast geographic 

regions may be a result o f a latitudinal gradient in genetic variation or, conversely, a 

biologically insignificant event. Given enough genetic comparisons, statistically 

significant differences can be expected since some aberrations from complete panmixia 

do occur (Waples 1998).
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The differences between the F St and R s t AMOVA results can be accounted for by 

the different distance algorithms employed in the analyses. The F st AMOVA is based on 

the distribution o f number o f different alleles (not considering relationships among 

alleles) and uses the infinite allele model o f mutation. As a result, F st may be more 

appropriate in situations o f recent divergence when genetic drift is the predominant factor 

(Ruzzante 1998). The R st AMOVA is based on the distribution and relationship o f 

alleles (sum o f squared allele size differences) and uses the stepwise mutation model.

The R st algorithm may be more appropriate in situations where mutation is a key factor 

(Ruzzante 1998). Additionally, the R st method is considered applicable for microsatellite 

data only when sample sizes are either equal or larger than 50 (Ruzzante 1998). Because 

mutation is an important feature in this dataset and because the sample sizes exceed 50, 

R s t is a more reliable microsatellite method for comparing putative species. Conversely, 

for within species comparisons, F s t is a more typical method.

The pairwise comparisons between sample locations corroborate the <Pst and R st 

AMOVA results. No pairwise comparison revealed a statistically significant difference 

between any two o f the four geographic regions o f Atlantic menhaden after sequential 

Bonferroni correction. These findings support the hypothesis that the significant results 

from the F s t AMOVAs were biologically insignificant. The collective results indicate 

that there was no significant partitioning o f genetic variation between the sampling 

regions o f Atlantic menhaden, and the null hypothesis o f a single U.S. Atlantic stock can 

not be rejected.

Finding no statistically significant genetic differences among Atlantic menhaden 

sampling regions is consistent with the life history traits o f the species. O f all the North
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American Brevoortia, Atlantic menhaden undertake the longest coastal migrations 

(W hitehead 1985). They also undergo an ontogenetic shift in migration where larger fish 

migrate furthest north (Dryfoos et al. 1973, Quinlan et al. 1999). Atlantic menhaden are 

batch spawners, spawning multiple times during a year, and have the most temporally 

and geographically protracted spawning season o f any North American Brevoortia 

(Whitehead 1985). This means that the area(s) where a fish spawns in one year could be 

a different from the area(s) that it spawns in the following year. Additionally, eggs are 

spawned in coastal, pelagic waters. The larvae can take up to 90 days to cross the 

continental shelf and are affected by along-shore transport, coastal storms, freshwater 

discharge from estuaries, and wind-forcing (Checkley et al. 1988, Quinlan et al. 1999). 

These characteristics appear to keep Atlantic menhaden -  and their gene pool -  well 

mixed.

Genetic analyses o f other clupeids have failed to find population stucture. For 

Atlantic herring (Clupea harengus), Grant (1984) postulated that small scale migrations 

accounted for the lack o f genetic divergence between adjacent areas (40 allozyme loci, 6 

locations, ~ 50 samples/location). Volk et al. (2007) found evidence o f substantial gene 

flow between spawning locations o f twaite shad (Alosa fallax) with no evidence o f 

localized genetic drift due to habitat changes (12 microsatellite loci, 5 locations, 50 

samples/location; Fst = -0.0004 - 0.0089, a  = 0.05, non-significant after Bonferroni 

correction in all but one case). Gonzalez and Zardoya (2007) discovered minimal genetic 

differentiation among European sardines, hypothesizing it to be a result o f weak isolation 

by distance (8 microsatellite loci, 9 locations, 50 samples/location; Rst = 0.001 -  0.083, 

o f  36 pairwise comparisons, only nine comparisons revealed significant values after
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correction for multiple tests,/? < 0.0014).

In contrast, some clupeid species exhibit significant stock structure, often 

attributed to the presence o f geographic barriers or temporal reproductive isolation. 

Allozyme analysis revealed significant genetic differentiation between eastern North 

Pacific and Bering Sea Pacific herring (C. pallasi) because o f adults homing to previous 

spawning locations (spawning site fidelity) and larval retention mechanisms (40 allozyme 

loci, 6 locations, ~ 50 samples/location; Grant and Utter 1984). Similarly, O ’Connell et 

al. (1998) used microsatellite analysis to confirm genetic isolation o f the Bering Sea and 

G ulf o f Alaska stocks o f Pacific herring separated by the Alaska Peninsula (5 

microsatellite loci, 7 locations, ~ 50 samples/location; Rs t = 0-11 -  0.16,/? < 0.001).

And, Sugaya et al. (2008) exhibited significant genetic difference between Honshu and 

Hokkaido Island samples o f Pacific herring due to natal homing (5 microsatellite loci, 10 

locations 200/locationavg; Fst = 0.046-0.173,/? < 0.05, after sequential Bonferroni 

correction). Shaw et al. (1999) also found significant genetic structuring between 

Icelandic summer-spawners, Norwegian spring-spawners, and Norwegian fjord stocks of 

Atlantic herring (C. harengus), attributing differences to temporal isolation o f spawning 

(4 microsatellite loci, 5 locations, ~ 50 samples/location; F sr= 0.01 -  0.04,/? < 0.001; Rst 

= 0 .0 8 -0 .2 8 ,/?  <0.001).

Implications fo r  M anagement

Atlantic menhaden have had a rocky history o f management in Virginia, the only 

state that still maintains a reduction fishery facility for the species. Atlantic menahden 

are the only species in Virginia state marine waters to be managed by the Virginia
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Legislature, rather than the Virginia Marine Resource Commission. In 2005, the Atlantic 

States Marine Fisheries Commission (ASMFC), the regional managing authority, 

proposed a precautionary cap o f 105,000 tons on the reduction fishery to assess the status 

o f Atlantic menhaden in Chesapeake Bay relative to coastal systems (ASMFC 2005). By 

mandate, all ASMFC states were required to comply with the cap. However, during the 

2006 legislative session, members o f the Virginia General Assembly withdrew or killed 

four separate bills seeking to adopt the ASMFC cap. If  Virginia was still non-compliant 

by July 2006, a commercial moratorium could have been established by federal law. 

However, Virginia Governor Tim Kaine instituted a 109,000 ton cap by gubernatorial 

proclamation July 31, 2006 which was accepted by the ASMFC (ASMFC 2006).

With concerns over the potential o f localized depletion, the landings cap provided 

a precautionary management measure, allowing time to evaluate the connectivity and 

genetic relatedness o f Atlantic menhaden in Chesapeake Bay and along the U.S. Atlantic 

coast. This is especially important because there has been a reported loss o f  unique 

genetic variation in other species such as Pacific cod, leopard darter, Japanese flounder, 

and American shad due to fishing pressure, habitat degradation, and hatchery stocking 

(Grant and Stahl 1988, Echelle et al. 1999, Sekino et al. 2003, and Brown et al. 2000, 

respectively).

Currently, Atlantic menhaden are managed as one coastwide stock. With high 

genetic variability and homogeneous distribution o f the genetic variation, the results o f 

this study indicate that the current management practices for Atlantic menhaden are 

sufficient for maintaining the genetic composition o f the species. This finding is 

consistent with results o f previous tagging studies for Atlantic menhaden (Dryfoos et al.
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1973, Nicholson 1978). The genetic connectivity between New England, mid-Atlantic, 

Chesapeake Bay, and U.S. south Atlantic samples suggests that loss o f unique genetic 

variation due to intensified fishing pressure in Chesapeake Bay is not likely. However, it 

is important to realize that gene flow o f only a few migrants per generation, even for 

populations with millions o f individuals such as the Atlantic menhaden, is enough to 

negate the effects o f genetic drift (Mills and Allendorf 1996, Hard and Clark 2007).

While the results o f this study suggest that menhaden would eventually return to 

an area depleted by fishing effort without any significant loss o f genetic variation, genetic 

analysis cannot estimate the time course o f movements into the depleted area. Menhaden 

could repopulate a depleted area on a timescale o f weeks, months, seasons, years, or 

decades. Short-term replenishment to areas affected by localized fishing pressure is 

better estimated with non-genetic techniques, such as mark-recapture or analysis of 

otolith microchemistry.

As the fifth largest U.S. commercial fishery (by weight) and a principal forage 

fish, Atlantic menhaden is an important species, economically and ecologically. Proper 

management requires the most current understanding o f Atlantic menhaden stock 

structure. This study evaluated the potential for local depletion o f genetic variation due 

to the recent consolidation o f the reduction fishery to within and around Chesapeake Bay. 

While the taxonomic status o f Atlantic and gulf menhaden remains questionable, the 

results from seven microsatellite loci suggest that Atlantic menhaden have complete 

spatial and temporal genetic connectivity. Consequently, the management o f Atlantic 

menhaden as a single coastwide stock is appropriate at the present time.
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•Ĥ■fl

fl<uN>-
<D>

-2"3
00fl

XI
'Oo»
aflo5.
a

NO
O
NO

Nmfl-o oIN
in

om
o
o

toflflfl
flflfl
fl

-fl

NO
O
O
CN
G

x

a>
(DCfl
X
-flo
a
flou
a

r-oo
(N
G

3

a
-a

a
bofl
flfl

. f l

f̂l

"3
oo
a

X
-fla>a
ao
O

ONin
NOoo
o

m
N
OOoo

O'

ON
m
NO
oo

N-
oo

Nm
NO

N

ino

a
-fl

a

S’
flfl

. f l

■3

N>
'G
O

I
<
fl#o
*5jd<u
0.
in,

X
-flo>
Onflo0.
o

fl
. f l

bo
a

fl
. f l

•3

no0>G
X

CNHm o
NO0)

<+H

Gcd
<
fl©
'53d0)s-
ina
x
o»
On
f los-
o

ooooo

o
NOo
o

ON
O n

m
ON

m
NO

fl.fl
bo
a

fl
.fl
-̂ fl

o
N



<L>
o3

H  PQ

o3

o3

a
Cl*

X
rsa
CL*3O
S .

o

K
•2Sd
5̂
<3
•S

r~-



doo>cud
s.
d
d>ddcdXd
d>

'cj-mm
Ucd

CO

<
in>no
Qcd
co

<
d o
o  C NO

PQcdoo
< <  
bp t̂-d cd 
O co
B <cdr-v fN 

<  M 
>  <
2  x  
2  P

^ 2T 
§ 2  
’S 2> X

o
I  ax  d 
O d)

.22 S
C/3 C/3

2" d cd o
s  ”S
d ^ cd X

d>Xcd
3cd p5 in H b> n  X  -t3

u  a  *-< 2
2  SP d
"2 W

C/3 ^<3 £
o 2
cd ^  
d )  oo >,
vo "cl
°  B o  5«N S<D +->

r H  OO2  cd 
d §

^  lx  M
&  <  
oo £3 
% d 2  ^
°  2  b> 2  bO d cd o

‘5b
X  d>

S-h
oo'
2  X  Cd .d ina °d o
£ • 1d 2  dcd

2  d
a p
x  <  
§ 3
*§ *cd -T3
3) g d 3pq bp
I «

s.
d>

i-u
« 'So d d ^  cd in
S  ®
^  V*
^  S
P  d )  o
^  sd daj b> X  l+H d -d
'S 60

d> ' i n
d)d) g

&1 b)
a ^cd o

b-H cd
3  ^  
bO -o
x  2
d ft

in d> d 3d
<

b> 1) X b0 
d  S-<

3  3tP vi
<  3<ux  3X  o
o ’Sb x  P

Ci, 
x—' d> 

oo 'Td
a -3 
g PQ

. s l  
§ §

• p d
i  ^Cb cq
CD ^  b> d d s

.2  ‘C
cd >
3o
X  ^  o d

3  d
hr* cd

PQ
a x

oU SC l  < N

d ooo .d <U X
UVh
3
<u

d .d

cd
CQ
<uXcdd>Xcdood>X
u

X

X
I+-»
<
X 1

dooo
m

P

djd —̂> 
<
X+-*dooo
cn
P
Xdcd
>>cd
PQ

d) d> o
1  |  
s. g

£ 1
c °S O  d 0

d>X  X  d X
•§ *d>
x  ^  

3  c«b/j jj 
X

in 
rT̂  tN  Nh o

d>Xcd
1d>s

d 2
§ * 
S-H

d)

cd
>, oX d)bD cd

Os

X
cd

xd>
d xo ^

bb S
^  &p  « P  d
2  >> c3 d oo PQ

33d ^ d X
c cd

>3 2cd Cd 
PQ dM H  5/3

<D 2X  x
cd C J  cu
Cd II

#-Hoo X  d) X
P  Ou  S

dcd
3  *'*—» fi
J3
<

3
I d+-•d<d

S-H

2x3xo
S-Hd>X
Sdd

In COdd ^
X  d>

3  3  %-> xd dcd cd
p  p  
<  <

PQ
<L>
cd 3
u 2  Cd X  cd O
^ Pd> +->x  2 

u  S

(N

ino

cd

d
3H—>od)
opoo
’do
fcp
3do
PQ

ss-u0>d.
X
-X
=d=os.
o

«
"w
i jbXcd
X
TJd>Cd3OS.
o

Qcup
■S

2"w
OJ
©x3

X

9J
CU
3O
S-

o

cu

K

•S

CuCoCo
3"cu
CUboQ
ddjd»
cu-<5

CUbOQ
d

•S

cdoo
0 X
1  >
<
3#o
*53dd»b.
X
-30>
Cd
3O5-
o

d
•25bCUd
bs
,d
d̂

>>
X
-3d»
Cd
3O
S»

o

(N



d
<d

X
c d

d
2
h—•
<
DO
d
o
a
cd

<
>o
<  
oD
cd
d
cd

‘ Vh
cd
>
S-H

2
3

cd
CD

3
S

X
o

J n
3
d
cd

x
d
cd
bfl
C

3
o

tP
cd
D h

<d
CD
d
2‘Ph
cd
i>

3
cd

2
cd

cd
CD
in

V O
o

- o
O  ( N

s  J*PQ 3
£  g> C -S
;  £  

<  2

CD £  
CD

P< 2
a  7cd 1 
co X
«- tPCO C
d 2o S
cd
O <8

X

3
b£)

X  
d
cd

CD O

cd
2
3
d

CD

&

P h

d
cd
H—> 
<

C N
cd

co cd co 
cd

<  °
 ̂ <u

vo bfi
cd

* in 
X

rO 
X  O

3  cdd  CO

cd 0)co
H—*co 
cd 
o  
cd

a a

<
CD <D

2  U
<d  d  

X  cd 
X  COO
a  in  
cd cd 
co no O m Vh <D

2  x
S cd

CD

g  &
b >  CO 
>  CD 
CD X  co

§ -, o
n O  X  
CD CDss a

X  -X

bfl x
a  <
in  <D

t"- £
°  2 o  ^

( ' U
3  pd  . xcd h—>
X 03
o  
o
C N

X

CD
in  -d  
cd a  

PQ 2
CD < f 
cd X

*  2

<
2  ftQ <D
?  3
O b)

3  3  
So b>
CD 2
E? 3

2  d
UH P h

. ! ■ §
bfj cd 
CD

i l
X  d  

B  C3  CDJ  a
■ 1 x

CD

3>i
P h

X
CD

2
3
PQ

CD
P h

o
o
o

co
is
d
o

h«h.
o
P h

oq

d
<D

X
cd

X
d
CD

co
ID

X
U
s-

,o

X

3

CD
CD
S-H

i n
X
X
CD
P h
d
o
S-H
b O

O

GO

P
X  
d
cd

co „
d  n  
CD 2  
<D ®
b0 id 
d  X  

cdin
X
c/T
(D

CD
§ •C/Q

-H ^dn 2
d  U

bo X 
x pp 
p

CD

cd

'd-
m
m
U
cd

d
o
CD

O v

X
cd

H

Co
is 
d  
d  
Q5̂

•2
t !  2  
o
® 2  ^ Q
£ dcq w

2  c2  cdPQ X
<D <  
cd X
S  3P h Cd  3
C/5 i-rt

<  3
X  W)
d  x
S  S

c/i 3
^  Ix 2  
d  OP
cd < h
in  X  
cd X

PQ §
(D 00

• «  t o

SLd
cd

1  «
U m
ii i i

0:3X  b)
2  9<
s  t  
it
d  -  
cd cd

2

' §  x

w  o
CO | |
CD 11

3  n ) 

d  un
2  ° -
<d  o

CD II
%P d
X
x
o
S-H
CD

Xa
d
d

cd

d
o
PQ

CD CD
2 cX

cd

L M o c 2  w

CDC/5 C3
< 3 0

> 2  x x
a ^

^  X
§ s .  x x 
d  d  
cd cd

3 ) 3a
d  d

W  W

on in
x 2 
^  V
H  S

• CD
X s b> d  n

■ i  -
|  S

CD § )a co

X
23

CDcoi
CD
bJD
S-H
cd

fl
o

’5jd
CD
U

X
X
CD
O h
fl
o
s-

o

3
CD
aco
CD

X
cd
fla
n .

x
x

CD
P .
fl
o
Urn

O

m



>  d -
§  <n 

qu &
: <  c/5

cq <

d  in  
qd in  

X  o
cd Q

cd
to
<

QD
X
cdb> X
Cu rH
C/5 £
b> 3  

X  x  
CJ d

S-H 

2

cd

o o
(N

d  ®
cd pq 

cd
<c <
d )
a  ^O cd

2
3 b
d  

W
£  

O con  jd 
vo 3 h
°  a 
2  a(N co 
QD -*->
rH  C/5 «  /t*

cd x

d  a

<  HH
x  PX  (L)
d  x
P  cd 

1 ^

QD
X  
cd

in'
o  
©
V
S
OD 
CD

§
cd 

X
’d
_©X

o  a

cd <

<  <3
>  J?  
o  <
S  VO
<  cd 

o
a  3.d q

2 : 3

>  3>
qd

g> o

7  |  
2  |

<

£

x
a

cd cd

d  qd 
>  X
s-h Xd <d
a  ^CD co 
QD O

3  QD

C+H ^
o  d
to

3  OD
in  to

3  ds °, vD 
X  OD 
d  co 
cd cd
©Q
d  3 s

°  2  QD 2
©o d  
cd O
in  ’5b

X  OD
S-H

3
2  x
x
S  S

o
in
cd X

- S  *P h Cd
a  2
o3 <
C/5 ^__ ✓

0 )  C/5

3  2

P h

OD
3
CD

X
d

ODJ3
3>I
P h

X
OD

X
3
CQ

OD co co

cd

QQ
OD

X
cd
OD

d
cd

vo
o
o

P h  0x1
S P
OD

X
CJ cd

CQ

'S  *
a  *
od cq
CD O  O rj

. a  §
A Xd  cd

—  15cd qd
2  a3  <2

o OD 
X  x
cu d  n od
a  P h  

X  cd

cd aj b> >to .P  
OD 3  
©X) X  h d

2  ^  
S-H 

2
P d o cd
’5b x.
a  «^  OD 
in  X  

X  cd

1?l5
2  a
3  £
2 2 x  x
<C ©X 
X  X
3  ao *
CO J '

OD
P h

O
O
O

e-  in
o

<N

ft C/3OD
X
U
Uh

2

cd

d
©Q

X

bn o  
X  OD 

©X 
cdX

QD
& ^

2  
x  <£
d  ^
cd X4-»

& i
CQ
OD C/3■a
OD 
P h in  
cd cd

cd ''''~ 
h—* in  
d  o
a  ©

2  ii 
x    (
X  cd

2

2
x
cd

Cd ™  j o  

^  ^  d"s o  I  
p 2  a  
p  3Q 3  iN 
*■ cd d  

C/3 PQ

PQ
OD

X
cd
OD
§ •co

  OD
2  ^  <  cj

OD ** 
X  w
a  dd o
d  H—*

S  a
*  g

CD

3o
a

-  r ODx  x
QD O
a  2

X
QDco
d

xo

s
u
OD
OD
S.

X
X
OD
o |
fl
o5-

O

OD
©cfl

X
X
OD
o ifl
os.

o

fl
4D
bXfl
in

X
X
OD
CUfl
o
s.

o

CD

S’
s:
03

■S
2

2
3
OD
©J3fl
in

X
X
OD
O hfl
O
S.

o

ov

S’
d
03

■S
2

fl
O•PN
©X
OD

>>
X
X
OD
04fl
o5-

O

S3
•25b
<D
Sh.
03

.K
2

d"



dOD
X
cd

_CD

d
cd

H—> 

<  
bX 
d
0

1

>
O

<
OD
CD
d

_cd

>

d
CD

2
3
a

C+H
o

cd 
OD in 

VO 
©  

- ©  o  CN

PQ £

£  ^<  x
:  £  

p X
<  §

co d
<  w

r. OD
©  bX 

cd

qd  X  
Ph cd

cd bX
d

w

£
QD

a  32  OD 

d  2

- s c
OD

_bX
c o

CD 7  

CD
cd
CD

X
d

cd
<

in
3
d
cd

X
d
cd
bX.a

3o
-a
cd
£d
OD
CD
d

.cd
' a
cd>
3

CD

X
CD
Sh

cd
S-H
OD

3  S5 2 3h

~  ICu
S  C/5 
2
cd cd 
cfl r n  o w
S-h  QD 
2S Ctf

<u

§  d* QD c/2 
>  OD 
OD X  
c o  $

P  L
°  2 x
OD OD£ a

X  X

S-H 

2
o 2

'bX o  
OD c o

d)
^  a

d
bX

X  
d
cd c o

2  d H-> X  
d  cd 
cd >

<

r -©©
<N
X
d
cd

©©©
<N

Ph 
X

M  X  OD X

p 2a  fflP h

P  d  X o
2
d
o

‘5x
QDLh

in
X

cd

X  CD

in
cd

PQ

cd

^  d

£  s  p* I-1X  OD 

n3 ^  
d  ©  
cd ©  

-  ©
2 s O ' 

OD h— i 

X  J H
cd X

i s  OD

§  B
u, X

HHH -H

S 2
P  CDr od
oq
d
ODx
cd

QD <
x  j; 
cd X  
OD X

§ • 3
CO
OD 

X
U

S-H

2

c o

in
X
X

QD
P h
d
o
S-H
bX

o p©

i n

D  
x
d
cd

CD 2  

OD ®  
bX QD

cd

b> Ina ^5-H Co

3 )  co 

d  2
3  3

°  d  
ODUh

2x

cd
in

X

X  
cd 
OD 
P h

3  So2  OD 
P h  h P

o

x
Ch- h
O
S-H
OD

Xa
d
d

bX x
x  pq d

cd

cd

n t
m
m
U
cd

X
cd

H

Co
is 
d  
d  
03f<
t !  ©
o  ©
o  ®  
^  O  
£  p

cq ^

2  cd 
PQ X  

QD < 1
^  Xcd X
a  3
& Sco

ftcd cd 
PQ £

X
QD

X
d

2
3 )
d

QD 
X
cd 22 
QD d

So o
OD X  

X  '
u

OD

CD QD

§ S

22 o>
CUt/Q Cu >~ 7

< 3  &

<  x
X  OD

a h

in
( N©

ON

in©

d
2 H—>

CD
QD
S-H
S-H
o
CD

3
o
a
2
d
o

PQ
S-H
OD

2
cd

in '©
©
V
3 *

a

a>

Oh

3
bX

Xd
cd

2*3
0D
a
GOOD

"2flH-»fl
&H
in

X
XOD
a
a
o
u

o

so
.b>
CJ
cu
P h

03
d

3

m
r -



Ta
bl

e 
11

. 
Es

tim
at

es
 

of 
pa

irw
is

e 
F

st 
(b

elo
w 

di
ag

on
al

) 
an

d 
re

sp
ec

tiv
e 

^-
va

lu
es

 
(a

bo
ve

 
di

ag
on

al
) 

be
tw

ee
n 

re
gi

on
s 

of 
A

tla
nt

ic
 

m
en

ha
de

n 
(.B

re
vo

or
tia

 
ty

ra
nn

us
), 

gu
lf 

m
en

ha
de

n 
(B

. p
at

ro
nu

s)
, 

fin
es

ca
le

 
m

en
ha

de
n 

(B
. g

un
te

ri
), 

an
d 

ye
llo

w
fin

 
m

en
ha

de
n 

(B
. s

m
ith

i) 
ba

se
d 

on
 

se
ve

n 
m

ic
ro

sa
te

lli
te

 
lo

ci
 (

A
al

6,
 A

sa
2,

 A
sa

4,
 A

sa
B

02
0,

 A
sa

D
05

5,
 A

sa
C

33
4,

 S
ar

B
H

04
) 

af
te

r 
10

,0
00

 
pe

rm
ut

at
io

ns
. 

Bo
ld

ed
 

^-
va

lu
es

 
in

di
ca

te
 

si
gn

ifi
ca

nc
e 

(p
<0

.0
5)

 
af

te
r 

se
qu

en
tia

l 
B

on
fe

rr
on

i 
co

rr
ec

tio
n 

(in
iti

al
 a 

= 
0.0

5 
12 

= 
0.

02
5)

.

ye
llo

w
fi

n
m

en
ha

de
n oo

©
©©©
©

©©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

fi
ne

sc
al

e
m

en
ha

de
n ©©

©
©©©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©©©©
©
©
©

N"
OO
in
©

gu
lf

m
en

ha
de

n ©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

©
©
©
©
©
©
©

VO
m

©

CN
in
©

al
l

A
tl

an
ti

c

O

©

Ov
©
m
©

©
VO
m
©

U
.S

. 
so

ut
h 

A
tl

an
ti

c

mr-
©

ooo
o

©
CN©
©

OO

ooo
o

m
m
©

CN©
©

C
he

sa
pe

ak
e

B
ay

ooo
o

ooN"
©

in©>n©©
©

CN
CN

©

©
CN
m
©

e'­en
©

m
id

-
A

tl
an

ti
c

CN
in
CN
©

CN©©
©>i

©
vo©©
©

r-

©

r-
CNcn
©

©

©

N
ew

E
ng

la
nd m©

CN©©
©

m
m
CN©©
©

mvo©©
©1

VOoo
©
©

r-ro
©

r-

©

©
fl

—
Mfl
w
£

z ,

u• PN
fl
•**
<i
©
a

QJ-Hfl
S '«"  CO0)
©
U

J* r,
5© a * a

^  5

«
a

<
’a

flQi
23 fl 3 -fl 
w> fl4>

B

^  s"fl "O o fl
ce
a g 
«  g

a §
«B -S

 ̂ sO >3 © 3o> u
s

voI'"



Ta
bl

e 
12

. 
Es

tim
at

es
 

of 
pa

irw
is

e 
R

st
 (

be
low

 
di

ag
on

al
) 

an
d 

re
sp

ec
tiv

e 
^-

va
lu

es
 

(a
bo

ve
 

di
ag

on
al

) 
be

tw
ee

n 
re

gi
on

s 
of 

A
tla

nt
ic

 
m

en
ha

de
n 

(.B
re

vo
or

tia
 

ty
ra

nn
us

), 
gu

lf 
m

en
ha

de
n 

(B
. p

at
ro

nu
s)

, 
fin

es
ca

le
 

m
en

ha
de

n 
(B

. g
un

te
ri

), 
an

d 
ye

llo
w

fin
 

m
en

ha
de

n 
(B

. s
m

ith
i) 

ba
se

d 
on

 
se

ve
n 

m
ic

ro
sa

te
lli

te
 

lo
ci

 (
A

al
6,

 A
sa

2,
 A

sa
4,

 A
sa

B
02

0,
 A

sa
D

05
5,

 A
sa

C
33

4,
 S

ar
B

H
04

) 
af

te
r 

10
,0

00
 

pe
rm

ut
at

io
ns

. 
B

ol
de

dp
-v

al
ue

s 
in

di
ca

te
 

si
gn

ifi
ca

nc
e 

(/?
<0

.0
5)

 
af

te
r 

se
qu

en
tia

l 
B

on
fe

rr
on

i 
co

rr
ec

tio
n 

(in
iti

al
 a 

= 
0.0

5 
/ 2 

= 
0.

02
5)

.

ye
llo

w
fi

n
m

en
ha

de
n oooo©

©

©
©
©
©
©
© 0.

00
00

0 ©
©
©
©
©
© 0.

00
00

0 ©
©©
©©
© 0.

00
00

0

fi
ne

sc
al

e
m

en
ha

de
n oooo©

© 0.
00

00
0

0.
00

00
0 ©©©©

©
© 0.

00
00

0 ©©©©©
©

CN
00

©
gu

lf
m

en
ha

de
n oooo

©
©

©
©
©
©
©

©
©
©
©
©
© 0.

00
08

9 ©
©
©
©
©
©

N"
m

©

©
©
t-"
©

al
l

A
tl

an
ti

c

oo

©

r -
m
©
©

©
oo
©
©

U
.S

.s
ou

th
 

A
tl

an
ti

c

CN
r -
©
©

m
N"
<N
©

m
oo
00
©

CN
©
OO
©
©

CN
©
©
© ©

C
he

sa
pe

ak
e

B
ay oo

©
©

©
©

©

©
I/O
i/O
©
©
©1

©

©

CN
©
©

m
t"-
©
©

m
id

-
A

tl
an

ti
c

OO
oo
CN
©

N-

n
©
©
©i

©
©
©

©

©

OO
CN
©
©

oo
©
©

N
ew

E
ng

la
nd

CN
©
©
©
©
©i

CN

©
©i

©

©
©1

oo
©
©
©
©

r -

r -
©

N-
©
IN;
©

Ne
w 

E
ng

la
nd

m
id

-A
tl

an
ti

c
C

he
sa

pe
ak

e
B

ay
U

.S
. 

so
ut

h 
A

tl
an

ti
c

all
 A

tla
nt

ic
 

1
gu

lf
m

en
ha

de
n

fi
ne

sc
al

e
m

en
ha

de
n

ye
llo

w
fi

n
m

en
ha

de
n

r -
r -



Ta
bl

e 
13

. 
Es

tim
at

es
 

of 
pa

irw
is

e 
@

st
 

(b
elo

w 
di

ag
on

al
) 

an
d 

re
sp

ec
tiv

e 
p-

x 
al

ue
s 

(a
bo

ve
 

di
ag

on
al

) 
be

tw
ee

n 
re

gi
on

s 
of 

A
tla

nt
ic

 
m

en
ha

de
n 

(.B
re

vo
or

tia
 

ty
ra

nn
us

), 
gu

lf 
m

en
ha

de
n 

(B
. p

at
ro

nu
s)

, 
fin

es
ca

le
 

m
en

ha
de

n 
(B

. g
un

te
ri

), 
an

d 
ye

llo
w

fin
 

m
en

ha
de

n 
(B

. s
m

ith
i) 

ba
se

d 
on

 
cy

to
ch

or
m

e 
c 

ox
id

as
e 

su
bu

ni
t 

I (
CO

I) 
se

qu
en

ce
 

da
ta 

af
te

r 
10

,0
00

 
pe

rm
ut

at
io

ns
. 

Bo
ld

ed
 

p-
xa

lu
es

 
in

di
ca

te
 

si
gn

ifi
ca

nc
e 

(/?
<0

.0
5)

 a
ft

er
 

se
qu

en
tia

l 
B

on
fe

rr
on

i 
co

rr
ec

tio
n 

(in
iti

al
 a 

=  
0.0

5 
/ 2 

= 
0.

02
5)

.

ye
llo

w
fi

n
m

en
ha

de
n oooo

©
©

©
©©
©
©
© 0

.0
0

0
0

0 ©
©©
©
©
©

©
©
©
©
©
©

©
©
©
©
©
©

oo
ON
CM
©

fi
ne

sc
al

e
m

en
ha

de
n

©ooo
©
©

©
©
©
©
©
©

©
©
©©©
©

©
©
©
©
©
©

©
©
©
©
©
©

©
©
©
©
©
©

c n
©
©
©

gu
lf

m
en

ha
de

n

©
©
©
©
©
©

©
©
©
©
©

©
©
©
©
©

©
©
©
©
©

©
©
©
©
©

©
OO
©

m  
©  
t—
©

al
l

A
tl

an
ti

c

oo
r -

o

N"
NO
in
©

oo
r -

©

U
.S

. 
so

ut
h 

A
tl

an
ti

c

IT)
o
r -
©

CM
CM

©

o

©

NO
m
CN
©

in

in
©

oo
m

©

C
he

sa
pe

ak
e

B
ay

r -
oo
r -
©

CM
©
O n

©

ON
ON
CM
©
©
©i

CM
ON

©

©
oo
in
©

in
oo
N "
©

m
id

-
A

tl
an

ti
c

N -
in
oo
©

CN

©
©1

ON
ON
©
©
©1

r n

(N
©

m
NO
in
©

©
in
N ;
©

N
ew

E
ng

la
nd CM

©
©i

©
©

o
©

i

OO
©

©
©1

r f

CM
©

in
O n
in
©

CM
OO
N -
©

©fl
"flX)fl

£

z

CJ• i—
fl

.2
<1
T 3

2

»  a aQJ
©

©  .. cj
S  ©
9  A  

-2 
^  3

CJV->fl
.2
<
"a

fl
—  flfl -fl M  d0>

B

"fl 'flCJ fl
a lC  g

fl g
^ a 
o -fl ©  fl0)
^  a

oor-



Ta
bl

e 
14

. 
Li

te
ra

tu
re

 
va

lu
es

 
of 

w
ith

in
-s

am
pl

e 
m

ic
ro

sa
te

lli
te

 
va

ria
tio

n:
 n

um
be

r 
of 

lo
ci

 (
# 

lo
ci

), 
al

le
lic

 
di

ve
rs

ity
 

(A
; 

al
le

le
s 

pe
r 

lo
cu

s)
 

an
d 

ex
pe

ct
ed

 
he

te
ro

zy
go

si
ty

 
(H

e)
.

in o
o o1 o CN

j 04
3  !

a
cu 1> cd G '

: g O
(D CO

< co 
! G 

<D

S-Hau
-fl

j on Ph -
S s_ cj :!i 1—3 s :

ov
O n

cu
£
cdfl!

G O

o
o
CN

2Id
go

Q
c j

O  T 3
o  a  
CN cd
a g o oon coin Oh
<D <D -O t3 G G 
<  <

o
o
CN

I dGO
Qo

r - S
O t3 
o  a
CN cd
G G O Oco co
Oh Oh 
CD CD T3 T3 G G 
<  <

00o CNc_u o
CN o
-D CN
53

53CU
cd CU
cdon

G
<DroGm o

d
o  o  
o  o
CN CN

f l  .2 
h?  cd 

P h

o
o
CN
GOco
Oh
CDT3G
<

£

m m CN
o d rn
oo CN oo OV

o O n cd cd1 cdi
i

oo
1

ON
d m 1—1VD
CN r- oo CN
cd cd cd <d

oo in
OV O v in
o O ON

vo m OO
VO r - oo
o o o

m
CN
o o

VO
^ H  \C
d  o  
o  o

m
C NOn
Oi
VO

r -  <n
VO -H
o  <d

C N
d

ov VO ON

m
O v
c d

o  m  
o o  CN h
cd cd cd

^H Cxi 
h h  O n  
o o  v q

cd cdi i 
H-H

i n  m
, - H  (Nj
cd o

ov

r-
K
T_r vo I- *
(N) r H  CTl VO N  

• CN 1 i n  1
m  i c n  i m-H M rn CV -H

<n
im

O V  h h  
i n

i i
d  o o

VO
d  O n  CN 
d  d  ' 

i i CN 
g o  > n  '— 1

CN
r - H  r -  

I I
d  c o

5 0

*3auCDm

VO
C N  C N  

ON O n --h  tH  d -

50S
fcJOscuSk
52■S!
§
§■

CJDa
*3
s -au

- f l
cu
V-acd

50S
=
S
52k.

s
flau-O
cd-=
flau
S

d  m

S!36$
CQ
fla>T3
cd

- f lflau

au

"cdcu
5 0u
fl

C

d  in

503
3
3
£
52

OQ
flau-fl
cd

. f lflau
E

s
WO

d
i n  '— i m O n OO

5 03
"«CD

OX)
a

‘3uau
p f l
cu
s’3
cd

flu

-fl
cd
A3

cd
1

5 0

5 l
acuTS
cdufl
flcu
s
fl

C
£jfl

O v



Ta
bl

e 
15

. 
St

at
is

tic
al

ly
 

si
gn

ifi
ca

nt
 l

ite
ra

tu
re

 
va

lu
es

 
of 

F
st

be
tw

ee
n 

ge
ne

tic
al

ly
 

di
st

in
ct

 s
to

ck
s 

(a
fte

r 
se

qu
en

tia
l 

B
on

fe
rr

on
i 

co
rr

ec
tio

n)
.

cua
CUim

&
Ci

X

cuo
- J
:tfc

n
'3
ftl05

in oo o in
o o o
V V o

V

in"min N- vo"o o CN
o o CN
i 1 o

,— i oo d-mo voo o o
o o o

5*5di
ss

52
5 *5S
Si*2

£

i«U
Cd

- f lcu

5*5S
®«lSid>
fc«fl-s:
ad)
S'

Ml#d
'3s*

CUX
CU

a«

00
S-hd-Oa<u

VO

-id
*2cu

s*53
ccu
3
£Sk©

CJ

S!
C>

cu
S-H
cd0)

X

VO

52
3

■s©
5*5

”§

ocu

inoo
CN

Cu

M
NOoXau
u-1

ino
o
V

cfo

oo
o

oo
o
V

>no
o

&J
8
6*5s
Si
ik
a

oo(N
cd
cd

X
T3
§
Od

X<Dm

ooo<N
x
CJ)
cd
0U

>
CU

CU
cd3̂
cd
CJ)
dm

§

inoo
o
V

Kr-o
o'I
CN

o
o

1-Si
.C J
■Si
52 
ik

Uau-fl
53 
S  o

53
au
inau
S3C3
04cd

ino
o
V
Sh

rnr--

6*5

*2-h.
52

HU.a
*3
S-
OUX
CU

53■ 4cu
03

On

53X•+■*oo
S3
.2’2oHI
cd-*-»
cd

Oh

VOoo
CN

du
CO
S3
cd

ino
o
V
O,

(Oino
oIr-
p
o

oo
o
V

CNvoo

oo

I
a
a
Hi

-2d)
6*5
3•a
cj
’os

5*5©
5*5

.5*5

5*5S
$
sSk

ik*au
ik

33
U
k.cu

"2cu
fl

53"flauim

ooo



FIGURES



A) 100°W 90°W 80°W 70°W

G ulf o f
Mexico

G ulf o f
Mexico

100°W 90°W 80°W 70°W

40°N

30°N

20°N

40°N

Atlantic menhaden 
gulf menhaden 

yellowfin menhaden 

finscale menhaden

30°N

20°N

30°N

Atlantic
Ocean

-modifiedfrom Anderson (2007)

20°N

100°W 90°W 80°W 70°W

100°W 90°W 80°W 70°W

40°N

■  Atlantic menhaden 

A gulf menhaden 
0  yellowfin menhaden 

♦  finscale menhaden

Atlantic
Ocean

40°N

20°N

Figure 1. A) Map o f ranges o f the North American menhaden species: Atlantic menhaden 
(Brevoortia tyrannus), gulf menhaden (B. patronus), yellowfin menhaden (B. smithi), and 
finescale menhaden (B. gunteri). B) Map o f sampling locations in the Atlantic Ocean and 
the G ulf o f Mexico.
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Figure 2. Unweighted pair group method with arithmetic mean (UPGMA) trees o f a 
preliminary survey o f Atlantic menhaden (Brevoortia tyrannus, n=25) and gulf menhaden 
(B. patronus, n=3) A) mitochondrial control region sequences and B) cytochrome c 
oxidase subunit I sequences. The samples are coded by region (M, P, Y=Chesapeake 
Bay, G =G ulf o f Mexico), age (J=yearling, Y=YOY) and year collected (6=2006,
7=2007). Divergence o f clades is given as an absolute number o f base pair differences.

83



A)

B)

>Tj

>
T3

X
x x x x

x x x x
XXX

x x x x  
XXXX X

x x x x
XXX X

XX X X  A

A
A A A A  X

X
X X

x x x x
X X X

x x x x
XXX

x x  
x x x x

X X X  
x x x  

XX
X X  

k  X X
A  A  A A  A

/■ A W A W ..V .A A A A A  
1 A-----

XXXA X
XA AAXX

&AAAA/
XAAAAAAAAA 

AXAAAAA

0 .0 1 6 2 0 . 0 2 9 0  0 . 0 4 1 9

K30 distance

x  
x  x  x x x  x x x x  x x x x  

x x  x  
x  x

x  
x  x  
x

x  
x  x

X  X

X  Xx x x  x x x  
X X  A  A  
X  X  A  A  A
A  r t  “rJ-fc--------

A  A  
X

x

A
A  A

A  A

AAA AAA 
A  A  A  A  A  A

A  v

A *

0 .0 1 2 9

K80 distance

C)

x x x
x x x xx x x x

X X  X  
X X  X

X  Xxxx xxx 
X X X  A 

X X X A X A 
X X A A ' A-----

X  
X  X

X  X

X
A

X X
X  A  A  
A 1 A  A  A

AAA 
A  A  A  A  A  
A A A1 A A

X  X  
X  X

X  X

A  A  A  
AAAA 
A

X  s ( 3 r d )

A  » ( 3 r d )

0 . 0 1 3 0  0 .0 2 4 9

K80 distance

Figure 3. Nucleotide substitution patterns observed in pairwise comparisons o f an initial 
survey o f Brevoortia  mitochondrial A) control region sequences overall, B) cytochrome c 
oxidase subunit I (COI) sequences overall, and C) COI third codon positions. The x-axis 
is the Kimura (1980) distances between sequences; the y-axis represents transitions (blue 
Xs) and transversions (green triangles).

84



clade

17 nucleotides

24 nucleotides •  New England

anomalous 
samples

f f *
o '

•  mid-Atlantic

•  Chesapeake Bay 

U.S. south Atlantic

“ ubiquitous
large-scaled”

clade

Figure 4. Median-joining network o f 109 Atlantic menhaden (Brevoortia tyrannus, 
n=289) cytochrome c oxidase subunit I (COI) haplotypes. The observed haplotypes are 
sized according to frequency by regional proportions: New England («=50; green), mid- 
Atlantic («=53; aqua), Chesapeake Bay (n=\ 17; red), U.S. south Atlantic, (n=69; yellow). 
The hypothesized intermediate haplotypes are displayed in gray.
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Figure 5. Median-joining network o f 124 Atlantic menhaden (Brevoortia tyrannus, 
n=289), gulf menhaden (B. patronus , w=50) cytochrome c oxidase subunit I (COI) 
haplotypes. The observed haplotypes are sized according to frequency by species 
proportion: Atlantic menhaden (navy), gulf menhaden (orange). The hypothesized 
intermediate haplotypes are displayed in gray.
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Figure 6. Median-joining network o f 145 Atlantic menhaden (Brevoortia tyrannus, 
/7=289), gulf menhaden (B. patronus, 77=50), yellowfin menhaden (.B. smithi, 77=25), and 
finescale menhaden (B. gunteri, 77=25) cytochrome c oxidase subunit I (COI) haplotypes. 
The observed haplotypes are sized according to frequency by species proportion: 
Brevoortia tyrannus (navy); B. patronus (orange); B. gunteri (purple); B. smithi (yellow). 
The hypothesized intermediate haplotypes are displayed in gray.
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Figure 7. M edian-joining network o f 214 Atlantic menhaden (Brevoortia tyrannus, 
77=76), gulf menhaden (B. patronus , 77=73), yellowfin menhaden (.B. smithi, t?=57), and 
finescale menhaden (B. gunteri, 77=15) control region haplotypes from Anderson (2007) 
and three anomalous samples from this study (outlined in red). The observed haplotypes 
are sized according to frequency by species proportion: Brevoortia tyrannus (navy); B. 
patronus (orange); B. gunteri (purple); B. smithi (yellow).
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Hsp 34
Figure 8. Unrooted maximum likelihood tree o f 145 Atlantic menhaden {Brevoortia 
tyrannus, n=289), gulf menhaden {B. patronus , w=50), yellowfin menhaden {B. smithi, 
n= 25), and finescale menhaden {B. gunteri, n=25) cytochrome c oxidase subunit I (COI) 
haplotypes using maximum likelihood distances calculated by the HKY + 1 + T model 
(Hasegawa et al. 1985). For haplotype codes by region and sample, see Appendix 3. 
Nodal support was assessed with bootstrapping (10 pseudoreplicates, 10 random 
addition) and the numbers below each data bipartion indicate bootstrap support (if 
>50%).
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Hap 49

Figure 9. Unrooted Bayesian tree o f 145 Atlantic menhaden (.Brevoortia tyrannus, 
tt=289), gulf menhaden (B. patronus, ^=50), yellowfin menhaden (B. smithi, n=25), and 
finescale menhaden (B. gunteri, w=25) cytochrome c oxidase subunit I (COI) haplotypes 
using maximum likelihood distances calculated by the HKY + I + T  model (Hasegawa et 
al. 1985). For haplotype codes by region and sample, see Appendix 3. The analysis 
used Markov Chain Monte Carlo simulations with 4,000,000 generations sampled every 
1,000 generations.
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Figure 10. Unrooted maximum parsimony tree o f 145 Atlantic menhaden (.Brevoortia 
tyrannus, n=289), gulf menhaden (B. patronus, n=50), yellowfin menhaden (B. smithi, 
n=25), and finescale menhaden (B. gunteri, n=25) cytochrome c oxidase subunit I (COI) 
haplotypes. For haplotype codes by region and sample, see Appendix 3. Nodal support 
was assessed with bootstrapping (100 pseudoreplicates, 10 random addition) and the 
numbers below each data bipartion indicate bootstrap support (if >50%).
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Figure 11. Unweighted pair group method with arithmetic mean (UPGMA) tree o f an 
initial survey o f Atlantic menhaden (Brevoortia tyrannus, n=9), gulf menhaden (B . 
patronus, n= 1), yellowfin menhaden (B. smithi, n= 1), and finescale menhaden (B. 
gunteri, n= \) internal transcribed spacer 1 sequences. The samples are coded by location 
(New England = A, mid Atlantic = D, Chesapeake Bay = M, P, Y, U.S. south Atlantic = 
AS, gulf menhaden = G, yellowfin menhaden = smithi, finescale menhaden = gunteri), 
age (J = yearling, Y = YOY), year collected (6=2006, 7=2007), and clone number (the 
final digit). Divergence o f clades is given as absolute number o f base pair differences. 
Nodal support was assessed with bootstrapping (1,000 pseudoreplicates, systematic tie 
breaking) and the numbers o f below each data bipartion indicate bootstrap support (if 
>50%).
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Figure 12. Allele ranges by region for the 8 microsatellite loci: A) A al6 , B) Asa2, C) 
Asa4, D) A sal6 , E) AsaB020, F) AsaD055, G) AsaC334, H) SarBH04. Samples are 
coded by region in descending order: full allele range (white); Brevoortia tyrannus, New 
England (green), mid-Atlantic (aqua), Chesapeake Bay (red), U.S. south Atlantic 
(yellow); B. patronus (purple); B. gunteri (orange); B. smithi (navy).
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Figure 13. Unrooted neighbor-joining trees o f Atlantic menhaden (Brevoortia tyrannus) 
sampling regions: New  England (NE), mid-Atlantic (NJ), Chesapeake Bay (CB), and 
U.S. south Atlantic (SC); gulf menhaden (B. patronus); finescale menhaden (B. gunteri); 
and yellowfin menhaden (B. smithi) with 7 microsatellite loci (A al6 , Asa2, Asa4, 
AsaB020, AsaD055, AsaC334, SarBH04) using A) modified Cavalli-Sforza chord 
distance (Da, Nei et al. 1983) and B) N ei’s standard genetic distance (Dsf, Nei 1972).
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Figure 14. Unrooted neighbor-joining trees o f Atlantic menhaden (Brevoortia tyrannus) 
sampling regions (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic) 
and gulf menhaden (B. patronus) as an outgroup with 7 microsatellite loci (A al6 , Asa2, 
Asa4, AsaB020, AsaD055, AsaC334, SarBH04) using A) modified Cavalli-Sforza chord 
distance (Da; Nei et al. 1983) and B) N ei’s standard genetic distance (.D st; Nei 1972).
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Figure 15. Spatial representation o f genetic relationships based on 7 microsatellite loci 
(A al6 , Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) between A) Atlantic 
menhanden, Brevoortia tyrannus: New England (yellow), mid-Atlantic (blue), 
Chesapeake Bay (white), U.S. south Atlantic (gray), B) large-scale menhaden, B. 
tyrannus: New England (yellow), mid-Atlantic (blue), Chesapeake Bay (white), U.S. 
south Atlantic (gray); B. patronus (magenta), C) North American Brevoortia , B. 
tyrannus: New England (yellow), mid-Atlantic (blue), Chesapeake Bay (white), U.S. 
south Atlantic (gray); B. patronus (magenta); B. gunteri (aqua); B. smithi (navy).
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Appendix 2. Primer sequences, reagents, and PCR parameter optimizations used in the 
present study for mitochondrial and nuclear amplification o f Brevoortia specimens.

Control Region

Pro-F: 5’ CTA CCY CYA ACT CCC AAA GC 3’ (K. Gray, unpublished)
Phe-R: 5s GTA AAG TCA CGA CCA AAC C 3 ’ (Brendtro et a l  2008)

For each lOpL PCR reaction,
7.65pL sterile, filtered H 2 O
lp L  10X PCR Buffer plus magnesium (Qiagen)
0.2pL 10mM dNTPs (Qiagen)
0.05pL o f each 100 pM forward and reverse primer 
0.05pL Taq, DNA polymerase (Qiagen)

1 cycle 94°C initial denaturation for 4 minutes
36 cycles 94°C denaturation for 1 minute

54°C annealing for 1 minute 
72°C extension for 2 minutes 

1 cycle 72°C extension for 5 minutes
Hold 4°C

CQI

MenCOIF: 5 ’ CTT TCG GCT ACA TGG GAA TG 3 ’ (B. Tarbox, unpublished)
MenCOIR: 5 ’ AGC CCT AGG AAG TGT TGT GG 3’ (B. Tarbox, unpublished)

For each lOpL PCR reaction,
7.25pL sterile, filtered H 2 O
lpL  10X PCR Buffer plus magnesium (Qiagen)
0.2pL lOmM dNTPs (Qiagen)
0.4pL BSA (bovine serum albumin; lm g/mL)
0.05pL o f each 100 pM forward and reverse primer 
0.05pL Taq, DNA polymerase (Qiagen)

1 cycle 94°C initial denaturation for 4 minutes
36 cycles 94°C denaturation for 1 minute

49.1°C annealing for 1 minute 
72°C extension for 2 minutes 

1 cycle 72°C extension for 5 minutes
Hold 4°C
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IT S-1

ITS-1: 5’ GAG GAA GTA AAA GTC GTA AC A AGG 3’ (K. Johnson, unpublished) 
5.8SR1: 5 ’ ATT CAC ATT AGT TCT CGC AGC TA 3’ (K. Johnson, unpublished)

For each lOpL PCR reaction,
7.25pL sterile, filtered H20  
1 pL 1 OX PCR Buffer plus magnesium (Qiagen)
0.2pL lOmM dNTPs (Qiagen)
0.4pL BSA (bovine serum albumin; lmg/mL)
0.05pL o f each 100 pM forward and reverse primer 
0.05pL Taq, DNA polymerase (Qiagen)

1 cycle 94°C initial denaturation for 4 minutes
36 cycles 94°C denaturation for 1 minute 

64.5°C annealing for 1 minute 
72°C extension for 2 minutes 

1 cycle 72°C extension for 5 minutes
Hold 4°C

Microsatellites

For each 5pL PCR reaction,
2.78pL sterile, filtered H 2 O 
1 pL BSA (bovine serum albumin; lmg/mL)
0.5pL 10X PCR Buffer without MgCl2 (Invitrogen) 
0.15pL 1.5mM Mg+ (Invitrogen)
0.1 pL lOmM dNTPs (Qiagen)
0.01875pL lOpM T3 tailed forward primer
0.075pL lOpM reverse primer
0.05pL lOpM fluorescent label
0.025pL Platinum Taq, DNA polymerase (Invitrogen)

1 cycle 94°C initial denaturation for 3 minutes
36 cycles 94°C denaturation for 45 seconds

variable °C annealing for 45 seconds*
72°C extension for 45 seconds 

1 cycle 72°C extension for 7 minutes
Hold 4°C

* Primers and annealing temperatures specific to each locus are listed in Table 1.
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Appendix 3. A) Aligned mitochondrial control region sequence data, B) aligned 
mitochondrial cytochrome c oxidase subunit I (COI) sequence data, C) COI haplotypes, 
D) COI amino acid sequence data, E) aligned nuclear internal transcribed spacer 1 (ITS- 
1) sequence data, and F) allele scores for seven microsatellite loci (A al6 , Asa2, Asa4, 
AsaB020, AsaD055, AsaC334, SarBH04) collected from Brevoortia specimens.

Appendix 3. A) Aligned mitochondrial control region sequence data collected from 28 
Brevoortia specimens.

Please see attached electronic version.

Appendix 3. B) Aligned mitochondrial cytochrome c oxidase subunit I (COI) sequence 
data collected from 389 Brevoortia specimens.

Please see attached electronic version.
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Appendix 3. C) Cytochrome c oxidase subunit I (COI) haplotypes from 389 Brevoortia 
specimens coded by region and sample.

Haplotype Code: B. smithi B. gunteri B. patronus B. tyrannus
X

X
X

X
X X

X X
X X

X X
X X X
X X X
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haplotype sample haplotype sample haplotype sample haplotype sample
1 SMI23 28 M764Y 46 A612Y 47 A624Y
2 GUN25 29 D725Y 46 A613Y 47 D709Y
3 GUN15 29 Y639J 46 A616Y 47 E706Y
3 GUN19 30 A621Y 46 AS602J 48 D610Y
3 GUN24 30 A622Y 46 AS607J 48 M760Y
3 Gun3 30 CH737J 46 CH726J 49 A617Y
3 Gun7 30 D603Y 46 CH727J 50 E720Y
4 GUN11 30 D702Y 46 CH728J 51 D706Y
5 Gun10 30 D703Y 46 CH734J 52 G720Y
5 SMI14 30 Gun6 46 CH735J 53 Y640J
6 GUN17 30 M605Y 46 CH736J 54 P625Y

— 8 GUN14 30 SH718Y 46 CH740J 55 G723Y
8 Gun8 30 Y707Y 46 D611Y 55 Y748J
8 Smi2 30 Y711Y 46 D614Y 56 D711Y
9 Gun9 30 Y719Y 46 D624Y 56 D718Y

10 Gun5 30 Y745J 46 D722Y 56 E711Y
11 GUN12 31 E721Y 46 D724Y 56 G713Y
11 GUN13 31 GH701Y 46 D726Y 56 M603Y
11 GUN16 31 M763Y 46 D727Y 56 Y734J
11 GUN21 32 D723Y 46 E703Y 57 Y636J
11 Smi1 33 P622Y 46 E704Y 58 P619Y
11 SMI15 34 Smi8 46 E708Y 58 Y629J
11 SMI16 35 D708Y 46 E712Y 58 Y635J
11 SMI18 35 D712Y 46 GH703Y 59 Y713Y
11 SMI19 35 E707Y 46 M601Y 60 P615Y
11 SMI24 35 P620Y 46 M751Y 60 P626Y
11 SMI25 35 Y720Y 46 M753Y 61 G614Y
12 SMI21 35 Y725Y 46 M754Y 62 D616Y
13 GUN18 36 Gun1 46 M756Y 63 D608Y
13 GUN23 36 Gun2 46 M759Y 64 E701Y
14 GUN20 36 P621Y 46 P609Y 65 E623Y
15 Smi10 36 SH723Y 46 P613Y 66 Y724Y
16 E717Y 36 SH729Y 46 P623Y 67 A620Y
16 SMI20 36 Smi5 46 SH706Y 68 D601Y
17 GUN22 36 Smi9 46 SH709Y 69 A609Y
17 smil 1 Y747J 46 SH713Y 70 G604Y36
17 SMI22 37 AS608J 46 SH719Y 71 G703Y
18 SMI13 38 CH731J 46 Y628J 71 M757Y
19 SMI12 39 Y721Y 46 Y642J 71 P616Y
20 D705Y 40 AS612J 46 Y703Y 71 Y627J
20 SMI17 40 D701Y 46 Y709Y 71 Y774Y
21 E715Y 40 Y716Y 46 Y710Y 72 Y632J
22 AS603J 40 Y738J 46 Y712Y 73 AS604J

_____ 23 E705Y 41 Y637J 46 Y714Y 74 D721Y
24 Gun4 42 Smi3 46 Y727J 75 D620Y
25 A615Y 43 E624Y 46 Y732J 76 AS611J
25 AS613J 44 E722Y 46 Y733J 77 D606Y
26 Y729J 45 D626Y 46 Y773Y 77 M604Y
27 SH708Y 46 A607Y 46 Y776Y 78 E716Y
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haplotype sample haplotype sample haplotype sample haplotype sample
78 SH722Y 106 A610Y 123 Y644J 142 G609Y
79 D612Y 106 Y634J 123 Y717Y 142 G612Y
80 E627J 107 SH707Y 123 Y775Y 142 G613Y
81 AS614J 108 D619Y 124 A619Y 142 G615Y
81 E628J 109 E713Y 124 AS606J 142 G616Y
81 E714Y 110 CH738J 124 P611Y 142 G623Y
81 G712Y 111 CR620J 125 G611Y 142 G625Y
81 SH705Y 112 D602Y 126 G617Y 142 G705Y
81 Smi4 112 D625Y 126 G619Y 142 G706Y
81 Y641J 112 Y735J 126 G621Y 142 G711Y

81 Y643J 112 Y743J 127 G603Y 142 G715Y
81 Y737J 113 E719Y 128 CH741J 142 G717Y
82 Y706Y 113 M606Y 129 SH711Y 142 G719Y
83 G718Y 114 Y704Y 130 C619J 142 G722Y
84 M767Y 115 E625J 131 C617J 142 G725Y
85 AS610J 115 SH721Y 131 M752Y 142 GH704Y
85 G602Y 116 G608Y 131 Y746J 142 M608J
85 G704Y 116 G622Y 132 D605Y 142 M755Y
85 G721Y 117 SH717Y 133 D613Y 142 M761Y
86 G710Y 118 E702Y 133 Y630J 142 P610Y
87 M766Y 119 E626J 134 Y715Y 142 P617Y
87 Y771Y 120 D627Y 135 Y631J 142 P618Y
88 A611Y 121 E710Y 136 G724Y 142 SH714Y
89 G624Y 121 G701Y 137 G610Y 142 SH716Y

CD O A608Y 121 G716Y 138 D716Y 142 SH727Y
90 Smi6 121 M758Y 139 D607Y 142 Smi7
91 Y739J 121 Y768Y 140 AS615J 142 Y633J
92 D704Y 122 C618J 141 G707Y 142 Y701Y
93 G605Y 122 CH730J 141 SH728Y 142 Y705Y
94 E724Y 122 D717Y 142 A601Y 142 Y708Y

95 G601Y 122 E622Y 142 A605Y 142 Y718Y
96 Y728J 122 Y726J 142 A614Y 142 Y723Y
97 Y749J 123 A602Y 142 A625Y 142 Y730J
98 SH710Y 123 A618Y 142 AS601J 142 Y731J
99 A603Y 123 AS609J 142 AS605J 142 Y736J
99 D604Y 123 AS616J 142 CH729J 142 Y740J

1 0 0 Y722Y 123 CH739J 142 CH733J 142 Y741J
101 E709Y 123 D609Y 142 CR621J 142 Y744J

102 CH732J 123 D623Y 142 D615Y 142 Y769Y
102 G702Y 123 D719Y 142 D617Y 142 Y770Y
102 G709Y 123 E718Y 142 D621Y 142 Y772Y

102 SH724Y 123 E725Y 142 D622Y 143 A623Y

102 Y638J 123 G618Y 142 D707Y 143 M602Y

102 Y742J 123 G620Y 142 D710Y 144 A606Y

102 Y750J 123 G714Y 142 D714Y 145 D618Y

103 A604Y 123 GH702Y 142 D720Y 145 P612Y

104 P614Y 123 M607Y 142 E723Y
104 P624Y 123 M765Y 142 G606Y
105 G708Y 123 SH712Y 142 G607Y
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Appendix 3. D) Aligned mitochondrial cytochrome c oxidase subunit I (COI) amino 
acid sequence data collected from 389 Brevoortia  specimens.

Please see attached electronic version.

Appendix 3. E) Aligned nuclear internal transcribed spacer 1 (ITS-1) sequence data 
collected from 12><5 clones o f Brevoortia  specimens with outgroup Gadus morhua.

Please see attached electronic version.

Appendix 3. F) Allele scores for seven microsatellite loci (A al6 , Asa2, Asa4, AsaB020, 
AsaD055, AsaC334, SarBH04) collected from 389 Brevoortia  specimens.

Please see attached electronic version.
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