

W&M ScholarWorks

Dissertations, Theses, and Masters Projects

Theses, Dissertations, & Master Projects

2008

A Molecular Analysis of Atlantic Menhaden (Brevoortia tyrannus) Stock Structure

Abigail J. Lynch College of William and Mary - Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Fresh Water Studies Commons, Molecular Biology Commons, and the Oceanography Commons

Recommended Citation

Lynch, Abigail J., "A Molecular Analysis of Atlantic Menhaden (Brevoortia tyrannus) Stock Structure" (2008). *Dissertations, Theses, and Masters Projects.* Paper 1539617866. https://dx.doi.org/doi:10.25773/v5-rw45-j035

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

A Molecular Analysis of Atlantic Menhaden (Brevoortia tyrannus) Stock Structure

A Thesis

Presented to

The Faculty of the School of Marine Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

by

Abigail J. Lynch

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

Approved by the Committee, July 21, 2008

John E. Graves, Ph.D. Committee Chairman/Advisor

Jan R. McDowell, Ph.D.

sbut

Robert J. Latour, Ph.D.

John M. Brubaker, Ph.D.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	v
LIST OF TABLES	vi
LIST OF FIGURES	.viii
ABSTRACT	2
INTRODUCTION	3
"The Most Important Fish in the Sea"	6
Atlantic Menhaden Stock Structure Analyses	8
Clupeiform Genetic Stock Structure Analyses	10
PROJECT OBJECTIVES	15
MATERIALS AND METHODS	18
Sample Collection	19
Molecular Markers	.19
Extraction and Amplification	20
Nuclear Cloning	21
Sequence Analysis	22
Microsatellite Analysis	23
Descriptive Statistics	23
Genetic Relationships	.25
Population Structure	27
RESULTS	.29
Evaluation of Mitochondrial Gene Region Variability	30
Cytochrome c Oxidase Subunit 1	31
Internal Transcribed Spacer 1	34
Microsatellites	.34
Analysis of Molecular Variance	35

DISCUSSION	38
Molecular Markers	
Species Identification	40
Phylogeography	47
Population Structure	49
Implications for Management	53
LITERATURE CITED	97
APPENDICES	111
VITA	120

ACKNOWLEDGMENTS

I am sincerely grateful to my advisor, Dr. John Graves, and committee members, Drs. Jan McDowell, Robert Latour, and John Brubaker for their guidance and support. In particular, thanks to Dr. Graves: I appreciate his patience with my struggles and his drive to educate me in a scholarly manner which will motivate me throughout my career and life; to Dr. McDowell: her readiness to share her vast knowledge and aid others is both selfless and inspirational; to Dr. Latour: for the intellectual seed that came to this fruition and for an analytical exposure to quantitative fisheries which I could entirely be lacking with this type of study; and to Dr. Brubaker: for taking on yet another genetics project with an inspiring willingness to appreciate disciplines beyond his own.

This project was accomplished with help from many colleagues, friends, and family. For specimen collection, I extend my gratitude to Gary Nelson, Heather Corbett, Patrick Lynch, Troy Tuckey, John Archambault, William Dailey, and Joel Anderson. Anderson and Brian Tarbox also gave me advice on directions in menhaden genetics and primers. Many thanks to the grounding (in)sanity of Graves Lab family: Ana Verissimo, Dan Dutton, Dave Portnoy, Emily Chandler, Kirsten Brendtro, Laurie Sorenson, and Melissa Paine. With you all, the countless hours in the lab and office were bearable, informative, and entertaining. I am thoroughly indebted to the lunch bunch, my housemates, classmates, and friends at VIMS: Andre Buchheister, Candi Spier, Chris Magel, Josh Bearman, Justine Woodward, Karen Capossela, Kathleen McNamee, Kelli Milleville, Laura Palomo, Maggie Fagan, Patrick Lynch, and Sally Upton, among many others. VIMS has been a truly irreplaceable experience because of you, your empathy, and your insightful reparté. I am also grateful to Jarrad Kosa and the U.S. Fish and Wildlife Service's Branch of Fish and Wildlife Management Assistance for their understanding and accommodation of my degree requirements during my fellowship year. Many thanks to all my family and friends, especially my parents, Dennis and Debbie Lynch, my sisters, Nora and Annie Lynch, my grandmothers, Jean Hall and Alfina Lynch, and my aunt and uncle, Grace and Ed Simpson, for their unending encouragement and support of my educational pursuits.

Funding for this project was provided by the Virginia Saltwater Recreational Fishing Development Fund (award date: 01 Jan 2007 – 31 Dec 2007).

LIST OF TABLES

Table	Page
1. Microsatellite loci tested in the present study for amplification in <i>Brevoortia</i> specimens	57
2. Sequence statistics of <i>Brevoortia</i> specimens based on an initial survey of mitochondrial control region, cytochorme <i>c</i> oxidase subunit I (COI), and internal transcribed spacer 1 (ITS-1) sequence data	62
3. Sequence statistics of <i>Brevoortia</i> specimens based on cytochorme <i>c</i> oxidase subunit I (COI) sequence data by region and overall samples	63
4. Contingency table testing the independence of geographic representation of two cytochorme <i>c</i> oxidase subunit I (COI) clades of large-scaled <i>Brevoortia</i> specimens	64
5. Population statistics of <i>Brevoortia</i> specimens based on8 microsatellite loci by region and overall samples	65
6. Hardy-Weinberg equilibrium test of association at the locus level of <i>Brevoortia</i> specimens for 8 microsatellite loci using the methods of Guo and Thompson (1992)	67
7. Modifed Cavalli-Sforza chord distances (D_A ; Nei <i>et al.</i> , 1983) and Nei's standard genetic distances (D_{ST} ; Nei, 1972) for <i>Brevoortia</i> specimens using seven microsatellite loci	69
8. Hierarchical variance partitioning and analysis of molecular variance among <i>Brevoortia</i> specimens based on cytochorme <i>c</i> oxidase subunit I (COI) sequence data	70
9. Hierarchical variance partitioning and analysis of molecular variance among <i>Brevoortia</i> specimens based on 7 microsatellite loci using number of different alleles (F_{ST})	72
10. Hierarchical variance partitioning and analysis of molecular variance among <i>Brevoortia</i> specimens based on 7 microsatellite loci using sum of squared size difference (R_{ST})	74

11. Pairwise F _{ST} estimates between <i>Brevoortia</i> specimens	
based upon 7 microsatellite loci using number of	
different alleles (F_{ST})	76
12. Pairwise F_{ST} estimates between <i>Brevoortia</i> specimens	
based upon 7 microsatellite loci using sum of squared	
size difference (R_{ST})	'7
13. Pairwise Φ_{ST} estimates between <i>Brevoortia</i> specimens	
based upon mitochondrial cytochrome c oxidase subunit I	
(COI) gene region sequence data	'8
14. Literature values of within-sample microsatellite variation7	9
15. Statistically significant literature values of F_{ST}	
between genetically distinct stocks	30

LIST OF FIGURES

Figure Page
1. Maps of ranges and sampling locations of North American Brevoortia in the Atlantic Ocean and the Gulf of Mexico82
2. Unweighted pair group method with arithmetic mean (UPGMA) trees of a preliminary survey of Atlantic menhaden (<i>Brevoortia tyrannus</i>) and gulf menhaden (<i>B. patronus</i>) mitochondrial control region and cytochrome <i>c</i> oxidase subunit I (COI) sequences
3. Nucleotide substitution patterns observed in pairwise comparisons of Atlantic menhaden (<i>Brevoortia tyrannus</i>) and gulf menhaden (<i>B. patronus</i>) mitochondrial control region and cytochrome c oxidase subunit I (COI) sequences
 Median-joining network of haplotypes showing distinct cytochrome c oxidase subunit I (COI) clades of Atlantic nenhaden (<i>Brevoortia tyrannus</i>)
5. Median-joining network of haplotypes showing distinct cytochrome <i>c</i> oxidase subunit I (COI) clades of large-scaled Brevoortia
5. Median-joining network of haplotypes showing distinct cytochrome <i>c</i> oxidase subunit I (COI) clades of North American Brevoortia
 Median-joining network of Anderson (2007) <i>Brevoortia</i> nitochondrial control region sequences with anomalous specimens from the present study
B. Maximum likelihood tree of <i>Brevoortia</i> cytochrome <i>c</i> oxidase subunit I (COI) haplotypes using maximum ikelihood distances calculated by the HKY + I + Γ nodel (Hasegawa <i>et al.</i> 1985)
D. Bayesian tree of <i>Brevoortia</i> cytochrome <i>c</i> oxidase subunit I (COI) haplotypes using maximum likelihood listances calculated by the HKY + I + Γ nodel (Hasegawa <i>et al.</i> 1985)90

10. Maximum parsimony tree of <i>Brevoortia</i> cytochrome c oxidase subunit I (COI) haplotypes
11. Unweighted pair group method with arithmetic mean (UPGMA) tree of an initial survey of <i>Brevoortia</i> internal transcribed spacer 1 (ITS-1) sequences
12. Allele size ranges of 7 <i>Brevoortia</i> microsatellite loci by sampling regions
13. Unrooted neighbor-joining trees of 7 <i>Brevoortia</i> microsatellite loci using modified Cavalli-Sforza chord distance (D_A ; Nei <i>et al.</i> , 1983) and Nei's standard genetic distances (D_{ST} ; Nei, 1972)94
14. Unrooted neighbor-joining trees of 7 large-scaled <i>Brevoortia</i> microsatellite loci using modified Cavalli-Sforza chord distance (D_A ; Nei <i>et al.</i> , 1983) and Nei's standard genetic distances (D_{ST} ; Nei, 1972)
15. Spatial representation of genetic relationships between <i>Brevoortia</i> sampling locations based on 7 microsatellite loci

A MOLECULAR ANALYSIS OF ATLANTIC MENHADEN (*BREVOORTIA TYRANNUS*) STOCK STRUCTURE

ABSTRACT

Atlantic menhaden is an ecologically and economically important species along the U.S. east coast. As a filter-feeder and key prey fish, it provides a critical link between primary production, phytoplankton, and larger piscivorous predators, such as striped bass, bluefish, and weakfish. The species is also the target of one of the largest commercial fisheries in the country. Menhaden are assessed as a single, coastwide stock, and recent assessments indicate that it is not overfished. However, there is very limited population genetics data to support the assumption of a single stock. Additionally, the recent consolidation of the fishery and localization of harvests within and around Chesapeake Bay have raised concerns over the possibility of 'localized depletion' of the species in this area. This study used rapidly evolving molecular markers to examine Atlantic menhaden stock structure along the U.S. Atlantic coast, specifically to determine the potential for the loss of unique genetic variation resulting from concentrated fishing pressure in and around Chesapeake Bay.

Samples were collected from up to three cohorts of Atlantic menhaden (2005, 2006, and 2007 year classes), at four geographic locations along the U.S. Atlantic coast (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic) in 2006 and 2007. Two independent classes of molecular markers were surveyed: the mitochondrial cytochrome *c* oxidase subunit I (COI) gene region and seven nuclear microsatellite loci. All markers revealed considerable genetic variation. Hierarchical analyses of molecular variance (AMOVA) and examination of pairwise Φ_{ST} , F_{ST} , and R_{ST} estimates indicate a homogeneous distribution of genetic variation within Atlantic menhaden (all region AMOVAs: $\Phi_{ST} = -0.00873$, $F_{ST} = 0.00515$ (F_{ST} method), $F_{ST} = -0.00666$ (R_{ST} method); p>0.05). The genetic connectivity between the regional collections suggests that concentrated fishing pressure in and around Chesapeake Bay will not result in a significant loss of unique genetic variation.

INTRODUCTION

Atlantic menhaden (Brevoortia tyrannus Latrobe 1802) is a member of the New World genus Brevoortia Gill 1861 (Clupeiformes: Clupeidae: Alosinae). The genus contains five planktivorous species that form large, dense schools in nearshore environments. The four North American menhadens are divided into two groups: largescaled and small-scaled. The large-scaled group includes Atlantic menhaden, distributed along the Atlantic coast from Indian River, Florida to Nova Scotia, Canada (Whitehead 1985), and gulf menhaden (B. patronus Goode 1879), distributed along the Gulf of Mexico coast from Florida Bay to the Gulf of Campeche, Mexico (Whitehead 1985) (Figure 1). The small-scaled group includes yellowfin menhaden (B. smithi Hildebrand 1941), distributed around the Florida peninsula from Beaufort, North Carolina to Louisiana (Whitehead 1985), and finescale menhaden (B. gunteri Hildebrand 1948), distributed from Chandeleur Sound, Louisiana to the Gulf of Campeche, Mexico (Whitehead 1985) (Figure 1). Anderson (2007) used mitochondrial DNA sequence and nuclear microsatellite data to validate that large-scaled and small-scaled menhadens comprise two distinct evolutionary lineages.

Identification of Atlantic menhaden can be particularly difficult. They are sympatric over part of their range with yellowfin menhaden. But, when compared with yellowfin menhaden, Atlantic menhaden have larger scales with notably longer pectinations, pale gray fins (as opposed to golden yellow), and a series of spots behind the large shoulder spot (Bigelow *et al.* 1963). Atlantic menhaden are also morphologically similar to gulf menhaden, although their ranges are not believed to overlap (Bigelow *et al.* 1963). When compared with gulf menhaden, Atlantic menhaden are larger, have a less convex body shape, as well as a higher number of predorsal scales, vertebrae, and ventral scutes (Bigelow *et al.* 1963). While the mean values of some of the morphometric and meristic characters are significantly different between the two species, the ranges of variation are coincident (Dahlberg 1970).

Of the North American *Brevoortia*, Atlantic menhaden undertake the longest coastal migrations and have the most temporally and geographically protracted spawning season (Whitehead 1985). The northward spring migration begins from the overwintering grounds off Cape Hatteras, N.C. and appears to be triggered by seasonal ocean temperature changes (Reintjes 1969). The migration distance is age and size dependent with the older, larger fish migrating further north (Dryfoos *et al.* 1973, Quinlan *et al.* 1999). By summer, Atlantic menhaden are distributed from northern Florida to Maine (Ahrenholz 1991). Some spawning occurs in the northern part of the range throughout the summer and continues as the fish migrate southward in September (Rice *et al.* 1999). By November, most of the adults have returned to waters off Cape Hatteras, N.C. Peak spawning is believed to occur in that region during the winter months (Checkley *et al.* 1988).

Due in part to their spatially and temporally protracted spawning season, Atlantic menhaden have the most widely distributed clupeoid larvae in the western North Atlantic, occurring from Maine to Mexico, from fresh waters (Kendall and Reintjes 1975) to more than 40 miles offshore (Massmann *et al.* 1961). The Atlantic coast estuaries within this range serve as nursery grounds for larval and juvenile Atlantic menhaden. Larvae feed within six days of fertilization and enter the estuaries and metamorphose after 30 to 90 days (Checkley *et al.* 1988). Juvenile emigration from the estuarine nursery area is triggered by the onset of sustained low water temperatures, which is coincident with

autumnal phytoplankton blooms (Friedland and Haas 1988). Tag recoveries suggest that Atlantic menhaden of differing ages and sizes share the overwintering grounds off Cape Hatteras (Dryfoos *et al.* 1973). Large juveniles participate in the northward spring migration but few age-1 fish are caught north of Delaware Bay and none are caught north of New Jersey (Nicholson 1972, Kroger and Guthrie 1973). By two years of age, most fish are mature, migrating adults (Higham and Nicholson 1964). The longevity for Atlantic menhaden is estimated at 10-12 years, but few fish have been reported to reach that age (Reintjes 1969).

"The Most Important Fish in the Sea"

While cultural historian H. Bruce Franklin's (2007) naming of Atlantic menhaden as "the most important fish in the sea" is a gross hyperbole, Atlantic menhaden do have major economic and ecological significance. The commercial fishery for Atlantic menhaden generates over \$45 million in annual revenue (Southwick Associates and Loftus 2006). Atlantic menhaden-dependent recreational fisheries generate \$236 million in annual revenue (Southwick Associates and Loftus 2006). Atlantic menhaden have high ecological value as a forage base and consumer of primary production (Goldsborough 2006).

The Atlantic menhaden commercial fishery is divided into two components: a smaller bait fishery and a larger reduction fishery. Bait fishery landings have been steady, averaging 34,000 metric tons since the mid 1980s, and currently comprise 21% of total Atlantic menhaden landings (ASMFC 2006). Reduction fishery landings, however, have progressively declined from peak landings in the 1950s (>600,000 metric tons) to

146,900 metric tons in 2005 (ASMFC 2006). Of the 20 reduction plants once operating along the U.S. Atlantic coast, only the Reedville, Virginia facility is currently active. The Reedville fleet ranges from New Jersey to North Carolina waters but focuses its efforts within Chesapeake Bay and nearby waters. As a result, the proportion of Atlantic menhaden reduction landings taken from inside Chesapeake Bay has increased from 47% (1985-1995 average) to 58% (1996-2004 average), although the actual removals from the Bay have decreased by 28% over the same period (ASMFC 2005). The 2006 total landings continue the downward trend at 13% less than the previous five year average (ASMFC 2007). Nonetheless, Atlantic menhaden account for 6% of all U.S. commercial fishery landings (by weight), making the fishery the fifth largest (by weight) in the country (NMFS 2005).

Atlantic menhaden are a principal component of the diets of many piscivorous fishes, including striped bass (*Morone saxatilis*), bluefish (*Pomatomus saltatrix*), and weakfish (*Cynoscion regalis*), which support large recreational fisheries (Hartman and Brandt 1995). Economically, the value of these recreational fisheries far surpasses the value of the traditional reduction Atlantic menhaden fishery. In 2005 alone, the Atlantic menhaden-dependent recreational fisheries produced \$111,507,900 more in Virginia income than the Atlantic menhaden commercial fishery (Southwick Associates and Loftus 2006).

In addition to their importance as a prey type, Atlantic menhaden may regulate water quality. As filter-feeders, Atlantic menhaden remove particulates (plankton and detritus) from the water column, which may enhance water clarity and mitigate problems associated with eutrophication (Kemp *et al.* 2005). Durbin and Durbin (1975) suggested

that large schools of adult Atlantic menhaden can significantly impact local phytoplankton and zooplankton concentrations. This impact, however, may not be eutrophication mitigation. Lynch *et al.* (in review) evaluated the age-specific ingestion rates of Atlantic menhaden and found that age-1+ menhaden consumed zooplankton and exhibited no ingestion of phytoplankton. These findings suggest that older menhaden may, in fact, enhance phytoplankton production (and by proxy eutrophication) by relaxing grazing pressure.

Atlantic Menhaden Stock Structure Analyses

Though the extensive seasonal migrations of Atlantic menhaden might suggest that the species comprises one homogeneous population, some widely distributed, migratory, marine fishes exhibit stock structure (e.g. Atlantic herring, *Clupea harengus*, Iles and Sinclair 1982; Atlantic cod, *Gadus morhua*, Campana *et al.* 1999). Stocks, defined as populations with spatial and temporal integrity, respond independently to fishing pressure (Carvalho and Hauser 1994). They are traditionally differentiated using tagging, life history, and/or morphometric and meristic data (Carvalho and Hauser 1994). Stock structure analyses of Atlantic menhaden have proposed as few as one and as many as three different stocks, principally on the basis of meristics and morphometrics (June 1958, 1965; Sutherland 1963; June and Nicholson 1964; Nicholson 1972, 1978; Dryfoos *et al.* 1973; Epperly 1989).

Two populations of Atlantic menhaden, one north and the other south of Long Island, N.Y., have been suggested on the basis of vertebral counts and transferrin allele frequencies (June 1958, 1965; Sutherland 1963; Epperly 1989). Sutherland (1963)

hypothesized that mean vertebral number differences between juveniles were associated with water temperature at spawning time and that they were indicative of reproductive isolation. June (1965) related the vertebral differences to two discrete groups of Atlantic menhaden spawners, one occurring in cool, Cape Cod and Long Island waters in the spring and the other occurring in the warmer, Long Island and North Carolina waters in the fall. Nicholson (1972), however, refuted claims to a distinct northern population, citing that the vertebral differences are more likely the result of phenotypic plasticity due to environmental factors (i.e., water temperature at spawning time) than heritable characters. Epperly (1989) found allele frequency differences at the transferrin locus to parallel vertebral count differences and suggested that Atlantic menhaden comprise at least two stocks.

Based on the presence of two generalized north-south migration tracts, June and Nicholson (1964) proposed two major population components of Atlantic menhaden, one occurring north and the other occurring south of Cape Hatteras, N.C. They found small, sexually mature fish in North Carolina waters in late October and early November, well before the arrival of the larger, sexually mature fish from the north, as well as spawning fish off northern Florida in late winter and early spring (June and Nicholson 1964). Dryfoos *et al.* (1973) and Nicholson (1978) used tag and recapture methodology to follow migrations of Atlantic menhaden. The recoveries indicated that Atlantic menhaden stratify by age and size as they migrate northward from Cape Hatteras, N.C. in spring and return southward in fall, with the older, larger fish migrating further distances (Dryfoos *et al.* 1973, Nicholson 1978). Because of the pattern of tag recoveries, Dryfoos *et al.* (1973) and Nicholson (1978) recommended that the Atlantic menhaden resource be

considered a single stock. Citing the phenotypic plasticity of Nicholson (1972) and the tag returns of Dryfoos *et al.* (1973) and Nicholson (1978), the Atlantic States Marine Fisheries Commission regards Atlantic menhaden as one coastwide stock, although the transferrin results of Epperly (1989) suggest that further genetic study is warranted.

Clupeiform Genetic Stock Structure Analyses

Though little work has been done on Atlantic menhaden, genetic studies have been used to examine stock structure for other clupeids and engraulids. A genetic stock is defined as a reproductively isolated unit that is genetically distinct from other units (Waples 1987). Stocks can be distinguished using a number of different molecular markers including allozymes, restriction fragment length polymorphisms (RFLPs), microsatellites, and direct DNA sequences.

Initially, allozymes were the main marker used to describe genetic stocks in clupeiforms. Allozymes are polymorphic proteins, the alleles of which can be separated primarily by charge using gel electrophoresis. Allozyme analysis identified three stocks of northern anchovy (*Engraulis mordax*) and differentiated Pacific herring (*Clupea pallasi*) from the Bering Sea and the eastern North Pacific (Vrooman *et al.* 1981, Grant and Utter 1984). Allozyme analysis described panmictic populations of Atlantic herring (*C. harengus*), cape anchovy (*E. capensis*), and bay anchovy (*Anchoa mitchilli*) (Grant 1984, Jørstad *et al.* 1991, Grant 1985, Morgan *et al.* 1995, respectively). The discriminatory power of allozymes, however, is limited because the evolutionary rate of the amino acid sequences of most proteins is very low (many changes at the DNA level

do not result in different amino acids) and not all amino acid substitutions result in charge changes.

Analysis of DNA, which investigates changes at the nucleotide level, provides a higher level of genetic resolution than analysis of allozymes. While proteins are usually under intense selective pressure, many regions of DNA are neutral and can mutate with little functional consequence. Originally, restriction fragment length polymorphism (RFLP) analyses were used to study DNA variation. In RFLP analysis, restriction enzymes are used to cut the DNA strand at specific restriction sites, generating fragments that are separated electrophoretically. Individuals with different RFLP patterns have different genetic sequences. RFLP studies can be conducted on the entire mitochondrial genome or an amplified mitochondrial gene region. This process can be extended to include a suite of restriction enzymes to effectively survey more of a gene region. Avise et al. (1989) used RFLP analysis of the entire mitochondrial genome to investigate genetic relationships of Atlantic and gulf menhaden, finding two clades that failed to resolve the two species. Bowen and Avise (1990) suggested historical isolation and secondary contact (recent gene flow) between Atlantic and gulf menhaden around the Florida peninsula as an explanation for the paraphyletic, two-clade structure. In another RFLP study of clupeids, Hauser et al. (2001) found evidence of genetic differentiation between Baltic and Celtic Sea Atlantic herring (C. harengus) using the mitochondrial ND3/4 and ND5/6 regions.

More recently, nuclear microsatellite loci have been favored for investigation of population structure in clupeids because of their rapid evolutionary rates. Microsatellites, also known as variable number tandem repeats, are nuclear loci consisting of short

sequence repeats (usually 2-5 nucleotides) which are generally assumed to be selectively neutral. Alleles with different repeat numbers are created by slip-strand mispairing. Slip-strand mispairing is a DNA replication error in which a DNA polymerase disassociates from a repeat and incorrectly rebinds to another repeat on the template DNA strand. As a result, copies of the repeat are either added to or deleted from the new strand of DNA. The fast rate of mutation seen in microsatellites can lead to homoplasy, so they are best suited for intraspecific studies.

The development of suitable microsatellite primers is a time intensive process. Nonetheless, primers have been characterized for a number of clupeids including: allis shad (Alosa alosa; Faria et al. 2004), American shad (A. sapidissima; Julian and Bartron 2007), Atlantic herring (McPherson et al. 2001), Pacific herring (O'Connell et al. 1998, Miller et al. 2001, Olsen et al. 2002), Pacific sardine (S. sagax sagax; Pereyra et al. 2004), and twaite shad (A. fallax; Faria et al. 2004). O'Connell et al. (1998) used microsatellite analysis to confirm the separation of the Bering Sea and Gulf of Alaska stocks of Pacific herring. Similarly, Shaw et al. (1999) found significant genetic structuring between Icelandic summer-spawners, Norwegian spring-spawners, and Norwegian fjord stocks of Atlantic herring. Microsatellite analysis has also shown significant genetic differentiation between the donor and recipient populations of American shad (Pamunkey and James River, respectively), as well as the potential for outbreeding depression in the restoration program (Brown et al. 2000). Some microsatellite primers show interspecific amplification. For example, Anderson (2007) used American shad microsatellite primers to make inferences regarding the relationships of the North American menhadens.

Direct sequencing of mitochondrial genes provides an independent, high resolution perspective that complements nuclear microsatellite loci for analysis of population structure. The mitochondrial genome, with its lack of recombination, maternal inheritance, and high evolutionary rates, has proven to be an appropriate molecular character for analysis of intraspecific genetic structure (Avise *et al.* 1987). Evolutionary rates, however, are not equivalent throughout the mitochondrial genome (Cann *et al.* 1984). The non-coding mitochondrial control region is reported to have a rate of evolution two to five times higher than that of mitochondrial protein-coding genes (Meyer 1993).

Of the 13 mitochondrial protein-coding genes, cytochrome *c* oxidase subunit I (COI) is considered to be the most conserved in fishes (Meyer 1993). COI codes for the final electron acceptor protein in the electron transport chain of cellular respiration and is under intense selective pressure. In fact, COI is emerging as the standard genetic region to sequence in the Barcode of Life project as a species-specific diagnostic tool for many taxa (Ratnasingham and Hebert 2007). Yu *et al.* (2005), surveying cytochrome *b* and COI, did not detect genetic structure in the Japanese anchovy (*Engraulis japonicus*) between the Yellow and East China seas. Tinti *et al.* (2002) found no evidence for genetic stock structure between European pilchards (*Sardina pilchardus*) from the Adriatic and Ionian Seas using direct sequencing of a cytochrome *b* gene fragment. On a larger scale, Atarhouch *et al.* (2006) identified genetic differentiation in European pilchards between the Bay of Biscay and Mediterranean Sea using mitochondrial control region sequence data. Anderson (2007) used mitochondrial control region sequence data to validate the large-scaled and small-scaled designations for North American menhadens

but could not resolve the large-scaled sequences to species (Atlantic and gulf menhaden) using this gene region. García *et al.* (2008), similarly, found evidence of the existence of only one species of menhaden, Brazilian menhaden (*Brevoortia aurea*), and no support for a second purported species, Argentine menhaden (*B. pectinata*), in the southwestern Atlantic using cytochrome *b* sequences.

Direct sequencing of nuclear gene regions has been used to infer stock structure in some fishes, but it has not been reported for any clupeiform. While most protein-coding genes do not evolve at a rate fast enough to make them useful for intraspecific comparisons, non-coding nuclear gene regions, such as internal transcribed spacer 1 (ITS-1), have fewer selective constraints and a faster evolutionary rate which can be used to investigate population structure (Avise *et al.* 1987). ITS-1, which separates the 5.8S and 18S ribosomal RNA genes, exhibits high variability and a fast rate of mutation (Jansen *et al.* 2006). For example, Brendtro *et al.* (2008) used ITS-1 sequencing data to determine that four escolar (*Lepidocybium flavobrunneum*), collected in the Atlantic Ocean but assigned to the Pacific Ocean using mitochondrial control region sequencing, were a result of recent rather than historical migration to the Atlantic Ocean.

PROJECT OBJECTIVES

The genetic basis of stock structure for Atlantic menhaden has not been well studied. With the recent concentration of the Atlantic menhaden reduction fishery in and around Chesapeake Bay, it is important to understand the genetic stock structure of the species. If Atlantic menhaden exhibit significant, genetically-based stock structure, there will be spatial partitioning of unique genetic variation, and regional fishing pressure could lead to the loss of unique genetic variation. Depletion of unique genetic variation may reduce a stock's ability to respond to shifting environmental pressures because a portion of the genetic differentiation among fish populations is considered adaptive (Higgins and Lynch 2001, Ryman 1981).

In this study, analysis of sequence data from the mitochondrial COI gene region and allele frequencies of seven nuclear microsatellite loci were used to investigate the temporal and spatial genetic stock structure of Atlantic menhaden and to evaluate the potential for loss of unique genetic variation resulting from 'localized depletion' within the Chesapeake Bay region. Young-of-the-year (YOY) and yearling (age-1) fish were sampled over a two year period (2006, 2007) from four regions along the U.S. Atlantic coast (New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic). Gulf menhaden, finescale menhaden, and yellowfin menhaden were sampled as outgroups. The following null hypotheses were addressed:

 $H_{0,1}$: There is no genetic difference between YOY menhaden recruiting to Chesapeake Bay early and late in the season during the same year.

 $H_{0,2}$: There is no genetic difference between YOY and yearling menhaden collected in Chesapeake Bay in successive years (following the 2006 year class in 2006 and 2007).

 $H_{0,3}$: There is no genetic difference between YOY and yearling menhaden collected in Chesapeake Bay in the same year.

 $H_{0,4}$: There is no genetic difference among YOY and yearling menhaden (combined) from four geographic regions along the U.S. Atlantic coast.

 $H_{0,5}$: There is no genetic difference among large-scaled menhaden (B. tyrannus and B. patronus) from five geographic regions along the U.S. Atlantic coast and Gulf of Mexico.

MATERIALS AND METHODS

Sample Collection

YOY and yearling Atlantic menhaden were sampled from throughout the species's range in 2006 and 2007. YOY gulf menhaden were sampled from the Gulf of Mexico in 2006 and 2007 as an outgroup. Collections were grouped into five broad geographic regions: New England (Massachusetts), mid-Atlantic (New Jersey), Chesapeake Bay (Virginia), U.S. south Atlantic (South Carolina), and Gulf of Mexico (gulf, yellowfin, and finescale menhaden) (Figure 1). All menhaden were identified on the basis of morphological characters and capture location by local experts (New England: Gary Nelson, Massachusetts Division of Marine Fisheries; mid-Atlantic: Heather Corbett, New Jersey Division of Fish and Wildlife; Chesapeake Bay: Patrick Lynch or Troy Tuckey, Virginia Institute of Marine Science; U.S. south Atlantic: John Archambault, South Carolina Department of Natural Resources; gulf menhaden: William Dailey, Texas A&M University; yellowfin and finescale menhaden: Joel Anderson, Texas Parks and Wildlife Department) (Appendix 1). Voucher specimens were retained from all U.S. Atlantic coast regions in 2007 to corroborate field identifications. Fork length was measured for each individual to estimate age (Higham and Nicholson 1964, Lewis et al. 1972, Nicholson 1972) and scale samples were sent to the NOAA Beaufort Lab / NMFS for independent age assessments. Muscle tissue samples were either frozen or stored in DMSO buffer (Seutin et al. 1991) at room temperature.

Molecular Markers

For any genetic study, it is important to use a molecular marker with an evolutionary rate appropriate to the question to be addressed (Lannan *et al.* 1989). High

levels of genetic variation are often needed to describe stock structure relationships, but too much polymorphism can be problematic if sample sizes are not sufficiently large. In these cases, it can be difficult to get precise estimates of genetic relationships because of an incomplete representation of the total genetic variation. The highly variable mitochondrial control region is often used for intraspecific studies (McMillan and Palumbi 1997) but J.D. Anderson (personal communication) suggested that it might be too variable within Atlantic menhaden and that a more conserved region may prove more useful to evaluate population structuring. For that reason, a preliminary study was conducted to survey variation in the highly variable control region and the more conserved cytochrome *c* oxidase subunit I (COI). In addition, genetic variation was evaluated at the nuclear internal transcribed spacer 1 (ITS-1) and 36 nuclear microsatellite loci were screened for variation within Atlantic menhaden. From the outcome of these preliminary surveys, COI and seven microsatellites were selected to characterize all samples.

Extraction and Amplification

Total genomic DNA was extracted from each tissue sample using a Qiagen DNeasy® Tissue Kit (Qiagen, Valencia, C.A.) following the manufacturer's protocol. The mitochondrial control region, COI, ITS-1, and eight microsatellite loci (Asa2, Asa4, Asa16, Brown *et al.* 2000; Aa16, Faria *et al.* 2004; AsaB020, AsaC334, AsaD055, Julian and Bartron 2007; SarBH04, Pereyra *et al.* 2004), were amplified using the polymerase chain reaction (PCR) (Table 1, Appendices 2, 3).

Ten μ L sequencing reactions were amplified by PCR. Five μ L of each PCR amplification product were run on a 1% agarose gel, stained with ethidium bromide, and visualized under UV light to verify that a single fragment of the correct size was amplified. The remaining 5 μ L of the mitochondrial amplification was purified for sequencing using column filtration with a QIAquick® PCR purification kit (Qiagen) following the manufacturer's protocol.

Nuclear Cloning

Diploid organisms have two copies of the nuclear genome, one from each parent. While both can be amplified simultaneously using PCR, sequencing can only read one copy at a time. As a result, ITS-1 PCR products were cloned to separate the two alleles before sequencing. One µL of the nuclear product was cloned into a plasmid vector using the TOPO-TA plasmid cloning system (Invitrogen Corporation, Carlsbad, C.A.) prior to sequencing. Fresh PCR product was ligated into the ampicillin resistant TOPO 2.1 plasmid vector with a *lacZ* gene and transformed into competent TOP10F' *Escherichia coli* bacterial cells using the manufacturer's One Shot Chemical Transformation protocol. The E. coli cells were then plated on Luria-Bertani (LB) agar plates containing ampicillin $(5\mu g/mL)$, an antibiotic, and $40\mu L$ 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside (X-gal) (40mg/mL), an indicator of lacZ expression, and grown up overnight at 37°C. Ampicillin ensured that only E. coli cells with the ampicillin resistant vector grew on the plates. The X-gal differentiated the colonies containing the recombinant plasmid (a nonfunctional lacZ gene = white colonies) from colonies without the insert (a functional lacZgene = blue colonies). DNA was extracted from only the recombinant colonies via cell

lysis through boil preparation (Sambrook and Russell 2001) and amplified in a 10μ L reaction using M13 primers designed to flank the vector insert region. To verify that the insert of the correct size was recovered, 5μ L of the cloned PCR amplification product was run on a 1% agarose gel, stained with ethidium bromide, and visualized under UV light. The remaining 5μ L of cloned elutant was purified using column filtration with QIAquick® PCR purification kit (Qiagen) following the manufacturer's protocol.

Sequence Analysis

The concentration of each purified ITS-1 cloned PCR product and direct mitochondrial PCR product was measured using a BioMateTM 3 Series UV Spectophotometer (Thermo Spectronic, Madison, W.I.) prior to sequencing. PCR products were prepared for sequencing using the ABI PRISM® Big DyeTM Terminator v 3.0 Cycle Sequencing Kit (Applied Biosystems, Foster City, C.A.) at a 1:8 dilution of the manufacturer's protocol and subsequently sequenced on an 80cm capillary ABI PRISM® 3130x/ Genetic Analyzer (Applied Biosystems). Samples were sequenced in the forward and reverse direction and 20% of samples were re-analyzed from DNA extraction through sequencing.

The chromatographic curves for each 80cm capillary sequence (control region, COI, ITS-1) were analyzed using Sequencing Analysis software v 5.2 (Applied Biosystems), edited using Sequencher 4.7.2 (Gene Codes Corp., Ann Arbor, M.I.), and aligned using the ClustalW algorithm (Thompson *et al.* 1994) for multiple alignments in MacVector 9.0.1 (MacVector Inc., Cary, N.C.).

Microsatellite Analysis

Microsatellite loci were PCR amplified with locus-specific fluorescent labels. Following amplification, 1µL of PCR product for each locus was combined with PCR products from three other unique locus/fluorescent label combinations (4µL total), 6µL formamide, and 0.3μ L 500 Liz Gene Scan Size standard (Applied Biosystems). The reaction mixture was denatured at 95°C for 10 minutes prior to sequencing on a 36cm capillary ABI PRISM® 3130*xl* Genetic Analyzer (Applied Biosystems) according to the manufacturer's protocol.

The chromatic peaks for each microsatellite sequence were scored using GeneMarker AFLP/Genotyping Software v 1.60 (SoftGenetics, State College, P.A.). Once scored, MicroChecker 2.2.3 (Van Oosterhout *et al.* 2004) was used to check for the presence of null alleles and evidence of scoring errors. To ensure consistency, 20% of samples were re-analyzed from DNA extraction through allele scoring.

Descriptive Statistics

Once aligned, the mitochondrial sequences were characterized in Arlequin 3.11 (Excoffier *et al.* 2005) to determine the following: number of haplotypes (N_h); number of polymorphic sites (*S*), variable base pair (bp) locations within a sequence set; number of transitions (Ts), point mutations from either a purine to a purine (A \leftrightarrow G) or a pyrimidine to a pyrimidine (C \leftrightarrow T); number of transversions (Tv), point mutations from a purine to a purine to a purine to a purine to a purine (A or G \rightarrow C or T) or a pyrimidine to a purine (C or T \rightarrow A or G); and number of indels (insertions to or deletions from a sequence). The amount of sequence variation for each mitochondrial gene region within each collection was estimated in Arlequin 3.11

(Excoffier *et al.* 2005) using the following diversity indices: haplotype diversity (h, theprobability that two randomly chosen haplotypes [gene sequences] are different), nucleotide sequence diversity (π , the mean sequence divergence between two randomly chosen haplotypes), and mean number of pairwise differences (k, the mean number of bp differences between two randomly chosen haplotypes). Net nucleotide sequence divergence (δ , number of net nucleotide substitutions per site between populations) was calculated in MEGA 4.1 (Tamura et al. 2007) using the Kimura two-parameter model (Kimura 1981). For the microsatellite data, Genepop 3.4 (Raymond and Rousset 1995) was used to determine observed heterozygosity (H_O) and expected heterozygosity (H_E); Arlequin 3.11 (Excoffier et al. 2005) was used to determine allelic diversity (A; number of alleles per locus), and Microsatellite Analyzer (MSA) (Dieringer et al. 2003) was used to determine the allele size range (a.s.r.). The amount of microsatellite variation within each collection was estimated in FSTAT 2.9.3.2 (Goudet 1995) using the following indices: allelic richness (R_s ; number of alleles per locus, corrected for sample size) and gene diversity (D; heterozygosity). To determine if the distribution of microsatellite genotypes conformed to the expectations of Hardy-Weinberg equilibrium for each locus at each collection location, three separate tests (probability, heterozygote deficiency, and homozygote deficiency) following the methods of Guo and Thompson (1992) are available in Genepop 3.4 (Raymond and Rousset 1995) and can be adjusted for multiple testing using sequential Bonferroni correction (Rice 1989). All three tests share the same null hypothesis (random distribution of alleles) and differ in their alternative hypotheses. The probability test is a two-tailed test with the *p*-value corresponding to the sum of random allelic counts with the same or lower probability. If the null hypothesis

for the probability test was rejected, more powerful one-tailed heterozygote excess and deficiency tests (in which the *p*-value considers only one end of the distribution) were performed.

Genetic Relationships

To initially visualize genetic relationships among aligned mitochondrial and nuclear sequences, unweighted pair group method with arithmetic mean (UPGMA) trees, based on nucleotide base pair similarity matrices, were constructed in MacVector 9.0.1 (MacVector Inc.). To investigate the possibility of mutational saturation, graphs of nucleotide substitution vs. genetic distance (overall and by third codon position) were constructed for mitochondrial control region and COI sequences in DAMBE (Xia and Xie 2001).

Phylogenetic trees are used describe the genetic relationships among species. A maximum parsimony tree was constructed for all mitochondrial COI sequences and nodal support was assessed with bootstrapping resampling (Felsenstein 1985) of 100 pseudoreplicates, 10 random addition sequences, with TBR branch swapping algorithm. The most appropriate nucleotide substitution model for the region was determined from a series of 56 likelihood ratio tests executed in ModelTest 3.7 (Posada and Crandall 1998). The accumulation of nucleotide substitutions is only roughly linear with time shortly after a divergence event (Sullivan and Joyce 2005). The cause of deviation from linearity, however, is not the same in all cases. As a result, a number of different models have been developed to explain the deviations. ModelTest 3.7 (Posada and Crandall 1998) matches a dataset with the model that best fits its nucleotide substitution pattern

according to two sets of criteria: hierarchical likelihood ratio tests and Akaike's Information Criterion. The selected model was used in PAUP* 4.0 (Swofford 2000) to produce maximum likelihood and Bayesian analysis trees (Mr. Bayes; Huelsenbeck and Ronquist 2001). Support of the maximum likelihood internal branches was tested using bootstrap resampling (Felsenstein 1985) of 10 pseudoreplicates, 10 random addition sequences, with TBR branch swapping algorithm.

For intraspecific comparisons, networks more accurately describe genetic relationships than phylogenetic trees because internal nodes are often extant in population level studies (Bryant and Moulton 2002). With a tree, an internal node is a theoretical representation of a common ancestor (no longer extant) between sampled taxa. With a network, mutations generally occur from the most common, interior haplotypes (still extant). Rarer haplotypes, as a result, are more likely to be related to these common haplotypes than to each other. Median-joining networks for COI and control region haplotypes were drawn in Fluxus 4.2.0.1 (Bandelt *et al.* 1999) to investigate populationlevel relationships.

Genetic relationships among collection locations based on microsatellite loci data were represented spatially in Genetix 4.04 (Belkhir *et al.* 2000) and estimated by constructing neighbor-joining trees using modified Cavalli-Sforza chord distances (D_A ; Nei *et al.* 1983) and Nei's standard genetic distances (D_{ST} ; Nei 1972) calculated in Microsatellite Analyzer (MSA) (Dieringer *et al.* 2003). D_A is one of the most efficient distance measures for tree topology construction; D_{ST} is considered more suitable than other distance measures for branch length estimation (Takezaki and Nei 1996).
Population Structure

A hierarchical analysis of molecular variance (AMOVA) was used to test for population structure using mitochondrial COI sequencing data and nuclear microsatellite loci data. The AMOVA partitions genetic variance into covariant components at predefined levels (individual, sub-region, and region). The fixation indices, Φ_{ST} for haplotypes and F_{ST} or R_{ST} for microsatellites, are measures of population subdivision (Excoffier et al. 1992). AMOVA calculations based on microsatellite genotypic data were analyzed using two different distance methods: F_{ST} (Weir and Cockerham 1984), based on the distribution of number of different alleles (not considering relationships among alleles), and R_{ST} (Slatkin 1995), based on the distribution and relationship of alleles (sum of squared allele size differences). The R_{ST} algorithm is generally considered only appropriate as a measure for microsatellite data when sample sizes are equal or larger than 50 (Ruzzante 1998). The AMOVAs, conducted in Arlequin 3.11 (Excoffier et al. 2005), partitioned variation across designated groupings: between recruitment times within an age class at a location (eg., 2007 YOY menhaden in Chesapeake Bay), between years within an age class at a location (eg., the 2006 year class in Chesapeake Bay in 2006 and 2007), between age classes within a region (eg., YOY and yearling menhaden in Chesapeake Bay in 2007), among Atlantic coast regions (eg., New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic), among large-scaled regions (eg., New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, Gulf of Mexico), and between putative species (eg., Atlantic and gulf menhaden). Estimates of population pairwise Φ_{ST} and F_{ST}/R_{ST} were calculated in Arlequin 3.11 (Excoffier *et al.* 2005) as a

measure of genetic distance between individual groupings and adjusted for multiple tests using sequential Bonferroni correction (Rice 1989). RESULTS

Evaluation of Mitochondrial Gene Region Variability

To determine which mitochondrial gene region would be appropriate to evaluate Atlantic menhaden population structure, a 535bp fragment of the mitochondrial control region and a 459bp fragment of cytochrome *c* oxidase subunit I (COI) were sequenced for 28 individuals in a preliminary study. The mitochondrial control region fragment contained 63 polymorphic sites, 55 transitions, 16 transversions, and 1 indel (Table 2). Of the 28 menhaden sequenced, the control region produced 27 haplotypes, an overall haplotype diversity (*h*) of 0.997, and a mean nucleotide sequence diversity (π) of 0.0326. The COI fragment contained 44 polymorpic sites, 41 transitions, 8 transversions, and no indels (Table 2). Of the 28 menhaden sequenced, COI produced 20 haplotypes, an overall haplotype diversity (*h*) of 0.960, and a mean nucleotide sequence diversity (π) of 0.0267. The haplotype diversity estimate for COI was high, but not as elevated as the control region estimate. Both gene regions revealed similar patterns of intraspecific relationships (Figure 2).

Mutational saturation curves lend some support to the hypothesis that the control region may be at risk of homoplasy. The rate of transitions appears to plateau and the rate of transversions approaches that of transitions for the control region data but the evidence is less substantial for COI (Figure 3). Based on this qualitative preliminary analysis, COI was chosen as the mitochondrial marker for this study and all samples were surveyed for this gene region.

Cytochrome c Oxidase Subunit 1

The COI fragment was sequenced for 339 individuals (Atlantic menhaden, n = 289, gulf menhaden, n = 50). The fragment contained 99 polymorphic sites overall (97 in Atlantic menhaden: 5 first codon positions, 1 second codon position, and 91 third codon positions), 101 transitions (99 in Atlantic menhaden), 7 transversions (6 in Atlantic menhaden), and produced 124 haplotypes (109 in Atlantic menhaden) (Table 3). Haplotype diversity (*h*) estimates for the Atlantic menhaden sampling locations ranged from 0.932 to 0.956, with an overall (pooled) estimate of 0.941. Mean nucleotide sequence diversity (π) estimates for Atlantic menhaden sampling locations ranged from 0.0258 to 0.0295, with an overall (pooled) estimate of 0.0274. The mean number of pairwise differences (*k*) ranged from 11.8 to 13.5, with an overall (pooled) estimate of 12.6.

The median-joining network for the 109 COI Atlantic menhaden haplotypes showed two extensive star-shaped clusters (clades) separated by 17 nucleotide changes with one minor exterior grouping of three anomalous samples separated by 24 nucleotides (Figure 4). A contingency table of Atlantic coast sampling locations indicated that the two primary clades were equally represented along the U.S. Atlantic coast ($x^2 = 0.478$; $x_{0.05,3}^2 = 7.815$; p>0.05; Table 4).

For the combined large-scaled menhadens, haplotype diversity (*h*) estimates ranged from 0.879 to 0.956, with an overall (pooled) estimate of 0.940. Mean nucleotide sequence diversity (π) estimates for Atlantic and gulf menhaden sampling locations ranged from 0.0071 to 0.0295, with an overall (pooled) estimate of 0.0258. The mean

number of pairwise differences (k) ranged from 3.24 to 13.5, with an overall (pooled) estimate of 11.8.

The median-joining network for all 124 Atlantic and gulf COI haplotypes showed the same star-shaped phylogeny (Figure 5). Clade I, the "ubiquitous large-scaled" clade, was composed of all gulf menhaden samples and 64% of Atlantic menhaden samples. Clade II, the "Atlantic-only" clade, comprised 35% of Atlantic menhaden samples. Clade III, the anomalous samples, comprised the remaining 1% of Atlantic menhaden.

Adding samples from the small-scaled menhadens, the COI fragment was sequenced for a total of 389 individuals (Atlantic menhaden, n = 289, gulf menhaden, n =50, yellowfin menhaden, n = 25, finescale menhaden, n = 25). The fragment contained 105 polymorphic sites, 107 transitions, 7 transversions, and produced 145 haplotypes (Table 3). Haplotype diversity (h) estimates for the sampling locations across all four species ranged from 0.879 to 0.956, with an overall (pooled) estimate of 0.952. The overall (pooled) estimate of mean nucleotide sequence diversity (π) estimates across all species was 0.033. The overall (pooled) estimate of mean number of pairwise differences (k) was 15.2.

The median-joining network for all 145 COI haplotypes showed three extensive star-shaped clusters (clades) separated by 15 and 22 nucleotide changes, respectively (Figure 6). Clade I, the "ubiquitous large-scaled" clade was composed of all gulf menhaden samples, 64% of the Atlantic menhaden samples, and 12% of the yellowfin menhaden samples. Clade II, the "Atlantic-only" clade, was composed of 35% of the Atlantic menhaden samples, and 16% of the finescale menhaden samples. Clade III, the "small-scaled" clade, was composed of 1%

of the Atlantic menhaden samples (the anomalous samples), 72% of the yellowfin menhaden samples, and 84% of the finescale menhaden samples. The three anomalous Atlantic menhaden were further sequenced for the mitochondrial control region to test for possible misidentification. The control region sequences for these individuals were included in a network with North American *Brevoortia* control region sequences from Anderson (2007). The median-joining network of 214 haplotypes showed the same three extensive star-shaped clusters as COI in this study: the "ubiquitous large-scaled" clade, the "Atlantic-only" clade, and the "small-scaled" clade (Figure 7). However, using control region, the anomalous sequences clustered with the large-scaled clades.

To assess the evolutionary relationships among all COI haplotypes, hierarchical likelihood ratio tests were performed in ModelTest 3.7 (Posada and Crandall 1998). The analysis selected the HKY+I+ Γ model (k = parameter estimates = 6; Hasegawa *et al.* 1985) and Akaike's Information Criterion selected the K81+I+ Γ model (k = 4; Kimura 1981) as the most appropriate of the 56 nucleotide substitution models. Because simulation studies have shown that overparameterization is less of a problem than underparameterization for estimating nucleotide substitution (Huelsenbeck and Rannala 2004), the HKY+I+ Γ model was used in this analysis. This model assumes a time-reversible mutational process, a non-uniform distribution of nucleotides, and different rates for transitions and transversions. Both maximum likelihood and Bayesian trees, using the HKY+I+ Γ model, produced geographically unresolved structures (Figure 8, 9). Likewise, a maximum parsimony representation of the COI haplotypes produced no discernable structure among the species (Figure 10).

Internal Transcribed Spacer 1

The two genetically divergent clades of Atlantic menhaden haplotypes evident in the mitochondrial COI sequence analysis could be the result of the presence of two sympatric subspecies (or species) or the result of historical isolation and subsequent mixing. To distinguish between these phylogeographic hypotheses, a 500bp fragment of ITS-1, a biparentally-inherited nuclear marker, was sequenced to provide a nuclear perspective with which to compare the phylogeographic structure inferred from analysis of COI sequences. Sixty clones from 12 individuals, representative of both mitochondrial clades, were sequenced. Of the 60 sequences, there were 45 haplotypes resulting in a haplotype diversity (*h*) of 0.979, nucleotide sequence diversity (π) of 0.0183, and a mean pairwise difference (*k*) of 10.2 nucleotides (Table 2). The median-joining network of the cloned nuclear ITS-1 sequences differed considerably from the distinct two clade mitochondrial structure and revealed no discernable structure among the putative species (Figure 11).

Microsatellites

Eight microsatellite loci, Aa16, Asa2, Asa4, Asa16, AsaB020, AsaD055, AsaC334, SarBH04, were amplified for the entire dataset (Atlantic menhaden, n = 289, gulf menhaden, n = 50, yellowfin menhaden, n = 25, finescale menhaden, n = 25). For the eight loci, sample allelic diversity (*A*) ranged from 1 to 21 alleles; the allelic richness (*R_s*) ranged from 1.00 to 15.1; and the gene diversity (*D*, heterozygosity) ranged from 0.000 to 0.938 (Table 5). Allele size ranges were similar for *B. tyrannus* and *B. patronus* (Figure 12). The genotypic distribution of all loci, except Asa16, conformed to the expectations of Hardy-Weinberg equilibrium. The locus Asa16, produced a statistically significant result in the probability test and subsequently the heterozygote deficiency test, suggesting the presence of a null allele (a mutation in a primer binding site that results in non-amplification of an allele) (Table 6). The Microchecker analysis which examined the potential for scoring errors, large allele dropouts, and null alleles also indicated a heterozygote deficiency for Asa16. This locus was not included in any of the population structure analyses.

The genetic distance between sampling regions was estimated using two different methods. Nei's standard genetic distances (D_{ST} ; Nei 1972) ranged from -0.0066 between the U.S. south Atlantic and New England to 0.844 between *B. smithi* and *B. patronus* (Table 7). Modified Cavalli-Sforza chord distances (D_A ; Nei *et al.* 1983) ranged from 0.152 between the U.S. south Atlantic and Chesapeake Bay to 0.714 between *B. smithi* and *B. patronus* (Table 7). The neighbor-joining trees based on Nei's standard genetic distance (D_{ST} ; Nei 1972) and modified Cavalli-Sforza chord distance (D_A ; Nei *et al.* 1983) of microsatellite data separate the four North American menhaden species but do not show evidence of population structure within Atlantic menhaden (Figure 13, 14, 15).

Analysis of Molecular Variance

The AMOVAs of COI haplotype data and microsatellite genotype data were performed to evaluate the temporal and spatial partitioning of genetic variation within Atlantic menhaden. The mitochondrial (Φ_{ST}) AMOVA between early and late recruiting 2007 YOY in Chesapeake Bay attributed -0.62% (p = 0.69) of the variance to differences in recruitment time (Table 8). The microsatellite (F_{ST} and R_{ST}) AMOVAs attributed

-0.41% (p = 0.743) and 1.27% (p = 0.246) of the variance, respectively, to differences in recruitment early or late in the season (Tables 9, 10).

The mitochondrial (Φ_{ST}) AMOVA between 2006 YOY and 2007 yearling menhaden collected in Chesapeake Bay attributed -2.95% (p = 1.00) of the variance in the 2006 year class to sampling in successive years (Table 8). The microsatellite (R_{ST}) AMOVA attributed -0.828% (p = 0.730) of the variance to sampling in successive years (Table 10). The microsatellite (F_{ST}) AMOVA, on the other hand, produced significant results, attributing 1.80% (p = 0.0176) of the variance to differences within a cohort in Chesapeake Bay in successive years (Table 9).

The mitochondrial (Φ_{ST}) AMOVA between YOY and yearling menhaden collected in Chesapeake Bay in 2006 and also between YOY and yearling menhaden collected in Chesapeake Bay in 2007 attributed -0.77% (p = 0.96) and -0.66% (p = 0.97) of the variance, respectively, to differences between cohorts (Table 8). The microsatellite (F_{ST} and R_{ST}) AMOVAs attributed 1.06% (p = 0.0929), and -0.923% (p = 0.678) of the variance, respectively, between YOY and yearling menhaden in Chesapeake Bay in 2006. Likewise, the (F_{ST} and R_{ST}) AMOVAs attributed 0.0052% (p = 0.160), and 0.389% (p =0.580) of the variance, respectively, between YOY and yearling menhaden collected in Chesapeake Bay in 2007 (Tables 9, 10).

The mitochondrial (Φ_{ST}) AMOVA among samples of YOY and yearling (combined) menhaden from four geographic regions along the U.S. Atlantic coast (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic) attributed -0.87% (p =1.00) of the variance to sampling location (Table 8). The R_{ST} AMOVA attributed -0.0665% (p = 0.634) of variation due to sampling location (Table 10). The microsatellite F_{ST} AMOVA, however, produced significant results, attributing 0.575% (p = 0.000) of variation to sampling location (Table 9). An examination of alternate groupings (northern and southern sampling locations) with the F_{ST} AMOVA also produced significant results (0.00535%, p = 0.00098). No (F_{ST} and R_{ST}) pairwise comparisons, however, revealed statistically significant variation between any two sampling regions of Atlantic menhaden after sequential Bonferroni correction (Tables 11, 12).

The mitochondrial (Φ_{ST}) AMOVA among samples of YOY and yearling (combined) large-scaled menhaden from five geographic regions along the U.S. Atlantic coast and Gulf of Mexico (New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, and Gulf of Mexico) revealed significant partitioning of genetic variation, attributing 6.01% (p = 0.000) of the variance to sampling location (Table 8). The microsatellite (F_{ST} and R_{ST}) AMOVAs, likewise, revealed significant partitioning of genetic variation, attributing 4.68% (p = 0.000) and 16.89% (p = 0.000) of variation, respectively, to sampling location (Tables 9, 10). Additionally, (Φ_{ST} , F_{ST} , and R_{ST}) pairwise comparisons revealed statistically significant variation between the gulf menhaden sampling region and all other sampled regions (Tables 11, 12, 13). DISCUSSION

Molecular Markers

The mitochondrial and nuclear markers employed in stock structure analyses need to be variable enough to detect spatial and temporal partitioning of genetic variation, if it exists (Hellberg *et al.* 2002). This study utilized the mitochondrial COI gene region and seven nuclear microsatellite loci, all of which revealed high levels of variation.

Previous analyses of COI sequences have demonstrated that it is typically one of the most conserved mitochondrial gene regions, exhibiting low levels of intraspecific variation, and it is often used for phylogenetic analyses (Saccone et al. 1999; Mever 1993). However, in Atlantic menhaden, COI exhibited a high level of intraspecific variation. The COI variation noted in this study (h = 0.941) is the highest documented intraspecific COI haplotype diversity in vertebrates, indicating its potential utility for population level analysis in this species (high literature values include h = 0.598: giant otter, Garcia et al. 2007; h = 0.547: green and golden bell frog, Burnes et al. 2006). The within-species genetic diversity for Atlantic menhaden ($\pi = 2.74\%$) is an order of magnitude higher than the average within-species divergence reported for Australian marine fishes ($\pi = 0.39\%$, Ward *et al.* 2005), South China Sea fishes ($\pi = 0.319\%$, Zhang et al. 2007), Canadian freshwater fishes ($\pi = 0.302\%$, Hubert et al. 2008) (all values calculated using the Kimura-two-parameter model of nucleotide substitution). Additionally, all of the nucleotide substitutions within the entire dataset were synonymous, resulting in identical amino acid sequences that presumably maintain identical protein function.

Nuclear microsatellite loci typically exhibit a fast rate of mutation and high levels of polymorphism and are ideally suited for analyses of stock structure (O'Ryan *et al*.

1998, Hellberg *et al.* 2002). All seven microsatellite loci surveyed in this study revealed considerable within-sample variation (A = 5-21, $H_{exp} = 0.435-0.923$). Literature values of within-sample variation in other clupeids range from A = 1-56, $H_{exp} = 0.066-0.98$ (Table 14).

Species Identification

Atlantic, gulf, yellowfin, and finescale menhadens are currently recognized as four separate species. However, with the broad overlap of meristic and morphometric characters between Atlantic and gulf menhaden, and the ability of yellowfin menhaden to hybridize with both Atlantic and gulf menhaden, species identifications are problematic. Proper species identification is a critical first step in the analysis of intraspecific stock structure.

The two small-scaled menhadens, yellowfin and finescale, can be identified on the basis of morphological and molecular characters (Dahlberg 1970, Anderson 2007, this study). Yellowfin menhaden are distinguishable from finescale menhanden in having a higher number of vertebrae and scutes and a smaller head; both small-scaled menhadens are distinguishable from the large-scaled menhadens by the absence of a frontal groove, rounded scale pectinations, and higher scale counts (Dahlberg 1970). The two small-scaled menhadens can also be distinguished from each other and the largescaled menhadens with genetic characters. Anderson (2007) separated yellowfin, finescale menhaden, and the large-scale menhadens using sequencing data from the mitochondrial control region and four microsatellite loci. Though no fixed differences have been established between the North American menhadens, significant allele frequency differences have been detected at some loci. Yellowfin menhaden in this study (n = 25) were fixed for allele 130 at locus AsaB020 while this allele occurred at a frequency of 69% in finescale menhaden, 9% in gulf menhaden, and 1% in Atlantic menhaden. Similarly, finescale menhaden (n = 25) were fixed for allele 216 at locus Asa2 while this allele occurred at a frequency of 6% in yellowfin menhaden, 7% in gulf menhaden, and 10% in Atlantic menhaden.

Hybridization between yellowfin menhaden and the two putative large-scale menhadens has been reported to occur along the Atlantic and Gulf coasts of Florida (Turner 1969, Dahlberg 1970, Anderson and Karel 2007). Putative yellowfin/large-scale hybrids, identified on the basis of intermediate morphological and meristical characters, were found in southwestern and southeastern Florida (Turner 1969, Dahlberg 1970). The predominance of males suggested a postzygotic barrier to hybridization that would inhibit the establishment of a stable hybrid population (Dahlberg 1970).

Microsatellite loci and mitochondrial control region sequencing have been used to study the directionality of hybridization and potential for introgression in menhaden. Though frequency differences do not allow unambiguous identification of hybrids, Anderson and Karel (2007) identified putative yellowfin/gulf hybrids by major frequency differences at locus Asa2 (88% frequency of allele 195 in yellowfin menhaden; <5% frequency in large-scaled menhaden) and Asa 9 (90% frequency of allele 242 in largescaled menhaden; absent in yellowfin menhaden). However, all potential hybrids grouped with yellowfin menhaden based on mitochondrial control region sequences. As the mitochondrial genome is maternally inherited, this result indicated that yellowfin menhaden was the maternal lineage in every case (Anderson and Karel 2007). Based on

an analysis of microsatellite alleles in yellowfin menhaden not identified as F_1 hybrids, Anderson and Karel (2007) concluded that there was a low rate of introgression between yellowfin menhaden and the large-scaled menhadens. This result supports the Dahlberg (1970) hypothesis of a postzygotic inhibition of a hybrid population. However, Anderson and Karel's (2007) samples sizes (n = 10 - 20) per location (New Jersey, Virginia, Maine, and North Carolina) may be insufficient to accurately estimate rates of introgression.

Although hybridization of yellowfin and large-scaled menhadens has been reported, there has been no documented case of hybridization between Atlantic and gulf menhaden. This is primarily due to the fact that there is no definitive diagnostic character to distinguish between these two putative species. The taxonomic key established by Dahlberg (1970) is currently still in use and provides location (i.e. Atlantic Ocean, Gulf of Mexico) as the primary distinguishing feature between the two species. All other key characters (i.e., gill filaments, vertebrae, predorsal scales, and ventral scutes) overlap between Atlantic and gulf menhaden (Dahlberg 1970). Species range for gulf menhaden has also been disputed. As early as Reintjes (1969) and as recently as Anderson and Karel (2007), gulf menhaden have been postulated to occur in southeast Florida based on morphological and mitochondrial data.

Even molecular characters have not resolved the large-scaled menhadens. In all three mitochondrial studies (mitochondrial genome RFLP, Avise *et al.* 1989; control region, Anderson 2007; COI, this study), Atlantic and gulf menhaden formed two well defined clades, but not by putative species. As previously mentioned, COI is a conserved gene region, but typically exhibits consistent (fixed) nucleotide differences between

species. It is, consequently, unusual for species to remain unresolved using COI as a marker.

COI is currently the standard gene region used for species identification in the Barcode of Life Datasystem. Not only do species tend to differ by one or more fixed nucleotide differences in this region, interspecific differences are substantially greater than intraspecific differences (Ratnasingham and Herbert 2007). In a survey of 207 fishes, all species had different COI sequences and differences between closely related species were 25 times higher (on average) than differences within species (Ward *et al.* 2005). In the present study, however, the nucleotide sequence diversity for large-scaled menhadens combined ($\pi = 0.0258$) is only 5 times higher than the within-clade diversity ($\pi = 0.0081$, 0.0036). In the case of the menhadens, the high variability of COI reduces its utility for barcoding but not for analyses of intraspecific population structure.

Based on the preliminary analysis, COI was chosen for this study rather than the mitochondrial control region. In both this study and Anderson (2007), the control region sequences appeared to exhibit mutational saturation. Similar levels of saturation were detected by García *et al.* (2008) among *cytochrome b* sequences in Brazilian menhaden (*B. aurea*).

Mutational saturation is demonstrated by plots of the number of transitions (by codon position if protein coding) and transversions (by codon position if protein coding) with genetic distance. Specifically, if the rate of transitions plateaus with increasing genetic distance and the rate of transversions approaches that of transitions, mutational saturation is indicated. In such cases, it is likely that the rate of transitions has not decreased with time, but that the limited number of character states (purine to purine or

pyrimidine to pyrimidine) results in "multiple hits" or homoplasy (for example, a series of transitions from $A \rightarrow G \rightarrow A$ would appear as no change at all). The fact that transitions of the control region plateaued with increasing genetic distance and the rate of transversions approached them suggests that any Atlantic menhaden analyses based on control region nucleotide substitutions could be confounded by homoplasy. For population studies, genetic drift is a more important driving force, but mutation still comes into play.

Although in the initial assessment the COI sequences may have been less suspect of mutational saturation, both COI and control region exhibited high levels of variation. Thus, the same concerns noted for the control region may also apply for COI. Mutation saturation plots are a qualitative measure of homoplasy and not statistically based.

Though it was chosen, COI did not turn out to be an ideal molecular marker for this study as it could not resolve the small-scaled and large-scaled menhaden lineages. Three Atlantic menhaden grouped with the small-scaled menhadens in the COI phylogeny. This result could be from misidentification of individuals in the field, hybridization and introgression, or incomplete lineage sorting using COI as a marker. When sequenced for the control region, the three anomalous individuals clustered with the "ubiquitous large-scaled" clade. This result does not support misidentification or hybridization and introgression for these samples because the control region and COI relationships would have the same origin (e.g., the mitochondrial genome has no recombination). Since the evolutionary rate of the control region exceeds that of COI, this outcome suggests incomplete lineage sorting, an inability of COI to resolve the two major menhaden lineages.

Lineage sorting is the process of fixation of gene lineages between taxa. Incomplete lineage sorting occurs when ancestral polymorphism is retained in multiple taxa, resulting in an inability to distinguish between the groups with a specific gene region. Incomplete lineage sorting is a function of the molecular marker utilized, the taxonomic scale of analysis, and has been found in other lineages including cichlids in Lake Tanganyika (short interspersed element insertion data, Takahashi *et al.* 2001), schizorathicine fishes of Lake Rara, Nepal (proline tRNA and control region sequences, Dimmick and Edds 2002), and crotaphytid lizards (ND2 and Cyt*h* sequences, McGuire *et al.* 2007). These conclusions indicate that the control region may have been a more appropriate mitochondrial gene region to analyze for Atlantic menhaden population structure than COI.

While COI sequences may not completely resolve the four species of North American menhaden, the population structure revealed in this and previous mitochondrial surveys of large-scaled menhadens suggests the possibility of historical isolation between the two large-scaled clades. To obtain a nuclear perspective on the genetic differences between Atlantic and Gulf of Mexico large-scaled menhadens, ITS-1 was sequenced for a subset of samples, representing both mitochondrial clades, and seven microsatellite loci were analyzed for all samples. If the nuclear relationships were similar to the mitochondrial relationships, the result would indicate that the structure resulted from two independent evolutionary lineages (separate species), without contemporary gene flow. If the nuclear relationships were not consistent with the mitochondrial relationships, the result would suggest historical isolation and subsequent unidirectional gene flow.

Neither the ITS-1 nor microsatellite relationships were similar to the two-clade structure revealed by analyses of mitochondrial gene regions. The ITS-1 phylogeny produced no discernable structure, a high level of haplotype diversity (h = 0.972), and a low level of nucleotide sequence diversity ($\pi = 0.0122$) among the large-scaled menhaden clones. Intra-individual variation in ITS-1 phylogenetic studies is widely known to exist (Harris and Crandall 2000). In this study with 5 clones per individual, individuals had up to five different alleles. It is also important to note that all *B. gunteri* clones grouped as a species; all but one *B. smithi* sequence fell outside of the large-scaled group; and with that one *B. smithi* sample, all of the large-scaled individuals fell within one large polytomy. Despite the high intra-individual variation and haplotype diversity, ITS-1 does not provide any usable information to compare with the mitochondrial relationships.

The microsatellite results of this study, like Anderson (2007), did partition the North American menhadens into four groups. However, both studies indicated that the large-scaled menhadens are very closely related. Anderson (2007) surveyed variation at four microsatellite loci, estimating an F_{ST} of 0.110 between Atlantic and gulf menhaden. This study screened seven microsatellite loci, estimating an F_{ST} of 0.104 between Atlantic (all sampling regions grouped together) and gulf menhaden. Considering each Atlantic and Gulf sampling location independently, this study estimated F_{ST} values of 0.079-0.122 (p = 0.000). These F_{ST} values are more typical of differences between populations rather than species. For comparison, F_{ST} values between genetically distinct stocks based on microsatellites range from 0.002 to 0.226 (Table 15). Conversely, F_{ST} values between North American menhadens include: 0.488 between Atlantic and yellowfin menhaden, 0.412 between Atlantic and finescale menhaden, 0.411 between gulf and yellowfin menhaden, 0.378 between gulf and finescale menhaden, and 0.355 between yellowfin and finescale menhaden (Anderson 2007).

Avise *et al.* (1989) grouped Atlantic and gulf menhaden into a *Brevoortia tyrannus/patronus* complex, noting "the species are very closely related and are of questionable taxonomic status." Bowen and Avise (1990) compared the population structure of the large-scaled menhadens, black sea bass, and sturgeon, three coastal taxa present in the Atlantic and Gulf of Mexico. The black sea bass exhibited reciprocal monophyly of the Atlantic and Gulf haplotypes while both the menhaden and sturgeon shared haplotypes between the Atlantic and Gulf of Mexico. Currently, the Atlantic and Gulf congeners have subspecies status for black sea bass and sturgeon, but not for the menhadens; the menhaden taxonomy conflicts with the genetic results.

While more morphological and genetic analyses of large scale menhadens should be undertaken, especially around Florida, the genetic data suggest that synonymizing Atlantic and gulf menhaden may be warranted. This situation parallels another within the genus *Brevoortia*. Historically, the existence of two menhaden species in the southwest Atlantic, Brazilian menhaden (*B. aurea* Spix & Agassiz 1829) and Argentine menhaden (*B. pectinata* Jenyns 1842) have been purported (Whitehead 1985). But, recent genetic data has confirmed that these two putative species, in fact, comprise only one species, *B. aurea* (García *et al.* 2008).

Phylogeography

Phylogenetic analyses based on mitochondrial genome RFLP as well as control region and COI sequence data revealed the presence of two highly divergent lineages of large-scaled menhadens (Bowen and Avise 1990, Anderson 2007, this study). Bowen and Avise (1990) noted the presence of one clade (α ; "ubiquitous large-scaled" in this study) in menhaden collected along the U.S. Atlantic coast and Gulf of Mexico and the other clade (β ; "Atlantic-only" in this study) in menhaden only collected from the Atlantic Ocean. Based on mitochondrial COI sequences of this study, the net nucleotide sequence divergence (δ) between the two clades was 3.70%. This value is somewhat smaller than the 5% sequence divergence noted between the two clades by Bowen and Avise (1990) based on RFLP analysis of the entire mitochondrial genome. The slight difference between the divergences estimated in the two studies is consistent with the fact that the mitochondrial genome contains both coding and non-coding gene regions and that COI is a coding region.

Avise (1992) hypothesized that the separation of two mitochondrial clades between the Atlantic Ocean and the Gulf of Mexico was a result of historical isolation of Atlantic and gulf menhaden by the Florida peninsula during times of cooler water temperatures and subsequent unidirectional gene flow during geologically recent times. During a period of glaciation, sea level was lower and waters were cooler, making the Florida peninsula a more formidable barrier to gene flow. This barrier produced a phylogeny with an Atlantic clade and a Gulf clade. During a period of warming, sea level was higher, allowing for unidirectional gene flow from the Gulf of Mexico to the Atlantic via the Gulf Stream. Cooling subsequently limited mixing around Florida, with the Gulf signature remaining in the Atlantic population.

Anderson (2007) postulated that the distribution of these two clades in menhaden collected along the U.S. Atlantic coast supported very recent gene flow from the Gulf of

Mexico to the Atlantic because four of the eight "Atlantic-only" haplotypes in the study were collected from the northernmost sampling location. However, the postulated geographic cline in the distribution of the "Atlantic-only" clade was only qualitatively addressed and also must be moderated by the small sample size (n = 37) of Atlantic menhaden in that study. In the present study, a more extensive sampling regime for Atlantic menhaden (n = 289) refutes Anderson's (2007) hypothesis of recent gene flow based on a clinal distribution of the two clades in Atlantic menhaden. A chi-square analysis of Atlantic coast sampling locations indicated that the two mitochondrial clades were not heterogeneously distributed among Atlantic coast collection locations. In other words, there is no geographic cline in mitochondrial sequences along the Atlantic coast.

While the mitochondrial data suggest unidirectional gene flow from the Gulf of Mexico to the Atlantic coast in the recent geological past, analysis of nuclear microsatellites indicates a barrier to gene flow at the present time. This study surveyed 7 microsatellite loci and found an F_{ST} of 0.104 (p = 0.000) between Atlantic and gulf menhaden, a value that agrees well with Anderson's (2007) F_{ST} of 0.110 based on the analysis of 4 loci.

Population Structure

Stock structure analyses of Atlantic menhaden along the U.S. Atlantic coast have suggested as few as one and as many as three different stocks based on spawning time, spawning location, and migration tracks (June 1958, 1965; Sutherland 1963; June and Nicholson 1964; Nicholson 1972, 1978; Dryfoos *et al.* 1973; Epperly 1989). This study analyzed the distribution of allelic variation of rapidly evolving molecular characters to

evaluate population structure of Atlantic menhaden. The resulting AMOVAs did not attribute any significant portion of molecular variance to variation between the following group comparisons: YOY menhaden recruiting to Chesapeake Bay early and late in the season during the same year; YOY and yearling menhaden collected in Chesapeake Bay in successive years (following the 2006 year class); YOY and yearling menhaden collected in Chesapeake Bay in the same year (comparing 2005/2006, 2006/2007 year classes); and YOY and yearling menhaden (combined) from the four geographic regions along the U.S. Atlantic coast (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic).

While none of the five $\text{COI} \Phi_{ST}$ AMOVAs or five microsatellite R_{ST} AMOVAs were significant, two of the five microsatellite F_{ST} AMOVAs showed a small but statistically significant partitioning of genetic variation between YOY and yearling menhaden collected in Chesapeake Bay in successive years (following the 2006 year class, 1.80%, p = 0.0176) and YOY and yearling menhaden (combined) from the four geographic regions along the U.S. Atlantic coast (0.575%, p = 0.0000). Grouping the U.S. Atlantic coast sampling regions also produces a slight, but significant, partioning between the northern and southern sampling locations ($F_{ST} = 0.00535$, p = 0.00098). This significant result from the F_{ST} AMOVA between the four U.S. Atlantic coast geographic regions may be a result of a latitudinal gradient in genetic variation or, conversely, a biologically insignificant event. Given enough genetic comparisons, statistically significant differences can be expected since some aberrations from complete panmixia do occur (Waples 1998). The differences between the F_{ST} and R_{ST} AMOVA results can be accounted for by the different distance algorithms employed in the analyses. The F_{ST} AMOVA is based on the distribution of number of different alleles (not considering relationships among alleles) and uses the infinite allele model of mutation. As a result, F_{ST} may be more appropriate in situations of recent divergence when genetic drift is the predominant factor (Ruzzante 1998). The R_{ST} AMOVA is based on the distribution and relationship of alleles (sum of squared allele size differences) and uses the stepwise mutation model. The R_{ST} algorithm may be more appropriate in situations where mutation is a key factor (Ruzzante 1998). Additionally, the R_{ST} method is considered applicable for microsatellite data only when sample sizes are either equal or larger than 50 (Ruzzante 1998). Because mutation is an important feature in this dataset and because the sample sizes exceed 50, R_{ST} is a more reliable microsatellite method for comparing putative species. Conversely, for within species comparisons, F_{ST} is a more typical method.

The pairwise comparisons between sample locations corroborate the Φ_{ST} and R_{ST} AMOVA results. No pairwise comparison revealed a statistically significant difference between any two of the four geographic regions of Atlantic menhaden after sequential Bonferroni correction. These findings support the hypothesis that the significant results from the F_{ST} AMOVAs were biologically insignificant. The collective results indicate that there was no significant partitioning of genetic variation between the sampling regions of Atlantic menhaden, and the null hypothesis of a single U.S. Atlantic stock can not be rejected.

Finding no statistically significant genetic differences among Atlantic menhaden sampling regions is consistent with the life history traits of the species. Of all the North

American *Brevoortia*, Atlantic menhaden undertake the longest coastal migrations (Whitehead 1985). They also undergo an ontogenetic shift in migration where larger fish migrate furthest north (Dryfoos *et al.* 1973, Quinlan *et al.* 1999). Atlantic menhaden are batch spawners, spawning multiple times during a year, and have the most temporally and geographically protracted spawning season of any North American *Brevoortia* (Whitehead 1985). This means that the area(s) where a fish spawns in one year could be a different from the area(s) that it spawns in the following year. Additionally, eggs are spawned in coastal, pelagic waters. The larvae can take up to 90 days to cross the continental shelf and are affected by along-shore transport, coastal storms, freshwater discharge from estuaries, and wind-forcing (Checkley *et al.* 1988, Quinlan *et al.* 1999). These characteristics appear to keep Atlantic menhaden – and their gene pool – well mixed.

Genetic analyses of other clupeids have failed to find population stucture. For Atlantic herring (*Clupea harengus*), Grant (1984) postulated that small scale migrations accounted for the lack of genetic divergence between adjacent areas (40 allozyme loci, 6 locations, \approx 50 samples/location). Volk *et al.* (2007) found evidence of substantial gene flow between spawning locations of twaite shad (*Alosa fallax*) with no evidence of localized genetic drift due to habitat changes (12 microsatellite loci, 5 locations, 50 samples/location; $F_{ST} = -0.0004 - 0.0089$, $\alpha = 0.05$, non-significant after Bonferroni correction in all but one case). Gonzalez and Zardoya (2007) discovered minimal genetic differentiation among European sardines, hypothesizing it to be a result of weak isolation by distance (8 microsatellite loci, 9 locations, 50 samples/location; $R_{ST} = 0.001 - 0.083$, of 36 pairwise comparisons, only nine comparisons revealed significant values after

correction for multiple tests, p < 0.0014).

In contrast, some clupeid species exhibit significant stock structure, often attributed to the presence of geographic barriers or temporal reproductive isolation. Allozyme analysis revealed significant genetic differentiation between eastern North Pacific and Bering Sea Pacific herring (C. pallasi) because of adults homing to previous spawning locations (spawning site fidelity) and larval retention mechanisms (40 allozyme loci, 6 locations, \approx 50 samples/location; Grant and Utter 1984). Similarly, O'Connell *et* al. (1998) used microsatellite analysis to confirm genetic isolation of the Bering Sea and Gulf of Alaska stocks of Pacific herring separated by the Alaska Peninsula (5 microsatellite loci, 7 locations, ≈ 50 samples/location; $R_{ST} = 0.11 - 0.16$, p < 0.001). And, Sugaya et al. (2008) exhibited significant genetic difference between Honshu and Hokkaido Island samples of Pacific herring due to natal homing (5 microsatellite loci, 10 locations 200/location_{avg}; $F_{ST} = 0.046-0.173$, p < 0.05, after sequential Bonferroni correction). Shaw et al. (1999) also found significant genetic structuring between Icelandic summer-spawners, Norwegian spring-spawners, and Norwegian fjord stocks of Atlantic herring (C. harengus), attributing differences to temporal isolation of spawning (4 microsatellite loci, 5 locations, \approx 50 samples/location; $F_{ST} = 0.01 - 0.04$, p < 0.001; R_{ST} = 0.08 - 0.28, p < 0.001).

Implications for Management

Atlantic menhaden have had a rocky history of management in Virginia, the only state that still maintains a reduction fishery facility for the species. Atlantic menahden are the only species in Virginia state marine waters to be managed by the Virginia Legislature, rather than the Virginia Marine Resource Commission. In 2005, the Atlantic States Marine Fisheries Commission (ASMFC), the regional managing authority, proposed a precautionary cap of 105,000 tons on the reduction fishery to assess the status of Atlantic menhaden in Chesapeake Bay relative to coastal systems (ASMFC 2005). By mandate, all ASMFC states were required to comply with the cap. However, during the 2006 legislative session, members of the Virginia General Assembly withdrew or killed four separate bills seeking to adopt the ASMFC cap. If Virginia was still non-compliant by July 2006, a commercial moratorium could have been established by federal law. However, Virginia Governor Tim Kaine instituted a 109,000 ton cap by gubernatorial proclamation July 31, 2006 which was accepted by the ASMFC (ASMFC 2006).

With concerns over the potential of localized depletion, the landings cap provided a precautionary management measure, allowing time to evaluate the connectivity and genetic relatedness of Atlantic menhaden in Chesapeake Bay and along the U.S. Atlantic coast. This is especially important because there has been a reported loss of unique genetic variation in other species such as Pacific cod, leopard darter, Japanese flounder, and American shad due to fishing pressure, habitat degradation, and hatchery stocking (Grant and Stahl 1988, Echelle *et al.* 1999, Sekino *et al.* 2003, and Brown *et al.* 2000, respectively).

Currently, Atlantic menhaden are managed as one coastwide stock. With high genetic variability and homogeneous distribution of the genetic variation, the results of this study indicate that the current management practices for Atlantic menhaden are sufficient for maintaining the genetic composition of the species. This finding is consistent with results of previous tagging studies for Atlantic menhaden (Dryfoos *et al.*

1973, Nicholson 1978). The genetic connectivity between New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic samples suggests that loss of unique genetic variation due to intensified fishing pressure in Chesapeake Bay is not likely. However, it is important to realize that gene flow of only a few migrants per generation, even for populations with millions of individuals such as the Atlantic menhaden, is enough to negate the effects of genetic drift (Mills and Allendorf 1996, Hartl and Clark 2007).

While the results of this study suggest that menhaden would eventually return to an area depleted by fishing effort without any significant loss of genetic variation, genetic analysis cannot estimate the time course of movements into the depleted area. Menhaden could repopulate a depleted area on a timescale of weeks, months, seasons, years, or decades. Short-term replenishment to areas affected by localized fishing pressure is better estimated with non-genetic techniques, such as mark-recapture or analysis of otolith microchemistry.

As the fifth largest U.S. commercial fishery (by weight) and a principal forage fish, Atlantic menhaden is an important species, economically and ecologically. Proper management requires the most current understanding of Atlantic menhaden stock structure. This study evaluated the potential for local depletion of genetic variation due to the recent consolidation of the reduction fishery to within and around Chesapeake Bay. While the taxonomic status of Atlantic and gulf menhaden remains questionable, the results from seven microsatellite loci suggest that Atlantic menhaden have complete spatial and temporal genetic connectivity. Consequently, the management of Atlantic menhaden as a single coastwide stock is appropriate at the present time.

TABLES

Locus	GenBank Accession no.	Repeat motif [reported size]	Fluorescent Label	Primer sequence (5'-3')	Annealing temp	Reference	Comment
Aald	AY617109	(GT) _k [128-140]		E: GAG AAG AGG GCA FIC G R: APT TAG TGT GTG CCC AGC	$\mathcal{D}_0 19$	Faria et al. 2004	no allele found
Aa16	AY617110	(CA) ₄ AA(CA) ₃ AA(CA) ₈ [145-159]	PET	F: TTG ACC GAG CGC AAA CTG R: TGA CAC TGA CTC ATC ATG C	55.7°C	Faria <i>et al.</i> 2004	
Aa20	111718YA	(GT) ₁₆ 116-146	(EIN	E GGI GIA ATG CCC GTC CG R: CAG TGT GCA GAC VAG CC	48.6°C	Faria <i>et al.</i> 2004	- Noci
Af6	211713YA	(CA) _h A1(CT) ₈ (CA) ₁₆ AA(CA) ₈ [159-171]	anna - - - - - - - - - - - - -	E AGG AGÀ TGI HIA TCC 4GC C R: CAC AGA GGC ATA AAT GTG G	48.6"(Faria <i>et al.</i> 2004	Lixed
Afti	AY617113	(CA)sCT(CA) ₁ [126-139]	VIC	E CGA GTA CAA TCA AAA GCC R: AGC TLC CTC AGA CTG G	40,1 °C	Faria <i>et al.</i> 2004	did not amplify well
Af13	AY617114	(CA) ₁₇ [170-178]	6-FAM	F AGG AFA CAT AGT CTC CC R: CAA GTT GGA GTG TCA CO	59°C	Faria <i>et al.</i> 2004	no allele found
Afts	AY617115	(CA) ₁₁ [173-208]	GIN	E. CCCATT CACTCT TTT TCLC R: GAG AGG AGT [GA GTA 100	53 °C	Faria <i>et ul.</i> 2004	no allele found

Locus	GenBank	Repeat motif [reported size]	Fluorescent	Primer sequence (5'-3')	Annealing	Reference	Comment
	Accession no.		Label		temp		
A120	AY617116		VIC.	F AAF GGA CATATC	52.670	Farta et al	Fixed
		1/3-208		R: ATG GAG GGC CAT		2004	
				ALT R.G.			
Asa2	AF039657	(TTC) ₁₃	6-FAM	F: CAT TAC TCC AAG	48.6°C	Brown et	
		[73-133]		TTG CTT TTA TTT		<i>al.</i> 2000	
		,		R: GAG ATG ACA GAA GAA TTG AAG AGA			
Acad	AF039658	(ACC);(AAC);,(AGC);	NFD	F: GAA GAC AAT ACA	53 8 °C	Brown et	
				GTA ATA AAC C)		
		[124-1/2]		R: GCG GGA GGC CAG		al. 2000	
				ACA TA			
Asa6	AF039659	$(\Lambda\Lambda C)_{12}$	t Transa Transa Transa Transa	E VCC LLC LCL LCL	48-62°C	Brown et	no allele
				GELECACCE C	70212	0000 /0	
		~ ~		R TCACTOLATC	1		
				CAA TGE AAT GEF			
Asa8	AF039660			F TO ALLOAD TA		Brown c/	Fixed
		[]08-168]		(01 A0A 00A 01		0(0)0 ///	
		-		R: CCO GCA GGG CAC			
1 000	1 10206A		7 :	10/1/1/ 1-19/4/1/1/1/00/00	10 647	Darren (1)	
1.14	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- 0.0t	0.0000	
		007-001		R AGG AGA AGG AAA		00. ZUNU	
				040404010404040			
Asa16	AF049462	$(GTT)_{3}(CCT)(GTT)_{12}$	VIC	F: CCG TCG CCG ATG	48.6°C	Brown et	Suspect
		[116-131]		TAG TTG CAG TGG		<i>al.</i> 2000	null allele
				K: AUU UUA UAA AAU AGT ATG TGT CCT TGA			

Locus	GenBank Accession no.	Repeat motif [reported size]	Fluorescent Label	Primer sequence (5'-3')	Annealing temp	Reference	Comment
AsaB020	EF014990	(GAT) ₁₅ [114-147]	6-FAM	F: GCA TTA TGA TGG TCA TGT GTA TG R: GAA ATC CTA TGT CTT GGA ATG G	53.8°C	Julian & Bartron 2007	
AsaC010	19014991	(GTAT) ₁₆ [261-321]		E AAT AAT GIT GIG CRG GAT FGT G R: ITT ATT GIT ATT GIG ATG GAG GG	50,4 °C	Julian & Bartron 2007	Fixed
AsaC051	EP014992	(GAAT) ₇ (GTAT) ₁₃ [248-316]	AIC.	E: GTA AGT CGC TTT GGA CTA CCA G R: TCT AAA TGC CCA GGT AAA GAT G	48-62°C grad	Julian & Bartron 2007	no allele found
AsaC249	EF014994	(CATA) ₈ (TICT) ₁₃ [243-367]	6-FAM	E. TTA TTA CAA CGG TGA ATT GAG TG R: TAA GTG CAT GTT GTG FGF GAT G	62°C	Julian & Bartron 2007	
AsaC334	EF014995	(GTAT) ₁₇ [102-178]	PET	F: ATG GTT ATG TGG GCT CTT TAT G R: GTT CAT CCT GCC AGA TCT AAG G	48.0°C	Julian & Bartron 2007	
AsaD021	900410.14	(CTAT) ₁₅ [249-301]	CIN	E. ITA TTA CAA CGG TOA AFT GAG TG R: EAA GFG CAT GTT GTO TGT GAT G	(0.5)	Julian & Bartron 2007	pax
AsaD029	EF014907	(CTAT) ₂₀ [182-254]	VIC	E. ATLATGCAC AGG AAT CTG GAA G R: FG1 GCT TAC AAA AGT GAC ATG G	48.6°C	Julian & Bartron 2007	Fixed

Locus	GenBank	Repeat motif [reported size]	Fluorescent	Primer sequence (5'-3')	Annealing	Reference	Comment
00000	Accession no.		LaDel		temp		\$
AsalMM	131-014998	$(C(A))_{23}$		FUCACAOUALAI		Julian &	Amplifics
		102-182		CIC FT ACT G		Bartron	Wrong
				R: ACC HIG AND HC		Ernic	
				TCC 1 KG GG		/ <i>U</i> / 7	1080F
AsaD031	FJ:014999	$((1, \Lambda^{+}))_{L}$		F TTC CTG ATA TT	48-62°C	Julian &	no allele
		10TC-081		CTT GTG AGG G	ocad	Ractron	6 2 2 2 2 3 5 F
				R: A LT TC LGT G GAA			3 2 7 5 3 9 5 4 5
				ACC TTT TGG		- ////7	
AsaD042	197015000	$(CTAT)_{p}$	WV:1-9	F. ACT GGT CAA TTG	48-62°C	Julian &	no allele
		162-214		$\{AA 0A(-ACC C)$	01.30	Bartron	found
				R: CAA GAF GAC CAA	i D	2007	
				000 FTA A0A C		2007	
AsaD055	EF015001	(CTAT) ₁₀	NED	F: CTC TTT CAC AGG	48.0°C	Julian &	
		[231-279]		GAT CAA AGT C		Bartron	
				R: CAA GCA TGT TTA		2007	
				AAT AGG AGG C		7007	
AsaD278	EF015002	$(C(\Lambda T))_{T}$	NED (F CCC FLA GTG AAT	48-62°C	Julian &	no allele
_		[160-210]		GTT GAG TGT G	2) 87-4 5 5	Bartron	found
				R: CTE AGG CCA CAF	i n	2007	
				AGG TGA OTA TC			
Sarlal	AY636120	(GATA) ₂ GCTA		E GAG CTG GAA ATC	48-62°C	Percyra et	no allele
		257-33		TGG FOA FAT HAG	prad	FUOC ID	()
				RECORDER CACIANO	1)		
				TLA GAG CAL FC			
Sar 1006	AY636123	$(TG)_{18}$	DET	F. CGG CTA TTC TTA	48.6°C	Pereyra et	didn°t
		[120-158]		LOAC LAG GTG		<i>al</i> . 2004	amplity
				TGA ATA AG			Well

Locus	GenBank	Repeat motif [reported size]	Fluorescent	Primer sequence (5'-3')	Annealing	Reference	Comment
	Accession no.		Label		temp		
SariD01	AY636121	$(CA)_{20}GG(CA)_{5}$		P. GCT CTG GTC GGA	48-62°C	Pereyra et	no allele
		[182-256]		GGC LCT ATC	Erad	<i>ul.</i> 2004	lound
				R. GGL GEL CAC GLG GGC TGG FA	j		
Sarlill	AY636122	(TG) ₀ TA(TG) ₆		F. CAC GOC ACG FTA	48-62°C	Perevra et	no alcia
		[] 50-2001		COLTR AG	191218	2004	inn.
				R: CCA GCG TGT CAT	b		
				0.4.4.FG ATG			
SarBA07	AY636114	$(C(\Lambda))_{12}$		FOR OR ACT CAG	48.670	Perevra et	Fixed
		[68-136]	-	CCG CTA AGG A		al. 2004	
				R: GGG TAA CAE THC			
				GGC AAGE FOR 1			
SarBA08	AY636115	$(C\Lambda)_{26}$	NED	EGIGALACICI	48-62°C	Pereyra et	no allele
		[201-301]		GCC LLG GV	prad	<i>nl.</i> 2004	found
				R. GUA C'EL LET C'EL	()		1 () () () () () () () () () (
				AGE AAA TAG C			
SarBCO5	AY636116	$(TC)_{S}Tr(TC)_{4}$		F. GAA CGC AGA CAT	48-62°C	Perevra e/	no allele
		12()-1821		AAA AGG GTC	CP36	7// JUD4	ETHER F
				R: GOG LAT OTO GIG	20 20 20		
				ATT AFC OTT C			
SarBD09	AY636117	$(CA)_0(GA)_8$		E. GGT CAT CTG CTI	48-62°C	Pereyra et	no allele
		269-3031		CAA CAA CAC	1982.143	100 /m	L'HERE'S
		~		REGARCERENCE	b.		
00,74 0	A 177 37110			AACIC 10			
SarBGuy	AY 020118	$(\mathbf{U}\Lambda)_{\mathbf{K}}\mathbf{U} + (\mathbf{U}\Lambda)_{\mathbf{R}}\mathbf{U}$		ELUALE UNITA ALAU ALAU	170-85	Pereyra e/	no allele
		149-163			grad	al. 2004	found
		2		R: GOLICA CIA LOC	j		
				<u>AGG C'LA TG</u>			
SarBH04	AY636119	(GT) ₉		F: CGA GTT TGT CCC		Perevra et	
		[181-271]		ACA CCT GGA G		al 2004	
				R: CTC CAA GCA CCG			
				AGA GCA TC			

smithi), and finescale menhaden (B. gunteri) based on an initial survey of sequence data from 28 individuals for control region and cytochorme c oxidase subunit I (COI) and from 60 clones for 12 individuals of internal transcribed spacer 1 (ITS-1) sequence data: transversions (Tv), number of insertions or deletions (indels), haplotype diversity (h), mean nucleotide sequence diversity (π), and Table 2. Population statistics of Atlantic menhaden (Brevoortia tyrannus), gulf menhaden (B. patronus), yellowfin menhaden (B. number of individuals (n), number of haplotypes (N_h) , number of polymorphic sites (S), number of transitions (T_S) , number of mean number of pairwise differences (k).

Gene Region	и	$\mathbf{N}_{\mathbf{h}}$	S	$\mathbf{T}_{\mathbf{S}}$	Tv	indels	$h \pm SE$	$\pi \pm SE$	$k \pm SE$
Control Region	28	27	63	55	16	1	0.997 ± 0.0104	0.0326 ± 0.0166	19.0 ± 8.67
COI	28	20	44	41	8	0	0.960 ± 0.0241	0.0267 ± 0.0141	9.44 ± 4.46
ITS-1	60	45	81	54	23	14	0.979 ± 0.0110	0.0183 ± 0.0094	10.2 ± 4.73
ITS-1 (large-scale only)	50	38	59	36	18	11	0.972 ± 0.0154	0.0122 ± 0.0065	6.80 ± 3.26
(Ts), number of transversions (Tv), haplotype diversity (h), mean nucleotide sequence diversity (π), and mean number of pairwise gunteri), and yellowfin menhaden (B. smithi) based on cytochorme c oxidase subunit I (COI) sequence data by region, clade, and overall samples: number of individuals (n), number of haplotypes (N_h), number of polymorphic sites (S), number of transitions Table 3. Sequence statistics of Atlantic menhaden (Brevoortia tyrannus), gulf menhaden (B. patronus), finescale menhaden (B. differences (k).

	n	Ž	s.	L	P L	$h \pm SF$	$\pi \pm SF$	k + SF	
New England	50	29	47	47	4	0.940 ± 0.0206	0.0258 ± 0.0132	11.8 ± 5.45	1
mid-Atlantic	52	32	99	67	5	0.956 ± 0.0163	0.0286 ± 0.0145	13.1 ± 6.01	1
Chesapeake Bay	118	50	62	63	ω	0.932 ± 0.0144	0.0267 ± 0.0134	12.2 ± 5.57	
U.S. south Atlantic	69	44	99	67	1	0.954 ± 0.0166	0.0295 ± 0.0149	13.5 ± 6.16	1
Atlantic menhaden only	289	109	67	66	9	0.941 ± 0.0083	0.0274 ± 0.0137	12.6 ± 5.68	
gulf menhaden	50	25	34	33	S	0.879 ± 0.0419	0.0071 ± 0.0041	3.23 ± 1.70	
large-scaled menhaden combined	339	124	66	101	7	0.940 ± 0.0079	0.0258 ± 0.0129	11.8 ± 5.36	
"Atlantic only" clade	236	98	76	76	~	0.925 ± 0.0136	0.0081 ± 0.0045	3.71 ± 1.88	
"ubiquitous large-scaled" clade	100	23	22	22		0.732 ± 0.0456	0.0036 ± 0.0024	1.65 ± 0.98	1
finescale menhaden	25	16	43	42		0.940 ± 0.0310	0.0220 ± 0.0116	10.0 ± 4.77	1
yellowfin menhaden	25	17	53	53	ς	0.923 ± 0.0449	0.0335 ± 0.0173	15.4 ± 7.10	
small-scaled menhaden combined	50	27	57	58	3	0.936 ± 0.0231	0.0261 ± 0.0133	12.0 ± 5.50	г—
Overall	389	145	105	107	7	0.952 ± 0.0062	0.0331 ± 0.0164	15.2 ± 6.80	
									1

tingency table testing the independence of geographic representation between the two cytochrome c oxidase subunit I	ce clades of large-scaled menhadens (Brevoortia tyrannus and B. patronus) for all Atlantic coast regions (New	-Atlantic, Chesapeake Bay, and U.S. south Atlantic). The "Atlantic only" clade consists only of Atlantic menhaden;
4. Contingency ta	sequence clades o	nd, mid-Atlantic, (
Table 4	(COI)	Englar

the "ubiquitous large-scaled" clade consists of Atlantic and gulf menhaden. $x^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(f_{ij} - \hat{f}_{ij})^2}{\hat{f}_{ij}}$, where f_{ij} = observed counts

(bolded), \hat{f}_{ij} = expected counts (italicized), and degrees of freedom (v) = (i rows -1)(j columns -1). For this data set, $x_{0.05,3}^2 = 7.815$.

All Atlantic coa	$y_{1} x regions: x^{2} = 0.47$	$8 < 7.815 \rightarrow NS$			
Clade	New England	mid-Atlantic	Chesapeake Bay	U.S. south Atlantic	Total
"Atlantic	19	17	39	25	100
only"	17.5	18.2	41.0	23.5	0.35 (% of total)
"ubiquitous	31	35	78	42	186
large-scaled"	32.0	33.3	74.9	42.9	0.64 (% of total)
Total	50	52	117	67	

Table 5. Population statistics of Atlantic menhaden (Brevoortia tyrannus), gulf menhaden (B. patronus), finescale menhaden (B. gunteri), and yellowfin menhaden (*B. smithi*) based on eight microsatellite loci by region and overall samples: number of individuals (*n*), allele size range (a.s.r.), allelic diversity (*A*), allelic richness (R_s), and gene diversity (*D*).

Locus	Repeat motif	GenBank accession		New England	mid- Atlantic	Chesapeake Bay	U.S. south Atlantic	gulf menhaden	finescale menhaden	yellowfin menhaden
Aa16	$(CA)_4$	AY617110	и	47	51	117	53	49	24	24
	AA		a.s.r.	139-155	139-155	139-155	139-157	135-161	135-155	141-157
	$(CA)_3$	_	A	7	5	7	7	6	6	4
	AA		R,	4.98	4.07	4.40	4.70	4.69	4.54	2.91
	(CA) ₈		D	0.733	0.626	0.630	0.712	0.447	0.507	0.323
Asa2	(TTC) ₁₃	AF039657	и	44	50	114	68	49	25	24
			a.s.r.	210-237	213-234	210-237	216-237	210-237	216	213-216
			V	9	8	6	7	10	1	2
			R,	4.15	5.00	4.91	5.01	5.15	1.00	1.85
			D	0.600	0.660	0.651	0.657	0.641	0.000	0.120
Asa4	(ACC) ₃	AF039658	и	44	47	102	53	44	25	24
	$(AAC)_{12}$		a.s.r.	168-204	162-222	156-198	165-201	165-198	165-216	159-177
	(AGC) ₆		A	6	12	14	12	10	7	5
			R,	5.46	7.52	6.71	6.59	6.19	6.33	3.90
			D	0.722	0.840	0.821	0.782	0.780	0.799	0.645
Asa16	(GTT) ₃	AF049462	и	45	50	111	69	45	25	24
	CCT		a.s.r.	247-292	223-286	223-304	223-289	223-298	244-277	244-268
	$(GTT)_{12}$		V	16	17	21	18	15	8	5
			R,	13.2	14.4	15.1	12.8	12.8	7.88	5.00
			D	0.901	0.912	0.918	0.901	0.904	0.738	0.605

65

Table 5 cont. Population statistics of Atlantic menhaden (*Brevoortia tyrannus*), gulf menhaden (*B. patronus*), finescale menhaden (*B. gunteri*), and yellowfin menhaden (*B. smithi*) based on eight microsatellite loci by region and overall samples: number of individuals (n), allele size range (a.s.r.), allelic diversity (A), allelic richness (R_s) , and gene diversity (D).

Locus	Repeat	GenBank	. –	New	mid-	Chesapeake	U.S. south	gulf	finescale	yellowfin
	motif	accession		England	Atlantic	Bay	Atlantic	menhaden	menhaden	menhaden
AsaB020	(GAT)15	EF014990	u	47	49	116	66	49	24	24
			a.s.r.	142-184	130-193	130-196	130-187	130-196	127-139	130
			A	13	19	20	19	19	4	-
			Rs	9.44	10.9	10.0	10.0	12.4	3.17	1.00
			D	0.897	0.902	0.887	0.888	0.938	0.473	0.000
AsaD055	(CTAT)10	EF015001	n	44	36	113	63	45	25	24
			a.s.r.	254-314	254-326	238-334	238-326	258-330	242-290	238-294
			A	17	14	18	17	20	13	11
			Rs	10.3	10.4	10.7	11.3	11.4	10.2	8.76
			D	0.911	0.917	0.912	0.923	0.917	0.910	0.885
AsaC334	(GTAT)17	EF014995	u	49	51	114	63	49	11	17
	,		a.s.r.	118-146	122-138	122-146	118-138	118-154	134-158	134-158
			A	7	5	7	9	6	7	9
			Rs	4.77	3.20	4.33	3.68	7.65	7.00	5.16
			D	0.594	0.436	0.636	0.570	0.857	0.809	0.597
SarBH04	(GT)9	AY636119	u	40	49	111	56	44	21	24
			a.s.r.	179-221	179-221	179-221	179-221	179-221	169-215	189-221
			A	12	12	13	12	12	10	7
			Rs	6.27	6.43	5.89	7.22	5.57	8.37	4.26
			D	0.721	0.760	0.735	0.793	0.451	0.851	0.306

66

genotypes (no. geno.), observed heterozygosity (H_0) , and expected heterozygosity (H_E) . Significance values are based on 10,000,000 results. Bolded *p*-values indicate significance (p<0.05) after Bonferroni correction (initial $\alpha = 0.05 / 6 = 0.0083$). *samples <50 do Markov chain randomizations. The two-tailed probability test (*p*_{prob}) was performed for all samples. The one-tailed heterozygote Thompson (1992) based on eight microsatellite loci by region and overall samples: number of samples (no. samp.),* number of deficiency test (*p_{heterodef}*) and one-tailed heterozygote excess test (*p_{heteroexc}*) were performed if the probability test had significant menhaden (B. patronus), finescale menhaden (B. gunteri), and yellowfin menhaden (B. smithi) using the methods of Guo and Table 6. Hardy-Weinberg equilibrium test of association at the locus level for Atlantic menhaden (Brevoortia tyrannus), gulf not produce reliable test results.

Locus		New	mid-Atlantic	Chesapeake	U.S. south	gulf	finescale	yellowfin
		England		Bay	Atlantic	menhaden	menhaden	menhaden
Aa16	no. samp.	47	51	117	53	49	24	24
	no. geno.	13	10	14	14	11	7	4
	H_O	0.723	0.588	0.590	0.887	0.449	0.500	0.375
	H_E	0.734	0.625	0.630	0.913	0.447	0.507	0.325
	P_{prob}	0.122 ± 0.0012	0.571 ± 0.0010	0.606 ± 0.0020	0.242 ± 0.0017	0.693 ± 0.0041	0.313 ± 0.0020	1.00 ± 0.0000
Asa2	no. samp.	44	50	114	68	49	25	24
	no. geno.	10	15	18	15	14	1	2
	H_{O}	0.614	0.540	0.579	0.662	0.653		0.143
	H_E	0.600	0.658	0.651	0.657	0.661		0.117
	P_{proh}	0.524 ± 0.0017	0.251 ± 0.0021	0.0219 ± 0.0008	0.504 ± 0.0019	0.432 ± 0.0039		1.00 ± 0.0000
Asa4	no. samp.	44	47	102	53	44	24	24
	no. geno.	16	23	30	20	18	13	6
	H_O	0.75	0.809	0.824	0.698	0.681	0.583	0.500
	H_E	0.723	0.839	0.823	0.801	0.791	0.794	0.641
	p_{proh}	0.819 ± 0.0018	0.372 ± 0.0033	0.0227 ± 0.0012	0.0126 ± 0.0007	0.0560 ± 0.0007	0.0012 ± 0.0001	0.0046 ± 0.0001
	Pheterodef						0.0002 ± 0.0000	0.199 ± 0.0012
	Pheteroexc						1.00 ± 0.0000	0.803 ± 0.0011
Asa16	no. samp.	45	50	111	69	45	25	24
	no. geno.	32	36	65	40	31	12	7
	H_{O}	0.660	0.808	0.729	0.797	0.700	0.880	0.640
	H_E	0.809	0.877	0.856	0.900	0.812	0.741	0.582
	p_{proh}	0.0053 ± 0.0005	0.0473 ± 0.0018	0.0000 ± 0.0000	0.0587 ± 0.0022	0.0272 ± 0.0010	0.844 ± 0.0014	0.544 ± 0.0012
	$p_{heterodef}$			0.0000 ± 0.0000				
	Pheteroexc			1.00 ± 0.0000				

genotypes (no. geno.), observed heterozygosity (H_0) , and expected heterozygosity (H_E) . Significance values are based on 10,000,000 results. Bolded *p*-values indicate significance (p<0.05) after Bonferroni correction (initial $\alpha = 0.05 / 6 = 0.0083$). *samples <50 do Table 6 cont. Hardy-Weinberg equilibrium test of association at the locus level for Atlantic menhaden (Brevoortia tyrannus), gulf Markov chain randomizations. The two-tailed probability test (pprob) was performed for all samples. The one-tailed heterozygote Thompson (1992) based on eight microsatellite loci by region and overall samples: number of samples (no. samp.),* number of deficiency test (*p_{heterodef}*) and one-tailed heterozygote excess test (*p_{heteroexc}*) were performed if the probability test had significant menhaden (B. patronus), finescale menhaden (B. gunteri), and yellowfin menhaden (B. smithi) using the methods of Guo and not produce reliable test results.

Locus		New	mid-Atlantic	Chesapeake	U.S. south	gulf	finescale	yellowfin
		England		Bay	Atlantic	menhaden	menhaden	menhaden
AsaB020	no. samp.	47	49	116	66	49	24	23
	no. geno.	29	33	09	41	38	5	_
	H_O	0.787	0.898	0.905	0.833	0.439	0.458	
	H_E	0.894	0.902	0.887	0.888	0.458	0.473	
	p_{prob}	0.0153 ± 0.0006	0.0663 ± 0.0027	0.444 ± 0.0061	0.416 ± 0.0060	0.0293 ± 0.0014	0.0592 ± 0.0004	
AsaC334	no. samp.	49	51	114	63	49	11	17
	no. geno.	12	9	14	10	25	8	7
	H_{O}	0.531	0.431	0.588	0.556	0.878	0.909	0.529
	H_E	0.593	0.435	0.636	0.570	0.857	0.814	0.595
	P_{prob}	0.417 ± 0.0028	0.734 ± 0.0012	0.428 ± 0.0012	0.588 ± 0.0018	0.494 ± 0.0017	0.775 ± 0.0012	0.142 ± 0.0013
AsaD055	no. samp.	44	36	113	63	45	25	24
	no. geno.	34	26	09	48	34	19	20
	H_O	0.841	0.917	0.894	0.905	0.867	0.960	0.833
	H_E	0.910	0.916	0.916	0.924	0.916	0.912	0.883
	p_{prob}	0.386 ± 0.0036	0.106 ± 0.0019	0.029 ± 0.0012	0.633 ± 0.0037	0.0182 ± 0.0016	0.496 ± 0.0032	0.705 ± 0.0022
SarBH04	no. samp.	40	49	111	56	44	21	24
	no. geno.	17	20	28	23	15	13	7
	H_O	0.675	0.694	0.631	0.661	0.409	0.381	0.333
	H_E	0.720	0.759	0.739	0.791	0.450	0.816	0.307
	P_{prob}	0.492 ± 0.0048	0.368 ± 0.0042	0.382 ± 0.0050	0.0486 ± 0.0014	0.352 ± 0.0077	0.0000 ± 0.0000	1.00 ± 0.0000
	Pheterodef						0.0000 ± 0.0000	
	Pheteroexc						1.00 ± 0.0000	

Table 7. Modifed Cavalli-Sforza chord distances (D_A ; Nei *et al.* 1983) (above diagonal) and Nei's standard genetic distances (D_{ST} ; Nei 1972) (below diagonal) for Atlantic menhaden (*Brevoortia tyrannus*), gulf menhaden (*B. patronus*), finescale menhaden (*B. gunteri*), and yellowfin menhaden (*B. smithi*) based on seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04).

	New	mid-	Chesapeake	U.S. south	gulf	finescale	yellowfin
	England	Atlantic	Bay	Atlantic	menhaden	menhaden	menhaden
New England		0.227	0.184	0.178	0.363	0.626	0.684
mid-Atlantic	0.0263		0.181	0.169	0.378	0.618	0.670
Chesapeake Bay	0.0285	0.0136		0.152	0.352	0.600	0.661
U.S. south	-0.00656	0.0156	0.0123		0.344	0.615	0.666
Atlantic							
gulf menhaden	0.335	0.408	0.423	0.332		0.658	0.714
finescale	0.668	0.614	0.614	0.632	0.774		0.427
menhaden							
yellowfin	0.745	0.702	0.702	0.718	0.844	0.324	
menhaden							

nenhaden), and by putative species (At p -rmutations. Bolded p -values indicate	tlantic and gulf menhade e significance (<i>p</i> <0.05) at	n). The distance method fter Bonferroni correctio	l used was pairwise differen n (initial $\alpha = 0.05 / 2 = 0.02$	aces with 10,000 25).
	Variance	% total	D Statistics	d
Grouped by recruitment time				
between recruitment times	-0.0389	-0.621	$\Phi_{\rm ST}$ = -0.00621	0.692
within a recruitment time	6.31	100.621		
Grouped by age class (in successive	years)			
between years	-0.174	-2.95	$\Phi_{\rm ST} = -0.0295$	1.00
within year	6.06	102.95		
Grouped by age class (within 2006)				
between age classes	-0.0437	-0.773	$\Phi_{\rm ST} = -0.00773$	0.963
within an age class	5.70	100.773		
Grouped by age class (within 2007)				
between age classes	-0.0430	-0.659	$\Phi_{\rm ST}$ = -0.00659	0.969
within an age class	6.57	100.659		-
Grouped by region (Atlantic coast or	nly)			
Among regions	-0.0547	-0.87	$\Phi_{\rm ST}$ = -0.00873	1.00
within a region	6.32	100.87		
Grouped by region (Atlantic and Gul	lf combined)			
Among regions	0.360	6.01	$\boldsymbol{\varPhi}_{\mathrm{ST}}=0.0601$	0.00000

tyrannus) and gulf menhaden (B. patronus) based on cytochorme c oxidase subunit I (COI) sequence data grouped by recruitment time for Chesapeake Bay samples, by age class (following the 2006 year class) for Chesapeake Bay samples, by age class for Chesapeake Table 8. Hierarchical variance partitioning and analysis of molecular variance (AMOVA) among Atlantic menhaden (Brevoortia Atlantic), by region for large scale-scale samples (New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, and gulf Bay in 2006 and 2007, by region for all Atlantic coast samples (New England, mid-Atlantic, Chesapeake Bay, and U.S. south

93.99

5.63

within a region

Table 8 cont. Hierarchical variance partitioning and analysis of molecular variance (AMOVA) among Atlantic menhaden (<i>Brevoortia yrannus</i>) and gulf menhaden (<i>B. patronus</i>) based on cytochorme <i>c</i> oxidase subunit I (COI) sequence data grouped by recruitment time or Chesapeake Bay samples, by age class for Chesapeake Bay in 2006 and 2007, by region for all Atlantic coast samples (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic), by region for large scale-scale samples (New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, and gulf menhaden), and by putative species (Atlantic and gulf menhaden). The distance method used was pairwise differences with 10,000
bermutations. Bolded <i>p</i> -values indicate significance ($p < 0.05$) after Bonferroni correction (initial $\alpha = 0.05 / 2 = 0.025$).

	Variance	% total	D Statistics	р
Grouped by putative species (Atlanti	c and Gulf menhaden)			
between species	1.24	18.2	$\Phi_{ m ST}=0.175$	0.00000
among regions within a species	-0.0447	-0.655	$\Phi_{ m SC}$ = -0.00800	1.00
within a region	5.63	82.5		

method used was number of different alleles (F_{ST}) with 10,000 permutations. Bolded *p*-values indicate significance (p<0.05) after SarBH04) grouped by recruitment time for Chesapeake Bay samples, by age class (following the 2006 year class) for Chesapeake yrannus) and gulf menhaden (B. patronus) based on seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, Table 9. Hierarchical variance partitioning and analysis of molecular variance (AMOVA) among Atlantic menhaden (Brevoortia Atlantic, south = Chesapeake Bay and U.S. south Atlantic), by region for large scale-scale samples (New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, and gulf menhaden), and by putative species (Atlantic and gulf menhaden). The distance Bay samples, by age class for Chesapeake Bay in 2006 and 2007, by region for all Atlantic coast samples (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic), by latitude for the Atlantic coast samples (north = New England and mid-Bonferroni correction (initial $\alpha = 0.05 / 2 = 0.025$)

	Variance	% total	F Statistics	d
Grouped by recruitment time				
between recruitment times	-0.0109	-0.41	F_{ST} =-0.00413	0.743
within a recruitment time	2.65	100.41		
Grouped by age class (in successive)	years)			-
between years	0.0483	1.80	$F_{ST}{=}0.0180$	0.0176
within year	2.64	98.20		
Grouped by age class (within 2006)				
between age classes	0.0271	1.06	$F_{ST}{=}0.0106$	0.0929
within an age class	2.52	98.94		
Grouped by age class (within 2007)				
between age classes	0.0140	0.52	F_{ST} =0.00520	0.160
within an age class	2.67	99.48		
Grouped by region (Atlantic coast on	uly)			
among regions	0.0152	0.575	$F_{ST}{=0.00575}$	0.00000
within a region	2.62	99.42		
Grouped by latitude (north, south: A	tlantic coast only)			
between north and south	-0.00294	-0.112	$F_{ST} = 0.00535$	0.0008
within the latitudinal grouping	0.0171	0.646	$F_{SC} = 0.00646$	0.00000
within a region	2.62	99.47		

Table 9 cont. Hierarchical variance partitioning and analysis of molecular variance (AMOVA) among Atlantic menhaden
(Brevoortia tyrannus) and gult menhaden (B. patronus) based on seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020,
AsaD055, AsaC334, SarBH04) grouped by recruitment time for Chesapeake Bay samples, by age class (following the 2006 year
class) for Chesapeake Bay samples, by age class for Chesapeake Bay in 2006 and 2007, by region for all Atlantic coast samples
New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic), by latitude for the Atlantic coast samples (north = New
England and mid-Atlantic, south = Chesapeake Bay and U.S. south Atlantic), by region for large scale-scale samples (New
England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, and gulf menhaden), and by putative species (Atlantic and gulf
menhaden). The distance method used was number of different alleles (F _{ST}) with 10,000 permutations. Bolded p-values indicate
significance ($p < 0.05$) after Bonferroni correction (initial $\alpha = 0.05 / 2 = 0.025$).

	Variance	% total	F Statistics	2
	1 mi imilvo	10 10141	a budding	ľ
Grouped by region (large-scaled men	haden combined)			
among regions	0.128	4.68	$F_{ST} = 0.0468$	0.00000
within a region	2.61	95.32		
Grouped by putative species (Atlanti	c and Gulf menhaden)			
between species	0.344	11.50	$F_{ST} = 0.120$	0.00000
among regions within a species	0.0153	0.517	F_{SC} = -0.00584	0.00000
within a region	2.61	88.0		

Table 10. Hierarchical variance partitioning and analysis of molecular variance (AMOVA) among Atlantic menhaden (Brevoortia SarBH04) grouped by recruitment time for Chesapeake Bay samples, by age class (following the 2006 year class) for Chesapeake method used was number of different alleles (R_{ST}) with 10,000 permutations. Bolded *p*-values indicate significance (p<0.05) after tyrannus) and gulf menhaden (B. patronus) based on seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, Chesapeake Bay, U.S. south Atlantic, and gulf menhaden), and by putative species (Atlantic and gulf menhaden). The distance Bay samples, by age class for Chesapeake Bay in 2006 and 2007, by region for all Atlantic coast samples (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic), by region for large scale-scale samples (New England, mid-Atlantic, Bonferroni correction (initial $\alpha = 0.05 / 2 = 0.025$).

	Variance	% total	F Statistics	d
Grouped by recruitment time				
between recruitment times	6.98	1.27	$F_{ST} = 0.0127$	0.246
Within a recruitment time	541.3	98.73		
Grouped by age class (in successiv	/e years)			
between years	-5.31	-0.828	F_{ST} =-0.00828	0.730
Within year	647.3	100.83		
Grouped by age class (within 2006				
between age classes	-5.17	-0.923	F_{ST} =-0.00923	0.678
Within an age class	565.3	100.923		
Grouped by age class (within 2007	(/			
between age classes	-2.25	-0.389	F_{ST} = -0.00389	0.580
Within an age class	581.9	100.389		
Grouped by region (Atlantic coast	only)			
among regions	-0.382	-0.0665	F_{ST} = -0.00066	0.634
within a region	574.1	100.0665		
Grouped by region (large-scaled m	nenhaden combined)			
among regions	13.29	16.89	F_{ST} = 0.169	0.00000
within a region	65.37	83.11		

The distance method used was number of different alleles (R_{ST}) with 10,000 permutations. Bolded *p*-values indicate significance AsaD055, AsaC334, SarBH04) grouped by recruitment time for Chesapeake Bay samples, by age class (following the 2006 year class) for Chesapeake Bay samples, by age class for Chesapeake Bay in 2006 and 2007, by region for all Atlantic coast samples (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic), by region for large scale-scale samples (New England, mid-Atlantic, Chesapeake Bay, U.S. south Atlantic, and gulf menhaden), and by putative species (Atlantic and gulf menhaden). Table 10 cont. Hierarchical variance partitioning and analysis of molecular variance (AMOVA) among Atlantic menhaden Brevoortia tyrannus) and gulf menhaden (B. patronus) based on seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, (p<0.05) after Bonferroni correction (initial $\alpha = 0.05/2 = 0.025$).

	Variance	% total	F Statistics	р
Grouped by putative species (Atla	ntic and gulf menha	(den)		
between species	41.28	38.75	F_{ST} = 0.386	0.00000
among regions within a species	-0.120	-0.113	F_{SC} = -0.00185	0.727
within a region	65.37	61.36		

Table 11. Estimates of pairwise F_{ST} (below diagonal) and respective p-values (above diagonal) between regions of Atlantic menhaden (*Brevoortia tyrannus*), gulf menhaden (*B. patronus*), finescale menhaden (*B. gunteri*), and yellowfin menhaden (*B. smithi*) based on seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) after 10,000 permutations. Bolded *p*-values indicate significance (p<0.05) after sequential Bonferroni correction (initial $\alpha = 0.05 / 2 = 0.025$).

New	mid-	Chesapeake	U.S. south	all	gulf	finescale	yellowfin
England	Atlantic	Bay	Atlantic	Atlantic	menhaden	menhaden	menhaden
	0.252	0.180	0.973		0.00000	0.000000	0.000000
0.00293		0.748	0.0811		0.00000	0.00000	0.00000
0.00233	-0.00211		0.0270		0.00000	0.000000	0.000000
-0.00631	0.00679	0.00505			0.00000	0.000000	0.000000
					0.00000	0.000000	0.00000
0.0786	0.117	0.122	0.0818	0.104		0.00000	0.000000
0.371	0.327	0.320	0.333	0.309	0.436		0.00000
0.447	0.410	0.374	0.402	0.360	0.512	0.584	

Table 12. Estimates of pairwise R_{ST} (below diagonal) and respective *p*-values (above diagonal) between regions of Atlantic menhaden (*Brevoortia tyrannus*), gulf menhaden (*B. patronus*), finescale menhaden (*B. gunteri*), and yellowfin menhaden (*B. smithi*) based on seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) after 10,000 permutations. Bolded *p*-values indicate significance (p<0.05) after sequential Bonferroni correction (initial $\alpha = 0.05 / 2 = 0.025$).

Table 13. Estimates of pairwise Φ_{ST} (below diagonal) and respective *p*-values (above diagonal) between regions of Atlantic menhaden (*Brevoortia tyrannus*), gulf menhaden (*B. patronus*), finescale menhaden (*B. gunteri*), and yellowfin menhaden (*B. smithi*) based on cytochorme *c* oxidase subunit I (COI) sequence data after 10,000 permutations. Bolded *p*-values indicate significance (p < 0.05) after sequential Bonferroni correction (initial $\alpha = 0.05 / 2 = 0.025$).

-	New	mid-	Chesapeake	U.S. south	all	gulf	finescale	yellowfin
	England	Atlantic	Bay	Atlantic	Atlantic	menhaden	menhaden	menhaden
ew England		0.854	0.787	0.705		0.00000	0.00000	0.00000
uid-Atlantic	-0.0142		0.962	0.722		0.0000	0.00000	0.00000
Chesapeake Rav	-0.0100	-0.0112		0.440		0.0000	0.00000	0.0000
U.S. south Atlantic	-0.0108	-0.00991	-0.00299			0.0000	0.0000	0.0000
all Atlantic						0.0000	0.00000	0.00000
gulf menhaden	0.244	0.213	0.192	0.236	0.178		0.0000	0.0000
finescale menhaden	0.595	0.563	0.580	0.545	0.564	0.804		0.298
yellowfin menhaden	0.482	0.450	0.485	0.438	0.478	0.705	0.00347	

Species	# loci	Y	H_E	Reference
allis shad (<i>Alosa alosa</i>)	8	3-9	0.241-0.805	Faria <i>et al.</i> 2004
American shad (A. sapidissima)	9	7-29	0.73-0.92	Brown et al. 2000
Atlantic herring (Clupea harengus)	6	15.2-17.7	0.818-0.843	Mariani et al. 2005
	6	2-21	0.269-0.932	Jørgensen et al. 2005
	12	12-56	0.66-0.98	McPherson et al. 2001
	12	9-56	0.73-0.95	Miller et al. 2001
	4	13-41	0.8895	Shaw <i>et al</i> . 1999
Atlantic menhaden (B. tyrannus)	4	3-20	0.67	Anderson 2007
finescale menhaden (B. gunteri)	4	1-11	0.41	Anderson 2007
	5	3-13	0.066-0.823	Anderson and McDonald 2007
gulf menhaden (B. patronus)	4	4-19	0.67	Anderson 2007
	5	8-21	0.126-0.923	Anderson and McDonald 2007
Pacific herring (C. pallasi)	5	8-44	0.815-0.945	Sugaya et al. 2008
	14	5-49	0.20-0.96	Olsen <i>et al.</i> 2002
	5	12-26	0.737-0.942	O'Connell et al. 1998
twaite shad (A. fallax)	6	4-12	0.151-0.811	Volk et al. 2007
	8	3-7	0.234-0.692	Faria et al. 2004
yellowfin menhaden (B. smithi)	4	2-8	0.37	Anderson 2007

Table 14. Literature values of within-sample microsatellite variation: number of loci (# loci), allelic diversity (A; alleles per locus) and expected heterozygosity (H_E) .

Species	# Loci	F _{ST}	Reference
Arctic charr (Salvelinus alpines)	5	0.031 - 0.055, p < 0.05	Westgaard et al. 2004
Atlantic herring (Clupea harengus)	4	0.008 - 0.043, p < 0.001	Shaw et al. 1999
coastal cutthroat trout (Oncorhynchus clarki clarki)	9	0.064-0.226, p < 0.05	Wenburg et al. 1998
cod (Gadus morhua)	9	0.001- 0.109 , $p < 0.05$	O'Leary et al. 2007
common carp (Cyprinus carpio)	4	0.05, p < 0.001	Lehoczky et al. 2005
Japanese flounder (Paralichthys olivaceus)	11	0.012 - 0.077, p < 0.005	Sekino and Hara 2001
Pacific herring (C. pallasii)	5	0.046-0.173, p < 0.05	Sugaya et al. 2008
Patagonian toothfish (Dissostichus eleginoides)	8	0.017- 0.059 , $p < 0.05$	Smith and McVeagh 2000
redfin culter (Culter erythropterus)	5	0.062, p < 0.001	Wang <i>et al</i> . 2006

Table 15. Statistically significant literature values of F_{ST} between genetically distinct stocks (after sequential Bonferroni correction).

FIGURES

Figure 1. A) Map of ranges of the North American menhaden species: Atlantic menhaden (*Brevoortia tyrannus*), gulf menhaden (*B. patronus*), yellowfin menhaden (*B. smithi*), and finescale menhaden (*B. gunteri*). B) Map of sampling locations in the Atlantic Ocean and the Gulf of Mexico.

Figure 2. Unweighted pair group method with arithmetic mean (UPGMA) trees of a preliminary survey of Atlantic menhaden (*Brevoortia tyrannus*, n=25) and gulf menhaden (*B. patronus*, n=3) **A**) mitochondrial control region sequences and **B**) cytochrome *c* oxidase subunit I sequences. The samples are coded by region (M, P, Y=Chesapeake Bay, G=Gulf of Mexico), age (J=yearling, Y=YOY) and year collected (6=2006, 7=2007). Divergence of clades is given as an absolute number of base pair differences.

A)

B)

C)

Figure 3. Nucleotide substitution patterns observed in pairwise comparisons of an initial survey of *Brevoortia* mitochondrial A) control region sequences overall, B) cytochrome c oxidase subunit I (COI) sequences overall, and C) COI third codon positions. The x-axis is the Kimura (1980) distances between sequences; the y-axis represents transitions (blue Xs) and transversions (green triangles).

Figure 4. Median-joining network of 109 Atlantic menhaden (*Brevoortia tyrannus*, n=289) cytochrome *c* oxidase subunit I (COI) haplotypes. The observed haplotypes are sized according to frequency by regional proportions: New England (n=50; green), mid-Atlantic (n=53; aqua), Chesapeake Bay (n=117; red), U.S. south Atlantic, (n=69; yellow). The hypothesized intermediate haplotypes are displayed in gray.

Figure 5. Median-joining network of 124 Atlantic menhaden (*Brevoortia tyrannus*, n=289), gulf menhaden (*B. patronus*, n=50) cytochrome c oxidase subunit I (COI) haplotypes. The observed haplotypes are sized according to frequency by species proportion: Atlantic menhaden (navy), gulf menhaden (orange). The hypothesized intermediate haplotypes are displayed in gray.

Figure 6. Median-joining network of 145 Atlantic menhaden (*Brevoortia tyrannus*, n=289), gulf menhaden (*B. patronus*, n=50), yellowfin menhaden (*B. smithi*, n=25), and finescale menhaden (*B. gunteri*, n=25) cytochrome *c* oxidase subunit I (COI) haplotypes. The observed haplotypes are sized according to frequency by species proportion: *Brevoortia tyrannus* (navy); *B. patronus* (orange); *B. gunteri* (purple); *B. smithi* (yellow). The hypothesized intermediate haplotypes are displayed in gray.

Figure 7. Median-joining network of 214 Atlantic menhaden (*Brevoortia tyrannus*, n=76), gulf menhaden (*B. patronus*, n=73), yellowfin menhaden (*B. smithi*, n=57), and finescale menhaden (*B. gunteri*, n=15) control region haplotypes from Anderson (2007) and three anomalous samples from this study (outlined in red). The observed haplotypes are sized according to frequency by species proportion: *Brevoortia tyrannus* (navy); *B. patronus* (orange); *B. gunteri* (purple); *B. smithi* (yellow).

Figure 8. Unrooted maximum likelihood tree of 145 Atlantic menhaden (*Brevoortia tyrannus*, n=289), gulf menhaden (*B. patronus*, n=50), yellowfin menhaden (*B. smithi*, n=25), and finescale menhaden (*B. gunteri*, n=25) cytochrome *c* oxidase subunit I (COI) haplotypes using maximum likelihood distances calculated by the HKY + I + Γ model (Hasegawa *et al.* 1985). For haplotype codes by region and sample, see Appendix 3. Nodal support was assessed with bootstrapping (10 pseudoreplicates, 10 random addition) and the numbers below each data bipartion indicate bootstrap support (if >50%).

Figure 9. Unrooted Bayesian tree of 145 Atlantic menhaden (*Brevoortia tyrannus*, n=289), gulf menhaden (*B. patronus*, n=50), yellowfin menhaden (*B. smithi*, n=25), and finescale menhaden (*B. gunteri*, n=25) cytochrome c oxidase subunit I (COI) haplotypes using maximum likelihood distances calculated by the HKY + I + Γ model (Hasegawa et al. 1985). For haplotype codes by region and sample, see Appendix 3. The analysis used Markov Chain Monte Carlo simulations with 4,000,000 generations sampled every 1,000 generations.

Figure 10. Unrooted maximum parsimony tree of 145 Atlantic menhaden (*Brevoortia tyrannus*, n=289), gulf menhaden (*B. patronus*, n=50), yellowfin menhaden (*B. smithi*, n=25), and finescale menhaden (*B. gunteri*, n=25) cytochrome *c* oxidase subunit I (COI) haplotypes. For haplotype codes by region and sample, see Appendix 3. Nodal support was assessed with bootstrapping (100 pseudoreplicates, 10 random addition) and the numbers below each data bipartion indicate bootstrap support (if >50%).

1		Gedus morhua
		smithiA
Systematic		A607YD
		E625YE
		P613YE
		A608YD
		A608YE
		A608YB
		A608YA
		¥634JE
		G622YB
	······································	6622YA
		P613YD
		A607YC
		A607YB
		AS603JD
1		¥634JC
		AS603JA
		A\$603.JB
		A5603.JE
		D614YC
		P613VA
		0614YD
		D6147F
		DELAYR
		D61478
		A607VF
		#0071L
l		
		163450
		DETUTE E43EVC
		10257L
		E62018
		682370
		1023TA
		061010
	86	662210
		662216
		66221E
		A5001L
		P6131L
		PEISTD
		10201A
		DETUTA
		V67418
		163450
		800718 5436VC
		682016 663690
		E62010
		COZOTE emithiP
		3611 (111) 9674 16

		Smithit
		amithiD
		antitatu Antitatu
	L	ganter i B
		genterit
	L	gunteriD
	L_	gunter i A
		guateriC

Method: UPGMA; Bootstrap (1000 reps); tie breaking = Systemati Distance: Absolute (# differences) Gaps distributed proportionally

Figure 11. Unweighted pair group method with arithmetic mean (UPGMA) tree of an initial survey of Atlantic menhaden (*Brevoortia tyrannus*, n=9), gulf menhaden (*B. patronus*, n=1), yellowfin menhaden (*B. smithi*, n=1), and finescale menhaden (*B. gunteri*, n=1) internal transcribed spacer 1 sequences. The samples are coded by location (New England = A, mid Atlantic = D, Chesapeake Bay = M, P, Y, U.S. south Atlantic = AS, gulf menhaden = G, yellowfin menhaden = smithi, finescale menhaden = gunteri), age (J = yearling, Y = YOY), year collected (6=2006, 7=2007), and clone number (the final digit). Divergence of clades is given as absolute number of base pair differences. Nodal support was assessed with bootstrapping (1,000 pseudoreplicates, systematic tie breaking) and the numbers of below each data bipartion indicate bootstrap support (if >50%).

Figure 12. Allele ranges by region for the 8 microsatellite loci: **A)** Aa16, **B)** Asa2, **C)** Asa4, **D)** Asa16, **E)** AsaB020, **F)** AsaD055, **G)** AsaC334, **H)** SarBH04. Samples are coded by region in descending order: full allele range (white); *Brevoortia tyrannus*, New England (green), mid-Atlantic (aqua), Chesapeake Bay (red), U.S. south Atlantic (yellow); *B. patronus* (purple); *B. gunteri* (orange); *B. smithi* (navy).

Figure 13. Unrooted neighbor-joining trees of Atlantic menhaden (*Brevoortia tyrannus*) sampling regions: New England (NE), mid-Atlantic (NJ), Chesapeake Bay (CB), and U.S. south Atlantic (SC); gulf menhaden (*B. patronus*); finescale menhaden (*B. gunteri*); and yellowfin menhaden (*B. smithi*) with 7 microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) using **A**) modified Cavalli-Sforza chord distance (D_A ; Nei *et al.* 1983) and **B**) Nei's standard genetic distance (D_{ST} ; Nei 1972).

Figure 14. Unrooted neighbor-joining trees of Atlantic menhaden (*Brevoortia tyrannus*) sampling regions (New England, mid-Atlantic, Chesapeake Bay, and U.S. south Atlantic) and gulf menhaden (*B. patronus*) as an outgroup with 7 microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) using **A**) modified Cavalli-Sforza chord distance (D_A ; Nei et al. 1983) and **B**) Nei's standard genetic distance (D_{ST} ; Nei 1972).

Figure 15. Spatial representation of genetic relationships based on 7 microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) between **A**) Atlantic menhanden, *Brevoortia tyrannus*: New England (yellow), mid-Atlantic (blue), Chesapeake Bay (white), U.S. south Atlantic (gray), **B**) large-scale menhaden, *B. tyrannus*: New England (yellow), mid-Atlantic (blue), Chesapeake Bay (white), U.S. south Atlantic (gray); *B. patronus* (magenta), **C**) North American *Brevoortia*, *B. tyrannus*: New England (yellow), mid-Atlantic (blue), Chesapeake Bay (white), U.S. south Atlantic (gray); *B. patronus* (magenta), **C**) North American *Brevoortia*, *B. tyrannus*: New England (yellow), mid-Atlantic (blue), Chesapeake Bay (white), U.S. south Atlantic (gray); *B. patronus* (magenta); *B. gunteri* (aqua); *B. smithi* (navy).

LITERATURE CITED

- Ahrenholz D. W. 1991. Population biology and life history of the North American menhadens, *Brevoortia* spp. Marine Fisheries Review; Marine Fisheries Review 53:2-19.
- Anderson J. D. 2007. Systematics of the North American menhadens: molecular evolutionary reconstructions in the genus *Brevoortia* (Clupeiformes: Clupeidae). Fishery Bulletin **205**:368-378.
- Anderson J. D., W. J. Karel. 2007. Genetic evidence for asymmetric hybridization between menhadens (*Brevoortia* spp.) from peninsular Florida. Journal of Fish Biology 71:235-249.
- Anderson J. D., D. L. McDonald. 2007. Morphological and genetic investigations of two western Gulf of Mexico menhadens (*Brevoortia* spp.). Journal of Fish Biology 70:139-147.
- ASMFC. 2005. Addendum II to Amendment 1 to the Interstate Fishery Management Plan for Atlantic Menhaden. **2**:1-29.
- ASMFC. 2006 Stock assessment report for Atlantic menhaden. Washington, D.C.: ASMFC; September 6, 2006.
- ASMFC. 2007 Review of the Fishery Management Plan and State Compliance for the 2006 Atlantic menhaden (*Brevoortia tryrannus*) fishery. Washington, D.C.: ASMFC; 2007 May 2007.
- Atarhouch T., L. Ruber, E. G. Gonzalez, E. M. Albert, M. Rami, A. Dakkak, and R. Zardoya. 2006. Signature of an early genetic bottleneck in a population of Moroccan sardines (*Sardina pilchardus*). Molecular Phylogenetics and Evolution **39**:373-383.
- Avise J. C. 1992. Molecular population structure and biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos **63**:62-76.
- Avise J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb, and N. C. Saunders. 1987. Intraspecific phylogeny: the mitochondrial DNA bridge between population genetics and systematics. Annual Reviews of Ecology and Systematics 18:489-522.
- Avise J. C., B. W. Bowen, and T. Lamb. 1989. DNA fingerprints from hypervariable mitochondrial genotypes. Molecular Biology and Evolution 6:258-269.
- Bandelt H., P. Forster, and A. Röhl. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution **16**:37-48.
- Belkir K., P. Borsa, L. Chickhi, N. Raufaste, and F. Bonhomme. 2000. Genetix (version 4.04) logiciel sous WindowsTM, pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000: Université de Montpellier II-Montpellier, France.
- Bigelow H. B., M. G. Bradbury, J. R. Dymond, J. R. Greeley, S. F. Hildebrand, G. W. Mead, R. R. Miller, L. R. Rivas, W. C. Schroeder, R. D. Suttkus, and V. D. Vladykov. 1963. Genus *Brevoortia* Gill 1861: Menhaden. Pages 342-380 *In* H. B. Bigelow, editor. Fishes of the Western North Atlantic, Sears Foundation for Marine Research, Yale University, New Haven, Connecticut.
- Bowen B. W., J. C. Avise. 1990. Genetic structure of Atlantic and Gulf of Mexico populations of sea bass, menhaden, and sturgeon: influence of zoogeographic factors and life-history patterns. Marine Biology **107**:371-381.
- Brendtro K. S., J. R. McDowell, and J. E. Graves. 2008. Population genetic structure of escolar (*Lepidocybium flavobrunneum*). Marine Biology **304**:10 June 2008.
- Brown B. L., T. P. Gunter, J. M. Waters, and J. M. Epifanio. 2000. Evaluating genetic diversity associated with propagation-assisted restoration of American shad. Conservation Biology 14:294-303.
- Bryant D., V. Moulton. 2002. NeighborNet: An agglomerative method for the construction of planar phylogenetic networks. Molecular Biology and Evolution 21:255-265.
- Burnes E. L., M. D. B. Eldridge, and B. Houlden. 2006. Microsatellite variation and population structure in a declining Australian Hylid *Litoria aurea*. Molecular Ecology Notes 7:519-921.
- Campana S. E., G. A. Chourinard, J. M. Hanson, and A. Frechet. 1999. Mixing and migration of overwintering Atlantic cod (*Gadus morhua*) stocks near the mouth of the Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 56:1873-1881.

- Cann R. L., W. M. Brown, and A. C. Wilson. 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics **106**:479-499.
- Carvalho G. R., L. Hauser. 1994. Molecular genetics and the stock concept in fisheries. Reviews in Fisheries and Fish Biology **4**:326-350.
- Checkley D. M., S. Raman, G. L. Mailet, and K. M. Mason. 1988. Winter storm effects on the spawning and larval drift of a pelagic fish. Nature **335**:346-348.
- Dahlberg M. D. 1970. Atlantic and Gulf of Mexico menhadens, Genus *Brevoortia* (Pisces: Clupeidae). Bulletin of the Florida State Museum **15**:91-162.
- Dieringer D., C. Schlötterer. 2003. Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes **3**:167-169.
- Dimmick W. W., D. R. Edds. 2002. Evolutionary genetics of the endemic schizorathicine (Cypriniformes: Cyprinidae) fishes of Lake Rara, Nepal. Biochemical Systematics and Ecology **30**:919-929.
- Dryfoos R. L., R. P. Cheek, and R. L. Kroger. 1973. Preliminary analyses of Atlantic menhaden, *Brevoortia tyrannus*, migrations, population structure, survival and exploitation rates, and availability as indicated from tag returns. Fishery Bulletin **71**:719-734.
- Durbin A. G., E. G. Durbin. 1975. Grazing rates of the Atlantic menhaden *Brevoortia tyrannus* as a function of particle size and concentration. Marine Biology **33**:265-277.
- Echelle A. F., A. A. Echelle, L. R. Williams, C. S. Toepfer, and W. L. Fischer. 1999.
 Allozyme perspective on genetic variation in a threatened percid fish, the leopard darter (*Percina pantherina*). American Midland Naturalist 142:393-400.
- Epperly S. P. 1989. A meristic, morphometric and biochemical investigation of Atlantic menhaden, *Brevoortia tryannus* (Latrobe). Journal of Fish Biology **35**:139-152.
- Excoffier L., G. Laval, and S. Schneider. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47-50.

- Excoffier L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479-491.
- Faria R., S. Wallner, S. Weiss, and P. Alexandrino. 2004. Isolation and characterization of eight dinucleotide microsatellite loci from two closely related clupeid species (*Alosa alosa* and *A. fallax*). Molecular Ecology Notes 4:586-588.
- Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution **39**:783-791.
- Franklin H. B. 2007. The most important fish in the sea: menhaden and America. Island Press, St. Louis, MO.
- Friedland K. D., L. W. Hass. 1988. Emigration of juvenile Atlantic menhaden, *Brevoortia tyrannus* (Pisces: Clupeidae), from the York River estuary. Estuaries **11**:45-50.
- García D. M., M. Marmontel, F. W. Rosas, and F. R. Santos. 2007. Conservation genetics of the giant otter (*Pteronura brasiliensis*) (Zimmerman, 1780) (Carnivora, Mustelidae). Brazilian Journal of Biology 67:819-827.
- Goldsborough B. 2006. "A Huge Step Forward" How the menhaden catch was capped. SavetheBay **32**:4-5.
- Gonzalez E. G., R. Zardoya. 2007. Isolation and characterization of polymorphic microsatellites for the sardine *Sardina pilchardus* (Clupeiformes: Clupeidae). Molecular Ecology Notes 7:519-921.
- Goudet J. 1995. FSTAT (version 1.2): A computer program to calculate F- statistics. Journal of Heredity **86**:485-486.
- Grant W. S. 1984. Biochemical population genetics of Atlantic herring, *Clupea harengus*. Copeia **1984**:357-364.
- Grant W. S. 1985. Biochemical genetic stock structure of the southern African anchovy, *Engraulis capensis* Gilchrist. Journal of Fish Biology **27**:23-29.
- Grant W. S., B. W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. The American Genetic Association 89:415-426.

- Grant W. S., G. Stahl. 1988. Description of electrophoretic loci in Atlantic cod, Gadus morhua, and comparison with Pacific cod, Gadus macrocephalus. Hereditas 108:27-36.
- Grant W. S., F. M. Utter. 1984. Biochemical population genetics of Pacific herring (*Clupea pallasi*). Canadian Journal of Fisheries and Aquatic Sciences **41**:864.
- Gray, K., unpublished. Control Region primer sequence. Virginia Institute of Marine Science: Forward.
- Guo S. W., E. A. Thompson. 1992. Performing the exact test for Hardy-Weinberg proportion for multiple alleles. Biometrics **48**:361-372.
- Harris, D. J. and Crandall, K. A. 2000. Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Molecular Biology and Evolution 17: 284–291.
- Hartl D. L., A. G. Clark. 2007. Principles of population genetics. Sinauer, Sunderland, Massachusetts.
- Hartman K. J., S. B. Brandt. 1995. Trophic resource partitioning, diets, and growth of sympatric estuarine predators. Transactions of the American Fisheries Society 124:520-537.
- Hasegawa M., H. Kishino, and T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160-174.
- Hauser L., C. Turan, and G. R. Carvalho. 2001. Haplotype frequency distribution and discriminatory power of two mtDNA fragments in a marine pelagic teleost (Atlantic herring, *Clupea harengus*). Heredity **87**:621-630.
- Hellberg M. E., R. S. Burton, J. E. Neigel, and S. R. Palumbi. 2002. Genetic assessment of connectivity among marine populations. Bulletin of Marine Science 70:273-290.
- Higgins K., M. Lynch. 2001. Metapopulation extinction caused by mutation accumulation. Proceedings of the National Academy of Sciences 98:2928-2933.

- Higham J. R., W. R. Nicholson. 1964. Sexual maturation and spawning of Atlantic menhaden. Fishery Bulletin **63**:255-271.
- Hubert N., R. Hanner, E. Holm, N. E. Mandrak, E. Taylor, M. Burridge, D. Watkinson,
 P. Dumont, A. Curry, P. Bentzen, J. Zhang, J. April, and L. Bernatchez. 2008.
 Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3:1-45.
- Huelsenbeck J. P., B. Rannala. 2004. Frequentist properties of Bayesian posterior probabilities of phylogenic trees under simple and complex substitution models. Systematic Biology 53:904-913.
- Huelsenbeck J. P., F. Ronquist. 2001. MR.BAYES: Bayesian inference of phylogenetic trees. Bioinformatics **17**:754-755.
- Iles T. D., M. Sinclair. 1982. Atlantic herring: stock discreteness and abundance. Science **215**:627-633.
- Jansen G., S. Devaere, P. H. H. Weekers, and D. Adriaens. 2006. Phylogenetic relationships and divergence time estimate of African anguilliform catfish (Siluriformes: Clariidae) inferred from ribosomal gene and spacer sequences. Molecular Phylogenetics and Evolution 38:65-78.
- Johnson K., unpublished. ITS-1 primer sequences. Virginia Institute of Marine Science: Forward & Reverse.
- Jørgensen H. B. H., M. M. Hansen, D. Bekkevold, D. E. Ruzzante, and V. Loeschcke. 2005. Marine landscapes and population genetic structure of herring (*Clupea harengus* L.) in the Baltic Sea. Molecular Ecology 14:3219-3234.
- Jørstad K. E., Ø Skaala, and G. Dahle. 1991. The development of biochemical and visible genetic markers and their potential use in evaluating interaction between cultured and wild fish populations. ICES Marine Science Symposium **192**:200-205.
- Julian S. E., M. L. Bartron. 2007. Microsatellite DNA markers for American shad (Alosa sapidissima) and cross-species amplification within the family Clupeidae. Molecular Ecology Notes 1:1-3.

- June F. C. 1958. Variation in meristic characters of young Atlantic menhaden, *Brevoortia tyrannus*. Conseil Permanent International Pour L'Exploration de la mer 143:26-35.
- June F. C. 1965. Comparison of vertebral counts in Atlantic menhaden. U.S. Fisheries and Wildlife Serivce Special Scientific Report: Fisheries **513**:1-12.
- June F. C., W. R. Nicholson. 1964. Age and size composition of the menhaden catch along the Atlantic coast of the United States, 1958. U.S. Fisheries and Wildlife Service Special Scientific Report: Fisheries 446:1-25.
- Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith, E.M., and J. C. Stevenson, J.C. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1-29.
- Kendall, A. W., Jr., J. W. Reintjes. 1975. Geographic and hydrographic distribution of Atlantic menhaden eggs and larvae along the middle Atlantic coast from *RV* Dolphin Cruises, 1965-66. Fishery Bulletin **73**:317-330.
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
- Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences **78**:454-458.
- Kroger R. L., J. F. Guthrie. 1973. Migrations of tagged juvenile Atlantic menhaden. Transactions of the American Fisheries Society **102**:417-422.
- Lannan J. E., G. A. E. Gall, J. E. Thorpe, C. E. Nash, and B. E. Ballachey. 1989. Genetic resource management of fish. Genome **31**:798-804.
- Lehoczky I., Z. Jeney, I. Magyary, C. Hancz, and K. Kohlmann. 2005. Preliminary data on genetic variability and purity of common carp (*Cyprinus carpio* L.) strains kept at the live gene bank at Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) Szarvas, Hungary. Aquaculture **241**:45-49.

- Lewis R. M., P. H. Wilkens, and H. R. Gordy. 1972. A description of young Atlantic menhaden, *Brevoortia tyrannus*, in the White Oak River estuary, North Carolina. Fishery Bulletin **70**:115-117.
- Lynch P.D., M.J. Brush, E. D. Condon, and R. J. Latour. In review. Net removal of nitrogen through ingestion of phytoplankton by Atlantic menhaden (*Brevoortia tyrannus*) in Chesapeake Bay. Canadian Journal of Fisheries and Aquatic Sciences.
- Mariani S., W. F. Hutchinson, E. M. C. Hatfield, D. E. Ruzzante, J. E. Simmonds, T. G. Dahlgren, C. Andre, J. Brigham, E. Torestensen, and G. R. Carvalho. 2005.
 North Sea herring population structure as revealed by microsatellite analysis.
 Marine Ecology Progress Series 303:245-257.
- Massmann W. H., J. J. Norcross, and E. B. Joseph. 1961. Atlantic menhaden larvae in Virginia coastal waters. Chesapeake Science; Chesapeake Science **3**:42-45.
- McGuire J. A., C. W. Linkem, M. S. Koo, D. W. Hutchison, A. K. Lappin, Orange, D.I. Lemos-Espinal, J., B. R. Riddle, and J. R. Jaeger. 2007. Mitochondrial introgression and incomplete lineage sorting through space and time: phylogenetics of crotaphytid lizards. Evolution 61:2879-2897.
- McMillan W. O., S. R. Palumbi. 1997. Rapid rate of control-region evolution in Pacific butterflyfishes (Chaetodontidae). Journal of Molecular Evolution **45**:473-484.
- McPherson A. A., P. T. O'Reilly, T. L. McParland, M. W. Jones, and P. Bentzen. 2001. Isolation of nine novel tetranucleotide microsatellites in Atlantic herring (*Clupea harengus*). Molecular Ecology Notes 1:31-32.
- Meyer A. 1993. Evolution of mitochondrial DNA in fishes. Pages 1-38 *In* P. W.
 Hochachka and T. P. Mommsen, editors. Biochemistry and Molecular Biology of Fishes, Vol. 2, Elselvier Science Publishers, Amsterdam, Netherlands.
- Miller K. M., K. Laberee, A. D. Schulze, and K. H. Kaukinen. 2001. Development of microsatellite loci in Pacific herring (*Clupea pallasi*). Molecular Ecology Notes 1:131-132.
- Mills L. S., F. W. Allendorf. 1996. The one-migrant-per-generation rule in conservation and management. Conservation Biology **10**:1509-1518.

- Morgan R. P., B. M. Baker, and J. H. Howard. 1995. Genetic structure of bay anchovy (*Anchoa mitchilli*) populations in Chesapeake Bay. Estuaries **18**:482-493.
- Nei M. 1972. Genetic distance between populations. American Naturalist 106:283-292.
- Nei M., F. Tajima, and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data, II: gene frequency data. Journal of Molecular Evolution 19:153-170.
- Nicholson W. R. 1972. Population structure and movements of Atlantic menhaden, *Brevoortia tyrannus*, as inferred from back-calculated length frequencies. Chesapeake Science **13**:161-174.
- Nicholson W. R. 1978. Movements and population structure of Atlantic menhaden indicated by tag returns. Estuaries 1:141-150.
- NMFS. Commercial landings of fish and shellfish by U.S. fishing craft: 2004, 2005. Washington, D.C.: NMFS; January 2007.
- O'Connell M., M. C. Dillon, and J. M. Wright. 1998. Development of primers for polymorphic microsatellite loci in Pacific herring (*Clupea harengus pallasi*). Molecular Ecology **7**:357-363.
- O'Leary D. B., J. Coughlan, E. Dillane, T. V. McCarthy, and T. F. Cross. 2007. Microsatellite variation in cod *Gadus morhua* throughout its geographic range. Journal of Fish Biology **70**:310-335.
- Olsen J. B., C. J. Lewis, E. J. Kretschmer, S. L. Wilson, and J. E. Seeb. 2002. Characterization of 14 tetranucleotide microsatellite loci derived from Pacific herring. Molecular Ecology Notes 2:101-103.
- O'Ryan C., M. W. Bruford, M. Beaumont, R. K. Wayne, M. I. Cherry, and E. H. Harley. 1998. Genetics of fragmented populations of African buffalo (*Syncerus caffer*) in South Africa. Animal Conservation 1:85-94.
- Pereyra R. T., E. Saillant, C. L. Pruett, Rexroad III, C. E., and A. Rocha-Olivares. 2004. Characterization of polymorphic microsatellites in the Pacific sardine Sardinops sagax sagax (Clupeidae). Molecular Ecology Notes 4:739-741.
- Posada D., K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818.

- Quinlan J. A., B. O. Blanton, T. J. Miller, and F. E. Werner. 1999. From spawning grounds to the estuary: using linked individual-based and hydrodynamic models to interpret patterns and processes in the oceanic phase of Atlantic menhaden *Brevoortia tyrannus* life history. Fisheries Oceanography 8:224-246.
- Ratnasingham S., P. Herbert. 2007. The Barcode of Life Database. Molecular Ecology Notes 7:355-364.
- Raymond M., F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact test and ecumenicism. Journal of Heredity **86**:248-249.
- Reintjes J. W. 1969. A synopsis of biological data on the Atlantic menhaden, *Brevoortia tyrannus*. Fish & Wildlife Service Circulation. **320**:1-30.
- Rice J. A., J. A. Quinlan, S. W. Nixon, Hettler, W. F., Jr., S. M. Warlen, and P. M. Stegmann. 1999. Spawning and transport dynamics of Atlantic menhaden: inferences from characteristics of immigrating larvae and predictions of a hydrodynamic model. Fisheries Oceanography 8:93-110.
- Ruzzante, D. E. 1998. A comparison of several measures of genetic distance and population structure with microsatellite data: bias and sampling variance. Canadian Journal of Fisheries and Aquatic Sciences **55**: 1-14.
- Ryman N. 1981. Conservation of genetic resources: experience from the brown trout (Salmo trutta). Pages 61-74 In N. Ryman, editor. Fish gene pools preservation of genetic resources in relation to wild fish stock, Vol. 34, Ecological Bulletins, Stockholm, Sweden.
- Saccone C., C. De Giorgi, C. Gissi, and G. Pesole. 1999. Evolutionary genomics in metazoa: the mitochondrial DNA as a model system. Gene **238**:195-209.
- Sambrook J., D. W. Russell. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. USA.
- Sekino M., M. Hara. 2001. Application of microsatellite markers to population genetics studies of Japanese flounder *Paralichthys olivaceus*. Marine Biotechnology 3:572-589.

- Sekino M., K. Saitoh, T. Yamada, A. Kumagai, M. Hara, and Y. Yamashita. 2003. Microsatellite-based pedigree tracing in a Japanese flounder *Paralichthys olivaceus* hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture 221:255-263.
- Seutin G., B. N. White, and P. T. Boag. 1991. Preservation of avian blood and tissue samples for DNA analyses. Canadian Journal of Zoology **69**:82-90.
- Shaw P. W., C. Turan, J. M. Wright, M. O'Connell, and G. R. Carvalho. 1999. Microsatellite DNA analysis of population structure in Atlantic herring (*Clupea harengus*), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83:490-499.
- Slatkin M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics **139**:457-462.
- Smith P., M. McVeagh. 2000. Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean. Journal of Fish Biology **57**:72-83.
- Southwick Associates Inc., Loftus A. J. Menhaden Math: The economic impact of Atlantic menhaden on Virginia's recreational and commercial fisheries. Virginia: Southwick Associates Inc.; 2006.
- Sugaya T., M. Sato, E. Yokoyama, Y. Nemoto, T. Fujita, H. Okouchi, K. Hamasaki, and S. Kitada. 2008. Population genetic structure and variability of Pacific herring *Clupea pallasii* in the stocking area along the Pacific coast of northern Japan. Fisheries Science 74:579-588.
- Sullivan J., P. Joyce. 2005. Model selection in phylogenetics. Annual Review of Ecology, Evolution, and Systematics **36**:445-466.
- Sutherland D. F. 1963. Variation in vertebral numbers of juvenile Atlantic menhaden. U.S. Fisheries and Wildlife Serivce Special Scientific Report: Fisheries **435**:1-8.
- Swofford D. L. 2000. PAUP* (version 4): Phylogenetic Analysis Using Parsimony (*and Other Methods).
- Takezaki, N. and M. Nei. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite data. Genetics **144**: 389-399.

- Takahashi K., Y. Terai, M. Nishida, and N. Okada. 2001. Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of insertion of retroposons. Molecular Biology and Evolution 18:2057-2066.
- Tamura K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA (version 4.1): Molecular Evolutionary Genetics Analysis. Molecular Biology and Evolution:1596-1599.
- Tarbox B., unpublished. COI primer sequences. Southern Maine Community College: Forward & Reverse.
- Thompson J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673-4680.
- Tinti F., C. Di Nunno, I. Guarniero, M. Talenti, S. Tommasini, E. Fabbri, and C. Piccinetti. 2002. Mitochondrial DNA sequence variation suggests the lack of heterogeneity in the Adriatic and Ionian stocks of *Sardina pilchardus*. Marine Biotechnology 4:163-172.
- Turner W. R. 1969. Life history of menhadens in the eastern Gulf of Mexico. Transactions of the American Fisheries Society **98**:216-224.
- Van Oosterhout C., B. Hutchinson, D. Wills, and P. Shipley. 2004. Micro-Checker (version 2.23): Microsatellite Data Checking Software.
- Volk J., D. Bekkevold, and V. Loeschcke. 2007. Weak population differentiation in northern European populations of the endangered anadromous clupeid *Alosa fallax*. Journal of Fish Biology **71**:461-469.
- Vrooman A. M., P. A. Paloma, and J. R. Zweifel. 1981. Electrophoretic, morphometric, and meristic studies of subpopulations of Northern anchovy, *Engraulis mordax*. California Fish and Game 67:39-51.
- Wang C., X. Yu, and J. Tong. 2006. Microsatellite diversity and population genetic structure of redfin culter (*Culter erythropterus*) in fragmented lakes. Hydrobiologia 589:321-329.

- Waples R. S. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity **89**:438-450.
- Ward R. D., T. S. Zemlak, B. H. Innes, P. R. Last, and P. D. N. Herbert. 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360:1847-1857.
- Weir B. S., C. C. Cockerham. 1984. Estimating *F*-Statistics for the analysis of population structure. Evolution **38**:1358-1370.
- Wenburg J. K., P. Bentzen, and C. J. Foote. Microsatellite analysis of genetic population structure in an endangered salmonid: the coastal cutthroat trout (*Oncorhynchus clarki clarki*). Molecular Ecology **733**:749.
- Westgaard J. I., A. Klemetsen, and R. Knudsen. 2004. Genetic differences between two sympatric morphs of Arctic charr *Salvelinus alpinus* confirmed by microsatellite DNA. Journal of Fish Biology **65**:1185-1191.
- Whitehead, P. J. P. 1985. Clupeoid fishes of the world (Suborder Clupeoidei): an annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings: Part 1 - Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis 7:210-217.
- Xia X., Z. Xie. 2001. DAMBE: Data analysis in molecular biology and evolution. Journal of Heredity **92**:371-373.
- Yu Z., X. Kong, T. Guo, Y. Jiang, Z. Zhuang, and X. Jin. 2005. Mitochondrial DNA sequence variation of Japanese anchovy *Engraulis japonicus* from the Yellow Sea and East China Sea. Fisheries Science 71:299-307.
- Zhang J., C. Maitland, and R. Hanner. 2007. DNA barcoding of fishes in the South China Sea. Canadian Barcode of Life Network **BOLD**: June 2008-1.

APPENDICES

Appendix 1. Sample collection.

Please see attached electronic version.

Appendix 2. Primer sequences, reagents, and PCR parameter optimizations used in the present study for mitochondrial and nuclear amplification of *Brevoortia* specimens.

Control Region

Pro-F: 5' CTA CCY CYA ACT CCC AAA GC 3' (K. Gray, unpublished) Phe-R: 5' GTA AAG TCA CGA CCA AAC C 3' (Brendtro *et al.* 2008)

For each 10µL PCR reaction,

7.65μL sterile, filtered H₂O
1μL 10X PCR Buffer plus magnesium (Qiagen)
0.2μL 10mM dNTPs (Qiagen)
0.05μL of each 100 μM forward and reverse primer
0.05μL *Taq*, DNA polymerase (Qiagen)

1 cycle	94°C initial denaturation for 4 minutes
36 cycles	94°C denaturation for 1 minute
	54°C annealing for 1 minute
	72°C extension for 2 minutes
1 cycle	72°C extension for 5 minutes
Hold	4°C

<u>COI</u>

MenCOIF: 5' CTT TCG GCT ACA TGG GAA TG 3' (B. Tarbox, unpublished) MenCOIR: 5' AGC CCT AGG AAG TGT TGT GG 3' (B. Tarbox, unpublished)

For each 10µL PCR reaction,

7.25μL sterile, filtered H₂O
1μL 10X PCR Buffer plus magnesium (Qiagen)
0.2μL 10mM dNTPs (Qiagen)
0.4μL BSA (bovine serum albumin; 1mg/mL)
0.05μL of each 100 μM forward and reverse primer
0.05μL *Taq*, DNA polymerase (Qiagen)

1 cycle	94°C initial denaturation for 4 minutes
36 cycles	94°C denaturation for 1 minute
	49.1°C annealing for 1 minute
	72°C extension for 2 minutes
1 cycle	72°C extension for 5 minutes
Hold	4°C

<u>ITS-1</u>

ITS-1: 5' GAG GAA GTA AAA GTC GTA ACA AGG 3' (K. Johnson, unpublished) 5.8SR1: 5' ATT CAC ATT AGT TCT CGC AGC TA 3' (K. Johnson, unpublished)

For each 10µL PCR reaction,

7.25μL sterile, filtered H₂O
1μL 10X PCR Buffer plus magnesium (Qiagen)
0.2μL 10mM dNTPs (Qiagen)
0.4μL BSA (bovine serum albumin; 1mg/mL)
0.05μL of each 100 μM forward and reverse primer
0.05μL *Taq*, DNA polymerase (Qiagen)

1 cycle	94°C initial denaturation for 4 minutes
36 cycles	94°C denaturation for 1 minute
	64.5°C annealing for 1 minute
	72°C extension for 2 minutes
1 cycle	72°C extension for 5 minutes
Hold	4°C

<u>Microsatellites</u>

For each 5µL PCR reaction,

2.78μL sterile, filtered H₂O
1 μL BSA (bovine serum albumin; 1mg/mL)
0.5μL 10X PCR Buffer without MgCl₂ (Invitrogen)
0.15μL 1.5mM Mg+ (Invitrogen)
0.1μL 10mM dNTPs (Qiagen)
0.01875μL 10μM T3 tailed forward primer
0.075μL 10μM reverse primer
0.05μL 10μM fluorescent label
0.025μL *Platinum Taq*, DNA polymerase (Invitrogen)

1 cycle	94°C initial denaturation for 3 minutes
36 cycles	94°C denaturation for 45 seconds
	variable °C annealing for 45 seconds*
	72°C extension for 45 seconds
1 cycle	72°C extension for 7 minutes
Hold	4°C

* Primers and annealing temperatures specific to each locus are listed in Table 1.

Appendix 3. A) Aligned mitochondrial control region sequence data, B) aligned mitochondrial cytochrome *c* oxidase subunit I (COI) sequence data, C) COI haplotypes, D) COI amino acid sequence data, E) aligned nuclear internal transcribed spacer 1 (ITS-1) sequence data, and F) allele scores for seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) collected from *Brevoortia* specimens.

Appendix 3. A) Aligned mitochondrial control region sequence data collected from 28 *Brevoortia* specimens.

Please see attached electronic version.

Appendix 3. **B)** Aligned mitochondrial cytochrome *c* oxidase subunit I (COI) sequence data collected from 389 *Brevoortia* specimens.

Please see attached electronic version.

Appendix 3. C) Cytochrome *c* oxidase subunit I (COI) haplotypes from 389 *Brevoortia* specimens coded by region and sample.

Haplotype Code:	B. smithi	B. gunteri	B. patronus	B. tyrannus
and the second second	Х			
		X		
			X	
				X
and the part of the second			X	Х
	Х	Х		
	X			Х
		X		X
	Х	Х		X
	Х		X	X

haplotypes	haplotypes	haplotypes	haplotypes	haplotypes
1	30	59	88	117
2	31	60	89	118
3	32	61	90	119
4	33	62	91	120
5	34	63	92	121
6	35	64	93	122
7	36	65	94	123
8	37	66	95	124
9	38	67	96	125
10	39	68	97	126
11	40	69	98	127
12	41	70	99	128
13	42	71	100	129
14	43	72	101	130
15	44	73	102	131
16	45	74	103	132
17	46	75	104	133
18	47	76	105	134
19	48	77	106	135
20	49	78	107	136
21	50	79	108	137
22	51	80	109	138
23	52	81	110	139
24	53	82	111	140
25	54	83	112	141
26	55	84	113	142
27	56	85	114	143
28	57	86	115	144
29	58	87	116	145

haplotype	sample	haplotype	sample	haplotype	sample	haplotype	sample
1	SMI23	28	M764Y	46	A612Y	47	A624Y
2	GUN25	29	D725Y	46	A613Y	47	D709Y
3	GUN15	29	Y639J	46	A616Y	47	E706Y
3	GUN19	30	A621Y	46	AS602J	48	D610Y
3	GUN24	30	A622Y	46	AS607J	48	M760Y
3	Gun3	30	CH737J	46	CH726J	49	A617Y
3	Gun7	30	D603Y	46	CH727J	50	E720Y
4	GUN11	30	D702Y	46	CH728J	51	D706Y
5	Gun10	30	D703Y	46	CH734J	52	G720Y
5	SMI14	30	Gun6	46	CH735J	53	Y640J
6	GUN17	30	M605Y	46	CH736J	54	P625Y
7	GUN14	30	SH718Y	46	CH740J	55	G723Y
8	Gun8	30	Y707Y	46	D611Y	55	Y748J
8	Smi2	30	Y711Y	46	D614Y	56	D711Y
9	Gun9	30	Y719Y	46	D624Y	56	D718Y
10	Gun5	30	Y745J	46	D722Y	56	E711Y
11	GUN12	31	E721Y	46	D724Y	56	G713Y
11	GUN13	31	GH701Y	46	D726Y	56	M603Y
11	GUN16	31	M763Y	46	D727Y	56	Y734J
11	GUN21	32	D723Y	46	E703Y	57	Y636J
11	Smi1	33	P622Y	46	E704Y	58	P619Y
11	SMI15	34	Smi8	46	E708Y	58	Y629J
11	SMI16	35	D708Y	46	E712Y	58	Y635J
11	SMI18	35	D712Y	46	GH703Y	59	Y713Y
11	SMI19	35	E707Y	46	M601Y	60	P615Y
11	SMI24	35	P620Y	46	M751Y	60	P626Y
11	SMI25	35	Y720Y	46	M753Y	61	G614Y
12	SMI21	35	Y725Y	46	M754Y	62	D616Y
13	GUN18	36	Gun1	46	M756Y	63	D608Y
13	GUN23	36	Gun2	46	M759Y	64	E701Y
14	GUN20	36	P621Y	46	P609Y	65	E623Y
15	Smi10	36	SH723Y	46	P613Y	66	Y724Y
16	E717Y	36	SH729Y	46	P623Y	67	A620Y
16	SMI20	36	Smi5	46	SH706Y	68	D601Y
17	GUN22	36	Smi9	46	SH709Y	69	A609Y
17	smi11	36	Y747J	46	SH713Y	70	G604Y
17	SMI22	37	AS608J	46	SH719Y	71	G703Y
18	SMI13	38	CH731J	46	Y628J	71	M757Y
19	SMI12	39	Y721Y	46	Y642J	71	P616Y
20	D705Y	40	AS612J	46	Y703Y	71	Y627J
20	SMI17	40	D701Y	46	Y709Y	71	Y774Y
21	E715Y	40	Y716Y	46	Y710Y	72	Y632J
22	AS603J	40	Y738J	46	Y712Y	73	AS604J
23	E705Y	41	Y637J	46	Y714Y	74	D721Y
24	Gun4	42	Smi3	46	Y727J	75	D620Y
25	A615Y	43	E624Y	46	Y732J	76	AS611J
25	AS613J	44	E722Y	46	Y733J	77	D606Y
26	Y729J	45	D626Y	46	Y773Y	77	M604Y
27	SH708Y	46	A607Y	46	Y776Y	78	E716Y

haplotype	sample	haplotype	sample	haplotype	sample	haplotype	sample
78	SH722Y	106	A610Y	123	Y644J	142	G609Y
79	D612Y	106	Y634J	123	Y717Y	142	G612Y
80	E627J	107	SH707Y	123	Y775Y	142	G613Y
81	AS614J	108	D619Y	124	A619Y	142	G615Y
81	E628J	109	E713Y	124	AS606J	142	G616Y
81	E714Y	110	CH738J	124	P611Y	142	G623Y
81	G712Y	111	CR620J	125	G611Y	142	G625Y
81	SH705Y	112	D602Y	126	G617Y	142	G705Y
81	Smi4	112	D625Y	126	G619Y	142	G706Y
81	Y641J	112	Y735J	126	G621Y	142	G711Y
81	Y643J	112	Y743J	127	G603Y	142	G715Y
81	Y737J	113	E719Y	128	CH741J	142	G717Y
82	Y706Y	113	M606Y	129	SH711Y	142	G719Y
83	G718Y	114	Y704Y	130	C619J	142	G722Y
84	M767Y	115	E625J	131	C617J	142	G725Y
85	AS610J	115	SH721Y	131	M752Y	142	GH704Y
85	G602Y	116	G608Y	131	Y746J	142	M608J
85	G704Y	116	G622Y	132	D605Y	142	M755Y
85	G721Y	117	SH717Y	133	D613Y	142	M761Y
86	G710Y	118	E702Y	133	Y630J	142	P610Y
87	M766Y	119	E626J	134	Y715Y	142	P617Y
87	Y771Y	120	D627Y	135	Y631J	142	P618Y
88	A611Y	121	E710Y	136	G724Y	142	SH714Y
89	G624Y	121	G701Y	137	G610Y	142	SH716Y
90	A608Y	121	G716Y	138	D716Y	142	SH727Y
90	Smi6	121	M758Y	139	D607Y	142	Smi7
91	Y739J	121	Y768Y	140	AS615J	142	Y633J
92	D704Y	122	C618J	141	G707Y	142	Y701Y
93	G605Y	122	CH730J	141	SH728Y	142	Y705Y
94	E724Y	122	D717Y	142	A601Y	142	Y708Y
95	G601Y	122	E622Y	142	A605Y	142	Y718Y
96	Y728J	122	Y726J	142	A614Y	142	Y723Y
97	Y749J	123	A602Y	142	A625Y	142	Y730J
98	SH710Y	123	A618Y	142	AS601J	142	Y731J
99	A603Y	123	AS609J	142	AS605J	142	Y736J
99	D604Y	123	AS616J	142	CH729J	142	Y740J
100	Y722Y	123	CH739J	142	CH733J	142	Y741J
101	E709Y	123	D609Y	142	CR621J	142	Y744J
102	CH732J	123	D623Y	142	D615Y	142	Y769Y
102	G702Y	123	D719Y	142	D617Y	142	Y770Y
102	G709Y	123	E718Y	142	D621Y	142	Y772Y
102	SH724Y	123	E725Y	142	D622Y	143	A623Y
102	Y638J	123	G618Y	142	D707Y	143	M602Y
102	Y742J	123	G620Y	142	D710Y	144	A606Y
102	Y750J	123	G714Y	142	D714Y	145	D618Y
103	A604Y	123	GH702Y	142	D720Y	145	P612Y
104	P614Y	123	M607Y	142	E723Y		
104	P624Y	123	M765Y	142	G606Y		
105	G708Y	123	SH712Y	142	G607Y		

Appendix 3. **D)** Aligned mitochondrial cytochrome c oxidase subunit I (COI) amino acid sequence data collected from 389 *Brevoortia* specimens.

Please see attached electronic version.

Appendix 3. E) Aligned nuclear internal transcribed spacer 1 (ITS-1) sequence data collected from 12×5 clones of *Brevoortia* specimens with outgroup *Gadus morhua*.

Please see attached electronic version.

Appendix 3. F) Allele scores for seven microsatellite loci (Aa16, Asa2, Asa4, AsaB020, AsaD055, AsaC334, SarBH04) collected from 389 *Brevoortia* specimens.

Please see attached electronic version.

VITA

ABIGAIL J. LYNCH

Born in Fairfax, Virginia on 30 June 1983. Graduated valdictorian from J.E.B. Stuart High School in 2001. Earned B.A. in English and B.S. in biology from the University of Virginia in 2005. Entered the Master of Science program at the School of Marine Science, Virginia Institute of Marine Science, College of William & Mary in 2005. Received the John A. Knauss Marine Policy Fellowship for 2008.

