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ABSTRACT

An analytical and numerical model are presented and applied to predict gravity- 
driven transport and deposition o f fluid mud layers that form within the wave boundary 
layer on the continental shelf off the Eel River in northern California. Observations 
indicate that following floods of the Eel River down-slope transport of fluid mud trapped 
within the wave boundary layer is the dominant across-shelf transport mechanism. The 
models are based upon the assumption that following significant floods, an abundant 
supply o f easily suspended fine sediment is delivered to the coastal ocean, allowing a 
negative feedback mechanism to maintain the near-bed Richardson number at its critical 
value. Thus, sediment-induced stratification effectively limits the amount of fine 
sediment that can be maintained in suspension, allowing the calculation of down-slope 
transport and deposition knowing only the appropriate near-bed velocity scale.

Analytic predictions o f mid-shelf mud transport and deposition are spatially and 
temporally consistent with field observations and provide strong evidence that gravity- 
driven processes control the emplacement and location of the Eel margin flood deposit. 
Analytic predictions of deposition suggest that the magnitude of wave energy is more 
important than the magnitude o f the flood event in controlling the thickness of mid-shelf 
gravity-driven deposition following floods. Higher wave energy increases the capacity 
for critically-stratified gravity flows to transport sediment to the mid-shelf and results in 
greater deposition. The bathymetry o f the Eel margin plays a critical role in gravity- 
driven transport and deposition. Analytic predictions indicate that gravity-driven 
deposition on the mid-she If begins roughly 7-8 km north of the river mouth. Closer to 
the river mouth, the seaward increasing mid-shelf slope associated with the concave 
downward subaqueous delta causes gravity-driven flux divergence, preventing significant 
mid-shelf gravity-driven deposition and favoring sediment bypassing. Seaward decreases 
in shelf slope in the vicinity o f the observed flood depo-center leads to greater flux 
convergence by gravity-driven flows, and hence greater deposition.

The numerical model predicts gravity-driven deposition on the continental shelf 
for four consecutive flood seasons of the Eel River using realistic bathymetry, waves and 
river forcing. Results from the numerical model are consistent with observations of 
deposition on the mid-self and support the results of the analytical model that suggest 
wave intensity and bathymetry are the dominant factors controlling the location and 
magnitude o f observed deposition. Despite significantly greater sediment input near the 
river mouth, little mid-shelf deposition is predicted in this region due to the increasing 
off-shelf slope. The numeric results suggest that gradients in the along-shelf components 
o f bed-slope also favor gravity-driven deposition 10-30 km north o f the river mouth. 
Including the influence of along-shelf currents had little impact on the location o f mid­
shelf deposition, providing further support for bathymetric control of flood sedimentation 
on the Eel margin. A significant fraction of sediment from the Eel River was predicted to 
leave the shelf as a gravity-driven flow during floods with large wave energy. However, 
in extremely large floods, gravity-driven processes were not capable o f removing river- 
derived fine sediment from the inner-shelf.



MODELING OF CRITICALLY-STRATIFIED GRAVITY FLOWS: 
APPLICATION TO THE EEL RIVER CONTINENTAL SHELF, 

NORTHERN CALIFORNIA



1. INTRODUCTION

There is considerable evidence documenting the role of gravity-driven down- 

slope transport of river-derived sediment across continental shelves (Eisma and Kalf, 

1984; Wright et al., 1988; Mathew and Baba, 1995; Mulder and Syvitski, 1995; Kineke et 

al., 1996; Ogston et al., 2000; Traykovski et al., 2000). The high-suspended sediment 

concentrations necessary to initiate this process make it an extremely effective 

mechanism for transporting sediment. Direct observations of gravity-driven transport 

have been associated with large rivers that more-or-less continually discharge a 

significant sediment load into the ocean (Wright et a l, 1988, 1990; Kineke et al., 1996). 

While these large rivers contribute a significant input of sediment into the world’s 

oceans, recent work has illuminated the important contribution to the global input by 

rivers with small, mountainous basins on active continental margins (Milliman and 

Syvitski, 1992; Mulder and Syvitski, 1995; Wheatcroft, 2000).

Mid-shelf mud-belts are a common depositional feature found off rivers on 

mountainous margins exposed to energetic waves (Nittrouer and Sternberg, 1981; Foster 

and Carter, 1997; Lopez-Galino et al., 1999; Wheatcroft and Borgeld, 2000). Thus mid­

shelf mud-belts play an important role in modulating the dispersal of fine sediment to the 

world's oceans. Classically, mid-shelf mud-belts have been assumed to be regions of 

diffusive, low energy, low concentration deposition (McCave, 1972). However, recent 

observations off northern California indicate that mud from the Eel River is primarily 

deposited on the mid-shelf by gravity currents of fluid mud trapped within the wave 

boundary layer during storms (Traykovski et al., 2000). These important observations 

suggest a new paradigm for the formation of mid-shelf mud-belts on energetic,
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depositional coasts. Similar to the classical model for energetic, near-shore deposition of 

mud (McCave, 1972), energetic mid-shelf deposition also must involve extremely high 

sediment concentrations. Wave-induced gravity currents may provide the transport 

mechanism necessary for the formation of mid-shelf mud-belts on energetic shelves. 

Whether in the near-shore or the mid-shelf, rapid deposition of mud requires the 

suspension capacity of the bottom boundary layer to be exceeded (McCave, 1972).

Under high-energy conditions, suppression of turbulence by sediment induced 

stratification is necessary to exceed the capacity of the bottom boundary layer to carry 

fine sediment (Trowbridge and Kineke, 1994; Friedrichs et al., 2000). Under high- 

energy, depositional conditions, a negative feedback cycle is induced, where the total 

load in suspension keeps the gradient Richardson number near the critical value marking 

the initial suppression of shear-induced instabilities by stratification (Kineke et al., 1996; 

Wright et al., 2001).

The Eel River shelf combines large sediment input, high wave energy, and mid­

shelf deposition of mud, making it an ideal location for testing a model for critically- 

stratified, gravity-driven sediment transport and deposition. Investigation of the 

continental margin adjacent to the Eel River as part of the Office of Naval Research 

(ONR) STRATAFORM program (Nittrouer, 1999) reveals that following significant 

floods, fine-grained sediment accumulates in a distinct flood deposit centered near the 

70-m isobath and extends over 30 km along-shelf and 8 km across-shelf (Wheatcroft et 

al., 1997; Borgeld et al., 1999; Drake, 1999; Sommerfield and Nittrouer, 1999; and 

Wheatcroft and Borgeld, 2000) (Figure 1-1). Distinct fine-grained flood deposits from
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Areata

Cape Mendocino

K Transect

Eel Canyon

Figure 1-1 Site map of the STRATAFORM study area including the locations of tripod 
deployments and general location of the 1995 and 1997 flood deposits 
(shaded area) based on Wheatcroft et al., 1996 and Wheatcroft and Borgeld, 
2000 .
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both the winter of 1994-95 and 1996-97 appear in cores taken as part of the 

STRATAFORM program, while no significant flood deposits from the 1995-96 and

1997-98 seasons were preserved (Wheatcroft et a l, 1997; Borgeld et a l, 1999; Drake, 

1999; Sommerfield and Nittrouer, 1999; Wheatcroft and Borgeld, 2000; Drake et al., 

2000).

Floods of the Eel River are often associated with large storm systems with high 

wave energy and strong winds. During the early portion of many storms, winds are often 

from the south causing the river plume to travel north, hugging the coast. Helicopter 

surveys during flood conditions indicate that the Eel River plume exits the mouth and 

travels north, staying inshore of the 40-m isobath (Geyer et al., 2000). It has been 

proposed that much of the sediment from the plume is initially deposited near-shore 

where it is temporarily stored before moving offshore to the region of the flood deposit 

(Geyer et al., 2000; Ogston et al., 2000; Traykovski et al., 2000). Instrumented tripods 

deployed as part of the STRATAFORM program provide strong evidence that across- 

shelf gravity-driven transport plays an important role in the dispersal and deposition of 

flood sediment from the Eel River (Ogston et al., 2000; Traykovski et al., 2000). 

Traykovski et al. (2000) observed highly turbid near-bed layers ( »  10 g/L) with a strong 

lutocline that appeared to scale with the wave boundary layer. They propose that these 

turbid layers are trapped within the wave boundary layer and are dependent upon wave- 

induced turbulence and propagate across-shelf under the influence of gravity (Traykovski 

et al., 2000). They further propose that the offshore flow of fluid mud is the dominant 

depositional mechanism on the Eel River mid-shelf.
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There are still several intriguing patterns regarding the geometry of mid-shelf 

flood deposits off the Eel River that have yet to be adequately addressed by 

hydrodynamic modeling. Both 210Pb geochronology applied to century time-scales 

(Sommerfield and Nittrouer, 1999) and shallow coring of the 1994-95 and 1996-97 flood 

layers (Wheatcroft and Borgeld, 2000) indicate that less than 25% of fluvial mud 

discharge is deposited on the mid-shelf. Sommerfield and Nittrouer (1999) conclude that 

a major fraction of fine-grained flood sediment bypasses the narrow shelf, while 

Wheatcroft and Borgeld (2000) suggest a substantial fraction may be temporarily 

sequestered in the inner-shelf sands. The mud that does make it to the mid-shelf is not 

thickest offshore of the river mouth where initial settlement from the river plume is most 

intense (Geyer et al., 2000). Rather, the center of the flood deposit is displaced 15 to 20 

km to the north (Wheatcroft and Borgeld, 2000). Wheatcroft and Borgeld (2000) further 

note that larger floods do not always produce larger flood deposits. In terms of total 

sediment discharge, the January 1997 flood was larger than the January 1995 flood, yet 

the total volume of the two mid-shelf flood deposits were similar (Wheatcroft and 

Borgeld, 2000). Finally, a three-fold increase in mid-shelf sediment accumulation since 

1955 has been documented without a similarly large increase in river discharge 

(Sommerfield and Nittrouer, 1999; Sommerfield et al, 2000).

We apply both an analytical and numerical model for critically-stratified, gravity- 

driven sediment transport and deposition to the Eel shelf in order to understand the above 

geological patterns, as well as the formation of energetic mid-shelf mud-belts in general. 

Analytic predictions of near-bed velocity and deposition are compared with observations 

collected by benthic boundary layer tripods deployed during the STRATAFORM
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program. To understand better when gravity-driven processes will occur, we use the 

analytic formulation to compare the ability of gravity-driven processes to transport 

sediment to the mid-shelf relative to the ability of the river to supply sediment to the 

inner-shelf. We use the analytic solution to help explain the large-scale geometry of 

flood deposition as observed in the cores collected from the Eel River continental shelf 

To provide a more realistic representation of the large-scale processes controlling 

deposition on the Eel shelf, we developed a two-dimensional numerical model to predict 

transport and deposition of fine sediment derived from the Eel River. The numerical 

model is intended to realistically represent the first order forcings in order to predict large 

scale deposition of fine-grained sediment on the continental shelf following floods of the 

Eel River. Application of the model is intended to build upon the analytic results by 

more realistically predicting deposition on the shelf in a manner that is computationally 

efficient. By accounting only for gravity-driven transport and deposition, the model is 

relatively simple and allows us to focus on the importance of this mechanism. The 

numerical approach allows us to more thoroughly examine the role that gravity-driven 

processes play in the fate of flood-derived fine sediment, further constraining the overall 

sediment budget for the Eel River system. Sensitivity analysis highlights the importance 

of processes that influence gravity-driven transport and deposition and provides further 

insight into the formation and preservation of flood deposition on the Eel margin.
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2. ANALYTICAL MODEL

2.1. THEORETICAL DEVELOPMENT

The classic understanding of the forces governing gravity-driven flows is the 

balance between a down-slope pressure gradient driven by the negative buoyancy 

associated with suspended sediment and frictional drag forces (e.g., Komar, 1976). In its 

simplest form, the Chezy equation quadratic drag law can represent this balance:

where a  is the sine of bottom slope, ugrav is the velocity of the gravity-driven flow, Cd is 

the frictional drag coefficient at the bottom of the layer, and B is the depth-integrated 

buoyancy of the hyperpycnal layer:

where g is the acceleration of gravity, s is the submerged weight of siliceous sediment 

relative to sea water, 8 is the layer thickness, and c’ is the sediment volume 

concentration. At first order, this relation ignores interfacial friction at the top of the 

layer, advective acceleration, large-scale pressure gradients, and the Coriolis force. In 

general, advective acceleration is negligible and the bottom drag coefficient is often 

much larger than that of the top, allowing interfacial drag to be ignored (for thin layers). 

The entrainment of less dense fluid from above can play an important role controlling the 

buoyancy and hence the governing forces. However, Ellison and Turner (1959) found 

that turbulent entrainment of surrounding fluid into the layer is negligible when the top of 

the layer is significantly stratified. Coriolis also will be secondary for gravity flows that 

are on the order of the wave boundary layer in thickness (Traykovski et al., 2000).

a  B — C m 2a grav (2-1)

(2-2)
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The negative buoyancy force can only be maintained as long as sediment is 

maintained in suspension. In order for this to occur, sufficient turbulence must exist such 

that upward turbulent diffusion can balance particle settling. Turbidity currents can 

become auto-suspending if they reach a velocity at which sediment can be entrained into 

the flow, increasing the negative buoyancy and leading to acceleration (Parker et al., 

1986). Such flows are not likely to be observed on the continental shelf because the 

slope is generally not sufficient to generate currents with sufficient velocity to reach the 

auto-suspending criteria (Wright et al., 2001). On the shelf, both wave and current 

energy can supply the turbulence necessary to maintain a gravity flow in suspension. At 

the same time, turbulence also will increase the drag, resisting down-slope motion. To 

describe this process, the linearized form of the Chezy equation then can be expanded to 

a more general case as (Wright et al., 2001):

where umax is the magnitude of the velocity at the top of the near-bed layer (Figure 2-1). 

The umax term includes wave orbital velocity amplitude (uwaVe), along-shelf current 

magnitude (vcurr), and the across-shelf gravity current speed (ugrav), and is approximated

When significant suspended sediment is present, the gradient Richardson number 

can be represented simply as the ratio of the buoyancy to the shear produced by the 

maximum velocity scale (Trowbridge and Kineke, 1994), or

, 14. 14,d max gray (2-3)

by:
umax .fu 2 + v2 + u2V  wave curr grav (2-4)

(dc'/dz) ( B I S 2) B
Rh =gV . ,2 = 7 - — n ^ -  =  - r(du/dz)2 (um„ I S f  u2m

(2-5)
max
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Figure 2-1 Conceptual diagram illustrating transport by gravity-driven flows trapped 
within the wave boundary layer and the relative contributions to the near­
bed velocity scale (umax).

For tidal boundary layers on the continental shelf off the Amazon River, 

Trowbridge and Kinke (1994) found that vertical transport was controlled by the 

suppression of turbulent mixing when Rig is maintained near its critical value of 0.25 

due to the presence of high concentration fluid mud layers. They presented a one­

dimensional model that assumed that Rig was maintained at its critical value 

everywhere within the boundary layer. Although their solution is unrealistic at both 

the top and bottom of the boundary layer, their results suggest that the structure in the 

majority of the flow is controlled by the suppression of turbulent mixing and Rig ~ 

0.25. Building upon these results, we assume that following floods of the Eel River, 

sufficient easily suspended sediment is available to maintain the bulk Richardson 

number (Rib) for the wave boundary layer at a critical value given as:
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RL =
B = 0.25 (2-6)

umax

Kundu (1981) showed that a constant bulk Richardson number is consistent with 

the maintenance of the gradient Richardson number at its critical value throughout the 

layer. Interpretation of laboratory experiments indicates that Rib maintains a 

relatively constant value of unity for turbulent flows with stable stratification (Price, 

1979 and Thompson, 1979). In the bulk scaling, the velocity shear is represented by 

the average velocity scale. We do not attempt to resolve the velocity profile within 

the wave boundary layer. However, by assuming that the velocity profile within the 

wave boundary layer is approximately linear, the scaling for Rib in Equation 2-6 is 

equivalent to:

where the overbar indicates the vertically averaged velocity scale for the wave 

boundary layer. It is unlikely that the velocity profile in the wave boundary layer is 

linear, so this scaling relationship represents a maximum value of B that can be 

maintained.

Assuming that the Richardson number is maintained at its critical value as defined 

in Equation (2-6), Equations (2-2) and (2-6) can be solved for the maximum turbulent 

load that the gravity-driven current can hold (Wright et al., 2001):

max (2-8)

u



The velocity at which the current will move down-slope can be obtained from Equations 

(2-3) and (2-6) to give (Wright et al., 2001):

Here we extend the analysis of Wright et al. (2001) by further considering the case 

for which ugrav approaches umax. Combining Equations (2-4) and (2-9) and solving for 

Umax gives:

As p approaches one, more and more turbulence is provided by the gravity flow itself, 

increasing the capacity of the gravity current to carry sediment. The asymptote of (3 = 1 

represents the transition to auto suspension, where stratification no longer can limit the 

suspended sediment capacity of the gravity current. Clearly the assumption behind 

maintenance of R i b  = R i c r  breaks down somewhat before p reaches one. Nonetheless, the 

qualitative trend toward enhanced gravity currents is sensible, with no limiting role for 

stratification on shelves with slopes greater than a  = C d / R i Cr-

Knowing both the maximum turbulent load and velocity of the gravity current gives 

the across-shelf flux of sediment:

ugrav
cr max = p «,max (2-9)

where:

cr (2-10)

(2-11)



Assuming that Cd remains constant with depth, net deposition or erosion associated with 

the gravity current is determined by across-shelf gradients in sediment flux:

, . . R i \ p  - a u
deposition  =  = ---------------------------  (2- 13)

dx C s  g  dx v J

Assuming monochromatic waves and that uwave (duWave/dx)»  v curr (dw^Jdx), Equation 

(2-13) can be re-expressed as:

deposition =  IL ^ L  VP* + 1) } (2-14)
Cds g h [tanhkh a  dx (1- /3  ) J

where k is the orbital wave number and h is depth. If Equation (2-14) is negative, erosion 

(or at least a lack of deposition) will occur.

The first term in bracketed expression in Equation (2-14) always favors deposition 

and originates from the offshore decay in wave orbital velocity with increased depth. As 

wave orbital decays offshore, the capacity of the gravity flow decreases, and sediment is 

deposited. When umax is dominated by uwave, the rate of deposition decreases dramatically
'j

offshore because of the equation’s overall dependence on u max. The second term in the 

bracketed expression favors erosion if the shelf is concave downward and deposition if 

the shelf is concave upward. It originates from the direct dependence of the sediment 

transport capacity on bed slope, a. If bed slope increases offshore (da/dx > 0), gravity 

flow capacity increases and flux divergence occurs; if bed slope decreases (da/dx < 0), 

capacity decreases and the result is flux convergence. This second term also incorporates 

the turbulence provided by the gravity flow itself and it dominates toward the 

autosuspending limit of p = 1.
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2.2. ANALYTIC PREDICTIONS OF GRAVITY-DRIVEN VELOCITY

2.2.1. 1996-97 Flood Season—S-60

The 1996-97 New Year’s flood of the Eel River, with an estimated return interval 

of approximately 80 years (Syvitski and Morehead, 1999), was the largest flood event to 

occur during the ONR STRATAFORM program. Peak discharge exceeded 12,000 m3/s 

and a conservative estimate of roughly 29 million metric tons of sediment were 

discharged into the adjacent coastal waters (Wheatcroft and Borgeld, 2000). During the 

1996-97 winter, an instrumented tripod with electromagnetic current meters (EMCMs) at 

30 and 100 cm above bed (cmab) was maintained along the S-transect (Figure 1-1) in 

approximately 60 m water depth (S-60) (Ogston et al., 2000). The EMCM data show an 

extended period where the current 30 cmab is directed offshore with a greater velocity 

than the current measured 100 cmab (Figure 2-2c). Consistent with the observations of 

Traykovski et al. (2000), we infer that these periods occur when high concentration fluid 

mud suspensions trapped within the wave boundary layer move down-slope under the 

force of gravity, exerting a frictional drag on the overlying water column that causes the 

magnitude of off-shelf directed flows to increase as the top of the wave boundary layer is 

approached.

To predict the down-slope velocity from Equation (2-9) all that is needed is the 

bed-slope, drag coefficient, and appropriate near-bed velocity scale (umax). A bed slope 

of 0.0043 was estimated from the N.O.S. bathymetry data for the S-60 site. The results 

of Wright et al. (2001), as well as laboratory flume experiments by van Kessel and 

Kranenburg (1996), indicate that the drag coefficient for 0(10 cm) thick critically- 

stratified flows is approximately 0.003. On an energetic shelf, such as that off the Eel
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River, wave orbital velocity often dominates the near-bed velocity, although ambient 

along-shelf currents and the velocity generated by the gravity-flow also can contribute. 

Wave orbital velocity at a given depth can be reasonably inferred from observations of 

wave height and period for a general area, while accurate knowledge of near-bed current 

velocity on the mid-shelf during storms requires in situ observations due to complex 

time-dependent pressure gradients. In order to apply the model in areas where in situ 

current data were not available and to avoid complications of potential Ekman forcing by 

along-shelf currents, v curr was not included in the calculation of umax.

In calculating umax via Equation (2-11), uwave was determined from spectral wave 

density data collected by the National Data Buoy Center (NDBC) buoy 40622, including 

the frequency-based decay for the appropriate depth following the methods of Sherwood 

et al. (1994). Comparison of orbital velocities calculated from the offshore buoy with 

tripod observations indicates that this method slightly over-predicts bottom orbital 

velocity at the 60-m depth, so a correction coefficient of 0.79 was applied to maximize 

agreement with tripod data. The correction coefficient was determined by calculating the 

ratio of the calculated orbital velocity to the observed rms wave orbital velocity for all 

data collected at both the S-60 and K-60 tripod during the 1997-98 season. Figure 2-2d 

compares predicted gravity-driven down-slope velocity with observations collected from 

the S-60 tripod during fall/winter 1996-97. No direct observations of velocity were 

available from within the wave boundary layer, thus the across-shelf velocity component 

of the EMCM data was linearly extrapolated down to the top of the wave boundary layer. 

Based on the observations of Traykovski et al. (2000), the thickness of the wave 

boundary layer (6W) was estimated as:
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5W =  0 .08(uwaVe/©). (2 -15)

A theoretically predicted scaling factor is not used here because no appropriate theory has 

been put forward for accurately predicting critically-stratified wave boundary layer 

thickness based on first principles. The evaluation of observed ugrav here is relatively 

insensitive to 8W, and theoretical estimates of ugrav and associated deposition are 

independent of 5W.

Consistent with our assumptions, the predicted gravity-flow velocity does not 

appear to be correlated with the observed across-shelf velocity outside of the periods of 

significant river discharge. Between Julian Day 1996 (JD96) 300 and 320 the correlation 

coefficient, r, is -0.09. Before the on-set of flooding, sufficient easily suspended fine 

sediment was presumably not present to maintain near-bed critical stratification. The 

predicted velocity does a much better job reproducing the observed near-bed velocity for 

the extended period coinciding with the offset in the across-shelf EMCM data. In fact, 

for the twenty-day period beginning on JD96 350, r=0.59. For the ten-day period 

beginning with onset of the New Year’s flood, the correlation coefficient between the 

observed and predicted velocities improves to 0.76. Consistent with the observations of 

Geyer et al. (2000) and other STRATAFORM investigators, we hypothesize that 

following the New Year’s flood, significant quantities of river sediment initially settled 

out of the river plume into the bottom boundary layer of the inner-shelf north of the river 

mouth. Enough of this in-shore supply of fine-grained sediment was suspended by the 

energetic waves and currents to maintain critical near-bed stratification as it moved 

down-slope across the mid-shelf. This process continued until the supply of sediment 

was exhausted, or significant consolidation or dispersion occurred.
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Figure 2-2 Time series observations and predicted gravity-driven velocity for S-60
1996-97; (a) Eel River discharge at Scotia; (b) bottom wave orbital velocity 
calculated from NDBC buoy 46022 for 60-m depth; (c) across-shelf current 
30 cmab (dotted line) and 100 cmab (solid line) from EMCM @ S-60; (d) 
gravity-driven velocity predicted by Equation 2-9 (dotted line) and S-60 
across-shelf current linearly extrapolated to top of the wave boundary layer 
(solid line).

2.2.2. 1997-98 Flood Season—K-60

The 1997-98 flood season consisted of several modest flood events, all o f which 

were significantly smaller in magnitude than the New Year’s flood the previous winter. 

Beginning on Julian Day 1997 (JD97) 375, the Eel River experienced four consecutive 

flood events over the course of approximately 10 days, each with a peak discharge
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exceeding 3,000 m3/s (Figure 2-3a). During this time, a tripod with EMCMs at 50 and 

110 cmab as well as a downward looking Acoustic Backscattering Sensor (ABS) was 

deployed on the K-transect at a depth of 60 m (K-60). During the ten-day period of 

increased river discharge, Traykovski et al. (2000) report periods of increasing off-shore 

flow (Figure 2-3c) closer to the bed associated with ABS images of a thin (~10 cm), high 

concentration (>10g/L) near-bed layer, providing the most conclusive evidence to date of 

significant gravity-driven sediment transport on the Eel Shelf.

Near-bed orbital velocities again were calculated from NDBC buoy 46022, and 

Vcurr was excluded from the calculation of umax. Equation (2-9) was applied to K-60 with 

Cd = 0.003 and a bed slope of 0.004 based on N.O.S. bathymetry. Again, the across-shelf 

velocity from the lowest two EMCMs was linearly extrapolated down to the top of the 

predicted wave boundary layer. Similar to the results from 1996-97, there is relatively 

little correlation between the observed and predicted velocities prior to significant river 

discharge (r = -0.30 for JD97 360-375) and much better correlation during the period of 

elevated river discharge (r = 0.80 for JD97 380-390).

The success of the analytic prediction of near-bed velocity during the 1997-98 

flood season is limited to the period associated with the four consecutive floods of the Eel 

River (Figure 2-3e). While other floods of comparable, albeit slightly smaller magnitude 

occurred during this winter, little evidence of gravity-driven transport is seen in the 

EMCM data. This suggests that for a given wave energy, only floods exceeding a 

particular magnitude are capable of supplying enough sediment to critically stratify the 

wave boundary layer. The cumulative delivery of sediment associated with the rapid 

succession of relatively modest flood events over the ten-day period beginning on JD97
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Figure 2-3 Time series observations and predicted gravity-driven velocity for S-60 and 
K-60 1997-98; (a) Eel River discharge at Scotia; (b) bottom wave orbital 
velocity calculated from NDBC buoy 46022 for 60-m depth; (c) across-shelf 
current 50 cmab (dotted line) and 100 cmab (solid line) from EMCM @ K- 
60; (d) across-shelf current 30 cmab (dotted line) and 100 cmab (solid line) 
from EMCM @ S-60 (e) gravity-driven velocity predicted by Equation 2-9 
(dotted line) and K-60 across-shelf current linearly extrapolated to top of the 
wave boundary layer (solid line); (f) gravity-driven velocity predicted by 
Equation 2-9 (dotted line) and S-60 across-shelf current linearly 
extrapolated to top of the wave boundary layer (solid line).
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375 may have been necessary to trigger the critically-stratified gravity-driven transport 

mechanism. During single flood events that occurred later in January and in February, 

the energetic coastal environment was probably capable of dispersing much of the fine 

sediment, preventing critical stratification from dominating the near-bed dynamics.

2.2.3 1997-98 Flood Season—S-60

Examination of the current meter data collected at S-60 during the 1997-98 flood 

season provides additional, albeit weaker, evidence of gravity driven transport. There are 

a few occasions associated with elevated wave energy where the current at 30 cmab had 

stronger off-shelf velocities than the current 100 cmab (Figure 2-3d). Specifically, the 

current meter data suggest potential gravity-driven transport on JD97 385 corresponding 

in time with the strongest evidence for gravity-driven flow from the K-60 tripod. There 

is also some evidence for gravity-driven transport in the current meter data on JD97 395 

and 397, well after the observed deposition at K-60.

The predicted down-slope velocity for S-60 was calculated in the same manner as 

for K-60. While the predicted velocity for K-60 in 1997-98 and S-60 in 1996-97 slightly 

under-predicts the velocity observed during greatest down-slope flow, the prediction for 

S-60 in 1997-98 consistently over-predicts the observed velocity (Figure 2-3f). This is 

consistent with the idea that insufficient sediment was supplied by the river plume to 

critically stratify the boundary layer at S-60 during 1996-97 (see following discussion of 

flux). Because the boundary layer was not critically-stratified, increased drag caused by 

the waves and currents retarded down-slope transport. There is only a weak correlation 

between the observed and predicted velocities (r = 0.41 for JD97 380-390), indicating
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that while gravity-driven transport may have occurred sporadically, the sediment-induced 

down-slope pressure gradient was not a dominant term in the near-bed force balance.

2.3. ANALYTIC PREDICTIONS OF GRAVITY-DRIVEN DEPOSITION

From our results, it appears that following a significant flood of the Eel River one 

can reasonably predict the down-slope velocity of wave-induced gravity currents 

knowing only the bed slope and near-bed orbital velocity. Because the near-bed orbital 

velocity decreases seaward with increased depth, a gradient in flux will exist causing a 

predictable rate of deposition via Equation (2-13).

2.3.1. K-60 Tripod

Coinciding with the periods of strong off-shore directed near-bed flow, 

Traykovski et al. (2000) show two rapid depositional events at K-60 that are the result of 

down-slope gravity-driven transport. Both depositional events occurred during a period 

of elevated near-bed wave velocity (Figure 2-4a). Both wave events lasted 

approximately 2 days, with peak orbital velocities exceeding 0.50 m/s. During the first 

wave event beginning on JD97 378, approximately 6 cm of deposition were seen in the 

ABS data. The second event beginning JD97 385 resulted in 13 cm of deposition (Figure 

2-4b). Although there were two periods of elevated wave energy in the intervening 

period, there is little evidence for gravity-driven transport or deposition during this time.

Using the calculated gradient in wave orbital velocities and bed slope for the K-60 

site, Equation (2-13) was applied to predict deposition for the period from JD97 377-387. 

The resulting prediction for deposition is shown in Figure 2-4b assuming a porosity of 

0.90, consistent with the initial water content of the flood layers found in cores reported 

by Drake (1999). Both the timing and magnitude of the predicted deposition are 

consistent with those observed in the ABS data with the exception of the predicted
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deposition close to JD97 383. During this period of higher waves, the model predicts 

roughly 4 cm of deposition while the ABS data indicate little deposition or erosion during 

this period. It seems plausible that sufficient sediment was not available to critically 

stratify the boundary layer during this brief period. In fact, estimates of sediment 

delivery discussed in the next section support this possibility.

a) Bottom Wave Orbital Velocity
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Figure 2-4 Time series observations and predicted deposition for K-60 1997-98; (a) 
bottom wave orbital velocity calculated from NDBC buoy 46022 for 60-m 
depth; (b) ABS image from K-60 tripod with deposition predicted by 
Equation 2-13 assuming a porosity of 0.90.
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Because the predicted deposition depends on gradients in the cube of umax, rapid 

deposition is predicted to coincide with the short periods of highest wave energy 

associated with the storm events. So, despite wave orbitals in excess of 0.50 m/s, no 

erosion is seen or predicted and significant deposition occurs. The predicted deposition is 

very sensitive to bed slope because ultimately it is the local bathymetry that governs the 

gradient in wave energy. Because the gravity-driven velocity also contributes to umax, 

across-shelf gradients in slope will have additional influence on the deposition rate as 

indicated by Equation (2-14). The large-scale implications of this will be discussed 

below.

2.4 FLOOD DELIVERY OF SEDIMENT VS. POTENTIAL FLUX VIA 
GRAVITY FLOWS

The model described here demonstrates an ability to capture the timing and 

magnitude of depositional events observed in the tripod data. However, successful 

application is dependent upon knowing when sufficient sediment is available to critically 

stratify the boundary layer. Figure 2-5 compares the predicted maximum capacity for 

gravity-driven flux of sediment past K-60 and S-60 with the estimated along-shelf 

delivery of sediment by the river plume for both 1996-97 and 1997-98. The gravity- 

driven sediment flux calculations for K-60 and S-60 are assumed to be the same (using a  

= 0.004), although slight differences in slope would result in minor differences that are 

ignored for the purpose of this comparison. The along-shelf delivery of sediment to the 

inner-shelf by the river plume (Figure 2-5a), expressed as percent of the Eel River 

sediment load per kilometer, was calculated by applying the rating curve of Syvitski and 

Morehead (1999) to the Eel River discharge and assuming an exponential decay of 

sediment delivery north of the river mouth with an e-folding length of 20 km, roughly
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consistent with the observations of Geyer et al. (2000). During peak wave events, the 

capacity o f the boundary layer to transport sediment down-slope was almost an order of 

magnitude larger during the 1997-98 flood season (Figure 2-5c), despite the fact that peak 

sediment input by the flood was over three times greater in 1996-97 (Figure 2-5b).
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Figure 2-5 (a) Estimated along-shelf delivery of river sediment assuming exponential
decay moving north away from the river mouth; (b) comparison of estimated 
sediment delivery to K and S transects with maximum potential down-slope 
flux at 60-m depth (Equation 2-12) for 1996-97; (c) comparison of estimated 
sediment delivery to K and S transects with maximum potential down-slope 
flux at 60-m depth (Equation 2-12) for 1997-98.
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2.4.1. 1996-97 Flood Season—S-60

We estimate that approximately 370 t/m of sediment were delivered to the S- 

transect by the river plume between JD96 340 and 375, with 55 t/m coming during the 

modest flood beginning on JD96 340. Despite the comparatively modest discharge of 

this early event, the analytical model suggests that low wave energy only allowed a 

limited amount of sediment to be transported by gravity-driven flows. This allowed 

critical stratification to occur for a significant period of time following the input of 

sediment. During this early flood event, the majority of the river discharge occurred after 

the peak wave energy (see Figure 2-2). Thus, it is unlikely that gravity-driven processes 

immediately removed this sediment. The across-shelf shear in the EMCM data (Figure 2- 

2c) suggests that a prolonged period of persistent off-shelf near-bed flow began around 

JD96 350. This supports the idea that sediment was stored on the inner-shelf prior to 

moving off-shore as a gravity flow. Figure 2-6 displays cumulative sediment delivery to 

the inner-shelf region on the S-transect starting JD96 343 compared with the cumulative 

ability of the boundary layer at S-60 to transport sediment down-slope under the 

influence of gravity. The comparison begins on JD96 343 because this is when the 

delivery of sediment first exceeds the down-slope capacity and represents the time when 

the wave boundary layer is expected to become critically-stratified. As shown in Figure 

2-6, the estimate of cumulative sediment input equals or exceeds the potential for gravity- 

driven flux for nearly the entire period.

According to the analytic calculations of flux, only a portion of sediment 

discharged during the New Year’s flood could have been transported off-shore beyond S- 

60. However, from the observations of velocity shear, it appears that significant gravity-
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driven transport ceased near JD96 376. Thus, we infer that either bed consolidation 

limited resuspension and resulted in significant inshore deposition of mud, or other 

oceanic forces effectively dispersed the sediment along and across-shelf. In all likelihood 

a combination of factors resulted in the cessation of gravity flows at S-60.
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Figure 2-6 (a) Comparison of estimated sediment delivery to S transect with
maximum potential down-slope flux at S-60 for 1996-97 flood events; 
(b) comparison of cumulative sediment delivery to S transect with the 
cumulative down-slope flux capacity at S-60.

2.4.2. 1997-98 Flood Season—K-60

Figure 2-5c demonstrates why prolonged periods of gravity-driven transport were 

not observed during the 1997-98 flood season. In contrast to the previous year, the 

resuspension capacity of the wave boundary layer at the 60-m isobath exceeded the input 

of sediment for nearly the entire record. However, closer examination provides some
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insight into both the timing and duration of the observed down-slope flow. Figure 2-7a 

compares sediment delivery by the river flood in-shore of K-60 and S-60 to the gravity- 

driven boundary layer flux capacity for the twelve-day period during which the two 

significant depositional events occur. Although the delivery of sediment to the inner- 

shelf does not exceed the flux capacity of the boundary layer at K-60 during any of the 

wave events, delivery does exceed flux capacity during the intervals in between events.

If we assume that this sediment remains inshore of K-60 during the period of low wave 

energy, this sediment would then be available to be resuspended and transported down- 

slope.

Figure 2-7b integrates the instantaneous delivery and flux in Figure 2-7a in order 

to compare the cumulative values. The two periods during which the cumulative delivery 

of river sediment inshore of K-60 most significantly exceeds the cumulative down-slope 

flux potential immediately precede the observations of gravity-driven deposition in the 

ABS data. Based on our calculation of river plume sediment delivery and gravity- 

induced flux, one would conclude that sufficient sediment was delivered for the boundary 

layer to remain critically-stratified only during the beginning of these two wave events. 

When the boundary layer is not critically-stratified, the wave orbitals will act to increase 

drag and retard down-slope flux (Equation 2-3). Therefore, it is likely that much of the 

sediment input between the two depositional events remained in-shore of K-60 and was 

available for transport when wave energy increased on JD97 385. A rough estimate of 

gravity-induced sediment flux during the second depositional event indicates that during 

the 48-hour period beginning on JD97 384, 160 t/m were transported down-slope past K- 

60. If the sediment delivered to the K-transect by the river in between these two events
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did in fact remain inshore of K-60 prior to the onset of energetic waves on JD97 384, 

then 200 t/m would have been available during the second event.
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Figure 2-7 (a) Comparison of estimated sediment delivery to K and S transects with
maximum potential down-slope flux at 60-m for 1997-98 flood events;
(b) comparison of cumulative sediment delivery to K and S transects 
with the cumulative down-slope flux capacity at 60-m.

2.4.3. 1997-98 Flood Season—S-60

The analytic solution for continual gravity flows over-predicts the down-slope 

velocity observed at S-60 in 1997-98. Therefore, one would speculate that the down- 

slope flux capacity of the boundary layer exceeded the delivery of flood sediment to the 

S-transect. Consistent with expectations, the instantaneous down-slope sediment flux 

exceeded the rate of sediment delivery to the S-transect by almost an order of magnitude 

(Figure 2-7a), and the cumulative delivery of flood sediment never exceeded the
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cumulative capacity for down-slope transport (Figure 2-7b). Therefore, we logically 

conclude that critically-stratified conditions did not control the wave boundary layer at S- 

60 during 1997-98 and significant gravity-driven deposition was unlikely.

2.5. COMPARISON OF MODEL RESULTS WITH CORE DATA

Extensive coring of the flood deposit on the Eel margin following major flood 

events reveals the preservation of several distinct layers of fine-grained sediment on the 

mid-shelf (Wheatcroft et al., 1997; Borgeld et a l, 1999; Drake, 1999; Sommerfield and 

Nittrouer, 1999; Wheatcroft and Borgeld, 2000). Specifically, efforts have focused on 

characterizing the deposits from the January 1995, March 1995, and January 1997 

floods—the three largest during the STRATAFORM program. Examination of cores 

reveal that the deposits from all three floods were areally extensive and remarkably 

similar in distribution, with the center of mass for all three floods located within 8 km 

(Wheatcroft and Borgeld, 2000). Maximum thickness of the preserved layers seen in mid­

shelf cores along the 70-m isobath were roughly 8 cm, 4 cm, and 5 cm for the January 

1995, March 1995, and January 1997 respectively (Wheatcroft and Borgeld, 2000).

Although the 1997 New Year’s flood was the largest event observed, the January 

1995 flood produced the locally thickest deposit (Wheatcroft and Borgeld, 2000). This is 

not counter-intuitive if one assumes that deposition was dominated by gravity-driven 

flows because the analytic solution predicts wave energy to control the deposition rate. 

Therefore, if enough sediment was supplied to critically stratify the boundary layer 

following the floods of 1995 and 1997, the event with the greatest wave energy should 

result in the thickest mid-shelf deposits. This is in fact what the data show. The mean 

rms orbital velocity for the 15-day period beginning with the on-set of flooding was 20.3

29



cm/s at 60-m depth for the January 1995 flood, while mean values for the 15-day period 

coinciding with the March 1995 and January 1997 floods were only 15.7 cm/s and 11.7 

cm/s, respectively.

Figure 2-8 shows the predicted deposition at S-60 for the January 1995, March 

1995, and January 1997 flood events assuming a porosity of 0.75, consistent with the 

partially de-watered flood layers observed in cores by Wheatcroft and Borgeld (2000). 

Deposition was predicted following Equation (2-13) for a twenty-day period beginning 

with the onset of elevated river discharge. The largest predicted deposition was 

associated with the January 1995 flood, followed by the March 1995 and January 1997 

floods. These values are probably an over-prediction of actual deposition because it is 

likely that significant consolidation or dispersion of fine sediment occurred before the 

end of the twenty-day period. The dashed line in Figure 2-8 corresponds to the period 

roughly 7 days after the end of elevated river discharge for all of the flood events and 

represents an estimate of when significant bed consolidation may have occurred. A 

period of 7 days is consistent with the findings of Metha and McAnally (2001), who 

report that many estuarine mud deposits largely consolidate within one to two weeks. 

They report that within the first week following deposition, fluid mud layers rapidly de­

water and compact, resulting in increased shear strength of the bed. Additionally, the 7- 

day period is consistent with the cessation of increased across-shelf near-bed flow 

observed in the velocity data at S-60 following the major flood in 1996-97. Assuming 

that either consolidation or sediment dispersal prevented significant gravity-driven 

transport from occurring 7 days after the peak river discharge gives values of predicted 

deposition of 11cm, 5 cm, and 4 cm for the floods of January 1995, March 1995, and
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January 1997, respectively. These values agree favorably with the maximum values 

reported by Wheatcroft and Borgeld (2000).
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Figure 2-8 Predicted deposition at S-60 for three largest flood events observed during 
the STRATAFORM program (January 1995, March 1995 and January 
1997). Deposition was predicted by applying Equation 2-13 for 20 days 
beginning with on-set of elevated river discharge and assuming a porosity of 
0.75. Dotted vertical line represents 7 days from peak river discharge and is 
representative of approximate time for fine sediment consolidation.

To examine the across-shelf distribution of mud deposition predicted by gravity- 

driven flows, Equation (2-13) was used to predict deposition across the S-transect for the 

three largest floods during the STRATAFORM program. In applying Equation (2-13), 

bed slope varied as a function of depth as indicated by N O. S. bathymetry data. Figure 2- 

9 shows the cumulative deposition predicted for a 14-day period at each depth across the
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S-transect. Deposition was assumed to take place only at depths where the cumulative 

down-slope flux capacity of the boundary layer for the 14-day period was exceeded by 

the estimated cumulative delivery of sediment to the S-transect by the river plume. 

During large flood events with relatively small wave energy, such as the January 1997 

flood, this approach predicts the deposition of mud beginning closer to shore.

Conversely, during floods with larger wave energy or more moderate discharge, 

deposition will not begin until farther offshore. So, floods with extremely high sediment 

input and/or relatively low wave energy have a much greater potential to preserve fine 

sediment on the inner-shelf. This result is consistent with Wheatcroft and Borgeld 

(2000), who concluded that a substantial fraction of fine sediment discharged during 

large floods may be temporarily sequestered among inner-shelf sands. Although the 

inner-shelf boundary of the flood deposit in Figure 2-9 is predicted to be an abrupt 

transition, in reality, this transition would be more gradual. As one moves offshore and 

the boundary layer begins to approach its capacity, deposition may increase across a 

finite transition zone. Additionally, as the wave energy rises and falls and the supply of 

fine sediment changes, the region where the boundary layer begins carrying its maximum 

load will migrate back and forth, smoothing the transition.

The predicted deposition in Figure 2-9 approaches zero at depths between 80 and 

90 m. This outer edge of mud deposition is roughly consistent with the distribution of 

flood layers observed in cores collected during STRATAFORM (Wheatcroft et al., 1997; 

Borgeld et al., 1999; Drake, 1999; Sommerfield and Nittrouer, 1999; and Wheatcroft and 

Borgeld, 2000). At depths greater than approximately 90 m, the effect of increasing off- 

shelf slope overwhelms the effect of decreasing orbital velocity, resulting in flux
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divergence and causing the analytic solution to predict erosion (or lack of deposition— 

see Equation 2-14).
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Figure 2-9 Predicted across-shelf distribution of deposition for S-transect for January 
1995, March 1995 and January 1997 floods. Deposition was predicted by 
applying Equation 2-13 for 14 days and assuming a porosity of 0.75. 
Deposition was assumed to begin at depth where the cumulative delivery of 
sediment first exceeds the cumulative flux capacity of the boundary layer 
for the 14-day period.

It is interesting to note that the offshore edge of the predicted deposit is not the 

same for the three events modeled. The January 1995 flood event had the largest waves 

and hence the greatest mid-shelf deposition. However, predicted deposition does not 

extend offshore as far as the January 1997 or March 1995 deposits. While the magnitude 

of the wave energy ultimately governs the amount of deposition on the mid-shelf, with a
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unchanged between years, it is actually the wave period that controls the offshore extent 

of deposition. The waves during the January 1995 flood produced greater near-bed 

orbital velocities, but they also had a longer period. Longer period waves result in a 

smaller gradient in bottom wave orbital velocity. Because gradients in uwave favor 

deposition, deposition pinches out at a shallower depth under longer period waves. The 

importance of period can be seen in Equation (2-14): increased period (smaller kh) will 

decrease the first term in the bracketed expression, allowing the increase in off-shelf 

slope to dominate.

Our results indicate that the wave energy associated with a flood event plays a key 

role in governing gravity-driven deposition. Floods with large waves will have greater 

deposition at mid-shelf depths, while floods with smaller wave energy may favor greater 

inner-shelf preservation of fine sediment. The importance of wave energy provides a 

possible explanation for the three-fold increase in accumulation rates for the Eel mid­

shelf since 1955 as reported by Sommerfield et al. (2000). While Sommerfield and 

Nittrouer (1999) also report a doubling of the Eel River sediment load over the same 

period, our theory suggests the magnitude of wave energy is ultimately more important in 

controlling deposition on the mid-shelf. A study of the Eastern North Pacific wave 

climate indicates a trend of increasing wave height over the past 25 years (Allan and 

Komar, 2000). Specifically, Allan and Komar (2000) report an increase in average 

winter wave height of 3.1 cm/yr since the installation of a NOAA wave buoy off the 

southern Oregon coast in the mid-1970s and an increase of 3.5 m in maximum annual 

wave height off Washington over the same period. Ward and Hoskins (1996) further 

document a long-term trend of increasing wind speeds between 1949 and 1988 for the

34



North Pacific in general. Because our analytic prediction of gravity-driven deposition is 

governed by the wave energy associated with these winter storm/flood events, the 

documented increase in wave energy off the Pacific northwest coast of the U.S. provides 

a possible explanation for the trend of increased mid-shelf deposition.

While the 1964 flood of the Eel River is the largest flood on record, it has been 

difficult to identify a distinct flood layer on the mid-shelf associated with this large flood 

(Sommerfield and Nittrouer, 1999). However, it is consistent with our modeling results 

that the wave energy during and immediately after the flood would have governed the 

magnitude of the associated flood layer preserved on the mid-shelf more directly than 

would the overall river discharge. As illustrated in Figure 2-9, extremely large discharge 

should specifically favor thick deposition of mud closer to shore, because the wave- 

boundary layer would become critically-stratified closer to shore. Indeed, mud layers 

have recently been found interbedded with sand on the inner-shelf off the Eel River 

(Crockett et a l, 2000; Borgeld and O’Shea, 2000) and have been speculatively associated 

with the 1964 flood (J. Crockett, personal comm.; J. Borgeld, personal comm.).

2.6. ALONG-SHELF BATHYMETRIC CONTROL OF GRAVITY-DRIVEN
DEPOSITION

One of the most intriguing aspects of the Eel shelf flood deposit is the spatial 

consistency in the observed patterns of deposition given the highly variable and 

dispersive oceanic forcing conditions that exist during flood events. Both short-term 

rapid-response coring efforts (Wheatcroft and Borgeld, 2000) and long-term 

accumulation rates determined from 210Pb-geochronology (Sommerfield and Nittrouer,

1999) place the center of flood deposition well north of the river mouth. These 

observations seem to conflict with those made by Geyer et al. (2000) which indicate that
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a significant portion of the Eel River sediment load settles out of the plume before 

reaching the K-transect. While Traykovski et al. (2000), demonstrate the effectiveness 

and importance of gravity-driven transport and deposition on the mid-shelf, there appears 

to be no clear explanation for the disconnect between proximal input of sediment near the 

river mouth and its preferential preservation 15 to 25 km to the north.

To examine the influence of bathymetry on the along-shelf variability in gravity- 

driven deposition, the analytic solution was used to predict deposition along the 60-m 

isobath from 5 km south of the river mouth to roughly 50 km north of the river mouth, 

allowing the slope to vary as indicated by N.O.S. bathymetry data. Figure 2-10a shows 

the predicted deposition along the 60-m depth contour as a function of distance from the 

river mouth for the January 1997 flood. The model was applied for a period of 15 days 

beginning with the on-set of elevated river discharge, and it was assumed that sufficient 

sediment was delivered to critically stratify the boundary layer at all points on along the 

shelf. Porosity was set to 0.75 as in Figures 2-8 and 2-9. The model results indicate 

erosion (or at least lack of deposition) close to the river mouth, deposition beginning in 

the vicinity of the K-line, and deposition thickness increasing towards the north. Both the 

lack of deposition predicted near the river mouth and along-shelf increase in deposition 

northward to the S-line are due primarily to along-shelf variation in the across-shelf 

gradient in shelf slope (Figure 2-10c).

The effect of the slope gradient on deposition is indicated clearly by the bracket 

terms in Equation (2-14). If shelf slope increases rapidly offshore, the second term 

containing the slope gradient will overcome the first term representing the offshore 

decrease in uwaVe, and erosion (or lack of deposition) will result. Deposition along the 60-m
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isobath is not predicted until approximately 7-8 km to north of the river mouth at a point 

where the gradient in slope of the shelf has become significantly smaller (Figure 2-10c).
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Figure 2-10 (a) Predicted deposition at 60-m depth for 1996-97 New Year’s flood.
Deposition was predicted by applying Equation 2-13 for a 14-day period 
beginning with on-set of flooding and assuming a porosity of 0.75. Orbital 
velocities were calculated from spectral energy density from NDBC buoy 
46022 for appropriate depth; (b) across-shelf slope at 60-m isobath inferred 
from smoothed N O. S. bathymetry; (c) across-shelf slope gradient at 60-m 
isobath calculated from smoothed N.O.S. bathymetry.

This agrees favorably with the observed southern extent of the mid-shelf flood deposit 

(Wheatcroft etaL, 1997; Sommerfield and Nittrouer, 1999; Wheatcroft and Borgeld, 2000). 

Our results suggest that the convex-upward bathymetry associated with the Eel River 

subaqueous delta prevents gravity-driven deposition on the mid-shelf, thus favoring off-
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shelf sediment bypassing. A significant amount of sediment discharged from the Eel River 

may escape the shelf as gravity-driven flows offshore of the subaqueous delta and 

potentially enter Eel Canyon. This result is consistent with Sommerfield and Nittrouer 

(1999), who conclude that a major fraction of flood sediment bypasses deposition on the 

shelf.

Examination of the bathymetry for the K and S transects illustrates the important 

constraint that bathymetry has on gravity-driven deposition in the vicinity of the mid­

shelf depo-center (Figure 2-11). Because of subtle changes in slope with distance 

offshore, the predicted deposition for S-60 is nearly twice that predicted for K-60, despite 

the two sites having similar local values of bed slope. The across-shelf profile in the 

mid-shelf region on the K-transect shows an increasing slope in the off-shelf direction 

(dcc/dx > 0). Conversely, the mid-shelf slope in the vicinity of S-60 decreases slightly 

offshore (da/dx < 0), allowing greater gravity-driven flux convergence. These relatively 

subtle bathymetric changes appear to strongly influence gravity-driven deposition, 

favoring greater flux convergence and deposition north of the river mouth in the region 

near the mid-shelf depo-center documented by Sommerfield and Nittrouer (1999) and 

Wheatcroft and Borgeld (2000). Despite the highly variable and seemingly dispersive 

conditions associated with floods of the Eel River, gravity-driven processes provide a 

mechanism that can explain the consistency in the along-shelf distribution of observed 

deposition.
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Figure 2-11 Across-shelf depth profile for S and K transects. Profiles were obtained by 
smoothing N.O.S. bathymetry data.

Far enough from the river mouth, sediment delivery from the river plume 

eventually will diminish, resulting in an insufficient supply to initiate gravity-driven 

transport. The evidence of gravity-driven transport from the tripod at S-60 in 1996-97 

(Ogston et al., 2000), together with our modeling results suggest that during large flood 

events sufficient sediment is available to cause critical stratification of the boundary layer 

as far north as the S-transect. Although Figure 2-10a predicts deposition to continue to 

increase north of the S-transect, it is likely that sufficient sediment is not available to 

induce critical stratification much beyond this region. In an attempt to estimate where 

this will occur, we have calculated the potential cumulative down-slope flux across the 

60-m isobath as a function of distance along-shelf from the river mouth for the fourteen- 

day period beginning with the onset of flooding for the largest flood event of 1995, 1997
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and 1998 (Figure 2-12). We then compared the cumulative flux to the cumulative 

sediment delivery from the river plume for the same periods, also as a function of 

distance along-shelf. The analytic theory suggests that the along-shelf location where 

potential cumulative flux exceeds cumulative sediment delivery represents a rough 

estimate of where critically-stratified gravity-driven deposition is expected to end.
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Figure 2-12 Comparison of estimated along-shelf delivery of sediment with cumulative 
down-slope flux capacity for the periods associated with the largest floods 
of a) 1995; b) 1997; c) 1998. Arrow indicates region where cumulative 
down-flux capacity at 60 m exceeds the estimated delivery of sediment.

For the January 1995 and 1997 floods, our estimate for where the cumulative 

gravity-driven flux exceeds the cumulative supply of sediment is approximately 30 and 

50 km north of the river mouth, respectively. While this estimate clearly neglects some 

important processes associated with the delivery of sediment from the river plume, it
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qualitatively agrees with the region where flood deposition begins to diminish 

(Wheatcroft et al., 1997; Sommerfield and Nittrouer, 1999; Wheatcroft and Borgeld,

2000). This estimate is intended only as a rough indication as to where gravity-driven 

transport will begin to diminish and not an exact location where gravity-driven deposition 

will cease. The evidence of gravity-driven transport at S-60 in 1998 demonstrates that 

gravity-driven transport can occur in the absence of critical stratification. However, it is 

reasonable to assume that this region represents the area where gravity-driven deposition 

will begin to decrease. Comparison of cumulative sediment delivery with cumulative 

sediment flux for the winter of 1997-98 (Figure 2-12c) puts the observations collected at 

K-60 in an interesting context. From this comparison, it appears that only a relatively 

small region near the K-transect may have had sufficient sediment delivered during the 

largest flood events of 1997-98 to critically stratify the boundary layer. So, while this 

data set from Traykovski et al. (2000) provided some of the most dramatic examples of 

gravity-driven transport and deposition, the K-transect may also have been one of the 

only locations where these processes could have been observed on the mid-shelf during 

the 1997-98 flood season.

2.7. LIMITATIONS OF THE APPROACH

It should be noted that several assumptions of the present approach deserve 

additional examination. For example, we have assumed that the northward directed 

along-shelf currents that play an essential role in keeping the river plume near the coast 

(Geyer et al., 2000) do not vary from year-to-year and that the settlement rate into the 

bottom boundary layer of the inner-shelf is similarly invariant. In reality, settlement onto 

the inner-shelf from the plume is strongly dependent on plume speed and the settling rate
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of suspended particles (Geyer et al., 2000; Hill et a l, 2000). Furthermore, if the along- 

shelf current penetrates to the bottom boundary layer during floods, it may also influence 

gravity currents. Along-shelf currents on the mid-shelf within a meter of the bed were 

directed northward during the majority of the January 1997 flood (Ogston et al., 2000). 

This may explain why gravity flows were not observed within the boundary layer during 

that flood at a mid-shelf tripod located directly seaward of the Eel River mouth 

(Friedrichs et al., 2000; Ogston et al. 2000). It is therefore likely that along shelf 

currents, which are typically directed up-coast at the beginning of floods and down-coast 

at the end of floods, play some role in displacing the center of mass of the flood deposit 

by laterally advecting down-slope gravity currents. We also have neglected the role of 

along-shelf currents in contributing to the total velocity that determines the flux capacity 

of the bottom boundary layer. The contribution of along-shelf velocity to total velocity 

may help explain why gravity currents were so persistent at S-60 during winter 1996- 

1997, despite the moderate levels of wave energy.

Periodic tidal currents and waves also can act to disperse sediment on the shelf 

through processes unrelated to gravity flows. Harris et al. (1999) simulated suspension 

by tides and waves during floods on the Eel River shelf without considering gravity flows 

and showed that periodic currents alone also tend to move flood sediment toward the 

mid-shelf. Processes occurring in the absence of floods also affect mid-shelf deposit 

thickness and permanence. Across-shelf mean currents in the absence of floods have 

been shown to favor additional deposition on the Eel mid-shelf, both based on 

observations (Wright et al., 1999; Ogston et al., 2000) and numerical model simulations 

(Reed et al., 1999; Zhang et al., 1999; Harris and Wiberg, in press). Drake (1999)
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demonstrated that flood layers coarsen and even thicken as bioturbation adds material 

over time. Event layers derived from offshore transport during storms can also contribute 

significantly to the overall deposition rate on the mid-shelf (Drake et al., 2000).
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3. NUMERICAL MODEL

3.1 THE MODEL

Our numerical model is based upon the analytical theory for gravity-driven flows 

trapped within the wave boundary presented in Section 2. It predicts deposition on the 

Eel margin by realistically estimating the along-shelf delivery of flood sediment to the 

boundary layer from river discharge data and calculating the down-slope gravity-driven 

flux. Deposition is predicted when gravity-driven flux convergence causes the capacity 

of the wave boundary layer to be exceeded. The model assumes that the sediment 

carrying capacity of the wave boundary layer is limited by sediment induced stratification 

as represented by Equation 2-6. Using this relationship, the capacity of the boundary 

layer to hold suspended sediment can be calculated by knowing only the appropriate 

near-bed velocity scale.

The model domain consists of a 72 by 64 element grid rotated to conform to the 

dominant along-shelf direction. Each point in the grid represents an area 1000 m in the 

along-shelf direction and 400 m in the across-shelf direction. The grid covers roughly the 

region from 10 km south of the river mouth to approximately 50 km north of the river 

mouth from the coastline to out beyond the 200-m isobath. The bathymetry for the model 

was obtained by fitting a fourth-order polynomial to across-shelf transects of N.O.S. 

bathymetry data followed by along-shelf smoothing using a third-order polynomial and 

interpolating to obtain the depth and slope for each grid point. Bathymetry must be 

smoothed somewhat because frictionally-dominated gravity flows will unrealistically 

pool behind small irregularities in bathymetry.
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Wave orbital velocities are calculated for each point in the model grid based on an 

interpolation of hourly observations of wave energy density made at NDBC buoy 46022. 

Following the methods of Sherwood et al. (1994), the bottom orbital velocity for each 

model grid-point is calculated from the energy density spectrum knowing the local depth 

and accounting for the frequency-based decay. Comparison of this method with 

observations of near-bed velocity collected at various tripods showed good agreement, 

but with a slight over-prediction. To correct for this over-prediction, a coefficient of 0.79 

is applied to the predicted velocity, consistent with the mean ratio between tripod 

observations and the prediction (see Section 2). On the Eel River continental shelf, it is 

reasonable to assume that wave orbital velocities will dominate the near-bed velocity 

scale. However, the gravity-driven velocity also will make a significant contribution at 

times when high concentrations of suspended sediment are present. Therefore, the near­

bed velocity scale that governs the capacity of the boundary layer to hold sediment is 

calculated using Equation 2-11, to include the influence of ugrav on umax. If the relatively 

minor influence of the along-shelf current is ignored, the carrying capacity of the wave 

boundary layer for a large region of the shelf can be calculated knowing only the relevant 

surface wave height and period.

Fine-grained sediment input is calculated by applying the Syvitski and Morehead 

(1999) rating curve to the discharge data from the USGS gauging stations at Scotia on the 

main stem of the Eel River and the Bridgeville station on the van Duzen River. The 

discharge at Bridgeville is doubled to account for downstream inputs and an upper limit 

of 7 g/L is established for river concentration consistent with the methods of Wheatcroft 

et al. (1997). The predicted sediment load is reduced by 25% to remove the estimated
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percentage of sand (Brown and Ritter, 1971; Geyer et al., 2000). The remaining 

sediment represents our best estimate of fine-grained sediment input to the ocean. Only 

fine-grained sediment that is input during floods is transported and deposited by the 

model. Neither coarse-grained sediment nor pre-existing sediment is accounted for in the 

model.

Using a 30-minute time step, the calculated sediment load is spread along the 

coast north of the river mouth to create an inshore deposit. The inshore deposit is defined 

as the region extending from the river mouth to 50 km north of the river mouth and 

between the 15-m and 35-m isobaths. The along-shelf distribution of river sediment is 

determined by spreading 80% of the fine-grain sediment discharged along the coast to the 

north of the river mouth with an e-folding length of 20 km. The remaining 20% of the 

sediment is spread over a 7-km region south of the river mouth with a linear decrease 

(Figure 3-1). The existence and along-shelf distribution of the inshore deposit are

7.0
Modeled Along-shelf Sediment Distribution

6.0

5.0
E
§  4.0
<DO
O 3.0Q.

□ □

a

2.0

1.0

40-10
Distance from River Mouth (km)

Figure 3-1 Modeled along-shelf sediment distribution with exponentially decaying 
sediment delivery north of the river mouth (efolding length = 20 km).
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consistent with the along-shelf delivery of sediment reported by Geyer et al. (2000), as 

well as observations of temporary and significant inshore deposition of flood derived 

sediment reported by Traykovski et al. (2000). The region inshore of the 15-m isobath 

was neglected in an attempt to avoid the complicated dynamics associated with the surf- 

zone.

The in-shore deposit is used as the source of sediment for gravity-driven 

transport. With each time step, sediment is added to the in-shore deposit and resuspended 

into the wave boundary layer when the resuspension threshold is exceeded. The down- 

slope flux of suspended sediment in the boundary layer is calculated knowing the 

integrated buoyancy and iteratively solving Equations 2-3 and 2-4 for the gravity-driven 

velocity. When the boundary layer is carrying its maximum capacity, the solution to 

Equations 2-4 and 2-11 converge. For many grid-points, the bed slope consisted of both 

an across-shelf and along-shelf component. For each grid-point, the gravity-driven flux 

was partitioned into an across-shelf and along-shelf component based on the relative 

strength of the bed slope. Deposition is predicted when flux convergence causes the 

capacity of the wave boundary layer as given by Equation 2-6 to be exceeded. Both 

erosion and deposition are governed by the capacity of the wave boundary layer, given 

as:

Deposition / Erosion = [5 -  (u2max Ricr)] (3 -1)

where positive values indicate deposition and negative values indicate erosion. Thus, 

erosion can only occur when the wave boundary layer is not carrying its maximum load. 

Erosion of deposited sediment is only predicted to occur when the calculated orbital
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velocity exceeded an established threshold value and the sediment at a particular grid 

point has not consolidated. Sediment that has not been resuspended for a specified period 

of time is assumed to have consolidated and is no longer available to be transported by 

the model. For the base model run, a critical resuspension threshold of 0.35 m/s and a 

consolidation time of 7 days were used. The justification and implications of these 

parameters will be discussed later. Both deposition and erosion are assumed to occur 

rapidly enough to bring the amount of suspended sediment in the wave boundary layer to 

the maximum capacity in one time step. If sufficient unconsolidated sediment is not 

available to meet the capacity of the wave boundary layer and the critical resuspension 

criteria is exceeded, only the available sediment in the bed is resuspended.

Consistent with the results of Wright et al. (2001) the value of Cd in Equation 2-3 

varies inversely Ri. Ri is calculated knowing the integrated buoyancy (B) and umax at all 

points within the model domain. The drag coefficient is then calculated from the 

following linear relationship based on the results of Wright et al (2001) for both the 

wave and current boundary layer:

Cd = -0.028*Ri + 0.01 (3-2)

This relationship establishes a lower limit on Cd of 0.003 for critically-stratified 

conditions and an upper limit of 0.01 when sediment-induced stratification is absent.

Using this relatively simple approach, we simulated gravity-driven sediment 

transport and deposition. The model’s base run was designed to account only for 

transport and deposition by gravity-driven processes. While the ambient currents clearly 

will play some role, they are not accounted for in the base run of the model. However, 

the ability of the analytic solutions to predict near bed velocity and deposition gives us
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confidence that when density-driven processes are active, they represent the dominant 

mode of sediment transport. The model only accounts for fme-sediment and does not 

include sand or coarser grained material whose transport may be governed by other 

mechanisms.

3.2. RESULTS

The model was run for four consecutive flood seasons beginning in 1994-95. 

These four winter seasons represent a wide range of observed river discharge and wave 

energy. The time period for the model runs was selected to encompass the significant 

river discharge events for each year. Figure 3-2 shows the estimated river discharge and 

bottom wave orbital velocity calculated at the 60-m depth for the four periods of time to 

which the model was applied. The parameters used in the base model run and predicted 

fate of sediment input into the model for the four years are shown in Table 3-1. Figure 

3-3 shows the across-shelf profiles of predicted deposition predicted along the K and S 

transects for the four years. The net mid-shelf deposition predicted is shown in Figure 

3-4. Because our primary focus is to assess the importance of gravity-driven sediment 

transport to deposition on the mid-shelf, deposition in Figure 3-4 is only shown for 

depths greater than 50-m. However, in both 1994-95 and 1996-97, significant 

deposition was predicted in-shore or the 50-m contour and is not shown in Figure 3-4.
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The 50-m contour is generally the location of the sand-mud transition on the Eel shelf, 

and it is reasonable to assume that the energetic waves off northern California would 

prevent long-term preservation of fine sediment inshore of this depth unless rapidly burial 

by coarser sediment occurs. The predicted flood deposit thickness was calculated 

assuming a porosity of 0.75, consistent with the partially de-watered flood layers 

observed in cores by Wheatcroft and Borgeld (2000).

a) 1994-95
0.4

0.3

CL

■8 0.1

0
1500 50 100

Depth (m)
c) 1996-97

0.4

£  0.3
co
s  0.2 (/) o
CL 

-8 0.1

o 50 100 150

b) 1995-96
0.4

0.3

0.2
CL

TD

0 50 100 150
Depth (m)

d) 1997-98

Depth (m)

0.4

0.3

0.2
CL

15050 1000
Depth (m)

Figure 3-3 Across-shelf profiles of predicted deposition along the K and S transects for 
the a) 1994-94, b) 1995-96, c) 1996-97, d) 1997-98 flood seasons. 
Deposition was calculated assuming a porosity of 0.75.
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3.2.1. Mid-Shelf Deposition

As expected and observed, significant mid-shelf deposition was predicted during 

the 1994-95 and 1996-97 periods when historically large floods of the Eel River 

occurred. The model predicts that roughly 33% and 25% of the fine sediment discharged 

from the Eel River was deposited on the mid-shelf (between 50 m and the shelf break) 

during 1994-95 and 1996-97 respectively (Table 3-1). This agrees favorably with 

estimates extrapolated from core data that indicate approximately 25% of the fine 

sediment was preserved in the flood deposit following the January flood of 1995 

(Wheatcroft et al., 1997). The thickness of predicted mid-shelf deposition of river- 

derived fine sediment also is consistent with the thickness observed in mid-shelf cores. 

Wheatcroft and Borgeld (2000) report maximum mid-shelf flood layer thickness of 8, 5, 

and 5 cm along the 70-m isobath for the January 1995, March 1995, and January 1997 

floods, respectively. This agrees favorably with our model results that indicate maximum 

deposition along the 60-m isobath of 12 cm for the combined floods of 1995 and 6 cm 

following the 1997 flood season. It is worth noting that Wheatcroft and Borgeld (2000) 

report maximum thickness near the 70-m isobath, and our model results somewhat under 

predict deposition at this depth.

No significant flood layers associated with the 1995-96 and 1997-98 flood 

seasons were observed in cores collected from the mid-shelf (Wheatcroft and Borgeld, 

2000; Drake et a l, 2000). Model results predict minor deposition during these years with 

26% and 8% of the sediment discharge remaining on the mid-shelf during 1995-96 and 

1997-98, respectively. Maximum predicted deposition at 60 m was less than 3 cm for 

both 1995-96 and 1997-98. However, there was evidence for gravity-driven transport at
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Figure 3-4 Predicted gravity-driven deposition for four flood seasons. Deposition was 
calculated assuming a porosity of 0.75 and only deposition deeper than 50 m 
is shown.
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the mid-shelf during these years. Wright et al. (2001) provide evidence for weak gravity- 

driven transport at S-60 during 1995-96. The results of Traykovski et al. (2000) 

demonstrate significant gravity-driven deposition at K-60 during 1997-98. Two gravity- 

driven depositional events were observed to result in approximately 7 and 11 cm of bed 

accretion, respectively, with a net deposition of nearly 10 cm for the tripod deployment 

(Traykovski et al., 2000). The analytic results presented in Section 2.3.1. demonstrated 

an ability to reproduce the timing and magnitude of this observed deposition at K-60, 

assuming that sufficient sediment was supplied to critically stratify the wave boundary 

layer. However their results also suggested that during the 1997-98 flood season, 

gravity-driven deposition may have only occurred over a very limited region of the shelf 

near the K-transect. The numerical modeling was unable to reproduce the magnitude of 

observed deposition at K-60 without significantly increasing the predicted sediment 

delivery to this area. This suggests that in 1997-98 gravity-driven deposition may have 

only occurred over a relatively small region of the shelf, where delivery of sediment from 

the plume was enhanced.

The sediment input during the 1994-95 flood season was greater than the input 

during any other of the three seasons because of the two large flood events in January and 

March of 1995. Therefore, it is not unexpected that the greatest mid-shelf deposition was 

predicted for this year. However, a closer examination of the predicted deposition 

supports the analytical modeling results presented in Section 2 that suggest that the 

magnitude of wave energy plays a crucial role in controlling mid-shelf gravity-driven 

deposition. Figure 3-5 shows the time-series of predicted deposition at S-60 for the four 

flood seasons. Although the January 1997 flood was larger than the January 1995 flood,
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greater deposition was predicted in association with the January 1995 flood. Nearly nine 

cm of deposition was predicted following the January 1995 flood at S-60. An erosive 

event removed approximately 3 cm on roughly the 23 rd day of the model run (Julian Day 

23 of 1995), resulting in a net deposition of 6 cm. The larger January 1997 flood 

(beginning on model day 30) only resulted in about 4 cm of deposition at S-60. This is 

roughly equal to the predicted deposition associated with the much smaller March 1995 

flood, prior to erosion on day 80 of the model run.
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Figure 3-5 Time-series of predicted deposition at S-60 assuming porosity of 0.75 for 
four flood seasons.
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Greater wave energy will lead to greater gravity-driven deposition only if 

sufficient sediment is delivered to critically stratify the wave boundary layer (see Section 

2). In the absence of critical stratification, higher wave energy may erode deposited 

sediment reducing the overall deposition. A comparison of the predicted deposition for 

1995-96 and 1997-98 illustrates the important relationship between sediment supply and 

wave energy. The observed wave energy during the 1997-98 flood season was the 

greatest of the four winters to which the model was applied (Figure 3-2). However, the 

predicted deposition was not largest. Apparently, sufficient sediment was not delivered 

to critically stratify the boundary layer for significant periods of time. Even though 

sediment input was roughly 60% greater in 1997-98 than 1995-96, greater deposition is 

predicted in 1995-96. The energetic waves and modest riverine sediment input not only 

prevented extended periods of critical stratification of the wave boundary layer, but also 

resulted in significant erosion of sediment at mid-shelf depths.

The important relationship between sediment supply and wave energy is 

demonstrated in Figure 3-6. Model predictions at S-60 are compared for the periods 

when the greatest river discharge was observed in 1996-97 and 1997-98. The large flood 

in early 1997 supplied more sediment to the wave boundary layer than could be 

transported by gravity-driven processes. Thus, the wave boundary layer was predicted to 

remain critically-stratified for a prolonged period. As a result, increases in wave energy 

did not increase drag and prolonged down-slope transport was predicted with greatest 

velocities associated with the highest wave orbital velocities. In contrast, in 1997-98, 

insufficient sediment was supplied to critically stratify the wave boundary layer for 

prolonged periods of time. In this case, increases in wave energy decreased Ri and
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increased the drag, reducing downslope transport (following Equation 2-3). In Figure 3-6 

this can be clearly seen by the increase in the predicted drag coefficient associated with 

increased in bottom wave energy. In 1997-98, only very brief periods of rapid down­

slope transport were predicted during elevated wave energy conditions when critical 

stratification temporarily reduced bottom drag.

Figure 3-7a shows the total predicted mid-shelf deposition for the four modeled 

flood seasons. Despite significantly larger sediment input near the river mouth (Figure 3- 

1), maximum mid-shelf deposition was predicted to occur roughly 10 to 30 km north of 

the river mouth during all four flood seasons. Minimal mid-shelf deposition was 

predicted in the region offshore from the river mouth despite this region having the 

highest inshore sediment input. This is consistent with the analytic results in Section 2, 

which suggest that concave downward bathymetry associated with Eel River subaqueous 

delta (increasing off-shelf slope) prevents significant mid-shelf gravity-driven deposition 

in this region. The mid-shelf region north of the subaqueous delta, where greatest 

deposition was predicted and observed, has constant and even decreasing off-shelf slopes 

which favors gravity-driven flux convergence. Further north, predicted deposition begins 

to diminish with no predicted deposition extending further than 45 km north of the river 

mouth. The predicted northern limit of flood deposition is also consistent with 

observations (Wheatcroft et al., 1997; Borgeld et al., 1999; Drake, 1999; Sommerfield 

and Nittrouer, 1999; and Wheatcroft and Borgeld, 2000). The decrease of deposition in 

this region appears to be the result of diminishing sediment delivery by the Eel River 

plume. Presumably, sufficient sediment was not delivered to critical stratify the wave 

boundary layer, preventing gravity-driven sediment transport and deposition.
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Figure 3-7 Along-shelf distribution of cumulative (a) mid-shelf gravity-driven
deposition; (b) inner-shelf deposition; (c) off-shelf gravity-driven flux 
predicted by the model for the four flood seasons.

3.2.2. Inner-Shelf Deposition

Following the large floods of 1995 and 1997, significant deposition is predicted 

on the inner-shelf Predicted inner-shelf deposition was highest in the region near the 

river mouth where the largest along-shelf input of sediment was supplied (Figure 3-7b). 

During 1996-97, approximately 55% of the fine sediment discharged by the Eel River 

was predicted to be deposited in-shore of the 50-m isobath. In contrast, only 12%, 15% 

and <1% of the fine sediment discharged was predicted to remain in-shore of the 50-m
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isobath during the 1994-95, 1995-96 and 1997-98 seasons respectively. The January 

1997 flood was the largest flood event that was modeled (with presumably the greatest 

sediment input), but the associated wave energy was relatively low. As a result 

significantly greater sediment was supplied by the river plume than could be transported 

offshore by gravity-driven processes. The more energetic waves associated with the 

large floods of 1995 allowed greater transport of sediment offshore and resulted in less 

predicted inner-shelf deposition. Because of the energetic waves and modest input of 

sediment during 1997-98, no inner-shelf deposition was predicted.

Observations have not documented widespread deposition of fine sediment on 

the inner-shelf after floods. However, cores collected from the inner-shelf reveal that 

fine-grained sediment layers are preserved within the inner-shelf sands (Borgeld and 

O’Shea, 2000; Crockett et ah, 2000). While energetic waves and currents may 

subsequently disperse much of the predicted inner-shelf deposition, the potential for 

preservation exists. Additionally, there is evidence for rapid deposition of fine sediment 

on the inner-shelf following floods of the Eel River. Traykovski et al. (2000) report that 

a bottom mounted acoustic doppler current profiler (ADCP) deployed at K-20 was buried 

under an estimated 1 m of mud following a flood early in 1998. Although such extreme 

deposition was not predicted by our numerical model, these observations suggest 

nonetheless that the rapid delivery of sediment from the Eel River plume may have been 

capable of overwhelming the capacity of the boundary layer resulting in the observed 

deposition at K-20.

While our results suggest that gravity-driven processes alone are not capable of 

removing all of the sediment delivered to the inner shelf following large floods, the
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processes governing the delivery and potential preservation of fine sediment on the inner- 

shelf represents a gap in the understanding of this system. The surf zone, which during 

large storms may comprise a significant percentage of the inner shelf region, may play a 

key role in sediment delivery and preservation. Our model does not account for the 

complex interactions that occur within the surf zone. Preservation of fine material on an 

energetic inner-shelf such as the Eel River is probably unlikely unless it is rapidly 

covered by coarser grained material. Again, because our model does not account for 

sand, such processes cannot be addressed. Lastly, our parameterization of consolidation 

is basic and a more complex representation of time and depth-dependent consolidation is 

necessary to successful model inner-shelf deposition.

3.2.3. Off-Shelf and Canyon Delivery

The model predicts that significant sediment may be capable of leaving the shelf 

as gravity-driven flows that enter Eel Canyon or traverse the shelf to the shelf break. 

Wright et al (2001) found that the slope of the continental shelf was generally too gentle 

to allow significant gravity-driven transport in the absence of an external source of 

turbulence. On an energetic margin such as that off northern California, waves play a 

key role in allowing gravity-driven flows to propagate across-shelf (Traykovski et al, 

2000). It follows that greater wave energy allows greater gravity-driven flux, increasing 

the likelihood that sediment may leave the shelf as a gravity flow. The 1996-97 season 

had the lowest amount of sediment predicted to leave the shelf despite having the second 

highest total sediment input (Table 3-1). This is a direct consequence of the relatively 

low wave energy that occurred during this year. As a result only 6% of the sediment 

discharge was predicted to enter Eel canyon with 14% escaping past the shelf break. In
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contrast, the energetic waves in 1997-98 allowed significantly more sediment to escape 

the shelf. Nearly 90% of the discharge was predicted to leave the shelf during 1997-98. 

Over half of the sediment input was predicted to leave the shelf in 1994-95 as the result 

of relatively high wave energy.

Recent investigations reveal that flood sediment is entering Eel Canyon 

(Mullenbach and Nittrouer, 2000). Cores collected from the head of the canyon in 

January 1998 before any significant river discharge for the season reveal little 7Be 

evidence for river derived sediment. However, later in March following a period of 

elevated river discharge and energetic waves, cores revealed a 30-fold increase of 7Be
*7

inventories, with elevated Be extending down nearly 10 cm (Mullenbach and Nittrouer, 

2000). Model results indicate that there was significant flux of river-derived sediment by 

gravity flows that can account for the observations collected at the head of Eel Canyon. 

Figure 3-8 shows the time series of cumulative flux into Eel Canyon for the four modeled 

years. Prior to day 40 of the model run (which corresponds to JD98 375), no sediment 

flux into the canyon was predicted. However, nearly 0.2 x 1061 of sediment was 

predicted to enter the canyon due to gravity-driven transport during the flood events of 

January and February of 1998.
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Figure 3-8 Time series of cumulative gravity-driven sediment flux into Eel Canyon for 
four flood seasons.

The results from Section 2 provide evidence that the bathymetry associated with 

the Eel River subaqueous delta inhibits deposition and favors gravity-driven sediment 

bypassing to the slope near the river mouth. While deposition predicted off the river 

mouth is significantly less than that predicted further to the north, the flux of sediment 

off-shelf is highest near the mouth (Figure 3-7c). While the in-shore sediment input is 

greatest in this region, the lack of deposition supports the concept of bathymetry 

controlled gravity-driven bypassing. Thus, the model results suggest that a significant 

fraction of the fine-grained sediment discharged from the Eel River may leave the shelf 

as gravity-driven flows.
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3.3. MODEL SENSITIVITY

The ability of the model to reproduce the large-scale patterns of deposition that 

are consistent with observations collected from the margin provides some confidence that 

our approach is sensible. However, in order to implement the model, several important 

processes were either simplified or neglected to maintain simplicity. Numerous model 

runs were conducted to examine how these simplifications and the other processes 

included in the model affected the results.

3.3.1. Delivery of River Sediment

Clearly the inshore delivery of fine sediment from the Eel River will play a key 

role in where and when gravity-driven processes will occur. However, the analytical 

modeling results in Section 2 suggest that as long as sufficient sediment is delivered to 

critically stratify the wave boundary layer, the large-scale pattern of deposition will be 

controlled mainly by the bathymetry and wave energy. The results of the base model 

runs presented above provide additional support for this idea. Greater sediment 

deposition is predicted well north of the river mouth despite greatest sediment input close 

to the river mouth. To examine the impact of sediment delivery on model results, the 

model was run changing 1) the amount and 2) the along-shelf distribution of sediment 

input (Table 3-1).

3.3.1.1. Amount of Sediment Delivery

The amount of sediment delivered to the inner-shelf by the river plume is poorly 

constrained in our model. Uncertainty associated with the rating curve, as well as the 

possibility that sediment leaves the model domain without ever settling from the plume, 

could potentially influence the accuracy of the model results. Accordingly, model runs
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were conducted in which the amount of sediment supplied to the inner-shelf by the river 

was varied. The impact of changing the amount of sediment delivered into the model 

varied significantly from year to year (Table 3-1). This is mainly the result of the 

relationship between sediment supply and wave energy. This can be illustrated most 

effectively by examining the changes in predicted deposition in 1996-97 versus 1997-98, 

when the supply of sediment input into the model was doubled.

In the 1996-97 base model run, the large input of sediment and low wave energy 

allowed the mid-shelf wave boundary layer to remain critically-stratified for significant 

periods of time (as seen by the constant value for Cd at S-60 in Figure 3-6b). Because for 

much of the time, the mid-shelf boundary layer was already carrying its maximum 

capacity, an increase in available sediment did not result in a proportional increase in 

mid-shelf deposition. Total mid-shelf deposition was predicted to increase by only 44% 

(Table 3-1), with the maximum predicted thickness for the 60-m depth increasing from 

roughly 6 to 8 cm. The majority of the additional sediment remained on the inner-shelf, 

where the predicted deposition increased by 150%. The low-energy wave boundary layer 

had low capacity and could not transport significantly more sediment to the mid-shelf.

In contrast, doubling the sediment input for 1997-98 had a much larger impact on 

the predicted mid-shelf deposition. Mid-shelf deposition increased by 250% and the 

maximum predicted deposition along the 60-m isobath increased by nearly a factor of 

five (Table 3-1). Interestingly, the increased sediment input resulted in a much more 

reasonable agreement between the predicted and observed deposition at K-60 (Figure 3- 

9). Assuming the increased sediment delivery, the model predicted the wave boundary 

layer at K-60 to remain critically-stratified during the large wave event beginning on JD-
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1998 385 (marked with arrows in Figure 3-10d) when the most significant deposition was 

observed by Traykovski et al. (2000). As demonstrated in Figure 3-10, without 

increasing the sediment input, insufficient sediment was available to maintain critical 

stratification during this wave event and the model predicted erosion. While model 

results at K-60 agree more favorably with tripod observations when the sediment input is 

doubled, significantly greater deposition was also predicted over much of the mid-shelf 

for this case. Given the lack of evidence of flood layers observed in cores associated 

with this flood season, it is more likely that localized processes related to the delivery of 

sediment from the river plume may have resulted in higher sediment delivery to the K- 

transect.
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Figure 3-9 ABS image of bed elevation change and predicted deposition at K-60 in
1997-98 assuming normal sediment delivery (red line) and a 2-fold increase 
in sediment delivery (black line). Wave orbital velocities calculated from 
NDBC buoy 46022 are shown in blue.
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Figure 3-10 Observations and model predictions for K-60 during 1997-98. (a) Observed 
across-shelf velocity from EMCM 50 cmab (dashed line) and 110 cmab 
(solid line); (b) Predicted gravity-driven velocity at K-60 for normal 
sediment input (dashed line) and doubled sediment input (solid line), (c) 
Predicted Richardson number at K-60 for normal sediment input and (d) 
doubled sediment input.

The results presented above assume that all of the sediment from the Eel River 

was available for transport by gravity-driven processes. However, observations and 

modeling of sediment delivery from the Eel plume indicate that a fraction of 

unflocculated sediment may remain in the plume and be transported beyond our model 

domain (Harris et al, 1999; Hill et al., 2000). To account for the possibility that a 

significant amount of sediment is widely dispersed and not available for transport by 

gravity-driven flows, the model was run reducing the sediment input by 50%. The effect
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of reduced sediment input had a similar effect on the predicted deposition for each year. 

The 50% reduction in sediment input resulted in a 57%, 46%, 32%, and 50% reduction in 

mid-shelf deposition for 1994-95, 1995-96, 1996-97, and 1997-98, respectively (Table 3- 

1). With the exception of 1996-97, the nearly proportional response of mid-shelf 

deposition to decreased sediment supply indicates that with 50% less sediment, the inner- 

shelf region was not critically-stratified for enough time to limit transport to the mid- 

shelf. The smaller reduction in predicted mid-shelf deposition during 1996-97 reflects 

the relatively low wave energy and high sediment input that resulted in long periods of 

critical stratification dominating the mid-shelf during this year, even given a large 

reduction in sediment supply.

3.3.I.2. Along-Shelf Distribution of Sediment

Model results obtained by using a uniform along-shelf distribution of sediment 

north of the river mouth highlight several important features of the Eel River depositional 

system. For all four years, mid-shelf gravity-driven mid-shelf deposition is still favored 

well north of the river mouth. However, the region of maximum deposition shifted to the 

north in all four years (Table 3-1). Additionally, the uniform sediment distribution 

slightly decreased predicted mid-shelf deposition for the 20-km region directly north of 

the river mouth (data not shown). The maximum predicted thickness also increased 

slightly when a uniform along-shelf distribution of sediment was used (Table 3-1).

The results presented in Section 2 suggest that given unlimited along-shelf 

sediment delivery, gravity-driven mid-shelf deposition should continue to increase 

northward from the river mouth. Decreasing mid-shelf deposition should begin where 

the northerly delivery of river sediment can no longer exceed the capacity of the
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boundary for sufficient amounts of time to allow significant critically-stratified gravity- 

driven transport to occur. Using a uniform along-shelf distribution of sediment did 

effectively move the predicted region of maximum mid-shelf deposition to the north. 

However, greatest deposition was not observed at the northern limit of the model domain 

as expected based on the analytical results presented in Section 2. This decrease in 

predicted deposition towards the northern limit of the model domain while using a 

uniform distribution of sediment input suggests that factors not related to sediment 

delivery also contribute to decreased deposition along the northern region of the model. 

Potential explanations for this will be addressed later in the paper in the section 

discussing the influence of the along-shelf slope.

Changes to the along-shelf distribution of sediment also provide insight into the 

gravity-driven flux of sediment into Eel Canyon and past the shelf break. The model was 

run using a uniform along-shelf distribution of sediment where no sediment was supplied 

to the inshore region south of the river mouth. The model did not predict any sediment to 

enter the canyon under these conditions (Table 3-1). However, when sediment was 

distributed to the inshore region south of the river mouth, nearly all of it was predicted to 

enter the canyon. The increased wave energy associated with the flat, shallow region of 

the delta topset along with the increasing slopes offshore appeared to prohibit significant 

fine sediment accumulation. In all years except for 1996-97, the majority of the sediment 

input south of the river mouth was predicted to enter the canyon as a gravity flow. Model 

runs using the uniform along-shelf distribution of sediment also provide further support 

for enhanced sediment bypassing associated with the subaqueous delta. Similar to the

73



result shown in Figure 3-7c, higher gravity-driven flux off-shelf is predicted near the 

river mouth even when along-shelf sediment input remains constant (data not shown).

3.3.2. Along-shelf Currents

In the absence of gravity-driven processes, ambient currents will exert a dominant 

influence on the transport of suspended sediment. On the Eel shelf, observational and 

modeling studies indicate that across-shelf currents at the mid-shelf favor sediment 

accumulation due to flux convergence (Harris et al, 1999; Wright et al., 1999; Ogston et 

al, 2000). While it is unlikely that this process could account for the rapid deposition 

observed at many locations on the mid-shelf, current interaction with near-bed gravity- 

driven flows could play an influential role on the timing and location of gravity-driven 

transport and deposition. In order to assess the importance of the relatively strong along- 

shelf currents observed on the Eel shelf, the model was run for periods when current data 

collected from tripods was available. These periods included the large flood in 1996-97 

and several modest flood events in 1995-96 and 1997-98. No tripod data were collected 

during the 1994-95 flood season.

From the available data, the along-shelf current was linearly extrapolated down to 

the top of the wave boundary layer. The model was run adding the extrapolated along- 

shelf current to along-shelf component of the gravity-driven velocity assuming a uniform 

distribution of current across the shelf. Examination of ADCP data collected at G-60 and 

S-60 (roughly 25 km apart) in 1996-97 indicates that the 33-hour lowpass filtered along- 

shelf currents were generally correlated during the period of observation (r = 0.79). 

However, the across-shelf component of the currents was not correlated for the two 

locations (r = -0.19). Thus is seems reasonable to add a spatially uniform along-shelf
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current, but not a spatially uniform across-shelf current. A linear extrapolation was used 

because of a logarithmic fit did a poor job for much of the data. The thickness of the 

wave boundary layer was estimated by 5W = 0.08(uwave/co) based on the observations of 

Traykovski et al. (2000). Adding the extrapolated along-shelf current to the along-shelf 

component of gravity-driven velocity probably represents the maximum influence that 

ambient currents could have had on gravity-driven flows because when high 

concentration near-bed layers are present, strong stratification at the top of the layer 

likely reduced the vertical exchange of momentum.

For the forty-two day period during 1995-96 when tripod data was available from 

S-60 (Wright et al., 1999), along-shelf currents extrapolated to the top of the wave 

boundary layer were relatively weak with a mean magnitude of roughly 0.025 m/s. 

Tripod data was available for a considerably longer period of time during the 1997-98 

flood season. Along-shelf currents at K-60 (Traykovski et al., 2000) were relatively 

strong with a mean magnitude of 0.053 m/s extrapolated to the top of the wave boundary 

layer. The main impact of including the along-shelf currents in both 1995-96 and 1997- 

98 was the greater prediction of sediment flux into Eel canyon. Approximately 8% and 

11% of the sediment input in 1995-96 and 1997-98 respectively, was predicted to enter 

Eel canyon without including the along-shelf current. However, the inclusion of the 

along-shelf current increased these percentages to 18% and 17%. The increase in flux 

into the canyon came mainly at the expense of mid-shelf deposition. Deposition at 

depths greater than 50 m was roughly 25% and 50% less when the along-shelf current 

was included. However, the along-shelf distribution of deposition remained relatively
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unchanged, with the region of maximum deposition along the 60-m isobath shifted 

slightly to the north in 1995-96.

The influence of the along-shelf current appeared to have less of an impact on the 

predicted final fate of sediment in 1996-97. Predicted deposition on the inner- and mid­

shelf, and fluxes off-shelf and into the canyon all changed by only 1% when along-shelf 

currents were included in the model. The along-shelf distribution and magnitude of mid­

shelf deposition remained relatively unchanged despite the fact the strongest along-shelf 

currents were observed during 1996-97. Northward along-shelf currents in excess of 0.15 

m/s at the top of the wave boundary layer occurred during the onset of gravity-driven 

transport and the mean current magnitude for the entire period was approximately 0.07 

m/s.

These relatively strong along-shelf currents may have impacted the timing of 

gravity-driven transport. Field data collected during the 1996-97 flood season (Ogston et 

al., 2000) indicates that high concentration layers arrive at the S-60 site ~30 km north of 

the river mouth prior to arriving at the G-60 site only ~4 km north of the river mouth. 

Ogston et al. (2000) proposed that the earlier arrival of sediment at the S-60 site could be 

explained by the greater off-shelf distance to the G-60 tripod if transport by gravity- 

driven flows were emanating from an inshore line source. This pattern was also 

reproduced by modeled gravity flows under specific forcing conditions. The model was 

run using a uniform along-shelf sediment distribution and no sediment delivery south of 

the river mouth. Without including along-shelf currents, the model predicted the arrival 

of sediment due to gravity-driven processes well before the inferred arrival from the G-60 

and S-60 tripod data (Figure 3-1 la). However, gravity-driven transport was predicted to
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begin at S-60 prior to beginning at G-60. If the observed along-shelf current was 

included, the predicted arrival of sediment due to gravity-driven transport at G-60 agrees 

favorably with the on-set of high suspended sediment concentrations observed in the 

tripod data (Figure 3-1 lb).
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Figure 3-11 Predicted gravity-driven velocity at S-60 and G-60 for 1996-97 using 
uniform along-shelf sediment with no sediment input south of the river 
mouth (a) not including influence of observed along-shelf currents, and (b) 
including the influence of the observed along-shelf currents. Arrows 
indicate on-set of inferred gravity-driven transport from tripod observations 
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The sustained period of high suspended sediment concentrations observed at G-60 

is not consistent with wave resuspension and may have been the result of gravity-driven 

sediment delivery (Ogston et al, 2000). However, there is little evidence of gravity- 

driven transport in current meter data at G-60. One possible explanation for the lack of 

current meter evidence for gravity-driven transport at G-60 is the relative strength of the 

observed along-shelf current. During periods of low wave energy or extremely high 

current velocity, the relative importance of the current shear velocity increases, 

suspending sediment out of the wave boundary and into the current boundary layer. This 

could reduce the near-bed negative buoyancy anomaly, halting gravity-driven transport. 

The increased importance of the current shear velocity with depth may play an important 

role in preventing significant amounts of sediment from leaving the shelf as gravity- 

driven flows, and cannot be accounted for in this model.

The along-shelf currents not only influence the transport direction of high- 

turbidity flows, but they also contribute to the generation of near-bed turbulence. 

However, for the sake of simplicity, the contribution of the along-shelf current (vcurr) to 

Umax was not included in the model runs discussed above. While it is relatively easy to 

infer bottom wave velocities for a large area from surface measurements of wave height 

and period based on regional wave buoys, making such inferences about near-bed 

currents without in situ tripods is significantly more difficult. Additionally, across-shelf 

gradients in the along-shelf current magnitude are likely to be much smaller than 

gradients in wave energy. As a result, one would not expect the contribution of the 

along-shelf current to contribute strongly to deposition by gravity-driven flows. This is 

supported by model runs in which the extrapolated along-shelf current velocity was

78



included in the calculation of umax via Equations 2-4 and 2-11. As shown in Table 3-1, 

predicted deposition on the inner-shelf is slightly reduced due to the increase in carrying 

capacity associated with greater values of umax- Mid-shelf deposition is either reduced or 

remains constant in all cases. By assuming the value v curr was uniform across the slope, 

its contribution to umax actually reduces the across-shelf gradient in carrying capacity 

resulting in less flux convergence on the mid-shelf due to gravity-driven flows. Although 

the gradient in the boundary layer capacity is reduced, the actual capacity is increased, so 

greater amounts of sediment were predicted to leave the shelf.

3.3.3. Resuspension/Erosion

The resuspension of recently deposited fine sediment plays an important role in 

the model. When wave orbital velocity exceeds the threshold value, unconsolidated 

sediment is resuspended until the capacity of the boundary layer is met. This is clearly a 

simplification of a very complex problem and neglects the importance of wave-current 

interaction, increasing bed strength due to consolidation, and potential bed armoring. 

However, our model is intended to represent an extreme case where resuspension of 

sediment is controlled almost entirely by near-bed stratification. As long as the observed 

orbital velocity exceeds the threshold for erosion sediment will be resuspended into the 

boundary layer until the capacity is limited by sediment-induced stratification. If 

advection from neighboring grid points already provides the maximum capacity possible, 

no erosion will occur. This is consistent with observations at K-60 (Traykovski et al, 

2000 ) that show significant deposition during large wave events when the boundary layer 

is inferred to be critically-stratified and erosion associated with significantly lower wave 

energy when insufficient sediment is presumably available for critical stratification.
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However, choosing a value for the resuspension threshold is not straightforward, 

especially when dealing with cohesive fine sediment. The observations of Traykovski et 

al. (2000) document a decrease in bed elevation of approximately 8 cm, beginning with 

wave orbital velocities of roughly 0.20-0.25 m/s, suggesting an approximate threshold for 

erosion and resuspension for recently deposited fine sediment. However, approximately 

two weeks after deposition, no change in bed elevation was observed despite orbital 

velocities of nearly 0.70 m/s, presumably because significant consolidation had occurred. 

Work conducted on the Washington shelf reports resuspension of fine sediment at mid­

shelf depths occurring when wave orbital velocities exceed 0.35 m/s (Sternberg and 

Larsen, 1976). Clearly processes associated with time-dependent consolidation will 

make selecting one representative value difficult.

The model was run using several different resuspension threshold values over 

relatively wide but realistic range of values, to assess the impact on the model results. 

Table 3-1 displays the results of these runs. In general, lower threshold values support 

greater sediment transport off-shelf, with less inner-shelf deposition. Clearly if sediment 

is relatively easy to erode, the initiation of gravity-driven transport will be favored and 

little sediment will remain on the inner-shelf. Changes to the resuspension threshold had 

less of an impact on predicted flux into the canyon. These results suggest that the 

intensification of wave energy around the relatively flat and shallow Eel River 

subaqueous delta prevents significant near-shore deposition after floods, except for cases 

with very low associated wave energy.

The effect of erosion and resuspension on model predictions of mid-shelf 

deposition appears to be slightly more complex. While lower threshold values promote
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the initiation of gravity-flows and transport to the mid-shelf, low threshold values also 

can lead to significant erosion at mid-shelf depths. In 1997-98 low threshold values 

allowed erosion to remove nearly all mid-shelf deposition. As the threshold was 

increased, predicted mid-shelf deposition in 1997-98 consistently increased. However, 

high threshold values also can prevent the initiation of gravity-driven transport. In 1996- 

97, predicted deposition increased slightly and then generally decreased as the critical 

erosive threshold was increased toward higher values. Given high threshold values, the 

low wave energy in 1996-97 prevented the initiation of inshore gravity-driven flows 

reducing mid-shelf deposition. Although, the erosion and resuspension of sediment in the 

model is clearly a simplification of a complex process, at first order a threshold value of 

0.35 m/s appeared to do a reasonable job representing and explaining the observed 

patterns of deposition.

3.3.4. Consolidation

The resuspension of fine sediment is closely related to the processes that govern 

sediment consolidation. Without consolidation on an energetic shelf such as off northern 

California, long-term preservation of fine sediment at mid-shelf depths would be 

unlikely. The tripod observations from K-60 suggest that consolidation on the Eel shelf 

occurs relatively rapidly. These observations are consistent with recent work in estuaries 

suggesting that significant consolidation of mud deposits occurs within 7-14 days of 

deposition (Metha and McAnally, 2001). The Eel Shelf model was run using 

consolidation times ranging from one day to two weeks. With the exception of 1997-98, 

predicted mid-shelf deposition appeared relatively insensitive to changes in the 

consolidation time. This appears to be the case because wave orbital velocities in excess
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of 0.35 m/s were relatively rare at mid-shelf depths during all of the seasons that were 

modeled except 1997-98. In 1997-98, wave orbital velocities exceeded this value at mid­

shelf depths on numerous occasions. As a result, the model predicted significant erosion 

and little sediment was preserved in a mid-shelf deposit unless consolidation times were 

sufficiently rapid. However, given the lack of evidence of fine-grained layers in cores 

collected after the 1997-98 flood season, extremely rapid consolidation is probably 

unrealistic. During the less energetic years, orbital velocities only periodically exceeded 

the threshold at mid-shelf depths and only minor erosion was predicted. Longer 

consolidation times allowed greater opportunity for the initiation of gravity flows, 

favoring enhanced deposition on the mid-shelf. In general, these minor increases in 

deposition at the mid-shelf associated with longer consolidation time appear to be offset 

by minor erosion during the few times when the resuspension criteria is exceeded at mid­

shelf depths.

Inner-shelf deposition and off-shelf flux were much more sensitive to 

consolidation time. Longer consolidation times allowed more fine sediment to be eroded 

from the inner-shelf and greater amounts of sediment to leave the shelf as gravity flows. 

In all but the low wave year of 1996-97, a long consolidation time resulted in very little 

predicted inner-shelf deposition. While slight increases in mid-shelf sedimentation were 

observed, longer consolidation times tended to greatly increase the predicted flux off- 

shelf. Significantly less sediment was predicted to leave the shelf as a gravity flow when 

shorter consolidation times were used. However, in the high wave energy case of 1997- 

98, a significant percent of sediment was still predicted to leave the shelf even when 

complete consolidation was assumed to occur in one day. Model runs using the shortest
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consolidation time (1 day) represent a more conservative estimate for the role of gravity- 

driven transport in the Eel River sediment budget. These runs limit gravity-driven 

processes to a relatively short period of time associated only with high river discharge.

3.3.5. Along-shelf Slope

As discussed above, a uniform distribution of inshore sediment input did not 

result in a continued increase in predicted mid-shelf deposition moving away from the 

river mouth, as predicted by the analytical results. One potential explanation for this is 

the increasing along-shelf slope in the northern third of the model domain. Near the 

northern edge of the model, the coastline trends slightly more to the north-northwest 

approaching Trinidad Head. With the depth contours roughly paralleling the coastline, 

the bed slope in this region has a stronger southerly component. To assess the 

importance of the along-shelf component of the bed slope, the model was run using only 

the across-shelf component of the bed slope, ignoring all transport induced by the along- 

shelf slope. These model runs used the exponentially decaying along-shelf distribution of 

sediment depicted in Figure 3-1. As seen in Figure 3-12, the along-shelf component of 

the slope clearly increased the predicted deposition in the region from 10 to 35 km north 

of the river mouth, while decreasing deposition at the northern and southern ends of the 

model domain. Maximum deposition along the 60-m isobath was increased by 47% and 

18% for 1994-95 and 1996-97, respectively. This increase in deposition comes at the 

expense of deposition along the northern and southern regions of the model. So, not only 

is the across-shelf bathymetry associated with the Eel River subaqueous delta 

unfavorable to gravity-driven deposition, but the northerly directed slopes associated with 

delta appear to preferentially steer gravity-driven transport away from this region. The
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along-shelf slope tends to enhance gravity-driven deposition near the observed region of 

the flood depo-center. The southerly directed slopes near Eel Canyon do not appear to 

divert significant sediment into Eel Canyon. In fact, the flux into Eel Canyon remains 

relatively unchanged. Along the northern portion of the model, the southerly-directed 

slopes associated with Trinidad Head divert gravity-driven transport to the south, 

explaining why deposition is not predicted to continually increase to the north.

Change in Deposition at 60-m Due 
to Inclusion of Along-Shelf Slope

0.05
1994-95

0.04
1996-97

0.03

0.02

0.01

- 0.01

- 0.02

-0.03.-10
D i s t a n c e  fro m  R iv e r  M o u th  (km )

Figure 3-12 Change in predicted deposition along 60-m isobath due to including
effect of along-shelf slope for 1994-95 (solid line) and 1996-97 (dashed 
line). The predicted deposition along the 60-m isobath without 
including the influence of the along-shelf slope was subtracted from the 
predicted deposition including the influence of the along-shelf slope.
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Model runs using a uniform along-shelf distribution of sediment without 

including the along-shelf component of slope provide further insight into the patterns of 

predicted deposition. The results from the 1996-97 flood season with uniform along- 

shelf input were very similar to the analytical results showing a continued increase in 

mid-shelf deposition moving northward away from the river mouth. However, this trend 

in increasing deposition was not observed in the other three years (Figure 3-13). This 

unexpected result is also related to the mid-shelf bathymetry. The far northern and far 

southern regions of the model both have relatively high mid-shelf bed slopes. High 

slopes lead to greater gradients in wave energy that favor gravity-driven deposition. 

However, higher slopes also result in a greater boundary layer capacity. This greater 

boundary layer capacity allows greater amounts of sediment to be removed from the bed 

when the critical resuspension threshold is exceeded. So, in the absence of critical 

stratification, when mid-shelf orbital velocities exceed the resuspension threshold, 

unconsolidated sediment will be preferentially removed from regions with higher slopes. 

In 1996-97, sufficient sediment was supplied so that on the few occasions when the 

resuspension threshold was exceeded at mid-shelf depths, the boundary layer was 

critically-stratified and preferential erosion could not remove sediment from regions of 

higher slope. However, the other three years had greater wave energy and the 

resuspension threshold was exceeded on a number of occasions at the mid-shelf.
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Figure 3-13 Predicted deposition along the 60-m isobath for model run using uniform 
along-shelf sediment delivery and neglecting the effect of the along-shelf 
slope for the four years modeled.

3.3.6. Richardson Number & Drag Coefficient

Previous work has established that the drag coefficient and Richardson number 

are closely related. The flume experiments of van Kessel and Kranenburg (1996) found 

that values for Cd were of the order 0.003 for critically-stratified turbidity currents 0(10 

cm) in thickness. Based on fits of Equation 2-3 to field observations from both the wave 

and current boundary layers, Wright et al. (2001) found generally similar values and 

reported an inverse relationship between Ri and Cd upon which the model was based. To 

explore model sensitivity the present model was run using several variations on this
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relationship, including runs where Cd and Ri remain constant. Using constant values of 

Ri « 0.25 and Cd « 0.003 only slightly changed the predicted model results. In general, 

using the constant values slightly decreased inner and mid-shelf deposition while 

increasing off-shelf flux. Because the drag coefficient did not increase during times 

when critical stratification was absent, greater gravity-driven flux was allowed when the 

boundary layer was not carrying its maximum capacity. This would lead to less flux 

convergence and explain the lower predicted inner and mid-shelf deposition. The inverse 

relationship between Ri and Cd delayed the onset of gravity-driven transport in many 

cases. When the boundary layer was not critically-stratified, the higher predicted drag 

prevented significant down-slope transport. However, in the absence of any dispersive 

process, sufficient additional sediment was soon added to achieve critical stratification 

and down-slope transport was only delayed slightly.

Model results were relatively sensitive to the values of Cd and Ri selected to 

represent critical stratification. Specifically, the ratio of Ri to Cd for Cd « 0.003 and Ri « 

0.25 is close to the maximum values allowable in the model. Increases to this ratio would 

bring the value of p in Equation 2-10 close to its limiting value of one for many locations 

on the Eel shelf. As the value of p approaches 1, the predicted gravity-driven velocity 

will increase rapidly. This asymptote represents the transition to auto-suspension where 

the velocity of the gravity current generates sufficient turbulence to sustain the flow.

This model is not intended to represent such a situation.

The model was run using a constant value of Cd = 0.006 (with Ri = 0.25), as well 

as a constant value of Ri = 0.15 (with Cd = 0.003). As expected, the increased drag 

coefficient increased predicted deposition on the inner-shelf in all years but 1997-98,

87



when energetic waves prevented any significant deposition on the inner-shelf (Table 3-1). 

However, in all years but 1996-97, the increased drag also resulted in greater mid-shelf 

deposition. This result can be explained as follows: increased drag effectively reduces 

the carrying capacity of the boundary layer through its influence in Equation 2-12. 

Therefore, given the same amount of sediment, the model will predict that the mid-shelf 

boundary layer will be critically-stratified for longer periods of time when a larger drag 

coefficient is used. When the boundary layer at the mid-shelf is carrying its maximum 

capacity for longer periods, greater flux convergence will occur leading to greater 

deposition. In years with extremely large sediment supply such as 1996-97, enough 

sediment is supplied to critically stratify the boundary layer for very long periods already, 

so the increase in drag will not significantly change the duration of predicted critical 

stratification, and less deposition will be predicted because of the reduced flux capacity.

Decreasing Ri had a similar effect on model results. Like an increase in C<j, a 

decrease in the value of Ri also effectively reduces the amount of sediment that can be 

maintained in suspension, allowing for longer periods of critical stratification, but 

decreasing deposition during periods of critical stratification. This is consistent with the 

analytical model presented in Section 2 that reports both sediment flux and deposition are 

proportional to the ratio of Ri2cr/Cd. Reducing Ri decreased this ratio by more than the 

increase in Cd- As a result, in 1996-97 when prolonged periods of critical stratification 

occurred, mid-shelf deposition was reduced by a greater amount by decreasing Ri than by 

increasing Cd-
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4. CONCLUSIONS

4.1. CONCLUSIONS FROM ANALYTICAL MODEL

The analytical model presented in this paper provides several important insights 

into the transport, deposition and dispersion of sediment on the Eel River continental 

margin. By assuming that a negative feedback maintains the near-bed Richardson 

number at its critical value, the model reasonably reproduces observed time-series of 

down-slope velocity and bed elevation change, knowing only the surface wave forcing 

and shelf bathymetry. Application of the model is limited to periods when a sufficient 

supply of easily suspended sediment is available to critically stratify the wave boundary 

layer. This appears to occur when the volume of sediment supplied to the inner-shelf by 

river floods exceeds the down-slope flux capacity of the gravity flow. In the absence of 

critical stratification, wave orbitals on an energetic shelf will increase drag and retard 

down-slope transport and limit gravity-driven deposition.

Model results indicate that the thickness of gravity-driven mid-shelf deposition 

during large floods is controlled primarily by the magnitude of wave energy and not the 

magnitude of river discharge. Higher wave energy increases the capacity of critically- 

stratified gravity flows to transport sediment down-slope and results in greater gradients 

in flux and hence deposition. This provides an explanation for why the largest flood 

during the STRATAFORM program did not produce the thickest observed mid-shelf 

flood layer. In fact, the largest flood layer observed in cores was produced by the flood 

with the largest associated wave energy. The magnitude of wave energy also will play a 

key role in determining the ultimate fate of river-derived sediment. Following large 

floods with relatively weak wave energy, the model predicts the capacity of the wave
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boundary layer to be exceeded closer to shore, resulting in significant gravity-driven 

deposition on the inner-shelf. This could account for some of the fine sediment 

discharged from the Eel River that is not accounted for in the mid-shelf mud deposit. 

Conversely, during moderate to large floods with high associated wave energy, gravity- 

driven transport is an effective mechanism for moving sediment across-shelf and may 

allow large amounts of flood-derived material to escape to the continental slope or enter 

Eel Canyon.

The bathymetry of the Eel margin plays a critical role in gravity-driven transport 

and deposition. In the mid-shelf region near the Eel River mouth, the increasing off-shelf 

slope allows the gravity-driven velocity to increase rapidly enough to prevent flux 

convergence due to the off-shelf decay in orbital velocity. As a result, no deposition is 

predicted on the mid-shelf within several kilometers of the river mouth and sediment can 

travel past the shelf break or into Eel Canyon as a gravity-driven flow. Given the 

preferential settling of sediment near the river mouth, gravity-driven sediment bypassing 

across the shelf and into Eel Canyon also may account for a significant fraction of the 

sediment not accounted for in the mid-shelf flood deposit.

In contrast to region near the river mouth, the region 15-25 km north of the river 

mouth is characterized by much flatter and even slightly concave upward mid-shelf 

profiles. The decrease in off-shelf slope in this region in conjunction with the off-shelf 

decay of wave orbital velocity favors gravity driven deposition. The consistency of 

historic deposition in this region provides strong support for gravity-driven emplacement 

of the Eel River flood deposit. The model predicts gravity-driven deposition to cease in 

the vicinity of the 90-m isobath. The increase in slope again allows the contribution of
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the gravity flow velocity to prevent significant flux convergence, limiting the off-shelf 

extent of gravity-driven deposition.

Farther from the river mouth, the supply of sediment eventually is reduced to the 

point where gravity-driven transport and deposition are no longer possible. Estimates of 

sediment delivery by the river plume relative to down-slope flux by gravity flows predict 

the northern limit of the flood deposit should occur where critically-stratified gravity- 

driven transport can no longer be maintained. As a result, larger floods are capable of 

gravity-driven transport and deposition much further from the river mouth than smaller 

floods.

Our modeling efforts provide further evidence for the importance of gravity- 

driven processes in forming a mid-shelf mud deposit. The ability and simplicity of our 

formulation in not only capturing the large scale patterns of deposition, but in 

reproducing time-series observations of near-bed velocity and bed elevation change, 

shows great promise for future efforts to model the long-term formation of continental 

strata.

4.2. CONCLUSIONS FROM NUMERICAL MODEL

The numerical model presented in this paper simulates gravity-driven deposition 

of the fine sediment derived from floods of the Eel River on the adjacent continental 

shelf. Using observed sets of forcing parameters, the model reproduces the magnitude 

and location of observed flood deposition on the mid-shelf. The thickest mid-shelf 

deposits are predicted to coincide with large floods that have the highest associated wave 

energy. Following large floods, gravity-driven mid-shelf deposition is predicted to 

account for roughly 25-30% of the estimated input of river sediment. This is consistent
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with independent analysis of cores obtained from the mid-shelf. Significant inner-shelf 

deposition of mud is predicted when floods are large or are associated with relatively low 

wave energy. For example, the 1996-97 flood season had the largest flood event modeled 

and the lowest associated wave energy and nearly 55% of the sediment input was 

predicted to remain inshore of the 50-m isobath. When the wave energy is high or floods 

are small, significant amounts of sediment are predicted to escape across the shelf or 

enter Eel Canyon as gravity-driven flows. During the 1997-98 flood season for example, 

conservative estimates indicate that nearly 50% of the sediment active in gravity-driven 

processes traversed the shelf to the continental slope as a gravity-driven flow. An 

additional 10% of the sediment was predicted to enter Eel Canyon.

With the exception of extremely large floods, sensitivity analysis indicates that 

the input of sediment to the model is important. A 50% reduction in sediment input 

caused the model to under-predict observed mid-shelf deposition for all four winters 

considered. This suggests that if our estimates based on the rating curve are accurate, 

much of the fine sediment discharged from the river must be available for gravity-driven 

transport. This also suggests that on margins with bathymetry and accumulation rates 

comparable to the Eel shelf, but adjacent to rivers with a significantly smaller sediment 

load, gravity-driven processes may not play a dominant role in the transport and 

deposition of sediment on the mid-shelf during floods. Doubling the sediment supply did 

not significantly increase mid-shelf deposition during very large floods, however, 

indicating that gravity-driven deposition does place an upper limit on the amount of 

sediment that can be placed on the mid-shelf during large events.
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Bathymetric controls caused model results to be relatively insensitive to the 

along-shelf distribution of sediment. Greatest mid-shelf deposition was consistently 

predicted to occur in the region 10-35 km north of the river mouth. This is the net result 

of three aspects of the shelf bathymetry: (1) Relatively constant to slightly concave 

upward across-shelf bathymetric profiles favor greater across-shelf gravity-driven flux 

convergence; (2) Northerly-directed slopes associated with the Eel River subaqueous 

delta combined with southerly-directed slopes approaching Trinidad Head favor along- 

shelf flux convergence; and (3) Steeper slopes and greater associated boundary layer 

capacity in regions away from the depo-center favor preferential erosion of sediment. 

However, increased sediment delivery to the inshore region near the river mouth did shift 

the location of the predicted depo-center slightly to the south from the bathymetrically- 

favored region.

Model results suggest that the mid-shelf bathymetry also plays a key role in 

gravity-driven flux off-shelf and into Eel Canyon. Despite the greatest sediment input 

near the river mouth, the model predicted little deposition and significant sediment 

bypassing in this region due the concave downward mid-shelf bathymetry. In all four 

winters, the majority of the sediment input south of the river mouth was predicted to enter 

Eel Canyon. Without the influence of along-shelf currents, no sediment input north of 

the river mouth was predicted to enter the canyon as a gravity-driven flow. However, 

model runs including the observed along-shelf currents suggest that southerly along-shelf 

flows can effectively steer gravity-driven flows into Eel Canyon. In fact, accounting for 

the along-shelf current significantly increased the predicted flux into the canyon for years 

with low river discharge, when strong gravity-driven transport occurred only
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episodically. During the 1996-97 winter, when strong gravity-driven transport was 

predicted for relatively long periods of time, the inclusion of the along-shelf current had 

no appreciable impact on the predicted model results. In all years with available tripod 

date, the inclusion of the along-shelf current had little impact on the predicted along-shelf 

location of maximum mid-shelf deposition, providing further evidence that gravity-driven 

deposition on the Eel shelf is bathymetrically controlled.

Model results were relatively unaffected when the along-shelf current magnitude 

was included in calculations of the wave boundary layer capacity. The minor impact 

attributed to the ambient currents, particularly in years with strong and sustained gravity- 

driven transport, allows the model to be implemented using only the inputs of river 

discharge, surface wave data, and the regional bathymetry. However, neglecting wave- 

current interaction in the model may result in an over-prediction of gravity-driven off- 

shelf flux. At deeper locations on the shelf, where wave energy has significantly 

decayed, the increased importance of the current shear velocity may be capable of 

suspending sediment out of the wave boundary layer. This process could effectively 

reduce the negative buoyancy force in the wave boundary layer and halt near-bed gravity- 

driven transport. Without including wave-current interaction, the estimates of off-shelf 

flux presented in this paper probably represent maximum possible values.

The model included sediment resuspension and consolidation in a relatively 

crude, but effective manner. Clearly more accurate accounting for these processes will 

be extremely import to future modeling efforts in muddy environments such as the 

continental shelf off northern California. Model results obtained using a resuspension 

threshold of 0.35 m/s and consolidation time of 7 days gave reasonable predictions for
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mid-shelf deposition and are consistent with previously published values for these 

parameters. Consistent with observations, deposition rather than erosion was predicted 

when the boundary layer was carrying its maximum capacity, despite highly energetic 

waves. The presence of sediment induced stratification will greatly impact the 

resuspension of fine sediment and should continue to be a focus for ongoing research.

The values for the drag coefficient and the critical Richardson number appear to 

influence model results through their control over the boundary layer capacity. The value 

for these parameters used in the model are consistent with those reported in the literature. 

However, the values of Ri# and Cd used may respectively represent maximum and 

minimum values appropriate to gravity-driven transport.
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