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ABSTRACT

Located between upland and riverine systems, extensive tidal freshwater wetlands 
are influenced by a variety of recharging water sources and their respective nutrient 
contents. Conversely, tidal wetlands discharge interstitial waters and solutes to surface 
waters during periods of aerial exposure. Geohydrologic and model simulation 
methodology were utilized in order to aid in the understanding of wetland subsurface flow 
dynamics, its influence upon pore water nutrient chemistry, and its role in nutrient 
exchange with adjacent surface waters. Interstitial water nutrient chemistry was monitored 
along three transects extending from the uplands to the creekbank edge. Surface waters 
were also monitored throughout the 13 month study period.

Measurements of soil dry bulk density, percent organic matter, fiber content, and 
horizontal hydraulic conductivity were conducted along a 118 meter transect from the 
creekbank edge to the high marsh/upland interface. Results indicate vertical and lateral 
heterogeneity of these physical and hydraulic soil properties within the upper one meter soil 
profile. Multivariate statistical techniques best described the transect as four separate soil 
types. General regions of soil types followed wetland elevational regions, these include: 
the creekbank, levee, low marsh flat, and high marsh regions. Fiber content was identified 
as the measured parameter which best explained variations in wetland soil permeability.

Vertical and horizontal hydraulic head fluctuations were monitored utilizing 
piezometer/well arrays along the 118 meter transect. Direct measurement of interstitial 
water seepage flow from the subaquaeous portion of the creekbank to adjacent surface 
water was determined. Model simulation of subsurface hydrodynamics were made in order 
to provide water table fluctuations, estimates of horizontal seepage, and pore water budgets 
along the transect. Field measurements of marsh surface elevations and hydraulic soil 
properties were incorporated into the model to allow for comparison between simulated and 
observed results.

Spatial variations in soil properties, and subsurface hydrodynamics indicate that an 
extensive tidal freshwater wetland cannot be considered as a homogeneous unit. It may be 
described more accurately as three distinct, yet interactive regions (creekbank, low marsh 
flat,and high marsh), with varying potentials for surface and interstitial water exchange. 
The creekbank, experiencing large water table oscillations and hydraulic gradients, was the 
most dynamic and tidally influenced region. These hydrodynamic characteristics resulted 
in substantial subsurface water transport and dilution of interstitial waters by recharging 
surface waters within the creekbank region. Due to extremely low hydraulic gradients and 
ponding of water, horizontal seepage was minimal within the low marsh flat. Moderate 
hydraulic gradients in conjunction with highly permeable soils were conducive for 
significant horizontal seepage within the high marsh. Hydrologic evidence indicates a 
potential for nutrient rich shallow groundwater recharge within the high marsh region. 
Sensitivity analysis within the creekbank region indicates that aquifer depth exhibits the 
largest influence on interstitial water discharge followed by soil permeability and specific 
yield properties of the aquifer respectively. Inverted results, as those found within the 
creekbank region, were obtained for the high marsh region.

Interstitial water nitrogen and total phosphorus levels were variable and a function 
of depth, location, and time. However, several generalities and patterns appeared relatively 
consistant. Creekbank pore waters were relatively enriched with oxidized inorganic forms 
of nitrogen relative to low and high marsh regions. Creekbank ammonium, total nitrogen 
and phosphorus interstitial pools were intermediate, whereas, dissolved organic nitrogen 
levels was the lowest of the three regions sampled. The low marsh flat was inorganic 
nitrogen poor, and intermediate with respect to dissolved organic nitrogen, relative to 
creekbank and high marsh regions. Pore waters within the low marsh w ere significantly

X



enriched with dissolved total phosphorus as compared to the creekbank and high marsh 
regions. High marsh interstitial waters displayed reduced levels of nitrate and nitrite, while 
levels of ammonium, dissolved organic and total nitrogen were elevated in relation to the 
creekbank and low marsh flat. Interstitial total phosphorus levels within the high marsh 
were significantly lower than the low marsh and approximately equal to the creekbank 
region. The role and influence of subsurface hydrodynamics upon pore water nutrient 
concentrations and spatial variations are discussed.

Spatial and temporal potential patterns of nutrient exchange between surface water 
and pore waters of various wetland regions are identified. Dissolved oxidized inorganic 
forms of nitrogen were imported throughout the sampling period by the creekbank, low 
marsh flat, and high marsh regions. Ammonium flux, due to seepage , was predominantly 
from the wetland to surface waters; the high marsh exhibited a greatest potential for 
ammonium export. The high marsh was a source of dissolved organic nitrogen throughout 
the study, while the low marsh flat and creekbank regions may best be characterized as 
sources during winter, spring, and summer months, and potential sinks during the fall.
The high marsh exhibited the potential to export dissolved total nitrogen throughout the 
year, whereas, the low marsh flat and creekbank exhibit export potential during spring and 
summer months. Patterns of total phosphorus exchange were from high marsh, and low 
marsh regions throughout the year, while exchange between creekbank and surface waters 
was minimal and temporally variable. Hydrodynamics within each wetland region must be 
considered in conjunction with pore water chemistry, in order to fully understand nutrient 
and solute transport potentials.
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I. GENERAL INTRODUCTION AND STUDY OBJECTIVES

During the last decade, the degradation of coastal water quality due to increased 

nutrient input has received a great deal of attention. Considerable research has concentrated 

on understanding the physical and chemical interactions between tidal wetlands and 

adjacent surface waters. However, this effort has primarily focused upon surface water 

interactions. Water movement through a wetland soil is of significant ecological 

importance. It influences a wide variety of processes including evapotranspiration, soil 

aeration, geochemistry, and solute transport.

Situated between upland and riverine systems, extensive tidal freshwater wetlands 

are influenced by a variety of in situ and allochthonous processes. These processes effect 

the geohydrologic and pore water chemistry characteristics within the system. Upland, 

riverine and eaolian sediment sources and depositional processes, in concert with in situ 

peat formation and humification, produce a soil substrate that regulate subsurface water 

storage and transmission. Evapotranspiration and subsurface drainage provide 

mechanisms for pore water removal, while upland groundwater, surface water infiltration, 

and precipitation are sources of water recharge. Interstitial water nutrient dynamics and 

chemistry are influenced by a soils properties, transport of water through the soil, and 

chemical characteristics of recharging water.

This study utilizes geohydrologic and model simulation methodology to increase 

our understanding of subsurface hydrodynamics, its effect upon interstitial water nutrient 

chemistry, and to identify general patterns of interstitial water nutrient exchange between a 

tidal freshwater wetland and adjacent surface waters. The investigation is divided into three 

sections, study topics are: 1) physical and hydrophysical properties of a tidal freshwater 

wetland soil, 2) field monitored and model simulated wetland subsurface hydrology, and 3) 

interstitial water nutrient chemistry. Results from the individual topic investigations are
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integrated in order to further our understanding of advective pore water nutrient exchange 

with surface waters.

Objectives of this study are:

1) to characterize a tidal freshwater wetland soil according to its physical 

and hydrophysical properties;

2) to identify relationships between soil properties;

3) to determine the magnitude and spatial variability of subsurface 

hydrodynamics and primary controlling mechanisms;

4) to identify spatial and temporal variations of pore water nutrient levels 

and processes responsible for such variations;

5) to identify potential nutrient exchange patterns between various wetland 

soil regions and adjacent surface waters.
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II. STUDY SITE DESCRIPTION

Field work was conducted at Sweethall Marsh (37° 34'N, 76° 54'W) located on 

the Pamunkey River, an upper tributary to the York River Estuary (Fig. 2.1). The 401 

hectare extensive marsh (Silberhom and Zacherle, 1987) is in a transition zone between 

oligohaline and freshwater, and is dominated by freshwater vegetation. A twenty year 

salinity record, 1968-1987 (VIMS, unpublished data), shows a range from 0 to 5ppt with a 

mean salinity of 0.5ppt. Mean tidal range was 82 centimeters , with mean spring and neap 

tidal ranges of 95 and 65 centimeters respectively (NOAA, 1987).

The vegetation pattern of a 118 meter transect normal to the creekbank can be 

subdivided into four general elevational regions: the creekbank, levee, low marsh flat and 

high marsh. The creekbank is vegetated exclusively by Peltandra virginica while the levee 

region is predominantly Spartina cynosuroides. The low marsh flat is best characterized as 

a mixed community. Dominant species include: Peltandra virginica, Zizania aquatica, 

Hibiscus moscheutos, Leersia oryzoides, Scirpus robustus and Polygonum species.

Typha latifolia dominates the high marsh region.

The creekbank was relatively steep and located along an eroding bank of the 

thoroughfare. It grades sharply (7cm/meter) to a levee crest 6.7 meters away. The 

backside of the levee sloped (0.5cm/meter) into an expansive low marsh flat, which was 13 

centimeters below the levee crest elevation. The low marsh flat graded (l.Ocm/meter) into a 

narrow high marsh region. The upland interface is a steep (14cm/meter) eroding sandy 

bank surmounted by a row crop agricultural field. The creekbank and levee regions 

comprise 5 and 15 percent of the transect respectively, the extensive low marsh flat 70 

percent, and the high marsh the remaining 10 percent According to Frey and Basan's 

(1978) saltmarsh developmental classification system and Odum's (1984) 

geomorphological and ecological description of tidal freshwater marsh developmental 

stages, this transect is representative of a youthful marsh.
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Large scale bioturbation of the marsh soil was common to the study site. 

Burrowing activity of Uca minax (brackish water fiddler crab) was a prominant feature 

throughout the marsh. Burrows vary in size with a diameter of approximately 1 to 2 

centimeters. Ondatra zibethica (common muskrat) excavations, ditching and tunneling 

activities were also common features but appeared to be concentrated along the creekbank 

and levee regions. Tunnels caused by Ondatra zibethica were on the order of 15 to 20 

centimenters in diameter.
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Figure 2.1: Chesapeake Bay region, showing the 
location of Sweethall Marsh, Virginia.
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IE. PHYSICAL AND HYDROPHYSICAL PROPERTIES OF WETLAND SOIL 

Introduction

Located between upland and riverine systems, tidal freshwater wetlands are subject 

to a variety of sediment sources and depositional processes. Spatial and temporal 

variations of allochthonous sediment sources, in situ peat formation and decomposition 

processes provide for a myriad of wetland soil characteristics. Allochthonous sediment 

sources include upland, riverine and aeolian components. Knowledge of wetland soil 

properties and their spatial heterogeniety is essential to the prediction of water movement 

and chemical interactions within the soil matrix. Commonly measured soil properties of 

wetlands include grain size distribution, dry bulk density, percent organic matter, and fiber 

content. These soil parameters provide insight into soil structure, and may be used to 

differentiate and classify soil types existing within a wetland.

In order to understand water table behavior and discharge/recharge functions of a 

wetland, it is essential to know water storage and transmission characteristics of the soil 

saturated zone. Hydraulic conductivity (K) and specific yield (Sy) are primary controlling 

factors in the hydrologic function of a soil. Hydraulic conductivity is a measure of the 

permeability of a porous media to a fluid; K is a function of both the porous media and the 

interstitial fluid. Typical hydraulic conductivity values range from 10'3 to lcm/sec for 

clean sands and 10"^ to 10"3 cm/sec for clay-sand mixtures (Davis and Deweist, 1966). 

Specific yield, which is equivalent to the drainable porosity of an unconfined aquifer, is an 

estimate of the water yielding capacity of a soil. It can be defined as the percent of water 

released per unit area of aquifer material given a unit drop in water table elevation. Specific 

yield values range from 2 percent for aquifer material composed of clay sized particles to 30 

percent for sandy aquifer material (Davis and Dewiest, 1966). Hydrophysical soil
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properties are influenced by the structural and compositional characteristics of the soil 

matrix, these include: botanical composition, fiber content, degree of humification and 

compaction, volumetric water content, grain size and configuration, and bulk density.

3.1 Experimental Methods

Soil properties were measured along a transect running perpendicular to the 

thoroughfare and extending to the upland edge. An elevated walkway was constructed 

parallel to the transect to minimize marsh surface disturbance and provide easy access. 

Sampling stations, lthrough 8, were located 0.7, 2.7, 6.7, 15.0, 30.0, 60.0, 100.0, and 

118.0 meters from the creekbank respectively. Replicate cores were taken with a modified 

Davis peat corer (1.4cm i.d.) at depth intervals of 0-20, 20-40, 50-70, and 80-100 

centimeters. Random subsamples were taken from each 20cm core and analyzed for dry 

bulk density, percent organic matter, and fiber content. A total of nine subsamples were 

taken from each core; three subsamples were used in the determination of each physical soil 

property. The arithmetic mean of the subsamples was used for the final parameter value for 

the particular core. Subsamples used in dry bulk density determinations were oven dried at 

105°C for 24 hours and weighed. Dry bulk density is expressed as dried mass per field 

condition volume of the subsample. An estimate of soil organic matter was determined by 

combusting the dried subsamples at 500°C for 5 hours followed by reweighing. Soil 

organic matter is expressed as a percentage weight loss from combustion of the dried 

subsample. Fiber content was determined by weighing the oven dried material retained on 

a 1mm mesh screen sieve after removal of large mineral particles (i.e., sand grains). Fiber 

content is expressed as dried mass of fiber per field condition volume of the subsample.

In order to describe grain size distribution, a series of cores were taken with the 

Davis peat corer along the transect at the depth intervals stated above. Cores were taken at
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the creekbank/levee region, low marsh flat, and the high marsh near the upland interface. 

Each 20 centimeter core segment was homogenized, subsampled and analyzed for grain 

size by wet sieving and pipet analysis (Folk, 1980). The Wentworth grain size scale was 

used to separate the soil into sand, silt, and clay size fractions.

Saturated volumetric water content within the upper 35 centimeters of soil was 

determined for the four general marsh regions; the creekbank, levee, low marsh flat, and 

high marsh. Replicate cores (40cm length, 7.6cm. i.d.) were taken prior to marsh surface 

exposure by the ebbing tide. These soil samples were assumed to be saturated with respect 

to water. Cores were sealed and immediatly returned to the laboratory. Saturated samples 

were taken at 5 centimeter intervals, weighed, oven dried at 105°C for 24 hours, and 

reweighed. Percent water content is expressed as a percentage weight loss of the saturated 

sample per field condition volume of the sample (Boelter and Blake, 1964). An estimate of 

soil water yielding capacity was determined by taking another set of replicate cores when 

the water table had reached a minimum level. Water table elevations were monitored by 

nearby piezometers and wells. Assuming no change in soil volume, percent water loss 

over a tidal cycle was determined by the difference in volumetric water content between 

saturated and gravity drained samples. Drained soil samples were only taken at the 

creekbank and levee crest where observations indicated greatest tidal influence on the water 

table.

Soil horizontal hydraulic conductivity (K) were determined in situ on undisturbed 

saturated marsh soil. Measurements were made along the transect at the following depth 

intervals: 0-20, 20-40,50-70, and 80-100 centimeters. Sampling stations incorporated the 

four general elevational regions: the creekbank, levee, low marsh flat, and high marsh. 

Hydraulic conductivity of the 0-20 centimeter depth interval was measured by the auger 

hole technique with utilizing Hooghoudt's equation (eq. 3.1) (Luthin, 1957; Rycroft et. al., 

1975). Rate measurements continued until the cavity was 25% recharged.
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K = [(2.3)(r2)(Ah)][log(hi/h2)][(2c+r)(t2-ti)]-1 (eq. 3.1)

Where:

K = Horizontal hydraulic conductivity (cm/sec)

Ah = Cavity shape factor (cm)

t2-tl = Time interval for water level change from hi to h2 (cm) 

r = Radius of auger hole or cavity (cm) 

hi = Distance from water table to water level at ti (cm) 

h2 = Distance from water table to water level at t2 (cm) 

c = Distance from water table to base of augered cavity (cm)

Hydraulic conductivity of the remaining depth intervals were determined following the 

piezometer tube method and utilization of equation 3.2 (Luthin, 1957; Rycroft et. al.,

1975).

K = (3.14)(r2)[log2(hi/h2)][(Ah)(t2-ti)]-l (eq. 3.2)

In principle, both methods measure the rate of water recharge into the auger 

hole/piezometer following evacuation of water. A modification to the methods was 

necessary to maintain the integrity of the augered cavity. Once the cavity was augered, a 20 

centimeter long screen mesh cylinder (0.5cm mesh size) was inserted into the augered hole 

or PVC casing (3.5cm i.d., 4.5cm o.d.) and installed at the proper depth location. Soil 

hydraulic conductivity was measured at three locations within each general marsh region 

and each auger hole/piezometer test was replicated to assure consistency. The arithmetic 

mean was taken as the hydraulic conductivity estimate for a particular depth interval within 

a region. Temperature of the recharging water was recorded at several sites. In most 

instances, there was a slight initial decline of hydraulic conductivity with recovery time.
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Therefore, reported values were determined from stabilized terminal readings (Rycroft et. 

al., 1975; Hemond and Goldman, 1985).

3.2 Results

Grain size distribution descriptive statistics are given in Table 3.1. The high 

marsh/upland edge station had a large sand component, approximately 44% on a dry 

weight basis. This was primarily due to input from the eroding sandy bank of the adjacent 

uplands. The creekbank/levee and low marsh flat regions were primarily composed of a 

silt-clay sediment mixture of riverine origin. The creekbank/levee site had a slightly higher 

percent silt and lower percent clay composition than the low marsh flat site. This gradation 

of grain size may be explained by the settling of silt-sized particles within tidal water as it 

inundates the creekbank/levee region (Pestrong, 1977).

Lateral and vertical variations in bulk density, percent organic matter, and fiber 

content along the transect are given in Figures 3.1 to 3.3. Descriptive statistics for the three 

soil parameters are given in Tables 3.2 to 3.4. Surface to 20cm depth interval bulk density 

values decreased from the creekbank (station #1) (0.576g/cm^) to the high marsh site 

(station #8) (0.247g/cm^). The levee region (station #3) (0.440g/cm^) displayed bulk 

density values intermediate between the creekbank and high marsh sites. Variation with 

depth is apparent at the back-levee site (station #4), low marsh/high marsh transitional zone 

(station #7), and the high marsh/upland edge interface (station #8). The decrease in bulk 

density values with depth at the back-levee site, from 0.462 to 0.256g/cm^, was apparantly 

due to an increase in organic matter. Mean percent organic matter and fiber content values 

increased from 16.1 percent and 0.008g/cm^ at the 0 to 20cm depth interval to 27.4 percent 

and 0.01 lg/cm^ at the 80-100cm depth interval respectively. Bulk density values increased
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with depth at the low marsh/high marsh and high marsh/upland edge transition zones; 

values increased from 0.202 to 0.610g/cm^ and 0.247 to 0.578g/cm^ respectively.

Visual observations of cores from the low marsh/high marsh transition zone and 

high marsh indicate that an increase in sand content with depth was responsible for the 

increase in soil bulk density with depth. Variability in terrestrial sand input to the high 

marsh regions appears to have caused discrepencies in data. The bulk density, percent 

organic matter, and fiber content data indicate a very fibrous, organic soil of low bulk 

density within the upper 40 centimeters og the high marsh/upland edge interface.

However, the single core used in grain size analysis indicates a fairly dense, sandy 

sediment.

A multivariate statistical technique, Q-mode factor analysis (Di Zhou et. al., 1983) 

was used to establish, simplify, and classify relationships between sampling sites based on 

physical soil parameters. The reader is referred to Davis (1986) for a general overview of 

principal components and factor analysis. The raw data matrix [X] of soil parameters 

versus sample location was transformed by dividing each value in a given variable column 

by the highest value observed in that column. This scaling served to give each variable an 

equal weighting. The scaled matrix was then row-normalized. The major product 

moment, or matrix of cosine similarity [W], was calculated by multiplying the standardized 

data matrix [X] by its transpose [X]T Eigenvalues and eigen vectors (principal 

components) were determined for the similarity matrix [W]. The sum of the eigenvalues of 

the cosine similarity matrix [W] represents the total variance of the data set. Eigenvalues, 

percent sums of squares, and cumulative percent sums of squares are given in Table 3.5.

Principal component I, representative of soil bulk density, accounted for the majority 

(87%) of total variation in the data set. Principal component II, representative of percent 

organic matter and uncorrelated with principal component I, accounted for 12 percent of the 

total variation. The third principal component, representative of fiber content, showed an 

insignificant contribution (1%<) in explaining total variance and was eliminated from



further analysis. This simplified the analysis by reducing the dimensions of the data. Fiber 

content, being a size class measure of soil organic matter, had a high correlation (r^=0.72) 

with percent organic matter. The strong positive relationship between the two soil 

parameters indicate the redundant nature of information contained within the data set. 

Principal components I and II may be considered as initial factors.

Factor loadings indicate the correlation of a sample with a particular factor. In order 

to provide more interpretable results, factors were orthogonally rotated (varimax rotatation) 

to position sample vectors closer to extreme regions or the origin of the factor axes (i.e., 

adjusting factor loadings so they are closer in value to 1 or 0). Communalities, determined 

by the sum of the squared factor loadings of a particular sample, indicate how well a 

sample vector is explained by individual factors. Orthogonally rotated factor loadings and 

communalities are given in Table 3.6 and loadings are plotted in Figure 3.4. Examination 

of communalities indicate that all sample locations are well represented by the two factors. 

Rotation of the factors distributed the total variance explained by the factors more evenly; 

rotated factor I and II explained 54 and 45 percent of the total variance respectively. Figure

3.4 indicates two major groupings of the sample vectors; one group loading high with 

respect to factor I and another with respect to factor II. End member samples which are 

exemplified by extreme soil properties, were identified as station code #4 and #25. These 

sampling stations correspond to the creekbank 80-100cm and the low marsh flat/high 

marsh transitional region 0-20cm depth interval respectively. Mean soil parameter 

properties for the end members stations are:

Fiber content 

0.002g/cm^ 

0.021g/cm.3

/  LIBRARY \
/  o t th e  \

\ VIRGINIA INSTITUTE j 
V o f j
\  MARINE SCIENCE/

Factor# Sta./depth Code# Bulk density % Organic

1 1/80-100cm 4 0.662g/cm^ 10.2

2 7/0-20cm 25 0.202g/cm3 29.4



14

Having factor loadings between end member stations, intermediate stations may be 

described as compositional mixtures of the end members. Determination of end member 

association was accomplished by an oblique rotation of the factor loadings. Examination of 

the denormalized, oblique rotated loadings matrix, shows that the marsh transect may be 

differentiated into four general soil types. Characterized by varying degrees of end member 

association, the four soil types may be described as follows: 1) greater than 75% to 100% 

association with factor I end member, 2) greater than 50% to 75% association with factor I 

end member, 3) greater than 75% to 100% association with factor II end member, and 4) 

greater than 50% to 75% association with factor II end member. By subdividing the marsh 

transect into these four general soil classifications, the transect was differentiated into four 

general regions (Fig. 3.5). These four regions correspond to the four general elevational 

regions: the creekbank, levee, low marsh flat, and high marsh. Soil classification identifies 

similar soil types along the creekbank, levee, and deeper low marsh flat/high marsh 

transition and high marsh regions. Whereas these soils exhibit similar bulk densities, 

percent organic matter and fiber content, grain size analysis (Table 3.1) shows the 

creekbank/levee region to be primarily composed of silt-clay sized particles while the 

deeper low marsh flat/high marsh transition and high marsh regions are characterized by a 

relatively high sand content.

Horizontal hydraulic conductivity measurements were made in the four general soil 

regions identified by Q-mode factor analysis. Vertical and lateral variation in hydraulic 

conductivity was observed along the transect from the creekbank to the high marsh site. 

Mean hydraulic conductivity values are plotted in Figure 3.6 and descriptive statistics are 

given in Table 3.7. Hydraulic conductivity measurements followed a log-normal 

distribution. Cochrans C and Bartlett-Box procedures were used to test for homogeniety of 

variances. One-way analysis of variance of log transformed data (F.05,14,30= 1-06, 

Prob.=0.000) indicates that soil permeability was not homogeneous along the transect.

The creekbank 80-100cm depth interval was excluded from analysis due to lack of
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replication; soil permeability was so low within the region that the sample sites were 

inundated by tidal waters before proper measurements could be made.

A Tukey HSD multiple comparison test, at the 0.05 alpha level, indicates significant 

differences with depth at the levee and high marsh sampling locations. The 0-20cm (2.3 x 

10"4cm/sec) and 20-40cm (2.8 x lO'^cm/sec) depth intervals were significantly different 

from the 50-70cm (1.1 x 10"^cm/sec) depth interval at the levee. The high marsh showed 

significant differences between the 0-20cm (1.9 x 10“̂ cm/sec) depth interval and the 50- 

70cm (6.0 x 10"^cm/sec) and 80-100cm (7.6 x 10"^cm/sec) depth intervals. Significant 

lateral variations occured in the 0-20cm depth interval between the creekbank and high 

marsh site; mean hydraulic conductivity values were 1.1 x 10"^cm/sec and 1.9 x.10" 

^cm/sec respectively. At the 20-40cm depth interval, the creekbank site (1.6 x 10" 

^cm/sec) varied significantly from the levee (2.8 x 10-4cm/sec), low marsh flat (5.4 x 10" 

^cm/sec), and the high marsh (1.1 x lO'^cm/sec) sites. Significant differences were also 

found between the levee (1.1 x 10"^cm/sec) and low marsh flat (2.2 x 10"^cm/sec) site at 

the 50-70cm depth interval. No significant differences in hydraulic conductivity were 

found at the 80-100cm depth interval between the levee, low marsh flat, and high marsh.

The relationship between log transformed hydraulic conductivity and various soil 

parameters were determined by simple linear regression. The correlation matrix of 

relationships between mean hydraulic conductivity, bulk density, percent organic matter, 

and fiber content is given in Table 3.8. All regression line slopes were significantly 

different from 0 at the 0.05 alpha level. Positive linear relationships were observed 

between hydraulic conductivity and percent organic matter, and fiber content. Diy bulk 

density displayed an inverse relationship with hydraulic conductivity and the other soil 

parameters (Fig. 3.7).

A step-wise inclusion multiple regression procedure was utilized in order to provide 

linear prediction models and assess which of the independent soil parameters explained 

most of the variation observed in soil hydraulic conductivity values. An overall F test
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indicates that the multiple soil parameter linear model explained 76 percent of the variability 

observed in hydraulic conductivity values (F.05,3,12= 12.53) (Table 3.9). The multiple 

linear prediction equation (eq. 3.3) for horizontal hydraualic conductivity is:

K = 10(62.76(X1) - 4.22(X2) - 0.05(X3) - 1.74) (eq. 3.3)

Where,

K = Horizontal hydraulic conductivity (cm/sec)

XI = Fiber content (g/cm^)

X2 = Dry bulk density (g/cm^)

X3 = Percent organic matter

Partial F tests indicate that the addition of bulk density and percent organic matter to the 

model, did not significantly improve the prediction ability of hydraulic conductivity over 

fiber content alone. Fiber content accounted for 69 percent of the variation observed in 

permeability estimates.The prediction equation (eq. 3.4) excluding bulk density and percent 

organic matter is:

K = io(85.33(X1) - 4.70) (eq. 3.4)

The high marsh region, where surface soils were characterized by low bulk 

densities, and high fiber and organic contents, exhibited mean volumetric water content 

values of over 90 percent (Fig. 3.8). Deeper sandy sediments (below 50cm from the 

surface) within the high marsh region were characterized by a volumetric water content of 

approximately 50 percent. Soil volumetric water content values approximated 80 percent 

within the creekbank and levee regions. Soil water content of the low marsh flat, 

approximately 85 percent, was intermediate between the high marsh and creekbank/levee
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regions. Estimates of specific yield of the creekbank and levee soils were 2 and 3 percent 

respectively.

3.3 Summary and Discussion

Spatial variations of soil properties within an extensive tidal freshwater wetland 

indicate that the soil was not a homogeneous unit. Multivariate analysis best described a 

118 meter transect running from a creekbank to the upland edge as four separate general 

soil classes (Fig. 3.5). These four general soil classes correspond to the general elevational 

regions found within a typical extensive tidal wetland: the creekbank, levee, low marsh flat, 

and high marsh. The creekbank region, a narrow region approximately three meters in 

width and exclusively vegetated byPeltandra virginica , was characterized by high soil bulk 

densities (0.566g/cm^), low percent organic matter (11.7%), and low fiber content 

(0.004g/cm3). The upper one meter soil profile of the creekbank appeared to be 

homogeneous with respect to soil organic and fiber content, and bulk density. The levee 

region extended 20 meters inward from the creekbank and was predominately vegetated by 

Spartina cynosouroides. Soil characteristics within the levee region displayed vertical and 

lateral differences and appeared transitional between the creekbank and the extensive low 

marsh flat. Soil bulk densities varied from 0.506 to 0.230g/cm^, decreasing with distance 

from the creekbank. Percent organic matter and fiber content varied from 11.4 to 32 

percent and 0.001 to 0.019g/cm^ respectively, these properties increased in value with 

distance from the creekbank. Tunneling activity of Ondatra zibethica was concentrated 

along the creekbank and levee region. It appears that the inorganic, clay-like soil properties 

found within these regions allow for such macroporosity, whereas interior marsh soils 

would immediately subside or collapse in on such structures.
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Vegetated by a high diversity of plants and comprising the majority of the transect, 

approximately 80 percent, the low marsh flat comprised the third general soil type. The 

third soil type extended from the back-levee to the low marsh/high marsh interface, a 

distance of 100 meters. Mean bulk density, percent organic matter, and fiber content 

values were 0.274g/cm^, 27.0 percent, and 0.017g/cm^ respectively. As with the 

creekbank, the low marsh flat displayed minimal variation in soil properties with respect to 

depth. The high marsh, about 18 meters wide and predominantly vegetated by Typha 

latifolia, comprised the fourth soil type. This region displayed the greatest variation of soil 

properties with respect to depth. Bulk density increased from 0.247 at the 0-20cm depth 

interval to 0.578g/cm^ at the 80-100cm depth interval, while percent organic matter and 

fiber content decreased from 29.6 to 13.7 percent and 0.027 to 0.005g/cm^ respectively.

The high marsh region may be described as a thin layer of peat substrate overlying a sandy, 

inorganic sediment of terrogenous origin. Incorporating all sampling stations, overall 

mean values for a one meter depth along the transect were 0.427g/cm^ for bulk density,

18.2 for percent organic matter, and 0.010g/cm^ for fiber content.

Soils of similar physical properties were found along the creekbank, below 50 

centimeters at the levee, and at depth within the low marsh flat/high marsh transitional zone 

and high marsh regions. However, grain size analysis and visual observation indicate 

these soils differ significantly. The creekbank/levee soils display low sand content (5.1% 

on a dry weight basis), whereas sand sized sediment dominated the 80-100cm depth 

interval in the high marsh (greater than 60% on a dry weight basis). Although limited, 

grain size data indicates that the creekbank/levee and low marsh flat regions are dominated 

by riverine input of silt and clay sized particles. The high marsh received a large 

contribution of sand sized particles from the eroding uplands in addition to silt and clay 

sized particles of riverine origin.

Soil parameters measurements concur with other investigations of tidal freshwater 

wetlands. Percent organic matter estimates were highest in the high marsh and low marsh
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regions, approximately 30 percent; regions were dominated by Typha latifoilia and mixed 

vegetation communities respectively. Minimum percent organic matter estimates (11.8%) 

occured along the Peltandra virginica dominated creekbank. Whigham and Simpson 

(1975) reported percent organic matter values ranging from 14 to 40 percent for a tidal 

freshwater wetland along the Delaware River. Investigators also noted a similar decreasing 

trend of soil organic matter as one moved from the high marsh towards the creekbank.

Bowden (1982) reported organic matter values ranging from 40 to 75 percent along the 

North River in Massachusetts. Percent organic matter estimates along the Chickahominy 

River in Virginia varied between 20 and 59 percent (Hoover, 1984; Odum et. al., 1984).

Dry bulk density and fiber content values were not given by the above investigators.

Peat soil, as defined by Vollmer (1967), is "organic soil formed by the 

accumulation in wet areas of the partially decomposed remains of vegetation, and with less 

than 20 percent of mineral matter". High riverine and upland contributions of inorganic 

material, in conjunction with lower biomass and density of roots and rhizomes of tidal 

freshwater vegetation (Silberhom et. al., 1974; Garofalo, 1980), deterred the formation of 

peat soil within the study site. This observation concurs with Odum (1984) who reported 

that peat formation within northern and southern tidal freshwater wetlands is not as 

common as in brackish or salt marshes. The Typha latifolia dominated high marsh soil was 

the most closely related soil type to a typical peat within the extensive tidal freshwater 

wetland.

Spatial heterogeneity of hydraulic conductivity was closely associated to variations 

in soil types found within the wetlands. Significant relationships existed between hydraulic 

conductivity and various physical soil properties (Fig. 3.7). The coefficient of 

determination (r^) of log transformed hydraulic conductivity and dry bulk density was 

0.66, 0.55 with percent organic matter, and 0.72 with fiber content. Verry and Boelter 

(1978) found a similar positive relationship between hydraulic conductivity and fiber 

content (r^=0.54) and inverse relationship with bulk density (r2=0.54).
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Utilizing a multiple linear regression procedure, fiber content was identified as the 

measured parameter which best explained variations of soil permeability observed 

throughout the wetlands. Being a size fraction measurement of organic matter within the 

soil, fiber content provides information on the degree of humification within a soil. Soils 

that have undergone a high degree of humification or decomposition will tend to be less 

permeable as compared to soils experiencing little or none (Rycroft et. al., 1975). Fiber 

sized organic matter apparantly increases channelization within the soil matrix, thereby 

increasing a soils ability to transmit water. Prediction equations were developed in order to 

provide hydraulic conductivity estimates when given specific soil properties (i.e., fiber 

content, bulk density, percent organic matter). The linear regression model (eq. 3.3), 

incorporating fiber content, bulk density, and fiber content, accounted for 76 percent of the 

variability of field hydraulic conductivity measurements. A simplified model (eq. 3.4), 

incorporating only fiber content, accounted for 69 percent of the total variation observed in 

soil permeability.

Since hydraulic conductivity of the wetland soil was highly dependent on its fiber 

content, temporal variations in soil permeability may occur in response to root formation 

during the course of the growing season. Since Typha latifolia and Spartina cynosouroides 

have dense shallow root systems, regions dominated by such vegetation have an increased 

potential for temporal soil permeability variations. Booth (1989) reported increases in soil 

organic matter within tidal freshwater wetland Spartina cynosouroides region throughout 

the growing season.

The creekbank region did not display significant variation in soil permeability with 

respect to depth. Soil structure within the upper one meter of this region was fairly 

uniform nature, consisting of a dense, low organic soil of clay/silt sized particles. The 

creekbank region lacked a dense fibrous root system, since it was dominated by Peltandra 

virginica which has a large fleshy tuber. Having mean hydraulic conductivity values that
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ranged between 1.1 x 10'4 and 6.3 x 10"^cm/sec, the creekbank region was the least 

conducive to water transmission.

Hydraulic conductivity within the levee varied significantly with depth. This 

region, as shown in Figure 3.5, displayed large differences in soil structure within the 

upper one meter profile. Mean soil permeability estimates within the 0-20cm and 20-40cm 

depth intervals were 2.3 x 10"^ and 2.8 x 10"^cm/sec respectively, while the 50-70cm and 

80-100cm depth intervals displayed mean hydraulic conductivities estimates an order of 

magnitude less. Spartina cynosouroides, which dominates the levee region, has a shallow 

dense root system. Data indicates a mean fiber content of 0.007g/cm^ in the upper forty 

centimeters, whereas the 50-70cm and 80-100cm depth intervals had fiber content values of 

0.002 and 0.001g/cm^ respectively. Bulk density and percent organic matter did not show 

a substantial change with depth.

The upper one meter of soil within the low marsh flat was a uniform low density, 

fibrous organic soil (Fig. 3.5), thus hydraulic conductivity did not vary significantly with 

depth. Comprising the majority of the transect, the low marsh flat had the potential for 

relatively rapid horizontal water movement. Horizontal mean hydraulic conductivity values 

ranged from 1.4 x 10-3 to 2.2 x lO'^cm/sec.

The most permeable soil, 1.9 x 10“̂ cm/sec, occured within the Typha latifolia 

dominated high marsh surface-20cm depth interval. Typha latifolia has a dense shallow 

root system similar to Spartina cynosouroides; mean fiber content and percent organic 

matter at this depth interval was 0.027g/cm^ and 29.6 respectively. Hydraulic conductivity 

measurements varied significantly with depth; the 0-20cm depth interval differed 

significantly from the underlying 50-70cm (6.0 x lO'^cm/sec) and 80-100cm (7.6 x 10"

^cm/sec) depth intervals. Differences in permeability were due to variations in soil 

structure of the individual depth intervals (Fig. 3.5). A organic fibrous soil was underlain 

by a dense sand/silt/clay mineral sediment. Harvey (1986) observed similar results of a 

highly permeable shallow marsh soil underlain by a less permeable sand/clay substrate.
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Knott et. al. (1987) suggests that humified organic matter may act to seal interstitial pore 

spaces between mineral particles and cause a decrease in substrate permeability.

In summary, there was a increasing trend in hydraulic conductivity within the upper 

40 centimeter profile as one moved from the creekbank towards the high marsh (Fig. 3.6). 

Significant lateral differences were observed, most noticably within the upper 40 

centimeters between the high marsh and creekbank edge where there was a two order of 

magnitude difference.

Rycroft et. al. (1975) provides a comprehensive summary of non-tidal wetland 

hydraulic conductivity studies. Permeability values range from 6 x 10"^cm/sec for highly 

humified peat to 5 x lO'^cm/sec for undecomposed peat. Several soil permeability 

investigations have been conducted in brackish and salt marshes, however, no published 

studies were found for tidal freshwater wetlands where botanical composition exhibits such 

high diversity. A summary table of these studies is given in Table 3.10. Comparison of 

these studies indicate that permeability values reported in this study are similar to brackish 

and salt marshes found along the Atlantic coast.

Saturated tidal freshwater marsh soil, on a percent volume basis, was primarily 

composed of water; mean volumetric water content values ranged between 77 and 90 

percent. Results concur with other investigations on various wetland peat types. Boelter 

(1964) reports volume water contents for several types of saturated peats, these include: 1) 

undecomposed moss peats (96.6%), 2) decomposed moss peats (86.5% ), and 3) 

herbaceous peats (86.9%). Dasberg and Neuman (1976), investigating inland wetland soil 

properties, reported values exceeding 90 percent and Agosta (1985) reported values 

ranging from 80 to 85 percent for a east coast Spartina dominated saltmarsh. Less dense 

organic soils, like those found in the low marsh and high marsh regions, had a higher 

volumetric water content than the more dense inorganic soils found along the creekbank. 

Incorporation of water into the root and rhizome matter is partially responsible for this 

trend.
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Estimates of specific yield along the creekbank and levee region were 2 and 3 

percent respectively. This indicates that after several hours of drainage (i.e., over a tidal 

cycle), approximately 95% of the water was retained within the drained soil matrix. 

Retention of the water is due to strong capillary action and the small drainable pores found 

within clay/silt substrates. Specific yield estimates would be expected to increase as one 

moved from the creekbank towards the upland, since the low marsh flat and high marsh 

soils are composed of higher organic and fibrous material. Investigations on specific yield 

estimates within wetlands systems is relatively sparse. Harvey (1986), working in a 

Spartina alterniflora saltmarsh, reported a mean value of 3.2 percent. Dasberg and Neuman 

(1977) report values of 20 to 30 percent, and Boelter (1965) reported a wide range of 

estimates (10 to 79%) for several inland peat types.
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Figure 3.1: Spatial distribution of soil dry bulk 
density along wetland transect.
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Figure 3.2: Spatial distribution of soil percent 
matter along wetland transect.
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Figure 3.3: Spatial distribution of soil fiber content 
along wetland transect.
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Figure 3.4: Plot of factor loadings on the two 
varimax factor axes.
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Figure 3.5: Wetland soil characterization based on 
factor end member association.
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Figure 3.6: Spatial variations in soil horizontal
hydraulic conductivity along wetland 
transect.
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Figure 3.7: Horizontal hydraulic conductivity 
and soil parameter relationships.
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Figure 3.8: Wetland soil volumetric water content.
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Table 3.1: Grain size distribution of wetland soil 
along transect.



Station/Depth % Sand % silt % clay

Creekbank/Levee
surface-20cm 5.8 29.6 64.6
20-40cm 3.4 34.9 61.7
50-70cm 5.1 30.2 64.7
80-100cm 6.1 25.1 68.8

Low Marsh Rat
surface-20cm 5.9 21.8 72.3
20-40cm 2.1 22.2 75.7
50-70cm 2.1 18.3 79.6
80-100cm 3.6 23.6 72.8

High Marsh/Upland Edge
surface-20cm 56.4 13.8 29.8
20-40cm 30.5 18.1 51.4
50-70cm 27.1 18.4 54.5
80-100cm 65.3 12.1 22.6
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Table 3.2: Descriptive statistics of soil dry bulk
density along wetland transect.
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Table 3.3: Descriptive statistics of soil percent organic
matter along wetland transect.
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Table 3.4: Descriptive statistics of soil fiber content
along wetland transect.
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Table 3.5: Eigenvalues, percent sums of squares, 
and cumulative sums of squares for the 
principal components of soil parameters 
along wetland transect.
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Table 3.6: Varimax rotated factor loadings and 
end member identification.



S t a t i o n / D e p t h S t a t i o n  C o d e  # C o m m u n a l i t y
F a c t o r  I  

L o a d i n g
F a c t o r  I I  

L o a d i n g

l / 0 - 2 0 c m 1 0 . 9 9 9 0 . 9 4 2 2 0 . 3 3 3 6

l / 2 0 - 4 0 c m 2 0 . 9 9 5 0 . 8 8 2 1 0.4653
l / 5 0 - 7 0 c m 3 0 . 9 9 2 0 . 9 0 3 7 0 . 4 1 8 7

1 /8 0 —100cm* 4 1 . 0 0 0 0 .9 7 1 2 0 .2 3 8 1
2 / 0 —20 cm 5 0 . 9 9 9 0 . 8 9 4 4 0 . 4 4 6 0

2 / 2 0 - 4 0 c m 6 0 . 9 9 8 0 . 8 9 3 1 0 . 4 4 7 9
2 / 5 0 - 7 0cm 7 0 . 9 9 8 0 . 9 0 1 4 0 . 4 3 0 7

2 / 8 0 - 1 0 0 c m 8 0 . 9 9 9 0 . 9 6 1 0 0 . 2 7 4 4

3 / 0 - 2 0 c m 9 0 . 9 9 8 0 . 8 5 9 2 0 . 5 0 9 6
3 / 2 0 - 4 0 c m 10 0 . 9 8 8 0 . 8 2 9 6 0 . 5 4 7 5
3 / 5 0 - 7 0cm 11 0 . 9 9 4 0 . 9 3 7 4 0 . 3 3 9 9

3 / 8 0 - 1 0 0 c m 12 0 . 9 8 5 0 . 9 3 6 7 0 . 3 2 7 4

4 / 0 - 2 0 c m 13 0 . 9 9 9 0 . 8 1 5 6 0 . 5 7 7 8
4 / 2 0 - 4 0 c m 14 0 . 9 9 8 0 . 9 0 4 4 0 . 4 2 4 6

4 / 5 0 - 7 0 c m 15 0 . 9 9 3 0 . 7 5 4 8 0 . 6 5 0 6
4 / 8 0 - 1 0 0 c m 16 0 . 9 6 4 0 . 4 4 4 0 0 . 8 7 5 6

5 / 0 - 2 0 c m 17 0 . 9 9 9 0 . 5 1 2 6 0 . 8 5 7 8
5 / 2 0 - 4 0 c m 18 0 . 9 9 8 0 . 4 1 1 9 0 . 9 1 0 3

5 / 5 0 - 7 0cm 19 0 . 9 6 0 0 . 3 9 3 1 0 . 8 9 7 7

5 / 8 0 - 1 0 0 c m 2 0 0 . 9 8 5 0 . 3 6 1 1 0 . 9 2 4 4

6 / 0 - 2 0 c m 2 1 1 . 0 0 0 0 . 4 5 9 3 0 . 8 8 8 2

6 / 2 0 - 4 0 c m 22 0 . 9 5 8 0 . 4 0 7 4 0 . 8 8 9 7
6 / 5 0 - 7 0 c m 23 0 . 9 9 8 0 . 4 1 6 9 0 . 9 0 8 0

6 / 8 0 - 1 0 0 c m 2 4 0 . 9 9 7 0 . 3 0 8 1 0 . 9 4 9 6

7 /0 —20cm* 25 0 .9 9 9 0 .2 8 1 5 0 .9 5 9 3
7 / 2 0 - 4 0 c m 26 0 . 9 9 9 0 . 4 0 9 2 0 . 9 1 1 9
7 / 5 0 - 7 0cm 27 0 . 9 9 4 0 . 8 4 0 1 0 . 5 3 7 2

7 / 8 0 - 1 0 0 c m 2 8 0 . 9 9 9 0 . 9 4 7 4 0 . 3 1 9 1
8 / 0 —20 cm 29 0 . 9 8 0 0 . 2 8 2 3 0 . 9 4 8 7

8 / 2 0 - 4 0 c m 3 0 0 . 9 9 1 0 . 5 2 4 9 0 . 8 4 5 8

8 / 5 0 - 7 0 c m 3 1 1 . 0 0 0 0 . 8 4 0 7 0 . 5 4 1 1

8 / 8 0 - 1 0 0 c m 3 2 1 . 0 0 0 0 . 9 0 9 9 0 . 4 1 4 6

V a r i a n c e  
Cum. V a r i a n c e

5 4 . 0 4 7
5 4 . 0 4 7

4 5 . 1 8 8
9 9 . 2 3 4

*  d e n o t e s  f a c t o r  e n d  m e m b e r s
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Table 3.7: Descriptive statistics of soil horizontal 
hydraulic conductivity along wetland 
transect.



S ta t io n /D e p th  i n t e r v a l Mean S td .E r r o r N

C r e e k b a n k  

0 - 2 0 c m  

2 0 - 4 0 c m  

5 0 —7 0cm  

8 0 —10 0 cm

L e v e e

0 - 2 0 c m

2 0 - 4 0 c m

5 0 - 7 0 c m

8 0 - 1 0 0 c m

Low M a r s h  F l a t  

0 - 2 0 c m  

2 0 - 4 0 cm 

5 0 - 7 0 c m  

8 0 - 1 0 0 c m

H i g h  m a r s h / U p l a n d  e d g e

0 —20cm

2 0 - 4 0 c m

5 0 - 7  0cm

8 0 - 1 00cm

F o r  e n t i r e  s a m p l e

For  e n t i r e  sample  
( w i t h o u t  m i n e r a l  s o i l  
a t  50-70cm and 80-100cm 
d e p t h  i n t e r v a l  a t  
h i g h  marsh)

—4
1 x 1 0 3 . 7 x l 0 ~ 5 3

6 x 1 0  3 4 . 8 x l 0 ~ 6 3

8 x 1 0 ~ 5 3 .  lxlO""5 3

3 x l 0 _ 6 NA 1

3 x l 0 " 4 1 . 3 x l 0 ~ 5 3
—4

8 x 1 0 8 . 1 x l 0 _ 5 3

l x l O - 5 4 . 2 x l 0 “ 6 3

5 x l 0 ~ 5 1 . 3 x l 0 ~ 5 3

4 x 1 0  3 3 . 6 x 1 0  4 3
—4

4 x 1 0 2 . 0 x l 0 ” 4 3
—4

2 x 1 0 6 . 4 x 1 0 o
—4

2 x 1 0 2 . 5 x l 0 ~ 4 3

9 x 1 0 ” 3 7 . 5 x l 0 ~ 4 3

l x l O ” 3 6 . 9 x l 0 _ 4 3

0 x l 0 ~ 5 2 . 3 x l 0 _ 5 3

6 x 1 0  3 3 . 6 x l 0 ” 5 3

- 4
2 x 1 0 4 . 0 x l 0 ~ 4 4 6

- 4
9 x 1 0 4 . 3 x l 0 ~ 4 3 9

1
1
3

6

2

2

1
4

1
5

2

5

1
1
6

7

4

4
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Table 3.8: Soil parameter correlation (r) matrix.
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Table 3.9: Step-wise inclusion multiple regression of 
soil parameters with horizontal hydraulic 
conductivity.



STEP #1  VARIABLE ADDED: FIBER CONTENT

MULTIPLE R: 0 .8 3
R SQUARE: 0 .6 9

VARIABLE VALUE 
FIBER CONTENT: 8 5 .3 3  
(CONSTANT): - 4 . 7 0

STEP #2 VARIABLE ADDED:

M ULTIPLE'R: 0 .8 6
R SQUARE: 0 .7 3

VARIABLE VALUE 
FIBER CONTENT: 5 2 .3 1  
BULK DENSITY: - 2 . 1 0
(CONSTANT): - 3 . 4 5

STEP #3 VARIABLE ADDED:

MULTIPLE R: 0 .8 7
R SQUARE: 0 .7 6

VARIABLE VALUE 
FIBER CONTENT: 6 2 .7  6 
BULK DENSITY: - 4 . 2 2
% ORG. MATTER: - 0 . 0 5  
(CONSTANT): - 1 . 7 4

ANALYSIS OF VARIANCE 
REGRESSION 
RESIDUAL

BULK DENSITY

ANALYSIS OF VARIANCE 
REGRESSION 
RESIDUAL

ORGANIC MATTER

ANALYSIS OF VARIANCE 
REGRESSION 
RESIDUAL

DF MEAN SQUARE F 
1 5 .9 1  3 1 .0 1

14 0 .1 9

DF MEAN SQUARE F 
2 3 .1 4  1 7 .7 3

13 0 .1 8

DF MEAN SQUARE F 
3 2 .1 7  1 2 .5 2

12 0 .1 7

K W . e c )  = 10<85.3*fiber)-4.7

K(cm/sec) = io^2.7*fiber)— density)-(0.05*Xorganic matter)—1.7
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Table 3.10: Literature cited field measurements of 
soil hydraulic conductivity within tidal 
wetlands.



R
ef

er
en

ce
 

L
o

ca
ti

o
n

 
M

et
ho

d 
H

yd
ra

u
li

c 
C

o
n

d
u

ct
iv

it
y

 
(c

m
/s

ec
)

/—V
• /—s

,_ Q —. ,--S Wy y y y •
3 3 CO 3 3 CO

i—I rH oo T“H rH < r
co CO 1 CO CD i
> > o ?> > o

ipH rH
c C * G C X
CD CD C-4 cO CD C O
Cl) CD » y y •
a a <!• a a

w '—' ■«—■* V_'

t1 < ri C OI ■ m1 11
o

i o 1o i o 1o 1
o

1—t H r—1 H i—1 r—•
X X X X X X

i n CM 00 cn cr»
• • • • ■ •

r - CO r-» 1"- CO <1"

Ny \ y y
u 43 >- 44 43

CD y y 3 y 3 y y 3
QJ H H 4-1 4-4 4-4 4-4 rH r—I 4-400 O O y y o o
CD 0) 43 43 a y a y 4 3 43 y
(X 40 3 oo CO 00 00
<U 3 y CD y cO t-i U co0) 4-4 CD y a CU a a* y y G .
CO 00 00 M y M y 00 00 y3 3 y y y y 3 3 y(0 cD 3. CO a. CO CO CO CO

co rO•G CO
4-1 C 4-» cD CO Gi—1•H i 1 4 4-> •H 1 »
cd 00 » cDf^ M 4-4 • rH 43 43CO u 43 cob 43 y 43 o COCO•H CO CD COCO 3 4*4 y M

43 >  ̂ 'O 433 M3 CO MCOCO cD G CO CO43 CO O P*4 £
•H • £  CO •H • £ y £

43 rH 4 4 3 CO 43 rH j-to co 4J > . oco 4-> CO 4-> 4-4 CO y
CO u iH U CCJJ-I r—i CO H 3 rO 4-4
M CO CO CO 4  CD CO CO CO O •H co

PP £ co  S (-rp3 00 £ 00 CO £-4 &

CD
G O l

4*5 1—1
o >H 00
co y CT>

P3 u T~i /—V
/•—■> u cO <r-'»vO «3 o H r»
o o o cO 04 •3
CT» G rH 3
H O 4-4 '_’ 4-4

y y CO
4-» /■—s G-n y

0) y  m co n 4-4 c CO
> >  co n jO 4-4 'd •H
U T—1 <T» KT> O >-• cO 43
CO CD T—t O—< G cD y 4->

33 i- j— !*3 O (33



4 2

IV. WETLANDS SUBSURFACE HYDROLOGY

Introduction

Wetland systems may be considered as phreatic aquifers where the water table, 

delineating the zone of saturation, is directly influenced by the atmosphere. The water table 

is therefore a dynamic surface where the hydrostatic pressure varies with and equals 

atmospheric pressure. Transient water influx and efflux within a wetland system is 

responsible for water table fluctuations, variations in water storage characteristics, and 

changes in the relative importance of water transport mechanisms (Ingram, 1983).

Soil water removal processes operating within a tidally influenced wetland include 

evapotranspiration and subsurface drainage. Evapotranspiration is a combination of direct 

evaporation of water within a soil matrix and its associated litter layer, and evaporation of 

water from wetland vegetation. Several studies of east coast tidal wetlands have quantified 

the effect of evapotranspiration on soil water budgets (Hemond and Fifield, 1982; Dacey 

and Howes, 1984). Seepage is the transport of interstitial water due primarily to 

differences in hydraulic pressure and elevation between regions of interest. The relative 

importance and magnitude of effluent seepage from tidal wetlands to adjacent soil regions 

or surface waters is quite variable (Gardner, 1976; Jordan and Correll, 1985; Agosta,

1985; Yelverton and Hackney, 1986; Harvey et. al., 1987).

Interstitial water lost by evapotranspiration or effluent seepage can be replaced 

through a variety of mechanisms. Influent seepage, from adjacent surface waters (Jordan 

and Correll, 1985; Yelverton and Hackney, 1986; Harvey et. al., 1987) and/or upland 

regions via groundwater recharge (Valiela et. al., 1978; Carr and Blackley (b), 1986) has 

been shown to influence water table elevations and water storage within tidal wetlands. 

Meteorologic sources of water are variable, but when coincident with marsh surface 

exposure, affect pore water pressures and water table behavior (Carr and Blackley (b),
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1986). Soil water may also be replenished by diffuse surface flow followed by vertical 

infiltration (Hemond and Burke, 1981; Hemond et. al., 1984; Jordan and Correll, 1985; 

Yelverton and Hackney, 1986; Carr and Blackley (a) and (b), 1986; Harvey et. al., 1987). 

Sources of diffuse surface flow include inundating tidal waters and runoff from adjacent 

upland regions during periods of high rainfall.

Determination of subsurface hydraulics in conjunction with soil hydrophysical 

properties is required to calculate the exchange of interstitial water within a wetland system. 

With a knowledge of wetland geohydrologic properties, the application of theoretical 

equations of flow in porous media is possible. Fluid dynamic models may be prepared to 

simulate subsurface hydraulics within a defined system, this would allow for predictive 

ability and provides a tool to further our understanding of such systems.

4.1 Elementary Theory of Subsurface Flow

Water moves through a soil matrix in response to variations in energy. The total 

energy of a moving unit mass of water, at a particular point, is described by Bernoulli's 

equation (4.1).

h = (v^/2g) + (p/w)+z (eq. 4.1)

Where:

p = pressure (mass/length^) 

w = specific weight of water (lengths/mass) 

v = velocity of flow (length/time) 

g = gravitational acceleration (length/time^) 

z = elevation above a reference level (length)
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h = hydraulic head (length)

Since water moves through aquifers at relatively low flow velocities, the kinetic energy 

component (v^/2g) equation may be neglected. This simplifies the definition of hydraulic 

head so that it may be described by pressure (p/w) and elevation (z) components. Water 

flow through a porous medium occurs in the direction of decreasing head (h). The change 

in hydraulic head with distance is known as the hydraulic gradient (dh/dl). Reactions 

between the water and soil medium, and frictional drag of water particles moving past each 

other and through the porous material, result in a resistance to water movement through a 

soil (Ingram, 1983). This resistance is responsible for the decrease in hydraulic head 

along a flow path.

Darcy's law (eq. 4.2) provides the basic empirical foundation for laminar flow 

through a cross-sectional area of porous media.

Q = -KA(dh/dl) (eq. 4)

Where:

Q = Discharge (lengths/time)

A = Cross-sectional area perpendicular to direction of flow (length^)

K = Hydraulic conductivity (length/time) 

dh/dl = Hydraulic gradient (dimensionless)

Darcy's law indicates that discharge (Q) is proportional to the cross-sectional area (A), 

permeability of the porous media (K), and energy loss (dh) along the flow path, and 

inversely proportional to the length of the flow path. The negative sign indicates that 

discharge is in the direction of decreasing hydraulic head. Darcy's law is valid and 

applicable where viscous forces dominate inertial forces, such flows may be described as 

laminar. As flow rate velocities increase, the relationship between specific discharge (Q/A)
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and hydraulic gradient (dh/dl) may no longer remain linear, and Darcy's law is 

inapplicable. Because of the low velocities involved, most subsurface flow of natural 

water may be described by Darcy's law.

The fundamental equation describing steady state two dimensional water flow 

within a homogeneous (aquifer properties constant from point to point) and isotropic 

(aquifer properties constant in all flow directions at a single point) aquifer, can be derived 

by combining Darcy’s law with the principle of mass conservation (eq. 4.3). K and h are 

as previously defined, and x and z are horizontal and vertical flow components 

respectively.

K (d2h/dx2 + d2h/dz2) = 0 (eq. 4.3)

In order to describe time-variant flow, it is necessary to incorporate an aquifer storage 

coefficient which is equal to specific yield (Sy) within an unconfined aquifer (eq. 4.4).

d^h/dx^ + d^h/dz^ = (Sy/K)(dh/dt) (eq. 4.4)

Analytical solutions to equation (4.4) are difficult due to the time variation of the water table 

boundary condition. By use of Dupuit's approximation, simplification to a one 

dimensional equation describing horizontal flow is possible (eq. 4.5).

K (d^h^/dx^) = 2(Sy)(dh/dt) (eq. 4.5)

Application of Dupuit's approximation requires that simplifying assumptions be 

made regarding the flow field. Assumptions include: 1) flow is horizontal, 2) velocity is 

uniform with depth, and 3) hydraulic gradients are small and equal to the slope of the water 

table. The Dupuit approximation should be used with caution in regions with a vertical
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flow component. Such regions may be characterized by large hydraulic gradients and/or 

vertical variations in soil permeability that would produce depth variations in flow velocity.

4.2 Experimental Methods

Hydraulic head and watertable elevations were monitored over various tidal cycles 

by utilization of multi-level piezometer and well arrays. Piezometer sampling depth 

intervals were 20-40 and 80-100 centimeters. The well cavity extended from 20 to 100 

centimeters below the soil surface. Instruments were located at the same locations along 

the transect used in the soil characterization study. Piezometers were constructed of metal 

pipe (3cm i.d.) with a 20 centimenter long mesh opening forming the cavity. Wells were 

of similar construction but with a 80 centimeter cavity opening. Piezometers and wells 

were installed by augering out a thin walled casing (3.5cm i.d.) to the appropriate depth 

and inserting the instrument into the casing followed by removal of the casing. Rubber 

seals were fixed above the cavity and immediatly below the marsh surface to eliminate 

water migration down the side of the instrument.

Following installation, piezometers and wells were purged several times to remove 

debris and ensure adequate recharge. Piezometers, wells, tidal gauge, and marsh transect 

profile elevations were surveyed and referenced to a common point. Measurements of 

hydraulic head were accomplished manually by lowering a millimeter scale into the 

piezometer/well and recording the depth at which an electrical circuit was completed by 

contact with the water surface. Tidal changes within the thoroughfare were monitored by a 

semi-continous recording tidal gauge located at the study site.

The direct measurement of interstitial water seepage flow from the subaquaeous 

portion of the creekbank to the adjacent surface water was determined using seepage meters 

designed according to Lee (1977) with modifications by Bokuniewicz and Zeitin (1980).
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Seepage meters were positioned just below mean low water in close proximity to the 

creekbank nutrient monitoring wells. Seepage meters were deployed over complete tidal 

cycles and macroscopic seepage rates were calculated according to Lee (1977).

4.3 Subsurface Hvdrologic Model Description

A hydrologic model was developed to simulate hydraulic head fluctuations and 

horizontal flow within a wetland system over specified tidal conditions. The simulated 

system incorporated surface elevations of the 118 meter transect used in the soil 

characterization and subsurface hydraulics study, and field values of specific yield (Sy) and 

soil hydraulic conductivity (K). Soil hydraulic conductivity values were spatially assigned 

according to the soil classification system developed by factor analysis (Fig. 3.5). 

Permeability estimates from the 0-20cm depth intervals were used since this represented the 

region where the most mobile interstital water occured.

The bottom boundary of the flow system was assumed to be one meter in depth, 

this corresponded to low permeabilty soils identified during field investigations. 

Approximately a two order of magnitude difference in mean hydraulic conductivity 

measurements between the 0-20cm and 80-100cm depth intervals occured at the creekbank 

(1.1 x 10"^cm/sec vs. 6.3 x lO'^cm/sec) and high marsh regions (1.9 x 10"^cm/sec vs.

7.6 x lO'^cm/sec). Vertical variations in K within the levee region approximated a one 

order of magnitude difference between the 0-20cm and 80-100cm depth intervals (2.3 x 10" 

^cm/sec vs. 4.5 x 10'^cm/sec). The low marsh flat did not demonstrate significant vertical 

variations in horizontal hydraulic conductivity. However, given the extremely low 

hydraulic gradients displayed within this region, the effect of aquifer depth on discharge 

estimates was minimized. The right boundary was set at the high marsh/upland interface 

where the sand-clay sediment exibited low mean hydraulic conductivity values (7.6 x 10"
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^cm/sec). Both the bottom and right boundaries were expressed as no flow boundaries. 

Wang and Anderson (1982) provided a mathematical solution for these boundary 

conditions. The left boundary, located at the creekbank, was time variable and followed 

tidal cycle fluctuations. The water table, representing the final boundary, was time variable 

and determined by the model.

Several assumptions were made in order to simplify modeling efforts. Hydraulic 

head, at a particular nodal point along the transect, was assumed to equal tidal elevation if 

that nodal point was inundated by tidal waters. Hydraulic head was equal to the wetland 

surface elevation immediately following surface exposure or when surface water ponding 

existed at a particular nodal point; in both cases the soil was assumed to be saturated. 

Simulated horizontal flow did not occur when the entire wetland was inundated by tidal 

waters, since hydraulic head was assumed equal throughout the entire wetland. The model 

assumed instantaneous soil water recharge and discharge when a particular nodal point was 

reinundated or exposed by surface waters respectively. Field observations show that the 

above simplifying assumptions are realistic. Simulation model time steps were set at six 

minute intervals.

Simulated hydraulic head estimates were determined by a finite difference solution 

of the governing equation (eq. 4.5). An implicit form of the approximation, utilizing 

Gauss-Seidel iteration, was chosen due to its ability to remain stable given a wide range of 

model time step intervals (Remson et. al, 1971; Wang and Anderson, 1982 ). Horizontal 

discharge estimates to and from adjacent hydraulic cells were determined by integration of 

the governing equation with respect to x and substitution of appropriate boundary 

conditions (eq. 4.6) (Davis and DeWeist, 1966; Bear, 1972). Q and K are as previously 

defined, ho and hi are hydraulic head measurements at two adjacent nodal points, and L is 

the distance between the two points.

Q = (K/2L)(h02-hi2) (eq 4.6)
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Discharge through vertically stratified hydraulic cells, which were used to separate 

regions of various soil characteristics as identified by factor analysis (Fig. 3.5), were 

determined by equation 4.7 (Bear, 1972). K' and K" are the hydraulic conductivities of 

the respective subunits, and L’ and L" are the horizontal lengths of each subunit within the 

vertically stratified hydraulic cell.

Q = (h02-hi2)/[(L7K') + (L"/K")] (eq. 4.7)

Evaluation of model performance was achieved by comparison of field collected 

and model simulated spatial and temporal variations of hydraulic head. Difference indices, 

mean absolute error (MAE) and root mean square error (RMSE) provided estimates of the 

average magnitude of error between simulated and field measured results (Willmott, 1982; 

Willmott et. al., 1985). Both MAE and RMSE are in length units similar to hydraulic head 

measurements. RMSE should be regarded as a high estimate of actual error since it is 

relatively more effected by outlying observations than MAE.

Sensitivity analysis was employed to assess the relative response of discharge over 

a tidal cycle to variations in the following aquifer characteristics: 1) hydraulic conductivity, 

2) specific yield, and 3) aquifer depth. Soil and aquifer depth parameters were normalized 

in order to allow for comparison. Normalization was accomplished by dividing each 

parameter value by the mean field value. Parameters were varied over a range reflecting 

realistic values determined from field observations and review of literature. Sensitivity 

analysis was utilized for creekbank and high marsh, where large differences in soil 

properties, surface elevations and hydraulic gradients existed between the two regions.
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4.4 Field Results

Variations in hydraulic head and watertable elevations were monitored over tidal 

cycles on December 1, 1986, and March 3, 6, and 7 of 1987. March 3, 1987 watertable 

fluctuations for specified locations within the upper one meter of soil are given in Figures

4.1 through 4.4. The creekbank site, located 70 centimeters from the creekbank edge, 

displayed the greatest variation in hydraulic head and watertable elevation over a tidal cycle 

and with depth (Fig. 4.1). The decline in watertable elevation, as measured by the well, 

and hydraulic head within the 20-40cm depth interval of the soil, demonstrated similar 

patterns and magnitudes. Water level drawdown within the well and the 20-40cm 

piezometer were 22.9 and 23.7 centimeters respectively. Similar water level response by 

the well and 20-40cm piezometer indicates that the majority of horizontal flow is occuring 

within the upper 40 centimeters of the soil profile. Water level elevations in the 80-100cm 

piezometer were relatively unresponsive and always lower than hydraulic head 

measurements at the 20-40cm depth interval. Lower hydraulic head with depth indicates 

vertical flow from upper to lower soil levels. However, given the unresponsive nature of 

the deep piezometer and low soil permeability at this depth interval (6.3 x 10"^cm/sec), 

such vertical flow is believed to be minimal. The rapid increase in water table elevation, 

following inundation by tidal waters, signifies that vertical infiltration was a primary 

mechanism of pore water recharge within the creekbank region. Saturation of the soil was 

usually complete within 20 minutes of tidal water inundation.

Piezometers and the well responded in a similar fashion at the levee crest station 

(Fig. 4.2), despite significant variations in soil permeability with depth. Within two hours 

of exposure by surface waters, water table and hydraulic head elevations declined sharply 

to approximately 20 centimeters below the surface. It should be noticed that little time lag 

existed between the decline of surface water and interstitial water within this region. 

Following the period of rapid decline, the water table and hydraulic head elevations
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stabilized to a slow steady decline throughout the majority of the tidal cycle. Horizontal 

recharge of interstitial water was evident by the rapid rise in water table and hydraulic heads 

in the latter part of the tidal cycle. The levee region was not inundated during this particular 

tidal cycle, however, field measurements during early and latter parts of the cycle indicate 

that hydraulic heads and water table closely followed adjacent surface water elevations.

This pattern is an indication of increased soil permeability due to channelization of flow 

(i.e. pipe flow) within the upper 20 centimeters. Tunneling and burrowing activities of 

Ondatra zibethica were found at station 2, which was approximately 4 meters creekward of 

the levee crest station. Water table and hydraulic heads at station 2 followed surface water 

elevations throughout the monitored tidal cycles. Excavation of this site following the 

study, revealed a subsurface tunnel (approximately 20cm in diameter) in close vicinity to 

station 2. Such tunneling activity allows for a free connection of surface waters to marsh 

creekbank, levee, and interior regions, thus influencing hydraulic gradients and the 

exchange of material within these regions.

The low marsh region displayed minimum variation in hydraulic head with depth, 

and was characterized by a saturated soil condition, ponding of surface waters, and 

extremely low hydraulic gradients (Fig. 4.3). Following 48 hours of exposure, the water 

table remained within 1.5 centimeters of the soil surface. Surface ponding gradually 

decreased throughout the tidal cycle due to evapotranspiration, vertical infiltration, and/or 

surface runoff. Recharge of low marsh flat interstitial water to the levee and high marsh 

regions was minimal or non-existant. Hydraulic gradients throughout the high marsh and a 

large majority of the back-levee region indicated water movement towards the marsh 

interior.

The high marsh station, located near the upland interface, displayed significant 

temporal and spatial variations in hydraulic heads and watertable (Fig. 4.4). Following 

surface exposure, the shallow piezometer and well were characterized by a slow steady 

decline, which approximated 5.5cm over a tidal cycle. There was only an additional
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decline of 2 centimeters following an exposure period of 48 hours. Horizontal recharge of 

interstitial water was evident just prior to tidal inundation, this was expected given the 

relatively high soil permeabilities of the region. Hydraulic head at the 80-100cm depth 

interval was elevated in relationship to the well and shallow piezometer. This hydraulic 

head pattern suggests groundwater recharge from the adjacent uplands to the wetland. Soil 

permeability of the sand/silt lens at the 80- 100cm depth interval (7.6 x 10“̂ cm/sec) was 

significantly less than the overlying 0-20cm and 20-40cm depth intervals (1.9 x 10'3 and

1.1 x 10“ 3 cm/sec respectively). This lower permeability could be partially responsible for 

the unresponsive nature of the deep piezometer.

Direct estimates of seepage from the creekbank to adjacent surface waters were 

made over two tidal cycles. Seepage was monitored over a stormtide and spring tide event 

in order to compare extreme conditions. The stormtide event, December 1, 1986, had a 

high water elevation of 144.4cm above the reference point. The marsh levee was exposed 

approximately 4.5 hours while the creekbank remained inundated throughout the tidal 

cycle. The spring tide sampling period, May 3, 1987, had a reference high water elevation 

of 113.8cm with the levee and creekbank regions being exposed for approximately 11.0 

and 6.0 hours respectively. Due to low hydraulic conductivity estimates along the 

creekbank, seepage meters were sampled only once over a complete tidal period. Mean 

cumulative discharges for the storm event and spring tide condition were 0.75 (S.E.=0.11, 

N=3) and 1.42 (S.E.=0.07, N=3) liters/meter^/tidal cycle respectively. The stormtide 

discharge should be considered a minimum since marsh surface exposure by tidal water 

and hydraulic gradients within the creekbank region were kept minimal. This preliminary 

data indicates an inverse relationship between seepage discharge and water surface 

elevation as reported by Lee (1977).
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4.5 Model Results

Simulated creekbank water table draw-down and associated time lag from tidal 

surface waters were in good agreement with field observations (MAE =1.1cm; RMSE 

=1.5cm) (Fig. 4.5a). Simulated water table response late in the tidal cycle conforms to the 

idea that vertical infiltration is the dominant recharge mechanism within the creekbank 

region. This was demonstrated by the rapid increase in water table elevation as the site was 

inundated by surface waters. Disparity existed between the predicted and field measured 

water table elevation at the levee crest (MAE =16.0cm; RMSE = 17.6cm) (Fig. 4.5b). As 

previously discussed, this region was influenced by pipe flow conditions which were not 

accounted for by the model.

Model performance at the back-levee site was in general agreement (MAE =2.6cm; 

RMSE -2.8cm) (Fig. 4.6a) with field observations. Since this region occured within a 

transitional zone from levee (K= 2.3 x 10“̂ cm/sec) to low marsh flat (1.4 x lO’^cm/sec), 

under-estimation of water table draw-down (7.7cm versus 5cm) may have occured due to 

model usage of the lower soil permeability estimates within this region. Field data indicates 

horizontal recharge towards the end of the tidal cycle, whereas model simulation shows a 

slow steady drop in water table. Increased horizontal interstitial water recharge is an 

indication of a more permeable soil.

There was good agreement between model predicted water table elevation and 

observed elevations within the low marsh flat region (MAE = 1.0cm; RMSE = 1.4cm) (Fig. 

4.6b). Most deviation occured early in the tidal cycle when model code provided for 

immediate response of the water table with surface waters if the site is inundated. Water 

table elevations within this region indicated ponding of surface and drained interstitial water 

from upland and back-levee sites. Discharge from the high marsh and back levee regions, 

to the low marsh flat, maintained ponding and 100 percent water saturation of the soil 

throughout the majority of the tidal cycle. Model simulation provided excellent agreement
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within the high marsh (MAE =0.4cm; RMSE =0.5cm) (Fig. 4.7); both the pattern and 

extent of water table draw-down were accurately predicted. It should be noted that 

recharge from upland groundwater sources were not incorporated into the model.

Discharge curves for a simulated tidal cycle (March 3, 1987) show great spatial and 

temporal variation (Fig. 4.8a-d). Creekbank seepage rates (Fig. 4.8a) increased early in 

the tidal cycle and reached a maximum of approximately 700ml/hr. The increase in 

discharge was a result of increased hydraulic gradients due to ebbing surface waters. As 

creekbank interstitial water was transported to surface water due to horizontal effluent 

seepage, and the ebbing of surface water ceased, hydraulic gradients and discharge rates 

began to decay. Horizontal porewater movement was terminated when the site was 

inundated by surface waters. Creekbank discharge lasted approximately six hours over the 

simulated tidal cycle. It is important to recognize that discharge patterns, rates, and time 

periods will vary depending on tide amplitude and symetry. Discharge at the levee crest 

(Fig. 4.8b) was characterized by an initial low rate that increased throughout the tidal cycle 

to a maximum of 500ml/hr. Discharge was terminated abruptly due to inundation of 

surface waters. Horizontal discharge, from the levee crest towards the creekbank, 

continued for approximately 10 hours. The low marsh flat region (Fig. 4.8c) displayed 

similar patterns as the levee crest, however, maximum horizontal disharge rates (20ml/hr) 

were greatly reduced due to low hydraulic gradients. The simulated tidal discharge curve 

for the high marsh region (Fig. 4.8d) showed an initial maximum seepage rate of 800ml/hr 

followed by a gradual decline due to decay in hydraulic gradient. High marsh discharge 

continued for approximately ten hours over the simulated tidal cycle.

Interstitial water budgets were constructed utilizing model results for the creekbank, 

levee, low marsh flat, and high marsh regions of the transect. Effluent (discharge) and 

influent (recharge) seepage were calculated by the model, whereas, vertical infiltration was 

determined by difference to complete mass balance of water. Horizontal flows and vertical 

infiltration are expressed as mean values determined from three consequtive tidal cycles that
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inundated the entire marsh transect during the study period. Ondatra zibethica influence 

was incorporated in the model by having a nodal point 2.7 meters from the creekbank 

follow surface water elevations. A model comparison was made as to the effect of this 

large scale bioturbation to a creekbank and levee region that does not experience such 

tunneling activity.

Interstitial water movements and budgets for the creekbank region, with and 

without the tunneling activity of Ondatra zibethica, are given in Figures 4.9 and 4.10 

respectively. Tunneling activity allows for bi-directional drainage within the creekbank 

region (0.7-2.7 meters), whereas, a uni-directional drainage pattern occurs in the absence 

of such large scale bioturbation. Horizontal discharge within 0.7 meters of the creekbank 

edge towards surface water was greater without interior tunneling activity (4.18 versus 

2.47 liters/meter/tidal cycle) due to the sustainance of a steeper hydraulic gradient within the 

region. Water table elevations at the 1.7 meter nodal point did not decrease as rapidly or 

with the same magnitude as if under the influence of bi-directional flow. Without the 

influence of tunneling activity, discharge decreases rapidly as one move towards the marsh 

interior. There was over a four fold decrease in cumulative discharge across the vertical 

faces from the 0.7 (4.18 liter/meter/tidal cycle) to the 2.7 meter nodal point (0.90 

liter/meter/tidal cycle). This decrease in subsurface seepage is due to the decrease in water 

table draw-down and hydraulic gradient as one moves away from the creekbank edge.

With the simulated tunneling activity, horizontal discharge from the adjacent interior cell 

(1.7 meter node point) towards the creekbank was minimized and recharge of the 

creekbank was dominated by vertical infiltration. In the absence of tunneling activity, 

horizontal influent from the interior cell towards the creekbank was the dominant 

mechanism of pore water recharge to the region. However, vertical recharge becomes the 

primary mechanism of recharge within several meters of the creekbank when flow from 

adjacent interior regions diminished. Horizontal recharge of creekwater through the 

creekbank towards more interior marsh regions was minor. This was due to the
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combination of low soil permeabilities and sustenance of hydraulic gradient from the more 

interior regions toward the creekbank during the majority of the simulated tidal cycles.

Interstitial water movements and budgets for the levee region (Figs. 4.9 and 4.10) 

indicate that horizontal discharge occurs towards the creekbank and low marsh interior. 

Flow direction generally followed surface elevational profiles. The effect of muskrat 

tunneling activity within the creekbank region acted to increase the magnitude of flow and 

the spatial range of the levee region that drains toward the creekbank. Vertical infiltration 

was the primary mechanism of pore water replacement within the majority of the levee 

region. Simulated horizontal recharge to the levee from creekbank regions was minimal.

The low marsh region was characterized by low horizontal water movement on the 

order of 0.07 to 0.10 liters/meter/tidal cycle (Fig. 4.1 la). The low marsh flat region had a 

potential for relatively large horizontal flows due to high soil permeabilites (K= 1.4 x 10" 

^cm/sec), but low topographic relief and hydraulic gradients created the low flow 

conditions. An upward vertical component (0.01-0.02 liters/tidal cycle) was calculated in 

order to assure mass continuity over the inundating tidal cycles. This upward component 

indicates a surplus of water within this region, beyond the point of soil saturation. Low 

marsh regions in close proximity to the high marsh, received surplus water from high 

marsh regions via subsurface drainage. Model results correspond to field observations of 

surface water ponding within the majority of the low marsh flat region. Model simulation 

indicated no horizontal or vertical recharge within this region due to its soil remaining 

saturated with negligable hydraulic gradients throughout the tidal cycles.

Model results indicate the high marsh to be a region of substantial horizontal 

discharge (Fig. 4.11b). Mean horizontal discharge over a tidal cycle increases as one 

moves towards the marsh interior, while horizontal and vertical recharge decrease. 

Although hydraulic gradients in the landward high marsh cells decay rapidly, flow from 

these cells sustain the hydraulic gradients in the adjacent more interior cells. This process, 

in conjunction with highly permeable soils, was responsible for the increased discharge of
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the interior high marsh cells. Although total horizontal discharge increases as one moves 

from the upland/high marsh interface towards the marsh interior, net discharge decreases. 

Therefore, more water is being removed and not replaced by horizontal flow as one moves 

landward in the high marsh region. Horizontal discharge from adjacent more landward 

regions and vertical infiltration of inundating surface water are the predominant 

mechanisms for soil water recharge within the high marsh region. The importance of 

vertical infiltration increases as one moves landward in the high marsh region. Although 

this region exhibited relatively high soil permeability, horizontal recharge prior to tidal 

inundation was minimal due to the low topographic relief. Low topographic relief results 

in adjacent nodal points being inundated within a short time period of each other, thus 

effectively reducing the amount of time available for horizontal recharge. It should be 

noted that on tidal cycles where the maximum tidal height is in close proximity to surface 

elevations of the high marsh region, more time will be allowed for horizontal recharge to 

occur.

Sensitivity analysis within the creekbank region indicates that aquifer depth 

exhibited the largest influence on interstitial water discharge, followed by hydraulic 

conductivity and specific yield properties of the aquifer respectively (Fig. 4.12). Inverted 

results, as those found within the creekbank region, were obtained for the high marsh 

region (Fig. 4.13).

4.6 Summary and Discussion

Examination of vertical and horizontal heads and watertable fluctuations along a 

transect from the creekbank edge to the high marsh/upland interface, suggest that an 

extensive tidal freshwater marsh does not respond as a single hydraulic unit during periods 

of aerial exposure. It is better described as three distinct yet interactive hydraulic cell types.
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The most dynamic and tidally influenced cell is located along the narrow creekbank margin 

and is characterized by relatively large, rapid oscillations of the water table and hydraulic 

gradients. The lower portion of the back-levee and interior low marsh cell is distinguished 

by minimal water table movement and low hydraulic gradients; this region appears to be 

relatively stagnant with respect to horizontal water movement. The third general hydraulic 

cell, located within the high marsh region, displayed water table fluctuations and hydraulic 

gradients that were intermediate between the creekbank and back-levee/low marsh flat 

regions. Hydraulic evidence suggests shallow groundwater recharge to the high marsh 

region from the adjacent uplands. These three general hydraulic cells or regions are similar 

to those reported by Gardner (1973).

Vertical variations in hydraulic head were small as compared to lateral differences 

throughout the majority of the marsh transect, indicating that the majority of subsurface 

flow is horizontal. Movement of interstitial water was concentrated within the upper 40 

centimeters of the wetland soil profile, this concurs with investigation by Jordan and 

Correll (1985), and Harvey (1986). The direction of horizontal subsurface flow after aerial 

exposure, generally followed that of the surface elevation profiles.

When modeled as an unconfined aquifer and incorporating marsh surface elevations 

and hydrophysical soil properties, simulated hydraulic heads along the transect were in 

good agreement with field observations over space and time (Figs. 4.5 to 4.7). Exception 

occured within the levee region where Ondatra zibethica tunneling activity was responsible 

for pipe flow conditions which were not incorporated into the model.

The export of interstitial water from immediate creekbank regions towards adjacent 

surface waters via horizontal seepage has been investigated in a variety of salt and brackish 

tidal marshes, but review of literature found no such studies within tidal freshwater 

wetlands. Given the wide variety of surface elevational profiles, aquifer depths, soil 

hydrophysical properties, and tidal ranges, there is general agreement of cumulative flux 

estimates per meter of marsh creekbank over a tidal cycle. Gardner (1976) reported 6.91
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liters, Jordan and Correll (1985) estimated 43 liters across the creekbank face and 16 liters 

across a vertical face 0.5 meters interior to the creekbank, Yelverton and Hackney (1986) 

and Harvey et. al. (1987) estimated 39.6 and 11 liters respectively. Mean cumulative 

discharge for this study, through a one meter wide vertical face 0.7 meters interior to the 

creekbank, was 4.18 liters per tidal cycle. This value appears low compared to previous 

studies, however, hydraulic conductivity estimates used in the previously mentioned 

studies, except Gardner (1976), were several times greater. Direct estimates of horizontal 

seepage per tidal cycle (1.42 liters/m^) are in approximate agreement to model predicted 

estimates (2.47 liters and 4.18 liters with and without Ondatra zibethica tunneling activity 

respectively) under similar tidal conditions. Discrepency between measured and predicted 

values may be due to lower soil permeability (6.3 x 10~6cm/sec) at the depth the seepage 

meters were deployed; model simulations within this region used a hydraulic conductivity 

value of 1.1 x 10"^cm/sec.

Recharge of displaced intersti tial water within the creekbank occurs from a 

combination of vertical infiltration and horizontal discharge from adjacent interior regions. 

Horizontal recharge through the creekbank by surface waters was minimal. Although 

characterized by the lowest soil permeabilities, the creekbank region had the greatest 

potential for water and solute exchange with surface waters. This was primarily due to 

steep surface elevational profiles and tidal action facilitating the formation of relatively steep 

hydraulic gradients during periods of aerial exposure.

Comprising the majority of the transect, the lower portion of the back-levee and 

interior low marsh flat displayed very little horizontal transport of interstitial water (Fig. 

4.11a), although there existed a potential for relatively rapid horizontal water movement 

due to relatively high soil permeabilities. Isolation from tidal influence, low hydraulic 

gradients, and ponding of surface water were responsible for the low horizontal flux 

estimates. Discharge from the back-levee and high marsh regions helped maintain interior 

region soils in a saturated condition. Hemond and Fifield (1982) reported that horizontal
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seepage played a minor role in pore water movement within interior portions of a New 

England salt marsh. Vertical movement in response to evaporation demands dominated 

flow within the region. This region appears to have a low potential for exchange of water 

and solutes with surface waters due to seepage and recharge mechanisms. The ability to 

receive solute input from inundating waters would increase during the growing season 

when evapotranspiration potential increases (Dacey and Howes, 1984), and following 

surface exposure for time periods greater than a tidal cycle.

Moderate hydraulic gradients in conjunction with high permeable soils were 

responsible for substantial horizontal effluent seepage within the high marsh region (Fig.

4.1 lb). Observations of hydraulic head (Fig. 4.4) indicate a potential recharge of upland 

groundwater to this region. Groundwater input would aid in the stabilization of the water 

table during periods of exposure. The magnitude of groundwater input within the upper 

meter of the wetland soil is believed to be limited by the low soil permeability (7.6 x 10" 

^cm/sec) within the recharge zone. Vertical infiltration by inundating surface waters, and 

horizontal influent seepage from adjacent more landward regions were the primary 

mechanisms of soil water recharge within the high marsh. Importance of vertical 

infiltration decreased as one approached the low marsh flat.

Model sensitivity analysis indicates that creekbank and high marsh discharges 

increase as the hydraulic conductivity, specific yield, and depth of aquifer increase. 

However, the relative importance of each parameter differs between the two regions. 

Aquifer depth exerted maximum observed influence on creekbank discharge, whereas its 

relative effect in the high marsh region appeared minimal. Due to the form of the discharge 

equation (eq. 4.6), regions displaying large hydraulic gradients, such as the creekbank 

region, will be influenced to a greater extent by aquifer depth. Hydraulic conductivity 

displayed an intermediate influence within both regions. As with aquifer depth, an increase 

in soil permeability leads to a rapid decrease in the hydraulic gradient, providing a negative 

feedback mechanism. Variations in specific yield displayed maximal effects in the high
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marsh and minimal in the creekbank region. As specific yield properties of a soil increase, 

more water must be released from the soil in order to produce a unit decline in the water 

table. Therefore, an increase in a soils specific yield will keep hydraulic heads and 

gradients relatively high in regions displaying large surface elevational differences. The 

combination of highly permeable soil and sustenance of a relatively high hydraulic gradient 

lead to the maximal influence in the high marsh region. Although large hydraulic gradients 

were maintained within the creekbank region, the influence of specific yield was over 

shadowed by the soils low permeability. Results from sensitivity analysis within the 

creekbank region concur with Harvey et. al. (1987), who reported that geomorphological 

factors (i.e., aquifer depth, marsh surface elevations) influence cumulative discharge to a 

greater degree than soil hydrophysical properties (i.e., hydraulic conductivity, specific 

yield).
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Figure 4.1: Tidal variations in creekbank hydraulic 
heads and watertable, March 3, 1987. 
Horizontal reference line represents soil 
surface elevation.
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Figure 4.2: Tidal variations in levee crest hydraulic 
heads and watertable, March 3, 1987. 
Horizontal reference line represents soil 
surface elevation.
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Figure 4.3: Tidal variations in low marsh hydraulic 
heads and watertable, March 3, 1987. 
Horizontal reference line represents soil 
surface elevation.
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Figure 4.4: Tidal variations in high marsh hydraulic 
heads and watertable, March 3, 1987. 
Horizontal reference line represents soil 
surface elevation.
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Figure 4.5: (a) Simulated watertable response within 
creekbank region, March 3, 1987.

(b) Simulated watertable response within 
levee region, March 3, 1987.

Horizontal reference line represents soil 
surface elevation.
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Figure 4.6: (a) Simulated watertable response within 
back-levee region, March 3, 1987.

(b) Simulated watertable response within 
low marsh region, March 3, 1987.

Horizontal reference line represents soil 
surface elevation.
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Figure 4.7: Simulated watertable response within 
high marsh region, March 3, 1987.

Horizontal reference line represents soil 
surface elevation.
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Figure 4.8: Simulated discharge curves for 
March 3, 1987.
(a) creekbank, (b) levee crest,
(c) low marsh flat, (d) high marsh.

Negative values indicate effluent 
discharge towards the creek.
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Figure 4.9: Creekbank and levee pore water 
budgets without the influence of 
Ondatra zibethica.

Pore water budgets are in liters
per tidal cycle.
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Figure 4.10: Creekbank and levee pore water 
budgets under the influence of 
Ondatra zibethica.

Pore water budgets are in liters
per tidal cycle.
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Figure 4.11: (a) Low marsh pore water budget.
(b) High marsh pore water budget.

Pore water budgets are in liters
per tidal cycle.
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Figure 4.12: Creekbank model sensitivity analysis
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Figure 4.13: High marsh model sensitivity analysis.
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V. INTERSTITIAL WATER NUTRIENT CHEMISTRY AND 

EXCHANGE POTENTIAL

Introduction

Interstitial water nitrogen and phosphorus chemistry, and availability of these 

nutrients within a wetland soil is influenced by a wide variety of interacting physio- 

chemical and biological processes, degree of soil saturation, environmental conditions, and 

characteristics of recharging water (Clymo, 1983). Sources of recharging water include 

inundating surface waters, precipitation, seepage from adjacent wetland soil regions, and 

upland groundwater sources. During periods of exposure, subsurface seepage and 

evapotranspiration may export pore water from the soil allowing entry of atmospheric 

oxygen and recharging water into the soil matrix. A saturated soil condition effectively 

reduces the exchange of oxygen and solutes with the atmosphere and/or recharging water. 

Typically a two layered soil system will develop, a shallow oxidized region overlying a 

thicker anaerobic soil region. The aerobic/anaerobic interface is transient in nature, being 

influenced by vegetation and hydrodynamic processes within the region.

Due to the anaerobic nature of wetland soils, interstitial waters are generally 

enriched with reduced forms of nutrient species. Organic nitrogen and ammonium are the 

primary species of dissolved nitrogen occuring within wetland soils. If not utilized by the 

vegetation, ammonium accumilates within the soil due the the discontinuation of organic 

nitrogen mineralization. Nitrate and nitrite, the remaining inorganic nitrogen species, 

generally do not accumilate due to rapid microbial mediated denitrification processes. 

Denitrification is a process where microbial communities utilize nitrogenous oxides as 

terminal electron acceptors during the oxidation of organic matter, whereby, they are 

reduced and removed from the system either as nitrogen gas (N2 ) or nitrous oxide (N2O).
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Phosphorus is more closely associated with sediment than nitrogen species, 

however, its availibilty increases under saturated anaerobic soil conditions. Factors 

effecting this increased availability include reduction of metal phosphate minerals to more 

soluble forms and the reduction of ferric oxides on clay/silt particles which subsequently 

release phosphate. Therfore, interstitial waters are generally enriched in phosphate and 

other soluble forms of phosphorus relative to surface waters. Vegetative uptake and 

reprecipitation of insoluble ferric phosphates within oxidized regions contribute to the 

decrease of available phosphate within the system. For a detailed review of nutrient 

transformations within wetland soils, the reader is referred to Delaune et. al. (1976) and 

Reddy and Patrick (1984).

5.1 Experimental Methods

Interstitial water nutrient samples were collected bi-monthly during the spring 

(March-May) and summer (June-August) seasons, and monthly during the fall (September- 

November) and winter (December-February) seasons. Samples were collected from three 

transects which extended from the uplands to the wetlands edge at the thoroughfare. Each 

transect consisted of four sampling stations, these include: the uplands, high marsh, low 

marsh flat and creekbank/levee regions. Each sampling station consisted of a three well 

array, except for the upland station which consisted of a single well. Sampling depths at 

each station within the wetland were 20-40,50-70, and 80-100 centimeters. The upland 

stations consisted of a single well that sampled the upper limit of the phreatic aquifer.

Replicate water samples were also taken from the thoroughfare during all sampling periods.

Monitoring wells were constructed of PVC pipe (4cm inside diameter) which were 

capped at the bottom and had a removable threaded top. Wells were perforated for a 20 

centimeter distance and wrapped with plastic screening to prevent the entry of large
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particles. Wells were installed as outlined in the Subsurface Hydrodynamics methodolgy 

section. A bentonite sealant was installed at the surface to help prevent vertical migration 

down the side of the well by overlying waters. Collection of interstitial water was 

accomplished by first evacuating the well with a vacuum pump and collecting recharging 

water into a 250ml polyethylene sample bottle. All sampling instruments were flushed with 

deionized water between sample collections. Samples were stored on ice until return to the 

lab.

Within two hours of collection, samples were filtered with combusted and 

deionized water rinsed Whatman A/E glass filters. Water samples were analyzed 

spectrophotometrically for dissolved inorganic nitrogen species, total nitrogen, and total 

phosphorus. Ammonium was analyzed following the hypochlorite/phenol procedure (U.S. 

EPA, 1983). Nitrite was determined by diazotizing with sulfanilamide and coupling with 

N-(l-naphyl)~ethylenediamine to form an azo dye (U.S. EPA, 1983). Nitrate was 

determined after reduction to nitrite by use of Cu-Cd column. Nitrate was calculated as the 

difference between the reduced sample (nitrate + nitrite) and the non-reduced sample 

(nitrite). Total nitrogen (inorganic + organic fixed nitrogen) was determined by first 

subjecting the sample to a potassium persulfate digestion. Following digestion, HC1 

solution and borate buffer were added and the sample was analyzed as in the nitrate 

procedure (D'Elia et. al., 1977). Urea was used for total nitrogen standards. Total 

dissolved phosphorus samples were subjected to an ammonium persulfate digestion 

followed by adjustment of pH. The sample was then analyzed as in the Ascorbic acid 

procedure for orthophosphate (U.S. EPA, 1983).
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5.2 Results

Nonparametric analysis of variance by ranks (Kruskal-Wallis Test) was utilized to 

determine if significant variations in mean nutrient concentrations existed between depth 

intervals within a specified marsh location, and between marsh locations at corresponding 

depth intervals. Nutrient data incorporating all sampling periods were used for statistical 

analysis. If significant variations did occur between depths or sample locations, a 

nonparametric multiple comparison test for unequal sample sizes was used to determine 

which samples significantly differed from one another (Zar, 1984). All statistical test used 

an alpha level of 0.05.

Mean creekbank interstitial water nutrient concentrations, with respect to time and 

depth, are given in Figures 5.1 and 5.2. Descriptive statistics incorporating all samples of 

the study is given in Table 5.1. Mean sampling date nitrate concentrations (Fig. 5.1a) 

varied from non-detectable to 23.8uM/liter. Nitrate concentrations exhibited a general 

decreasing pattern with increasing depth. The 20-40cm sampling depth varied significantly 

from the 80-100cm depth interval. Mean nitrate levels during the study period for the 20- 

40cm, 50-70cm, and 80-100cm depth intervals were 5.4, 2.4, and 1.7uM/liter 

respectively. Temporal variations, similar to that of creek surface water, were exhibited by 

the 20-40cm depth interval. Elevated levels (>10uM/liter) occured in the winter and early 

spring months, followed by a sharp decline and stabilized lower levels (<2uM/liter) 

throughout the summer and fall months. The 50-70cm and 80-100cm pore water samples 

remained relatively low and uniform throughout the entire sampling period. Nitrite 

contribution to the creekbank interstitial water nitrogen pool was negligable; mean sampling 

date concentrations varied from non-detectable to less than 0.5uM/liter (Fig. 5.1b). 

Analysis of variance by ranks indicated no significant variations of nitrite with respect to 

depth. A distinct temporal trend similar to nitrate levels at the 20-40cm sampling depth was 

not observed for nitrite levels at the corresponding depth interval.
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Mean creekbank sampling date ammonium concentrations (Fig. 5.1c) varied from 

1.0-13.5uM/liter with no obvious seasonal trends. Mean ammonium levels during the 

study period for the 20-40cm, 50-70cm, and 80-100cm depth intervals were 6.4, 4.9 and 

4.7uM/liter respectively. The 20-40cm depth interval varied significantly from the 50- 

70cm and 80-100cm depth intervals. Dissolved organic nitrogen was the primary 

constituent of dissolved nitrogen within creekbank interstitial waters. Dissolved organic 

nitrogen approximated 80 percent of the total nitrogen pool. Mean sampling date 

concentrations varied from 15.7 to 57.3uM/liter (Fig. 5.1d). Data indicates a possible 

decreasing trend of dissolved organic nitrogen levels from the spring through the fall with a 

subsequent increase during the late winter season. Significant variations with depth were 

not observed. Mean dissolved organic nitrogen levels during the study period for the 20- 

40cm, 50-70cm, and 80-100cm depth intervals were 33.4, 31.8, and 30.0uM/liter 

respectively. Total dissolved nitrogen concentrations follow a similar temporal pattern as 

organic nitrogen (Fig. 5.2a); mean sampling date variations ranged from 21.4 to 

74.9uM/liter. Total nitrogen concentrations within the 20-40cm depth interval were 

significantly higher than concentrations at the 80-100cm depth interval. Mean dissolved 

total nitrogen levels during the study period for the 20-40cm, 50-70cm, and 80-100cm 

depth intervals were 44.0, 38.2, and 36.5uM/liter respectively.

Creekbank total phosphorus levels displayed a peak during the spring followed by a 

rapid decline and stabilized low levels for the remainder of the study (Fig. 5.2b). Mean 

sampling date concentrations varied from 0.7 to 15.8uM/liter. Total phosphorus 

concentrations did not differ significantly with respect to depth. Mean concentration levels 

during the study period were 3.9, 3.8, and 3.8uM/liter for the 20-40cm, 50-70cm, and 80- 

100cm depth intervals respectively.

Mean low marsh flat interstitial water nutrient concentrations, with respect to time 

and depth, are given in Figures 5.3 and 5.4. Descriptive statistics incorporating all samples 

and sampling dates are given in Table 5.2. Mean sampling date pore water concentrations
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of nitrate and nitrite ranged from non-detectable to 2.2uM/liter and non-detectable to 

0.3uM/liter respectively (Figs. 5.3a and 5.3b). Nitrate and nitrite concentrations did not 

vary significantly as a function of depth. Mean nitrate levels during the study period for the 

20-40cm, 50-70cm, and 80-100cm depth intervals were 1.1, 1.0, and 0.9uM/liter 

respectively. Overall mean nitrite levels throughout the study period were undetectable to 

0. luM/liter for all three depth intervals. Nitrate and nitrite levels did not exhibit observable 

seasonal trends.

Ammonium was the primary inorganic nitrogen species within the low marsh flat, 

however, concentrations appeared extremely low for a wetland soil. Mean sampling date 

concentration levels ranged from 0.4 to 7.8uM/liter (Fig. 5.3c). Data does not indicate a 

discemable seasonal pattern. Mean ammonium levels during the study period for the 20- 

40cm, 50-70cm, and 80-100cm depth intervals were 4.3, 3.5, and 3.2uM/liter 

respectively. Ammonium levels differed significantly between the 20-40cm and 80-100cm 

depth intervals. Dissolved organic nitrogen comprised approximately 85 percent of the 

total nitrogen pool. Mean sampling date concentration levels varied from 16.2 to 

62.8uM/liter. Data indicates a decreasing trend of dissolved organic nitrogen from the 

spring through the fall with a subsequent increase during the winter season (Fig. 5.3d); this 

trend was observed at all sampling depth intervals. Significant differences of dissolved 

organic nitrogen levels between depth intervals were not observed. Mean concentrations 

during the study period for the 20-40cm, 50-70cm, and 80-100cm depth intervals were

34.8, 33.3, and 33.6uM/liter respectively. Total dissolved nitrogen concentrations follow 

a similar temporal pattern as organic nitrogen (Fig. 5.4a); mean sampling date levels range 

from 20.4 to 65.9uM/liter. No significant variations of total dissolved nitrogen with 

respect to depth were observed. Mean dissolved total nitrogen concentrations during the 

study period for the 20-40cm, 50-70cm, and 80-100cm depth intervals were 40.4, 38.0, 

and 38. luM/liter respectively. Total phosphorus levels were variable and did not follow a 

consistant pattern (Fig. 5.4b); mean sampling date concentrations range from 1.3 to
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15.4uM/liter. Low marsh flat mean total phosphorus concentrations for the 20-40cm, 50- 

70cm, and 80-100cm depth intervals were 7.5, 9.0, and 6.3uM/liter respectively. The 50- 

70cm depth interval generally exhibited elevated mean monthly total phosphorus 

concentrations during the summer and fall months; overall concentrations at the 50-70cm 

depth differed significantly from the 80-100cm depth interval.

Mean high marsh interstitial water nutrient concentrations, with respect to time and 

depth, are given in Figures 5.5 and 5.6. Descriptive statistics incorporating all samples and 

sampling dates is given in Table 5.3. Interstitial water nitrate and nitrite concentrations 

within the high marsh region were a minor component of the total dissolved nitogen pool.

Mean sampling date concentrations of nitrate and nitrite ranged from non-detectable to 

7uM/liter and nondetectable to <0.3uM/liter respectively (Figs. 5.5a and 5.5b). The final 

sampling date in February 1987 displayed an anomily of increased nitrate concentration 

level (7uM/liter) within the 20-40cm depth interval. Mean nitrate concentrations in the 50- 

70cm depth interval were influenced by a single well that typically had elevated nitrate 

levels. Upon removal of this well, a sand lens originating in the adjacent uplands was 

identified. This would increase the potential for relatively nutrient rich upland groundwater 

or tidal water to recharge the soil region around the well. Overall nitrate and nitrite levels 

did not significantly differ between the three sampled depth intervals. Mean sampling date 

ammonium concentrations (Fig. 5.5c) varied from 1.0 to 25.2uM/liter. The 20-40cm depth 

interval ammonium concentrations indicate a temporal pattern of high levels occuring in the 

winter and early spring and decreasing through the summer and fall months. Mean 

ammonium levels during the study period for the 20-40cm, 50-70cm, and 80-100cm depth 

intervals were 9.4, 9.0 and 2.9uM/liter respectively. The 20-40cm and 50-70cm depth 

intervals differed significantly from the 80-100cm depth interval.

Dissolved organic nitrogen comprised approximately 85 percent of the total nitrogen 

pool within the high marsh. Mean sampling date concentration levels varied from 26.9 to 

75.0uM/liter (Fig. 5.5d). Data indicates a decreasing trend of dissolved organic nitrogen
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from the spring through the fall with a subsequent increase during the winter season, this 

trend was observed at all sampling depth intervals. Mean dissolved organic nitrogen 

concentrations during the study period for the 20-40cm, 50-70cm, and 80-100cm depth 

intervals were 55.8, 45.3, and 40.2uM/liter respectively. Overall mean dissolved organic 

nitrogen levels displayed significant variations with depth, the 20-40cm depth interval 

varied significantly from the 50-70cm and 80-100cm depth intervals. Total dissolved 

nitrogen concentrations followed a similar temporal pattern as organic nitrogen (Fig. 5.6a); 

mean monthly variations ranged from 28.8 to 89.4uM/liter. Significant variations of total 

dissolved nitrogen with depth were observed; the 20-40cm sampling depth differed 

significantly from the 50-70cm and 80-100cm depth intervals, and the 50-70cm depth 

varied significantly from the 80-100cm depth interval. Mean total dissolved nitrogen 

concentrations during the study period for the 20-40cm, 50-70cm, and 80-100cm depth 

intervals were 65.5, 55.7, and 43.7uM/liter respectively.

High marsh total phosphorus levels showed a steady decrease from spring months 

through the fall and subsequent winter (Fig. 5.6b); mean sampling date concentrations 

ranged between 0.7 and 7.7uM/liter. The 80-100cm depth interval exhibiteded elevated 

levels in relationship to the other sampling depths throughout the entire study. Mean total 

phosphorus concentrations during the study period for the 20-40cm, 50-70cm, and 80- 

100cm depth intervals were 3.4, 3.2, and 4.6uM/liter respectively. The 80-100cm depth 

interval varied significantly from the 50-70cm depth interval.

Descriptive statistics for nutrient concentrations within the creek water as a function 

of time are given in Figures 5.7 and 5.8. Mean sampling date nitrate levels varied from 1.4 

to 56.1uM/liter (Fig. 5.7a). Nitrate levels exhibited a distinctive seasonal pattern. High 

monthly mean concentrations occured in early spring (18uM/liter) and winter 

(35.6uM/liter); this coincided with regional periods of high rainfall, surface runoff, and 

decreased water column productivity. Summer and fall months were characterized by 

relatively low nitrate concentrations, mean seasonal values were 7.4 and 7.7uM/liter
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respectively. Nitrite was a minor constituent of the creekwater nitrogen pool and did not 

display a discemable seasonal pattern (Fig. 5.7b). Mean nitrite sampling date 

concentrations varied between non-detectable and 0.7uM/liter. Ammonium levels within 

creek surface waters remained relatively low throughout the sampling period with mean 

sampling date concentrations varing from 1.7 to 7uM/liter (Fig. 5.7c). Winter ammonium 

concentrations (4.4uM/liter) were elevated relative to spring (3.3uM/liter), summer 

(3.5uM/liter), and fall levels (2.8uM/liter).

Dissolved organic nitrogen comprised the majority of the total nitrogen pool within 

creek waters during the study period; mean sampling date levels varied from 6.2 to 

46.4uM/liter (Fig. 5.7d). Mean spring (37.2uM/liter) and fall (30.8uM/liter) levels of 

dissolved organic nitrogen within creekwaters were elevated with respect to summer 

(28.8uM/liter) and winter (17.0uM/liter) levels. This pattern could be a reflection of 

increased water column productivity during the spring and fall seasons. Total nitrogen 

levels displayed a similar seasonal pattern as expressed by nitrates with elevated spring 

(51.4uM/liter) and winter (54.6uM/liter) levels (Fig. 5.8a); mean summer and fall 

concentrations were 40.1 and 41.5uM/liter respectively. Total nitrogen was dominated by 

inorganic species, specifically nitrate, during the winter and early spring and organic 

nitrogen throughout the remainder of the year. Mean sampling date total phosphorus 

levels displayed a seasonal pattern characterized by a spring peak (2.1uM/liter). 

Creekwater total phosphorus levels decreased during the summer (l.luM/liter) and fall 

(0.9uM/liter) with a slight increase occured during in the winter months (1.3uM/liter) (Fig. 

5.8b).

Mean dissolved total nitrogen and phosphorus concentrations within the shallow 

phreatic upland aquifer are given in Figure 5.9. Total nitrogen levels displayed an 

observable seasonal pattern characterized by high spring mean concentrations 

(621.2uM/liter) followed by a steady decline during the summer (388.6uM/liter) and fall 

(28.1uM/liter), with a subsequent increase during the winter (398.7uM/liter) (Fig. 5.9a).
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Nitrate and dissolved organic nitrogen were the dominant nitrogen species within the 

shallow upland aquifer. Drought conditions existed during the summer and fall months of 

the study, and on several occasions monitoring wells remained dry during fall sampling 

periods. Dissolved total phosphorus levels were minimal throughout the entire study (Fig. 

5.9b). Seasonal mean total phosphorus concentrations were 1.3, 1.0, 0.7, and l.OuM/liter 

for spring, summer, fall, and winter respectively. Low levels were expected due to a high 

affinity of phosphorus forms with mineral sediment in oxygenated aquifers.

Significant variations in pore water nutrient chemistry occured laterally between the 

high marsh, low marsh flat, and creekbank regions. Lateral variations in well nutrient 

concentrations, as a function of depth and time, are given in Figures 5.10 to 5.12. Overall 

mean creekbank nitrate concentrations, at all sampling depth intervals, were significantly 

higher than the corresponding depth intervals in low marsh and high marsh regions. The 

most pronounced variation between regions occured at the 20-40cm sampling depth 

interval; mean nitrate levels of pore water from the creekbank, low marsh flat, and high 

marsh were 5.4, 1.1, and l.luM/liter respectively (Fig. 5.10a). Creekbank nitrite levels at 

the 20-40cm depth interval differed significantly from the corresponding depth interval in 

the low marsh and high marsh (Fig. 5.10b). Significant differences between the 50-70cm 

and 80- 100cm depth intervals were not detected (Figs. 5.1 lb and 5.12b). Overall mean 

nitrite levels for all sampling locations were O.luM/liter or less.

Significant differences in ammonium concentrations between the creekbank, low 

marsh flat, and high marsh regions varied with sampling depth. Mean high marsh 

(9.4uM/liter) and creekbank (6.4uM/liter) levels, at the 20-40cm depth interval, were 

significantly higher than levels observed in the low marsh flat (4.3uM/liter) (Fig. 5.10c). 

The 50-70cm depth interval showed significant variations in ammonium concentrations 

between the high marsh (9.0uM/liter) and low marsh flat (3.5uM/liter) (Fig. 5.1 lc). Mean 

ammonium levels at the creekbank (4.7uM/liter) 80-100cm sampling depth interval varied
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significantly from corresponding depths in the low marsh flat (3.2uM/liter) and high marsh 

(2.9uM/liter) (Fig. 5.12c).

Mean dissolved organic nitrogen concentrations for all sampling depths within the 

high marsh region were significantly higher than levels observed in the low marsh and 

creekbank regions. The largest variation occured at the 20-40cm depth interval, mean 

dissolved organic nitrogen levels for the high marsh, low marsh and creekbank were 55.8,

34.8, and 33.4uM/liter respectively (Fig. 5.10d). Similar significant differences, as those 

for dissolved organic nitrogen levels, were observed for total nitrogen concentrations. As 

with dissolved organic nitrogen, the largest variation between regions occured at the 20- 

40cm depth interval; mean dissolved total nitrogen levels during the study for the high 

marsh, low marsh and creekbank were 65.5, 40.4, and 44.0uM/liter respectively.

Significant differences in total phosphorus levels varied with sampling depth. Low 

marsh flat mean dissolved total phosphorus levels were significantly higher than the high 

marsh and creekbank regions at the 20-40cm and 50-70cm sampling depth intervals (Figs. 

5.1 Of and 5.1 If). Mean total phosphorus concentrations, at the 20-40cm depth interval, 

for the low marsh, high marsh, and creekbank regions were 7.5, 3.4, and 3.9uM/liter 

respectively, while the 50-70cm sampling depth interval concentrations were 9.0, 3.2, and 

3.8uM/liter respectively. Significant differences at the 80-100cm depth interval occured 

between the high marsh and creekbank, mean total phosphorus levels were 4.6 and 

3.8uM/liter respectively (Fig. 5.12f).

5.3 Summary and Discussion

Dissolved pore water nitrogen species and total phosphorus concentrations, as a 

function of depth, location, and time, were highly variable, however, several generalities 

and patterns appeared relatively consistant. Organic nitrogen was the dominant form of
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dissolved nitrogen within the wetland; this form was responsible for approximately 85 

percent of the total dissolved nitrogen pool. Mean sampling date concentrations of 

dissolved organic nitrogen varied from 15.7 to 75uM/liter. Jordan and Coirell (1985), 

investigating nutrient dynamics within a Chesapeake Bay brackish low marsh, reported 

similar levels of dissolved interstitial organic nitrogen; levels ranged between 43 and 

64uMyiiter. The inorganic nitrogen pool was dominated by ammonium which accounted 

for approximately 10 percent of the dissolved total nitrogen present within interstitial 

waters. Mean sampling date ammonium concentrations throughout the marsh ranged from 

0.4 to 25.2uM/liter. Bowden (1984), working within a Delaware tidal freshwater marsh, 

reported mean annual free ammonium levels of 83uM/liter at a 20-22cm depth interval. 

Chambers and Harvey (1988) found mean ammonium levels of 16.8uM/liter within the 

high marsh and 38.4uM/liter within the low marsh of a tidal freshwater wetland in Virginia. 

Contribution of nitrate and nitrite to the pore water total nitrogen pool was minor, except 

within the creekbank region during winter and early spring months. Pore waters were 

generally enriched in dissolved phosphorus as compared to creek surface waters; mean 

sampling date concentrations throughout the wetland ranged from 0.7 to 15.8uM/liter. 

Elevated concentrations of dissolved total phosphorus were observed in the low marsh flat. 

Chambers and Harvey (1988) reported mean soluble reactive phosphorus (SRP) 

concentrations of 25.9 and 21.0uM/liter for the high marsh and low marsh respectively.

Gardner (1973), investigating pore water chemistry in a South Carolina tidal salt 

marsh, identified three hydrogeochemical settings that influenced pore water chemical 

parameters. He recognized creekbank regions as hydraulically active that drain reduced 

interstitial water to adjacent surface waters during periods of aerial exposure. The 

creekbank soil matrix is recharged, with respect to water content, by inundating tidal 

waters. This serves to alter creekbank interstitial water chemistry by actively mixing 

reduced pore waters with oxygenated surface waters. Pore water chemistry within the 

marsh interior, which he classified as hydraulically stagnant and isolated, appeared to
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follow theoretical closed system chemistry. The final hydrogeochemical setting occured 

near the upland margin where pore water chemistry was influenced by fresh groundwater 

contribution into the region.

Investigating interstitial water chemistry and subsurface hydrology within upper 

Chesapeake Bay tidal brackish marshes, Jordan and Correll (1985) reported decreased 

nutrient levels within pore waters in close proximity to tidal creeks. This pattern of 

reduced nutrient levels supports the hypothesis of increased pore water drainage and 

surface water recharge within creekbank regions of tidal wetlands. Jordan and Correll 

(1985) refer to this water exchange mechanism as "tidal-pumping". Yelverton and 

Hackney (1986) reported decreased dissolved organic carbon pore water concentrations 

within the creekbank region of a North Carolina salt marsh relative to interior sampling 

sites; all marsh sampling sites were enriched relative to inundating creek waters. The 

narrow creekbank region was responsible for over ninty percent of the total seepage export 

along the investigated transect (Yelverton and Hackney, 1986).

Lateral pore water nutrient variations observed in this study may be explained, in 

part, by hydrodynamic processes. Results of field investigations and the subsurface 

hydrologic model indicate that an extensive tidal freshwater wetland cannot be considered a 

homogeneous unit. It may be described more accurately as three distinct, yet interactive 

regions (creekbank, low marsh flat, high marsh), with varying potentials for nutrient 

exchange with surface and subsurface waters.

The creekbank, experiencing large water table oscillations and hydraulic gradients, 

was the most dynamic and tidally influenced region. These hydrodynamic characteristics 

result in significant subsurface water transport and dilution of interstitial waters with 

inundating surface waters. Surface waters were generally nitrogen rich with respect to 

nitrate and nitrite, and relatively poor with respect to ammonium, dissolved organic 

nitrogen, and total phosphorus as compared to wetland interstitial waters. Pore water 

nutrient levels within the creekbank region of the tidal freshwater wetland were relatively
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enriched with oxidized inorganic forms of nitrogen relative to low marsh and high marsh 

regions. The 20-40cm sampling depth region of the creekbank displayed a similar nitrate 

and nitrite seasonal pattern as creek surface waters, however, nitrate concentrations were 

reduced in magnitude several fold. Nitrate levels of greater than lOuM/liter characterized 

the creekbank 20-40cm depth interval during the winter and early spring months followed 

by a sharp decline and stabilized levels, typically less than 2uM/liter, throughout the 

summer and fall. Chalmers (1977) reported a similar pattern of high pore water nitrate 

levels occuring in winter months. The presence of elevated nitrate levels within creekbank 

interstitial waters is due to nitrate enriched infiltrating surface waters and may reflect 

decreased microbial activity during cooler periods. Creekbank ammonium levels, mean 

sampling date concentrations ranging from 1.0 to 13.5uM/liter, were generally intermediate 

between the high marsh and low marsh flat, and enriched relative to creek surface waters. 

Mean dissolved organic nitrogen concentrations within the creekbank ranged from 15.7 to 

57.3uM/liter; these levels were the lowest of the three regions sampled, but enriched 

relative to creek surface waters. Total nitrogen and phosphorus interstitial pools within the 

creekbank region were intermediate between the high marsh and low marsh flat. Visual 

observation of sediment cores within the creekbank region indicate that insoluble ferric 

oxides may be found at depths greater than one meter. Such iron precipitants provide a 

removal mechanism of dissolved interstitial phosphorus compounds.

The back-levee and low marsh flat comprised the second and most extensive 

general hydrologic region within the wetland. Due to extremely low hydraulic gradients 

and ponding of water, the low marsh flat soils were typically fully saturated with respect to 

water content and did not display significant horizontal water transport. Saturated soil 

conditions in conjunction with negligible subsurface discharge, creates a condition that is 

unfavorable for water and solute exchange with surface waters. Molecular diffusion, 

evaporation, and biological processes are therefore the primary controlling factors for water 

and solute exchange capability within the region. The low marsh flat was inorganic
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nitrogen poor relative to high marsh and creekbank regions. Inorganic nitrogen generally 

contributed less than 15 percent to the mean total nitrogen pool. Dissolved organic nitrogen 

levels within the low marsh were intermediate between the high marsh and creekbank 

regions. Compared to creek surface waters, low marsh pore waters were enriched with 

dissolved nitrogen during the winter, spring and early summer and became relatively 

nitrogen poor in the late summer and fall. Reduced levels of total nitrogen may reflect the 

regions limited exchange and recharge potential. Pore waters within the low marsh were 

significantly enriched with dissolved total phosphorus as compared to the creekbank and 

high marsh. Mean total phosphorus levels at the 20-40cm, 50-70cm, and 80-100cm depth 

intervals were 7.5, 9.0, and 6.3 respectively. Jordan and Correll (1985) reported that 

phosphate concentrations within brackish low marsh regions were consistantly higher than 

levels observed in high marsh regions. Mean 20-40cm depth interval total nitrogen to total 

phosphorus ratios for the study were 11.3:1, 5.4:1, and 19.3:1 for the creekbank, low 

marsh flat and high marsh respectively. A low TN:TP ratio of 5.4:1 indicates the potential 

for nitrogen limitation within the low marsh.

Defining the third general hydraulic region, the high marsh was characterized by 

moderate hydraulic gradients and highly permeable organic soils. These properties were 

conducive for significant horizontal discharge of interstitial waters. Model and field 

hydrologic evidence suggests that water discharged during aereal exposure is replenished 

by inundating surface waters and upland groundwater sources. Infiltration of surface 

waters would dilute high marsh interstitial waters with respect to total dissolved nitrogen, 

however, these waters would serve as a source of nitrate and dissolved oxygen. Since 

upland groundwaters exhibit high nitrogen levels, predominantly in the forms of nitrate and 

dissolved organic nitrogen, it may serve as an important contributer of nitrogen to the 

wetlands high marsh region. The importance of groundwater will be site specific, 

however, its role in wetland nutrient budgets should not be overlooked. Using field 

measured soil permeability and hydraulic gradient estimates of 7.6*10'^cm/sec and 0.028
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respectively, groundwater discharge per meter width to the upper meter of the high marsh 

was 0.08 liters per hour. Although groundwater discharge appears low, dissolved total 

nitrogen levels were elevated (621.2uM/liter for spring mean) within the groundwater. 

When discharge and total nitrogen levels are coupled, total nitrogen flux (50uM/hour) to the 

immediate high marsh region from upland groundwater sources is significant.

Groundwater flux estimates are dependent upon seasonal variation of groundwater nutrient 

content and water table elevation. The reported flux of 50uM of total nitrogen per hour 

should be considered a maximum since it incorporated spring nutrient concentrations and 

water table elevations. Valiela et. al.(1978), investigating nutrient fluxes within a New 

England salt marsh, reported that groundwater is a significant source of nitrate and 

dissolved organic nitrogen to the wetland system.

Nitrate and nitrite concentrations were relatively insignificant contributors to the 

total nitrogen pool within the high marsh, typically on the order of 1 to 2 percent.

Interstitial waters within the organic soil region of the high marsh (i.e., upper 70 

centimeters) displayed elevated ammonium levels relative to the low marsh and creekbank; 

mean sampling date concentrations varied between 2.5 and 25.2uM/liter. The 20-40cm 

sampling depth interval showed a seasonal trend of high winter and early spring levels 

followed by a decrease and stabilization of reduced levels in the summer and fall months. 

Elevated ammonium levels during the winter and early spring coincide with elevated nitrate 

levels found within inundating surface waters and upland groundwaters. This pattern 

reflects biologically reducing processes and highlights the importance and potential use of 

tidal freshwater wetlands for non-point source water interception and purification.

Chalmers (1977) reported a similar ammonium pattern of minimal early summer levels 

when vegetative production was typically at a maximum. Dissolved organic and total 

nitrogen levels, within the high marsh, were elevated and differed significantly from 

corresponding depth intervals at the low marsh and creekbank sampling sites; mean 

sampling date concentration ranged from 26.9 to 75.0uM/liter. Interstitial total phosphorus
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levels in the high marsh were significantly lower than low marsh levels and approximately 

equal to the creekbank region.

Nixon (1980) provides a qualitative summary of net annual nutrient tidal fluxes 

between tidal marshes and coastal waters; reviewed studies incorporated large geographic 

and salinity ranges. Methodoligies used to estimate water and nutrient fluxes varied, 

however, results indicate distinct patterns of nutrient transport. In summary, the 

investigations indicate that tidal marshes export dissolved organic nitrogen and total 

phosphorus, while importing oxidized inorganic nitrogen species (nitrate and nitrite). Flux 

patterns concerning ammonia were not as succinct, results indicate that the wetland may 

serve as a source or a sink.

Given the site specific varaibility of subsurface transport within a region and non­

conservative nature of nutrient species, subsurface flux estimates (mass/time x area) were 

not calculated. However, the potential for import and export of dissolved nutrients 

between surface and interstitial waters of various wetland regions will be discussed.

General patterns and relative contribution of nutrients to the marsh from surface waters, 

and vice-versa, were calculated as the difference between surface and interstitial water 

concentrations at a particular point in time (i.e. sampling dates). Interstitial water 

concentrations from the 20-40cm depth interval were used in the nutrient exchange potential 

determinations since it represented the most mobile interstitial water sampled. If these 

general exchange patterns are considered along with subsurface hydrodynamics within the 

various wetland regions (summarized in section 4), one is able to achieve a better 

understanding of the nutrient exchange potential between the wetland and adjacent surface 

water masses.

Dissolved oxidized inorganic forms of nitrogen (nitrate and nitrite) were imported 

throughout the sampling period by the three sampled regions (Figs. 5.13a, 5.14a, and 

5.15a). Exception to this import only occured twice within the creekbank region. A strong 

seasonal pattern of nitrate import to the marsh was observed; high import values were
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associated with winter and early spring months when surface water nitrate levels reach a 

maximum. Nitrite is not included in the general discussion due to its negligible 

contribution to surface and interstitial water nitrogen pools. Ammonium flux, due to 

seepage, was predominantly from the wetland to surface waters. The high marsh region 

(Fig. 5.15b), appeard to have a greater ammonuim export potential than the low marsh flat 

(Fig. 5.14b) or creekbank (Fig. 5.13b) during the winter and spring seasons. The high 

marsh was a source of dissolved organic nitrogen throughout the entire study (Fig. 5.15c), 

while the low marsh flat (Fig. 5.14c) and creekbank (Fig. 5.13c) regions may best be 

characterized as a source during the winter, spring and summer months, and a potential 

sink during the fall season.

Examination of total dissolved nitrogen and phosphorus potential for exchange best 

exemplifies differences between the three general tidal wetland regions. The high marsh 

exhibited the potential to export dissolved total nitrogen (Fig. 5.15d) and phosphorus (Fig. 

5.15e) throughout the study period. When water nutrient chemistry is coupled with 

subsurface hydrologic model results, it is evident that the high marsh exports total nitrogen 

and phosphorus to surface waters. As interstitial water drains from the high marsh to the 

saturated low marsh flat, surface ponding of the excess water is exposed to inundating 

waters of subsequent tides or lost through surface runoff to tidal creeks.

Nutrient exchange potential within the low marsh flat depicts a great variation with 

respect to dissolved total nitrogen. Potential total nitrogen exchange alternates between 

export during the late spring and summer months and import during the fall, winter, and 

early spring when inundating surface waters exhibit elevated levels of nitrate. The low 

marsh flat exibited the greastest magnitude of dissolved total phosphorus export potential 

compared to the high marsh and creekbank regions. Since lateral subsurface transport was 

minimal to non-existant within this region, the low marsh flat region may be considered as 

a resevoir of dissolved total phosphorus. This resevoir is unavailable for export or 

exchange with surface waters aside from molecular diffusion at the soil/water interface.
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The potential for dissolved total nitrogen exchange between surface waters and the 

creekbank region followed a similar pattern as did the low marsh flat; export occuring in the 

spring and summer followed by import in the fall and winter months. However, the 

creekbank region differs from the low marsh flat by actively exchanging significant 

amounts of interstitial water with surface waters over a tidel cycle. Total phosphorus 

exchange between surface waters and the creekbank appear variable and minimal 

throughout the majority of the study. Elevated levels of total phosphorus within the 

creekbank interstitial water were responsible for the a typical exchange potential during 

March and April.

Jordan and Correll (1985) concluded that seepage was a primary export mechanism 

of nutrients from a brackish tidal wetland to adjacent surface waters. Authors reported that 

potential export of phosphate, ammonium, and dissolved organic nitrogen, from the 

wetland due to seepage, is 19-40, 17-23, and 46-68 percent respectively. Gardner (1976), 

investigating nutrient exchange within a salt marsh whose soil permeabilty was orders of 

magnitude less than reported by Jordan and Correll (1985), concluded that seepage was a 

minor nutrient transport mechanism as compared to molecular diffusion.

Results of this investigation show that seepage can explain general dissolved 

nutrient flux patterns between wetlands and coastal surface waters. Review of literature 

indicates that tidal wetlands import oxidized inorganic nitrogen, and export of dissolved 

organic nitrogen and total phosphorus, whereas the direction of ammonium transport was 

variable (Nixon, 1980). The importance of seepage as a nutrient transport mechanism 

between wetlands and surface is site specific between wetlands (Gardner, 1975; Jordan and 

Correll, 1985) and within a particular wetland. This study emphasizes the importance of 

advective flow as a solute transport mechanism within tidal freshwater wetlands and 

determination of a wetland nutrient budgets and flux determinations must incorporate this 

mechanism in addition to diffusion controlled processes.
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Figure 5.1: Mean creekbank nutrient concentrations 
as a function of time and well depth.
(a) nitrate, (b) nitrite,
(c) ammonium, (d) organic nitrogen
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Figure 5.2: Mean creekbank nutrient concentrations 
as a function of time and well depth.
(a) total dissolved nitrogen,
(b) total dissolved phosphorus.
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Figure 5.3: Mean low marsh nutrient concentrations 
as a function of time and well depth.
(a) nitrate, (b) nitrite,
(c) ammonium, (d) organic nitrogen
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Figure 5.4: Mean low marsh nutrient concentrations 
as a function of time and well depth.
(a) total dissolved nitrogen,
(b) total dissolved phosphorus.
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Figure 5.5: Mean high marsh nutrient concentrations 
as a function of time and well depth.
(a) nitrate, (b) nitrite,
(c) ammonium, (d) organic nitrogen
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Figure 5.6: Mean high marsh nutrient concentrations 
as a function of time and well depth.
(a) total dissolved nitrogen,
(b) total dissolved phosphorus.
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Figure 5.7: Mean creek water nutrient concentrations 
as a function of time.
(a) nitrate, (b) nitrite,
(c) ammonium, (d) organic nitrogen
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Figure 5.8: Mean creek water nutrient concentrations 
as a function of time.
(a) total dissolved nitrogen,
(b) total dissolved phosphorus.
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Figure 5.9: Mean upland groundwater nutrient 
concentrations as a function of time.
(a) total dissolved nitrogen,
(b) total dissolved phosphorus.
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Figure 5.10: Mean 20-40cm depth interval pore water 
nutrient concentrations as a function of 
transect location and time.
(a) nitrate, (b) nitrite, (c) ammonium,
(d) organic nitrogen, (e) total nitrogen, 
(f) total phosphorus.
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Figure 5.11: Mean 50-70cm depth interval pore water 
nutrient concentrations as a function of 
transect location and time.
(a) nitrate, (b) nitrite, (c) ammonium,
(d) organic nitrogen, (e) total nitrogen, 
(f) total phosphorus.
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Figure 5.12: Mean 80-100cm depth interval pore water 
nutrient concentrations as a function of 
transect location and time.
(a) nitrate, (b) nitrite, (c) ammonium,
(d) organic nitrogen, (e) total nitrogen,
(f) total phosphorus.
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Figure 5.13: Potential nutrient exchanges between the 
creekbank and adjacent surface waters, 
(a) nitrate, (b) nitrite, (c) ammonium,
(d) organic nitrogen, (e) total nitrogen, 
(f) total phosphorus.

Positive values indicate an export from
the marsh to surface waters.
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Figure 5.14: Potential nutrient exchanges between the 
low marsh and adjacent surface waters, 
(a) nitrate, (b) nitrite, (c) ammonium,
(d) organic nitrogen, (e) total nitrogen, 
(f) total phosphorus.

Positive values indicate an export from
the marsh to surface waters.
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Figure 5.15: Potential nutrient exchanges between the 
high marsh and adjacent surface waters, 
(a) nitrate, (b) nitrite, (c) ammonium,
(d) organic nitrogen, (e) total nitrogen, 
(f) total phosphorus.

Positive values indicate an export from
the marsh to surface waters.
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Table 5.1: Descriptive statistics of creekbank 
pore water nutrient concentrations.

C o n c e n tr a t io n s  are  e x p r e sse d
as u M / l i t e r .



Species Depth Mean

N03 20-40cm 5.4
50-70cm 2.4
80-100cm 1.7

N02 20-40cm 0.1
50-70cm 0.1
80-100cm 0.1

NH4 20-40cm 6.4
50-70cm 4.9
80-100cm 4.7

DON 20-40cm 33.4
50-70cm 31.8
80-100cm 30.0

TN 20-40cm 44.0
50-70cm 38.2
80-100cm 36.5

TP 20-40cm 3.9
50-70cm 3.8
80-100cm 3.8

Std.Error N

1.0 54
0.4 55
0.2 56

<0.1 54
<0.1 55
<0.1 56

0.6 50
0.5 53
0.6 53

1.8 41
1.7 45
1.7 45

2.2 42
1.9 45
2.0 45

0.9 42
0.7 45
0.7 45
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Table 5.2: Descriptive statistics of low marsh 
pore water nutrient concentrations.

C o n ce n tr a t io n s  are  e x p r e ss e d
as u M / l i t e r .



Species Depth

N03 20-40cm
50-70cm 
80-100cm

N02 20-40cm
50-70cm 
80-100cm

NH4 20-40cm
50-70cm 
80-100cm

DON 20-40cm
50-70cm 
80-100cm

TN 20-40cm
50-70cm 
80-100cm

TP 20-40cm
50-70cm 
80-100cm

Mean Std. Error N

1.1 0.1 52
1.0 0.1 51
0.9 0.1 50

0.1 <0.1 52
0.1 <0.1 51
0.1 <0.1 50

4.3 0.4 51
3.5 0.3 51
3.2 0.3 47

34.8 2.0 42
33.3 1.4 43
33.6 1.4 39

40.4 2.0 43
38.0 1.5 43
38.1 1.5 41

7.5 0.7 43
9.0 0.9 43
6.3 1.1 41
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Table 5.3: Descriptive statistics of high marsh 
pore water nutrient concentrations.

C o n c e n tr a t io n s  are  e x p r e sse d
as u M / l i t e r .



Species Depth Mean Std. Error N

N03 20-40cm 1.1 0.2 56
50-70cm 1.5 0.3 56
80-100cm 0.6 0.1 56

N02 20-40cm 0.1 <0.1 56
50-70cm 0.1 <0.1 56
80-100cm 0.1 <0.1 56

\ rH4 20-40cm 9.4 1.2 54
50-70cm 9.0 1.2 54
80-100cm 2.9 0.2 54

DON 20-40cm 55.8 2.3 45
50-70cm 45.3 2.3 48
80-100cm 40.2 1.5 46

TN 20-40cm 65.5 3.0 45
50-70cm 55.7 3.1 48
80-100cm 43.7 1.5 46

TP 20-40cm 3.4 0.3 44
50-70cm 3.2 0.3 48
80-100cm 4.6 0.4 47
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