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ABSTRACT:

H ypoxia and anoxia have significant deleterious ecological effects on living 
resources th roughou t m any estuarine and m arine ecosystem s w orldw ide. 
Brief periods of low oxygen facilitate transfer of benthic p roduction  to h igher 
trophic levels as m any benthic infaunal species have shallow er sedim ent 
d ep th  d istributions during  hypoxic events. A baited  tim e-lapse cam era 
equ ipped  w ith  a w ater quality datalogger was used to docum ent in situ  
exploitation of oxygen-stressed benthic invertebrate prey organism s by m obile 
fish and crustacean predators during  alternating norm oxia-hypoxia cycles in 
the York River. Based on photographic and diver observations, this hypoxia- 
induced  benthic-pelagic transfer of production  is m ore likely to occur w hen  
environm ental dissolved oxygen concentrations rise above an apparen t 
thresho ld  betw een 1 and 2 m l/l . W hen oxygen concentrations decline below  
2 m l/l , the functional response of the predator to increased prey  availability is 
in terrup ted . There is no energy gain by the p redator until oxygen 
concentrations rise above this critical level w hen predato rs re tu rn  to affected 
areas and resum e feeding activity.
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INTRODUCTION

H ypoxia and anoxia (defined as environm ental dissolved oxygen 

concentrations less than  2 m l/I  and near 0 m l/l , respectively) (Tyson & 

Pearson 1991) have significant deleterious ecological effects on living 

resources in m any ecosystem s th roughou t the w orld  (Diaz & R osenberg 1995). 

O xygen deficiency in bottom  w aters is a com m on feature in fjords (Richards 

1965, Rosenberg 1980), lakes (Wetzel 1983), near-coastal areas (Stachowitsch 

1984, Sw anson & Parker 1988, W eigelt 1991, Rabalis et al. 1994), and  estuaries 

(Tenore 1972, M ay 1973, Rainer & F itzhardinge 1981, W elsh & Eller 1991), 

including  C hesapeake Bay (Officer et al. 1984, Seliger et al. 1985), w hich is the 

m ost stud ied  of these system s in term s of oxygen dynam ics (Diaz & Rosenberg 

1995).

There is increasing evidence supporting  the relationship betw een 

eu troph ica tion-induced  organic enrichm ent and  low dissolved oxygen 

developm ent in bottom  w aters (Stachowitsch 1984, Rosenberg & Loo 1988, 

Baden et al. 1990). H ow ever, hypoxia can be a na tu ra l phenom enon 

determ ined  prim arily  by physical factors, such as w ater m ass m ovem ents and 

tem pera tu re  and salinity stratification (Breitburg 1990, Tyson & Pearson 1991). 

In m any shallow  m arine system s, oxygen depletion occurs p rim arily  du ring  

the sum m er w hen  high  levels of p rim ary  p roduction  com bine w ith  density  

stratification of the w ater colum n w hich isolates bottom  w aters from  

reaeration  (Kuo & N eilson 1987, Rabalis et al. 1991). For exam ple, deep w ater 

in the m ainstem  of Chesapeake Bay m ay becom e hypoxic in the late spring  

and rem ain  hypox ic/anox ic  until au tum n  w inds initiate vertical m ixing and
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destratification of the w ater colum n (Taft et al. 1980, Officer et al. 1984, Seliger 

et al. 1985).

Taft et al. (1980) stated three processes w hich lead to low dissolved 

oxygen concentrations in the m ainstem  of Chesapeake Bay. First, the spring 

freshet from  snow  m elt and heavy spring rains establishes a vertical salinity 

stratification. Buoyant freshw ater flows over denser sea w ater and a 

pycnocline betw een the two layers is form ed. D epending on the degree of 

stratification, w hich is influenced by the intensity of the freshet, bottom  w ater 

rem ains isolated from  replenishm ent by atm ospheric oxygen (Kuo & N eilson 

1987). Second, oxygen deficiency occurs w hen the oxygen dem and for the 

m etabolism  of organic m aterial exceeds the rate of oxygen supply  (Jonas 1987, 

Tyson & Pearson 1991). Increased w ater tem perature in the spring leads to 

increased w ater colum n and benthic m etabolism  w hich results in an 

increased oxygen dem and (Graf et al. 1983, Graf 1987, Sm ith 1987, M alone 

1992). This increase in tem perature also decreases dissolved oxygen solubility 

(Colt 1984). Third, phy top lank ton  from  the spring bloom  and other organic 

m aterial settle to the bottom  increasing oxygen dem and. Aerobic 

decom position of this de tritus in the w ater colum n and on the bottom  

contributes to depletion of bottom  w ater dissolved oxygen concentrations.

The degradation  of excess prim ary  production  b rough t on by eutrophication  

also increases the dem and for oxygen and m akes these areas m ore prone to 

severe deoxygenation (Rosenberg & Loo 1988, Tyson & Pearson 1991).

In a stratified w ater colum n w here the bottom  region becom es 

increasingly oxygen-deficient, m obile fish and crustaceans are believed to 

avoid severely hypoxic areas by seasonal or daily m igrations into oxygenated 

regions (Suthers & Gee 1986, Pihl et al. 1991, Breitburg 1992). Breitburg (1992) 

describes such behavior in the naked goby (Gobiosoma bosc), a benthic fish,
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w hich survive intrusions of severely hypoxic w ater by tem porarily  m igrating 

inshore. The blue crab, Callinectes sapidus, responds to oxygen deficiency by 

m oving out of hypoxic deep areas to shallower, more norm oxic regions 

(Officer et al. 1984, Pihl et al. 1991). This m ay lead to crow ding along the shore 

and em ergence onto land (Loesch I960, May 1973). Increased fish m obility in 

the SE Kattegat on the w est coast of Sweden caused by avoidance of areas 

affected by hypoxia m ay have influenced reported increased catches of 

dem ersal fish species (Baden et al. 1990). In another survival strategy, m any 

fish species swim  to the surface and irrigate their gills w ith  m ore highly 

oxygenated w ater in the surface film (Holeton 1979, Kram er & McClure 1982, 

K ram er 1987). Karr and Freem ark (1985) suggest that evolutionary selection 

on m obile organism s leads to behaviors that enable these anim als to m ove 

w ith in  the environm ent in such a w ay as to reduce or avoid prem ature  

m ortality  from a w ide variety of disturbances, such as hypoxia.

The severity and consequences of hypoxic events on benthic system s 

varies w ith  the intensity, extent, and frequency of low dissolved oxygen 

events and the relative ability of various species and groups to w ithstand  

exposure to physiologically stressful or lethal dissolved oxygen concentrations 

(Pearson & Rosenberg 1992, Llanso 1992). M any m acrobenthic organism s 

cannot tolerate prolonged exposure to hypoxic conditions and respond to 

oxygen stress w ith increased m ortality a n d /o r  reduced recruitm ent, diversity, 

and productiv ity  (Rainer & Fitzhardinge 1981, Gaston 1985, H olland 1985, 

Breitburg 1992).

The m ajority of benthic fauna have lim ited m obility and m igration out 

of hypoxic regions is not possible (Breitburg 1992). Through a com bination of 

behavioral and physiological adaptations, fluctuating and short-term  hypoxia 

is survivable by these organism s (Diaz & Rosenberg 1995). M any species that
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are unable to escape hypoxic conditions begin a series of sub-lethal responses 

to oxygen stress. For example, as oxygen concentrations decline, m any 

infaunal organism s m igrate to the sedim ent surface. Sea cucum bers swell to 

increase their surface area:volum e ratio to prom ote oxygen uptake th rough  

the body surface and to store oxygen in the increased volum e of coelomic 

fluid (Astall & Jones 1991). Bivalves increase pum ping  rates, extend their 

siphons above the bottom  in search of oxygenated w ater, decrease burrow ing  

rates, increase exposure of parts or all of their bodies on the sedim ent surface, 

a n d /o r  reduce activity levels (Tyson & Pearson 1991, Pihl et al. 1992,

Jorgensen 1980). W orms emerge from their burrow s and begin undu lato ry  

body m ovem ents w hich draw  w ater dow n from above in an attem pt to 

enhance surrounding  oxygen levels (Llanso 1991). If dissolved oxygen 

concentrations continue to fall, the w orm s' activity ceases and they lie 

quiescent on the sedim ent surface until succum bing to death  (Tyson & 

Pearson 1991). How ever, if hypoxic episodes are brief (on the order of hours 

or days) m any species that become lim p and m otionless can recover from 

oxygen depletion and reburrow  as oxygen conditions im prove (Diaz et al. 

1992, Jorgensen 1980).

Some m acrobenthic m ortality and reduced biom ass in oxygen-deficient 

w aters m ay be the result of increased predation  resulting from  these 

behavioral m odifications induced by low oxygen stress (Pihl et al. 1992, 

Sandberg 1994). Because benthic invertebrates vary in their ability to tolerate 

hypoxia and in their vulnerability to predators, periods of benthic hypoxia 

could lead to selective p redation  on some taxa and be influential in 

structuring  benthic com m unities (Kolar & Rahel 1993).

Behavioral avoidance of unfavorable abiotic conditions m ay result in 

m igration to an area of increased predation  (Kolar & Rahel 1993). For
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exam ple, during  the sum m er in prairie ponds, brook stickleback (Culaea 

inconstans)  and juvenile yellow perch (Perea flavescens) m ove out of hypoxic 

cattail beds into higher oxygen, open-w ater areas of greater p redation  risk 

(Suthers & Gee 1986). Larval mayflies in ice-covered lakes experience 

increased m ortality  due to fish predation  during hypoxia (Rahel & Kolar 

1990). As benthic oxygen levels decline, mayflies increase their activity levels, 

leave their benthic refuge, and m ove up into the w ater colum n in search of 

h igher oxygen concentrations w here they become m ore susceptible to 

predation . A dditionally, Diaz et al. (1992) report that m any benthic infaunal 

species have shallow er sedim ent dep th  distributions during  hypoxic events 

than  before or after the onset of hypoxia. Since burial in the sedim ent 

provides refuge (Diaz et al. 1992, Pihl et al. 1992), these stressed organism s 

m ay be m ore susceptible to predation. Prey species are faced w ith  conflicting 

dem ands w hereby avoidance of one factor, such as low oxygen, m ay increase 

the risk of m ortality from another factor, such as p redation  (Rahel & Kolar 

1990).

Predator species are reported to endure trade-offs betw een abiotic stress 

and optim al foraging opportunities. For instance, nektonic squid 

(Lolliguncula brevis) have been observed off Louisiana diving into hypoxic 

bottom  w aters (0.5 ml 1"1) (Vecchione & Roper 1991). This behavior is 

believed to allow the squid to prey upon oxygen-stressed benthic fauna 

(benthic polychaetes have been found in stom ach contents of this species) or 

to avoid pelagic p redators confined to normoxic w ater higher in the w ater 

colum n (Vecchione 1991). Pavela et al. (1983) speculate that m any pelagic 

fishes (several species of sharks, jacks, and mackerels) observed sw im m ing 

near the surface in the Gulf of Mexico during a hypoxic event m ay have 

avoided oxygen-depleted bottom  w aters while attracted to an unusual food
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oppo rtun ity  of vulnerable bottom  fauna distressed by hypoxia. Rahel and 

N u tzm an  (1994) repo rt tha t m udm innow s (Umbra limi) v en tu re  into 

hypoxic bottom  w aters of stratified W isconsin lakes to forage on insect larvae 

using  the hypoxic region as a refuge from predation.

U nder hypoxic conditions, deep-burrow ing species that m igrate to the 

sed im ent surface, such as infaunal polychaetes and the bu rrow ing  anem one 

Edwardsia elegans, are consum ed by epibenthic p redato rs (Pihl et al. 1992).

The diet of C hesapeake Bay dem ersal fish changed im m ediately  follow ing 

hypoxic events such that prey item s norm ally found deep in the sedim ents 

w ere consum ed after low oxygen events (Pihl et al. 1992). To m axim ize 

energy intake, these predators seem to forage optim ally on w eakened prey  of 

the largest size. Brief periods of hypoxia, w hich are typical du ring  the 

sum m er in the York River estuary  and m any other estuarine system s (Diaz & 

R osenberg 1995), m ay facilitate the transfer of benthic p roduction  to p redato r 

(fisheries) species (Diaz & Schaffner 1990). Two possible explanations of this 

transfer of p rey  to p redators during  hypoxic events have been suggested  (Pihl 

et al. 1991, Pihl et al. 1992, Pihl 1994). First, p redators m ay m igrate out of 

hypoxic w aters, retu rn ing  for tem porary  feeding "excursions" d u ring  hypoxia 

to exploit exposed infauna driven  out of the sedim ent by the oxygen stress. 

Second, p redato rs m ay re tu rn  just after the oxygen levels rise and feed on 

easily-accessible infauna prey  item s that have not yet fully recovered from 

stress.

The functional relationship  betw een m acrobenthic invertebrates and  

dem ersal fishes is a significant com ponent in estuarine ecosystem s (Baird & 

U lanow icz 1989). One w ould expect, based on the background synthesis of 

inform ation, that p redato rs w ould  only subject them selves to abiotic stress if 

it w ou ld  lead to energetic benefits otherw ise unavailable to them . If p redators
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endure  such abiotic stress, energy rew ards of locating food m ay outw eigh  the 

physiological expense of foraging in low  oxygen environm ents.

The objective of this study  w as to exam ine the effect of hypoxia on food 

acquisition behavior of bottom -feeding predators th rough  field observations 

and specifically to address w hether epibenthic predators, such as dem ersal 

fishes and  crustaceans, enter hypoxic w ater masses to feed on stressed 

m acrobenthic infauna driven  ou t of the sedim ent by low oxygen 

concentrations du ring  or im m ediately after hypoxia.
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STUDY AREA

The York River estuary, a sub-estuary of Chesapeake Bay, is located in 

sou theastern  Virginia. Study sites w ere located in the York off G loucester 

Point (37° 15' N, 76° 30' W) near the Virginia Institu te of M arine Science in 

approxim ately  17 and 21 m of w ater (Figure 1). This system  w as selected 

because of its predictable periodic sum m er hypoxic events. Deep areas of the 

low er reaches of the York experience periodic hypoxic events (defined as short 

term  or in term itten t hypoxia occurring at irregular tim es of the year) that can 

last from  days to w eeks (Haas 1977, Kuo & Neilson 1987, Diaz et al. 1992). The 

forcing m echanism  driv ing  the fortn ightly  cycle of establishm ent and 

b reakdow n  of hypoxic conditions in the York is the lunar neap-spring  tidal 

cycle (Haas 1977). Decreased tu rbu len t m ixing during  a neap tide leads to a 

stratified  w ater colum n and consequently, hypoxic conditions in the isolated 

bo ttom  w ater layer. Increased m ixing associated w ith  increased tidal currents 

du ring  spring  tides leads to a shift from  a stratified, hypoxic w ater colum n to a 

m ore hom ogeneous, norm oxic w ater colum n (Haas 1977). Superim posed on 

the neap-spring  hypoxia cycle is a sem i-diurnal tidal cycle of the hypoxic w ater 

m ass (Diaz et al. 1992). Low-oxygen, high-salinity bottom  w ater from  the 

m ainstem  of the Bay m oves upriver on a flood tide and dow n river on an ebb 

tide. Therefore, low er bottom  w ater dissolved oxygen concentrations are 

associated w ith  a rising tide and higher dissolved oxygen concentrations are 

typically associated w ith  a falling tide (Diaz et al. 1992, Kuo & Park 1993). The 

regular periodicity  of these cycles allows an opportun ity  to anticipate 

norm oxic and hypoxic conditions in the bottom  w aters of deep areas of the 

riv er.



FIGURE 1: The low er York River show ing study  site. Site of D eploym ent 1 
is indicated by a filled circle ( • ) .  Site of D eploym ent 2 is 
indicated by  a filled square (■).
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METHODS

O bservational field experim ents w ere conducted over tw o hypoxic 

events. Prey organism s (Polychaeta:Glycera americana) w ere a ttached to an 

a lum inum  cam era fram e (Figure 2) and  placed in an area of the York River 

know n to undergo  hypoxia during  the sum m er (>15 m depth) (Diaz et al.

1992, Kuo & N eilson 1987). G. americana w as chosen as the p rey  organism  

because it is large enough to be easily seen in the photographs, is 

com m ercially available as fish bait (bloodw orm s), and w as found in the gut 

contents of dem ersal fishes from  the York River (Pihl et al. 1992). P redator 

activity w as m onitored using a tim e lapse underw ater still cam era (Benthos 

m odel 372A) m ounted  directly above the prey.

A self-contained w ater quality datalogger (Hydrolabs D atasonde 3) w as 

m oun ted  on the cam era fram e 20 cm above the sedim ent surface and used  to 

record near-bottom  w ater colum n conditions (i.e. dissolved oxygen, salinity, 

tem perature , pH). The D atasonde w as calibrated prio r to each deploym ent. 

W inkler oxygen titrations of bottom  w ater sam ples from  the s tudy  site w ere 

perform ed each occasion the p rey  w ere replaced to verify the calibration of the 

D atasonde oxygen sensor. Results of the W inkler titration  w ere com pared 

w ith  the sensor data for the tim e the w ater sam ple w as collected. It w as 

determ ined  that the sensor perform ed well th roughou t the study  period.

D uring the first deploym ent (26 A ugust - 9 Septem ber 1994), a w ater 

quality  read ing  w as taken every 5 m inutes and one pho tog raph  w as taken 

every 15 m inutes. U nfortunately, the pow er system  for the cam era strobes 

w as unreliable w hich resulted in gaps in the photographic record. In an effort 

to p ro long battery  life during  the second deploym ent (16 - 22 Septem ber 1994)



FIGURE 2: D iagram  of cam era fram e apparatus deployed in the low er York 
R iver.
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exposure frequency was changed to once per hour. Each pho tog raph  fram e 

w as inscribed w ith  the date and time the image w as taken. This labeling 

facilitates m atching photographs w ith  D atasonde readings du ring  data 

analysis.

U sing m onofilam ent, ten G. americana w ere tethered  across the short 

axis of the fram e under the cam era w ithin the 15 cm x 30 cm field of view. 

Small lead sinkers w ere placed on the m onofilam ent to keep the w orm s on 

the sedim ent surface and w ith in  the cam era's focus range. Bait w as replaced 

daily  (w eather perm itting) by divers at slack tide. A ny rem aining w orm s 

w ere rem oved before fresh bait w as attached to the frame. Tethered w orm s 

placed  on the sedim ent surface w ere in tended to m im ic the na tu ra l infaunal 

em ergence response to hypoxic conditions (Tyson & Pearson 1991). A lthough 

the presence of infaunal organism s exposed on the sedim ent surface is not 

norm al u n d er norm oxic conditions, predation  pressures can be com pared  by 

exposing tethered prey during  bo th  hypoxia and norm oxia.

As a control for structure effects (i.e. attraction of p redato rs to the 

fram e), a baited  line was extended 2 m  away from  the fram e and anchored in 

place w ith  a cem ent brick. Prey w ere attached to this line 0.25 m from  the 

brick  w ith  m onofilam ent and fishing hooks. Presence or d isappearance of 

bait attached to this line w as m onitored daily by divers.
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RESULTS

I. E nvironm ental C onditions:

Two hypoxic events (encom passing approxim ately 28 A ugust - 4 

Septem ber 1994 and 16 - 19 Septem ber 1994) w ere observed du ring  m y study  

(Figures 3 and 4). Tem poral patterns of near-bottom  dissolved oxygen 

concentrations coincided w ith  the n e ap /sp rin g  tidal cycle as p redicted  by H aas 

(1977). Oxygen concentrations also displayed a sem i-diurnal signal that 

coincided w ith  the flood and ebb tidal currents (Figures 5 and 6) (N ational 

Ocean Survey 1993). D uring norm oxic periods (typically associated w ith  the 

sp ring  tide portion  of the deploym ents) oxygen concentrations typically 

varied 2 to 3 m l/I  during  a tidal cycle 20 cm above the sedim ent surface. 

C onversely, du ring  hypoxic periods, dissolved oxygen concentrations 

rem ained in a narrow er range of ± 1 m l/I  per tidal cycle.

The cam era fram e apparatus w as deployed on 25 A ugust 1994 in 21 m  

w ater dep th  (37°14'39" N 76°30'33" W) at the onset of a neap tide cycle. 

A pproxim ately  2 days follow ing deploym ent, divers discovered that the 

fram e w as sinking into the soft m ud  sedim ent. The entire appara tu s w as 

im m ediately  retrieved, thus creating a gap in the w ater quality  tim e series 

data , and  m odified (rectangular fiberglass extensions w ere added  along the 

long axis of the fram e to help dissipate the weight) so as to keep the fram e on 

the sedim ent surface. The fram e w as re-deployed to the sam e site on 30 

A ugust 1994. By the tim e of re-deploym ent, the near-bottom  dissolved 

oxygen concentration w as nearly  anoxic and rem ained well below  2 m l/1  for 

the follow ing four days. M inim um  dissolved oxygen values below  2 m l/I



FIGURE 3: Tidal height, dissolved oxygen, tem perature , and salinity
m easurem ents for D eploym ent 1 (28 A ugust 1994 - 8 Septem ber 
1994). Labels along the horizontal axis represent m idn igh t of the 
day  indicated. No w ater quality m easurem ents w ere recorded 
for the periods of 28 - 30 A ugust and  2 - 3  Septem ber due  to 
equ ipm ent recovery for m odification and service.
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FIGURE 4: Tidal height, d issolved oxygen, tem perature, and  salinity
m easurem ents for D eploym ent 2 (16 - 22 Septem ber 1994). Labels 
along the horizontal axis represent m idnigh t of the day 
indicated.
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FIGURE 5: Tem poral and tidal current variability  in near-bottom  dissolved
oxygen concentrations. M eans and m ax im u m /m in im u m  
ranges for near-bottom  dissolved oxygen (at 21 m depth) in  York 
River are p lo tted  for each flood and ebb current du ring  28 
A ugust - 4 Septem ber 1994. M eans are based on 5 m inute 
interval data  collected 20 cm above the sedim ent surface. Dates 
and tim es along the horizontal axis rep resen t tim e of m axim um  
flood or ebb current. Filled squares (■) indicate flood m eans. 
O pen circles (O) indicate ebb m eans. M ax im um /m in im um  
ranges and  m eans w ere calculated from  the tim e of slack w ater 
to the tim e of the next slack w ater to include the tidal current 
extrem e.
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FIGURE 6: Tem poral and tidal curren t variability  in near-bottom  dissolved
oxygen concentrations. M eans and m ax im u m /m in im u m  
ranges for near-bottom  dissolved oxygen (at 17 m  depth) in York 
River are p lo tted  for each flood and ebb current du ring  1 6 -2 2  
Septem ber 1994. M eans are based on 5 m inute in terval data  
collected by a self-contained w ater quality data logger positioned 
20 cm above the sedim ent surface. Dates and tim es along the 
horizontal axis represen t tim e of m axim um  flood or ebb current. 
Filled squares (■) indicate flood m eans. O pen circles (O) 
indicate ebb m eans. M ax im um /m in im um  ranges and  m eans 
w ere calculated from  the tim e of slack w ater to the tim e of the 
next slack w ater to include the tidal curren t extrem e.
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w ere recorded un til 8 Septem ber. T idally-averaged dissolved oxygen 

m easurem ents from  the D atasonde m ounted  on the cam era fram e are show n 

in Figure 5. The salinity ranged from  19.7 to 28.0 psu  over the course of the 

first dep loym ent and the bottom  w ater tem perature ranged from  22.8 to 25.4 

°C (Figure 3).

The cam era fram e w as re-deployed on 16 Septem ber 1994 in 17 m  w ater 

dep th  (37°14'43" N  76°30'30" W) during  the peak  of a neap tide cycle (Figure 

4). N ear-bottom  dissolved oxygen concentrations rem ained below  2 m l/I  

un til 19 Septem ber, the onset of a spring tide cycle. M inim um  dissolved 

oxygen values below  2 m l/1 w ere recorded until 21 Septem ber. D issolved 

oxygen m easurem ents averaged over each sem i-tidal cycle are show n in 

Figure 6. N ear-bottom  w ater salinities ranged from  20.6 to 25.9 psu  and 

tem pera tu res ranged from  21.8 to 24.1 °C during  this deploym ent (Figure 4).
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II. Predation

Prey w ere m ade available on ten occasions during  the first cam era 

dep loym ent and five during  the second. D uring the first cam era deploym ent, 

the first p rey  deploym ent w as m ade prior to the onset of a periodic hypoxic 

cycle. The first m easurem ent of hypoxia occurred during  the th ird  prey  

dep loym en t and the env ironm ent rem ained hypoxic th rough  the seventh  

p rey  deploym ent five days later. D uring the second cam era deploym ent, prey 

w ere set after the onset of a hypoxic cycle.

A lthough  the photographic  record is often incom plete due  to cam era 

m alfunction  and severe tu rb id ity  that m ade m any pho tographs dark  or 

unclear, I have been able to narrow  dow n the tim e p reda tion  events occurred 

into "predation w indow s" based on clear photographs and  diver 

observations. P redation  occurred on seven occasions du ring  cam era 

dep loym ent 1 and on four occasions during  cam era deploym ent 2.

P redation  of w orm s on the rem ote baited line occurred only w hen  

p reda tion  occurred on the cam era frame. Predation of the rem ote p rey  did 

no t occur w ithou t concurrent p reda tion  of the w orm s positioned  u n d er the 

cam era.
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III. D etailed descriptions of prey deploym ents:

(1) Prey w ere set at 1710 on 25 A ugust 1994 w hen hypoxia w as not p resen t in 

the York (Figure 7). The first clear pho tograph  at 1935 indicated no p rey  w ere 

p resen t on the m onofilam ent. P redation  occurred w ith in  2 hours, 25 

m inutes of p rey  in troduction. D uring this time period, the near-bottom  

dissolved oxygen concentration ranged from  3.0 m l/1 to 3.3 m l/1.

(2) Prey w ere set at 1555 on 26 A ugust 1994 w hen the dissolved oxygen 

concentration w as declining tow ard  hypoxia bu t not yet hypoxic. A t 1630, a 

b lue crab (Callinectes sapidus) w as pho tographed  apparen tly  prey ing  on the 

Glycera. In the next pho tograph  taken 15 m inutes later, all p rey  item s had  

been  rem oved  from  the m onofilam ent. N ear-bottom  dissolved oxygen 

concentrations ranged from  2.2 to 2.8 m l/1  during  this 50 m inute  tim e period  

(Figure 8).

(3) Prey w ere set at 1840 on 30 A ugust 1994 after the onset of the hypoxic 

event and  rem oved by divers at 1700 on 31 A ugust 1994. P redation  d id  not 

occur d u ring  this p rey  deploym ent. N ear-bottom  dissolved oxygen 

concentrations ranged from  0.0 to 0.8 m l/1 during  this 22 hour, 20 m inute  

tim e period  (Figure 9).



FIGURE 7: Near bottom dissolved oxygen levels for prey deploym ent 1
(beginning 25 August 1994) based on 5 minute interval data.
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FIGURE 8: Near bottom dissolved oxygen levels for prey deploym ent 2
(beginning 26 August 1994) based on 5 minute interval data.
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FIGURE 9: Near bottom dissolved oxygen levels for prey deploym ent 3
(beginning 30 August 1994) based on 5 minute interval data.
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(4) Fresh prey  item s w ere set at 1715 on 31 A ugust 1994 du ring  the hypoxic 

event. There w as no evidence of p redation  w hen  the p rey  w ere rem oved by 

divers at 1830 on 1 Septem ber 1994. N ear-bottom  dissolved oxygen 

concentrations rem ained near 0 for m ost of this p rey  dep loym ent and ranged 

from  0.0 to 0.3 m l/1 (Figure 10). A t the tim e of p rey  rem oval, divers observed 

h u n d red s  of b u rrow ing  anem ones (Edwardsia elegans) and  sw ollen  infaunal 

sea cucum bers (Sclerodactyla briareus) rolling across the sed im ent surface 

w ith  the current.

(5) Fresh p rey  item s w ere set at 1830 on 1 Septem ber 1994 d u ring  the hypoxic 

event. There w as no evidence of p redation  w hen prey  item s w ere rem oved 

by  divers at 0800 on 2 Septem ber 1994. The near-bottom  dissolved oxygen 

concentrations never rose above 0.3 m l/I  during  this period , rem ain ing  at or 

near 0.0 m l/1 (Figure 11).

(6) Fresh prey  item s w ere set at 0800 on 2 Septem ber 1994 by  divers du ring  the 

hypoxic event. N o p redation  occurred betw een the tim e prey  w as m ade 

available and 1400 on the sam e day. Oxygen concentrations hovered  at or 

near 0 m l/I  for the duration  of this 6 hour prey  deploym ent and  ranged  from  

0 to 0.3 m l/I  (Figure 12). The equipm ent w as recovered at 1400 for cam era 

m aintenance and redeployed the follow ing day at 0920.



FIGURE 10: Near bottom dissolved oxygen levels for prey deploym ent 4
(beginning 31 August 1994) based on 5 minute interval data.
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FIGURE 11: Near bottom dissolved oxygen levels for prey deployment 5
(beginning 1 September 1994) based on 5 minute interval data.
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FIGURE 12: Near bottom dissolved oxygen levels for prey deploym ent 6
(beginning 2 September 1994) based on 5 minute interval data.
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(7) Prey w ere set at 0920 on 3 Septem ber 1994 near the end of the hypoxic 

event. A t 2150 (DO = 0.1 m l/1) an  infaunal, bu rrow ing  anem one (Edwardsia  

elegans) w as pho tog raphed  as it rolled th rough  the cam era's field of view  on 

the  surface of the sedim ent. N ear-bottom  dissolved oxygen concentrations 

rem ained  hypoxic until 0045 on 4 Septem ber 1994 w hen  oxygen rem ained  

above 2 m l/I  for a 2 hour w indow . Predation  did not occur d u ring  this short 

norm oxic period . N ear-bottom  dissolved oxygen concentrations then  

hovered  around  1 m l/I  until 0720. Prey rem ained und istu rbed  un til the last 

clear pho tograph  at 0650 (DO = 1.4 m l/1). In the next clear photograph , about 3 

hours later, the p rey  w ere gone. Predation  occurred som etim e betw een 0650 

and  0945. In the 0945 photograph , a sedim ent disturbance (resem bling a 

feeding p it characteristic of those m ade by dem ersal fishes) w as clearly 

eviden t. W ithin this tim e period , near-bottom  dissolved oxygen 

concentrations ranged  from  0.4 to 3.0 m l/1  b u t continuously  rem ained above 

2 m l/I  for 1 h ou r 55 m inutes (Figure 13).

(8) Fresh p rey  item s w ere set by divers during  near-hypoxic conditions at 1830 

(DO = 2.3 m l/1) on 5 Septem ber 1994. Oxygen concentrations ranged from  1.9 

to 2.6 un til 2015 w hen  a rap id  decline in oxygen occurred over a 30 m inute 

period . D ue to cam era m alfunction, a pho tograph  w as no t taken  until 2240. 

A t th is tim e, it becam e apparen t tha t four w orm s had  been rem oved from  the 

m onofilam ent som etim e since dep loym ent at 1830. Based on photographic  

evidence, the  six rem aining  w orm s w ere preyed upon  som etim e betw een 

0040 and  0505 on 6 Septem ber 1994. D uring this 4 hour, 25 m inute  tim e 

w indow , near-bottom  dissolved oxygen concentrations rem ained  hypoxic 

un til 0140 and then  rose to 4.0 m l/1  at 0430 (Figure 14).



FIGURE 13: Near bottom dissolved oxygen levels for prey deploym ent 7
(beginning 3 September 1994) based on 5 minute interval data.
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FIGURE 14: Near bottom dissolved oxygen levels for prey deployment 8
(beginning 5 September 1994) based on 5 minute interval data.
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(9) Prey w ere set at 1730 on 7 Septem ber 1994 w hen hypoxia w as no t p resent 

in the  York and the d issolved oxygen level had  rem ained norm oxic since 

1350. The first clear pho tograph  taken at 1915 indicated no prey  w ere p resen t 

on the m onofilam ent. P redation  occurred w ith in  1 hour 15 m inutes of p rey  

in troduction . D uring  this period, near-bottom  dissolved oxygen 

concentrations ranged from  2.5 to 3.5 m l/1  (Figure 15).

(10) D ue to cam era m alfunction, there is no photographic record for this prey  

deploym ent. P redation  evidence is based on diver observations. The n ear­

bo ttom  dissolved oxygen concentration had  been above 2 m l/1 for 1.5 hours 

w hen  new  prey  w ere set at 1530 on 8 Septem ber 1994 (DO = 4.0 ml/1). 

P redation  occurred som etim e betw een this m om ent and 1450 on 9 Septem ber 

1994 (recovery of the cam era apparatus). N ear-bottom  dissolved oxygen 

concentrations du ring  this p rey  deploym ent rem ained norm oxic un til 1255 

on 9 Septem ber w hen dissolved oxygen concentrations fell below  2 m l/1  for 1 

h o u r 40 m inutes (Figure 16).

(11) Prey w ere set at 1645 on 16 Septem ber 1994 after the onset of hypoxia (DO 

= 1.8 ml/1). Prey w ere rem oved by divers at 1000 on 17 Septem ber 1994. The 

near-bottom  dissolved oxygen concentration ranged from  0.9 to 2.3 m l/1  

d u ring  th is p rey  deploym ent and  predation  d id  not occur. Oxygen rem ained 

below  2 m l/1  for the m ajority of this p rey  deploym ent except for a 3 hour 

w indow  follow ing a low  tide in w hich dissolved oxygen concentration 

fluctuated  betw een 1.9 and 2.2 m l/1  (Figure 17).



FIGURE 15: Near bottom dissolved oxygen levels for prey deployment 9
(beginning 7 September 1994) based on 5 minute interval data.
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FIGURE 16: Near bottom dissolved oxygen levels for prey deploym ent 10
(beginning 8 September 1994) based on 5 minute interval data.
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FIGURE 17: Near bottom dissolved oxygen levels for prey deploym ent 11
(beginning 16 September 1994) based on 5 minute interval data.
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(12) Prey w ere set at 1000 on 17 Septem ber 1994 during  the hypoxic event (DO 

= 1.4 m l/1). Prey w ere rem oved by divers at 1130 on 18 Septem ber 1994. The 

near-bottom  dissolved oxygen concentration ranged from  1.1 to 2.4 m l/1  

du ring  this p rey  deploym ent and  predation  did  not occur. O xygen rem ained 

below  2 m l/I  for the m ajority of this prey  deploym ent except for a 20 m inute 

period  in w hich dissolved oxygen concentration briefly peaked to 2.4 m l/1 

(Figure 18).

(13) Prey w ere set at 1130 on 18 Septem ber 1994 during  the hypoxic event. 

N ear-bo ttom  dissolved oxygen concentrations rem ained  hypoxic un til 1210 

on 19 Septem ber 1994. A t this tim e, oxygen concentrations rose above 2 m l/1 

for 1 hour, 35 m inutes and then  d ropped  below  2 m l/I  un til term ination  of 

th is p rey  deploym ent. Prey rem ained und istu rbed  until the last clear 

pho tog raph  w as taken at 0555 on 19 Septem ber. P redation  of 6 w orm s 

occurred som etim e betw een 0555 and the recovery of the cam era appara tus at 

1515 on the sam e day. A t this tim e, four und istu rbed  Glycera rem ained on 

the m onofilam ent line. D uring  this p reda tion  w indow , near-bottom  

dissolved oxygen ranged from  1.2 to 2.8 m l/1 and rem ained above 2 m l/1  for 

1.5 hours (Figure 19).



FIGURE 18: Near bottom dissolved oxygen levels for prey deploym ent 12
(beginning 17 September 1994) based on 5 minute interval data.
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FIGURE 19: Near bottom dissolved oxygen levels for prey deployment 3
(beginning 18 September 1994) based on 5 minute interval data.
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(14) D ue to cam era m alfunction, there is no photographic record for this p rey  

deploym ent. P redation  evidence is based on diver observations. Fresh p rey  

w ere set at 1655 (DO =1 .9  m l/1) on 19 Septem ber 1994 near the end  of the 

hypoxic event. P redation  occurred som etim e betw een this m om ent and  1245 

on 21 Septem ber 1994. N ear-bottom  dissolved oxygen concentrations du ring  

this p rey  deploym ent ranged from  0.9 to 3.8 m l/1  and follow ed a sem i-d iurnal 

tida l cycle w ith  high  (normoxic) oxygen concentrations coinciding w ith  the 

falling tide and  low (hypoxic) oxygen concentrations coinciding w ith  the 

rising tide (Figure 20).

(15) Prey w ere set at 1245 on 21 Septem ber 1994. N ear-bottom  dissolved 

oxygen concentrations ranged from  2.2 to 3.7 m l/1 and rem ained norm oxic for 

the du ra tion  of this p rey  deploym ent. The first clear photograph , taken  at 

2050 (DO = 3.4 m l/1), depicts und istu rbed  prey  item s on the m onofilam ent 

line. A t 2120, a blue crab w as pho tographed  preying  upon  tethered  Glycera.

In  the next photograph , taken 30 m inutes later at 2150, the crab w as gone and 

five w orm s w ere rem oved from  the m onofilam ent line. The oxygen 

concentration  d u ring  this "predation w indow " ranged from  3.3 to 3.8 m l/1. 

The rem ain ing  five w orm s rem ained und istu rb ed  un til som etim e betw een  

2250 (last clear pho tograph  before gap in photographic record) and  0815 on 22 

Septem ber 1994 (first pho tog raph  of em pty  m onofilam ent line). D uring  this 

p reda tion  w indow , oxygen ranged from  2.4 to 3.7 m l/1 (Figure 21).



FIGURE 20: Near bottom dissolved oxygen levels for prey deploym ent 14
(beginning 19 September 1994) based on 5 minute interval data.
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FIGURE 21: Near bottom dissolved oxygen levels for prey deployment 15
(beginning 21 September 1994) based on 5 minute interval data.
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STATISTICAL ANALYSIS

The nu ll hypothesis tested w as tha t there is no difference in p reda tion  

p ressu re  regardless of the su rround ing  near-bottom  dissolved oxygen 

concentration and that tethered prey  item s are just as likely to be p reyed  u pon  

du rin g  hypoxia as they are du ring  norm oxia.

D iver observations w ere included to incorporate p rey  dep loym ents for 

w hich  there is no photographic record. The presence or absence of 

previously-set p rey  w as noted by divers p rio r to each new  prey  dep loym ent 

(for deploym ents w ith  and w ithou t photographic records). Time of day  of 

th is observation  w as no ted  to obtain  the corresponding environm ental 

d issolved oxygen concentration from  the w ater quality  data. For instances of 

pa rtia l p reda tion  (i.e. 6 ou t of 10 w orm s w ere gone) the initial observation  is 

considered "prey absent" and  subsequent observations are considered "prey 

present" un til the next indication of p redation . Photographic and d iver 

observations are categorized in the follow ing cross-classification tables (Tables 

1 and  2).



TABLE 1: Cross-classification of p rey  presence by dissolved oxygen 
concentration (2.0 m l/1 categories).

i i j j  = observed frequency 
p i j  = joint probability expressed as a percent
£2 = n z-y /  n  = odds = relative risk
0  = £2j /  £22 = odds ratio
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Prey
P resen t

(2+)

Prey
A bsent

(2+) Odds

< 2 m l/1
(+i)

n 22 = 285  
p 22 = 58 .28

n 21 ~ ^  
P n  = 9-41

=  P u ^ P n  
Q.1 =  3 .0 1 1

> 2 m l/1
(+2)

n 22 = 11 
p 22 = 2 .25

n 22 = 147  
p 22 = 3 0 .06

^2  = Pl2^  P22 
Q 2 =  0 .0 7 3

n total =  489  
P total =  100

Standard  E rrorQ = 0  ( l / n 22 + l / n 22 + l / n 22 + l / n 22 )0,5 = 14.857 

0  = Qj /  Q 2 = 41.246 ± 14.857



TABLE 2: Cross-classification of prey presence by dissolved oxygen
concentration (1.5 m l/1 categories).

n -  = observed frequency
P j j  =  joint probability expressed as a percent
Q = nz- • /  n = odds = relative risk
0  = /  Q 2  = odds ratio
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Prey
Presen t

0+)

Prey
A bsent

(2+) Odds

<1.5 m l/1
(+i)

n 22 = 253 
p 12 = 51.74

n 22 = 24 
p 2J = 4.91

~  P n ^ P i i  
Q 2 = 10.551

>1.5 m l/1
(+2)

n 22 = 38 
P 22 =

n 22 =  1^4 
p 22 = 35.58

^ 2  ~ P l 2 ^ P 2 2  
n 2 =  0.219

n total = 489  
P total = 100

Standard  E rror0  = 0  ( l / n 12 + l / n 21 + l / n 12 + l / n 22 )0'5 = 13.427 

0  = Q x /  a 2 = 48.174 ± 13.427
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Based on the above figures, odds ratios were calculated to test the null 

hypothesis. Using the Fisher's Exact Test (SAS Institute 1992) the null 

hypothesis of independence can be rejected. Prey are 41.2 (± 14.9) times more 

likely to be present in w hen near-bottom dissolved oxygen concentration is 

<2 m l/1 than when near bottom dissolved oxygen is >2 ml/1. Prey are 48.2 

(±13.4) times more likely to be present when near-bottom dissolved oxygen  

concentration is < 1.5 m l/I  than when near bottom dissolved oxygen is > 1.5 

m l/1.

Near-bottom dissolved oxygen variability during each "predation 

window" and non-predation prey set are plotted in Figure 22. Based on mean 

dissolved oxygen levels for each predation and non-predation event, prey 

deploym ents were categorized into one of four dissolved oxygen  

concentration ranges. These ranges and corresponding proportional 

predation values and predicted probabilities are listed in Table 3.



FIGURE 22: Near-bottom dissolved oxygen variability during each
"predation window" and non-predation prey set. Means (♦ )  and 
m axim um /m inim um  ranges for near-bottom dissolved oxygen  
in York River for each occasion in which predation took place. 
Means are based on 5 minute interval data recorded from the 
last observation (photographic or diver) of undisturbed prey to 
the first observation (photographic or diver) of absent or 
partially predated prey. Means (O) and m axim um /m inim um  
ranges for near-bottom dissolved oxygen are plotted for non­
predation prey sets. Means are based on 5 minute interval data 
recorded from the moment of prey introduction to the moment 
of prey removal by divers. Horizontal axis represents dates on 
which the predation w indow  or non-predation prey set began. 
Figure numbers in parentheses refer to the corresponding figure 
that details the prey set.
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Table 3: Categorized near-bottom dissolved oxygen ranges during each

"predation window" and non-predation prey set and 

corresponding proportional predation values and predicted 

probabilities.
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D issolved 

Oxygen (ml /l)

Predation

Events

Non-Predation

Events

Proportional

Predation

Proportional

Non-Predation

Predicted

P robability

(Predation)

Predicted 

Probability (Non- 

Predation)

0 - 1 1 4 0.20 0.80 0.015 0.985

1 - 2 1 2 0.33 0.67 0.124 0.876

2 - 3 4 0 1.00 0.00 0.572 0.428

3 -  4 5 0 1.00 0.00 0.926 0.074
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These data indicate a predation threshold somewhere between the 0-1 and 1-2 

m l/1 categories. Logistic regression (SAS Institute 1992) was used to describe 

the relationship between dissolved oxygen concentration and predation 

(Figure 23).

The logistic function (-2 Log Likelihood = 11.6) was:

e  ( - 4.1945 + 2.2419 (DO))

p  =

I  +  e  ( - 4.1945 + 2.2419 (DO))

where: p  is the probability of predation,

(DO) is the dissolved oxygen concentration, 

e  - 4.1945 + 2.2419 (DO ) js  logistic regression equation.

Following a hypoxic event, but before infaunal recovery, the chances of 

predation of hypoxic-stressed infauna by nektonic predators increases 

asymptotically w ith increasing dissolved oxygen concentration. The 

dissolved oxygen concentration at p 0  5 is 1.87 ml/1. At this dissolved oxygen  

concentration, the is a 50% chance that emerged benthic infauna w ill be 

preyed upon by nektonic predators.



FIGURE 23: Logistic regression curve used to describe relationship  betw een 

dissolved oxygen and  predation.
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DISCUSSION

M any estuarine  system s around  the w orld  experience seasonally m ild 

to severe hypoxia or anoxia (W hitledge 1985, Diaz & Rosenberg 1995). These 

low  dissolved oxygen conditions in  bottom  w aters are a contributing  factor in 

the m ajor reduction  of living resources of m any estuarine  and  coastal system s 

(H arper et al. 1981, Baden et al. 1990, D esprez et al. 1992). D espite the disparate  

n a tu re  of physical conditions and  faunal com position, the responses of 

benthic com m unity  structure  to seasonal hypoxia w ere found  to be consistent 

betw een  ecosystem s and depend  on the frequency and  duration  of the hypoxia 

(Diaz & R osenberg 1995). The basic behavioral m odifications benthic infauna 

use to survive oxygen deficiency potentially  enhance their vu lnerab ility  to 

p reda to rs (Diaz et al. 1992). N ektonic p redato r species are no t im m une to low 

d isso lved  oxygen concentrations and respond m ainly  th rough  avoidance of 

affected areas (Breitburg 1992, Pihl et al. 1991). The d issipation  of hypoxia, 

how ever, m ay lead to an opportunistic  response by p redato rs to increased 

availability of hypoxia-stressed prey.

F luctuating hypoxia and  norm oxia facilitate the transfer of benthic 

secondary production  to m obile p redato r species. This study  suggests that 

p reda to rs are likely to take advantage of hypoxia-stressed infaunal organism s 

once env ironm ental dissolved oxygen concentrations rise above 1.5 m l/I  

(Figure 22). If all p rey  deploym ents are included in this analysis, there is no 

clear separa tion  betw een the dissolved oxygen concentrations in w hich 

p red a tio n  occurs and  does no t occur. By rem oving those p rey  deploym ents 

th a t have large oxygen variations w ith in  the "predation w indow " and  those 

w ith  few  observations over a long tim e fram e, there is an apparen t separation
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around  1.5 m l/1  such that p redation  does not occur below , b u t does occur 

above, th is level (Figure 23). Since p reda tion  does not occur w hen  dissolved 

oxygen concentrations are consistently below  1.5 m l/1, the functional 

response of the p reda to r to increased prey  availability is in terrup ted .

The functional response is a relationship  betw een p rey  consum ption  

per p red a to r and  prey  density  (Holling 1959, Hassell 1978). There are three 

general types of functional response curves used to describe p redato r-p rey  

dynam ics (Figure 24) (Hassell 1978, Valiela 1984). The type I response curve 

rises linearly to a p lateau  (representing p redato r gu t capacity and hand ling  

tim e) and  is typical of aquatic filter-feeding invertebrates (Hassell 1978). 

P redato rs consum e a linearly-increasing num ber of p rey  as density  increases 

un til a satiation po in t is reached (Valiela 1984). In the type II response, w hich 

is m ost com m on and typical of m any invertebrates, p rey  consum ption  

increases at a decelerating rate as p rey  density  increases (Hassell 1978, Lipcius 

& H ines 1986). This curve rises at a continually decreasing rate to an  u p p er 

asym pto te  w hich  represents the p redato r's  m axim um  attack rate  (Hassell 

1978). In the density -dependent 'm odified' type II functional response, 

consum ption  ceases below  som e low prey  density  threshold  because of 

behav io ral or environm ental characteristics tha t p reven t p reda to rs  from  

finding  p rey  (Valiela 1984). The type III response curve, typical of vertebrate  

and  a rth ropod  p redato rs and parasito ids and  functionally the sam e as the 

'm odified ' type ii response, is sigm oid (H olling 1959, H assell et al. 1977). This 

functional response show s an initial lag in the response of the p reda to r at low 

p rey  densities (Ricklefs 1973, Eggleston 1990a). As the prey density  increases, 

encoun ter rate  increases, and  the functional response increases m ore rapidly . 

A t h igh  p rey  densities, p reda to r satiation and  the reduction  of required  

searching  tim e cause the functional response to level off (Ricklefs 1973).



FIGURE 24: H ypothetical functional response curves. The height of the 
asym pto te  is no t an im portan t consideration.

The po in t at w hich the m odified Type II curve crosses the 
horizontal axis is the threshold  density  below  w hich no feeding 
takes place.

A dap ted  from  Valiela (1984).
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The form  of the functional response varies w ith  different p reda to r-p rey  

com binations and  physical environm ental conditions (Lipcius & H ines 1986, 

Eggleston 1990a). For exam ple, Lipcius and H ines (1986) found that sed im ent 

type m odified  the functional response of b lue crabs p rey ing  on the clam  M y  a 

arenaria. Blue crabs exhibited a density -dependent type III functional 

response in sand and a density -independent type II response in m ud. 

Eggleston (1990 b) found tha t the functional response of b lue crabs p rey ing  on 

juvenile  oysters Crassostrea virginica  varied  significantly in type and  

in tensity  as a function of tem perature. Crabs disp layed a 'm odified' type  II 

density -dependen t functional response at low tem peratures (13-14 °C), a type 

III density -dependen t response at in term ediate tem peratures (19-20 °C), and  a 

type  II inversely density -dependent response at h igh  tem peratures (26-27 °C). 

The possibility  exists that a p redato r's  functional response m ay be m odified  by 

hypoxia. A t low dissolved oxygen concentrations, if the encounter rate  w ith  

p rey  is enhanced, then p reda to r feeding thresholds m ay be low ered 

substantially  such that there is a loss of the low -density  refuge for the p rey  

(Lipcius, personal com m unication). Conversely, if there is a loss of feeding 

efficiency for the p redato rs due  to low  dissolved oxygen concentrations, then  

the th resho ld  m ay be increased for the prey.

Based on these functional response m odels, one w ould  expect th a t an 

increase in available p rey  density  w ould  lead to a general increase in p rey  

consum ption  (Valiela 1984, Eggleston 1990a). H ow ever, the results of this 

study  suggest that, a lthough densities of available p rey  are enhanced, the 

entire  functional response is in te rrup ted  du ring  hypoxia (Figure 25). U nder 

norm oxic conditions the transfer of energy to p redato rs can be characterized 

by  one of the functional response m odels, w ith  the tim e in terval p rio r to 

hypoxia represen ting  a steady net energy transfer level (Figure 25A). W hen



FIGURE 25: H ypothetical variations in energy transfer to p reda to rs in
response to declining and  increasing env ironm ental d issolved 
oxygen concentrations. See text for fu rther explanation.
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dissolved oxygen concentrations d rop  below  approxim ately  2.0 m l/1, 

p redato rs escape low oxygen areas (Diaz & Rosenberg 1995). Predation  begins 

to decline w hen  dissolved oxygen concentrations d rop  below  2 m l/I  and  

ceases som ew here betw een 1.0 and 2.0 m l/1 (Figure 25B). W hen oxygen 

concentrations becom e tolerable to p reda to r species, p reda to rs quickly m ove 

back into the affected areas and there m ay be an initial increase in the am ount 

of energy gain from  preda tion  on oxygen-stressed m acrobenthos. H ypoxia 

induced  behavioral and  physiological stress on these p rey  species potentially  

m akes them  m ore vulnerable to p reda tion  and available at h igher densities 

(Figure 25C). The p redato rs ability to avoid hypoxic areas elim inates any 

recovery tim e from  oxygen stress before they can com m ence feeding. The 

p redato rs are able to m ove into affected areas as soon as oxygen levels are 

tolerable and  take advantage of the increased prey  availability before the prey  

organism s recover and  reburrow  in the sedim ent.

W ith recovery and reburrow ing  of p rey  organism s over tim e, the 

elevated level of energy transfer to p redato rs declines to the pre-hypoxic 

condition  and  the functional response m ay re tu rn  to its pre-hypoxic state 

(Figure 25D). If significant num bers of prey are rem oved, either by p redato rs 

or hypoxia-induced m ortality , the functional response m ay be altered  and  the 

energy transfer to the p redato rs w ill be further reduced below  pre-hypoxic 

levels (Figure 25E). The level of reduction  w ill be a function of the 

p roduction  capacity of the prey  and needs further study.
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