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ABSTRACT

Marine snow aggregates are one of the primary vehicles for deep-sea carbon 

sequestration. Bacterial activity on marine snow affects both degradation and 

aggregation processes that determine the flux of carbon to depth, biogeochemical cycling, 

and microbial food webs. The microscale processes occurring on aggregates depend on 

specific interactions between bacteria and particles. In this thesis, I describe two such 

interactions which have larger scale implications on marine snow dynamics: (1) the 

effects of starvation on bacterial motility and colonization behaviors on marine 

aggregates and (2) interactions between bacteria and phytoplankton which could 

contribute to the production of TEP.

Current models describing bacterial colonization on particles do not account for 

changes in bacterial behavior due to starvation, which may happen between successful 

encounters with particles and is a possible condition in the oligotrophic ocean. In my 

first study, I examine the effects of starvation on the colonization and detachment of 

several bacterial isolates on particles. I also describe the changes in bacterial motility 

resulting from starvation. Laboratory experiments on model aggregates indicate that 

responses to starvation are strain-specific, and can result in lower short-term steady-state 

bacterial abundances on the aggregates. Bacterial detachment from aggregates was 

unchanged. Motility data indicate that two of three strains tested had reduced swimming 

velocities, resulting in diffusivities six times lower in starved treatments than in fed



treatments. This was corroborated by colonization data. Future models describing 

bacterial colonization should consider the shifting physiology and behavior of bacteria 

responding to starvation.

In my second study, I investigated the interactions between bacterial isolates and 

the marine diatom Thalassiosira weissflogii (TW) on the production and characteristics 

of TEP, a major component of marine snow. One of two bacterial isolates (either 

Microscilla furvescens or Curacaobacter baltica) was added to jars of TW and incubated 

on a rolling table for seven days. During the time course, each jar was sampled for TEP 

length, area, total TEP, and bacterial distribution among the free-living and TEP- 

associated fractions. The two strains of bacteria showed different responses. Jars 

inoculated with Curacaobacter baltica had a significantly higher fraction of total bacteria 

that were associated with TEP, although the number of bacteria per unit area of TEP was 

lower. These results suggest that the strain-specific interactions between bacteria, 

phytoplankton, and TEP could impact the population distributions of bacteria. Over 

seven days, jars inoculated with Curacaobacter baltica produced more TEP; TEP 

coverage was almost four times higher (-8%  of the total filter area) in jars inoculated 

with Curacaobacter baltica than those inoculated with Microscilla furvescens.

Results from both studies stress the importance of strain-specific interactions in 

describing microscale processes. Integrating our understanding of responses of 

individual strains with information on the diversity and activities of bacterial 

communities on aggregates will better determine how these complex interactions may 

affect the fate of sinking aggregates and the solubilization of particles into dissolved 

organic matter.



CHAPTER 1
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INTRODUCTION 

The Role of Marine Aggregates

The ocean is the largest active reservoir in the global carbon cycle, and therefore

could play a major role in mitigating the effects of global warming and increased 

anthropogenic emissions of CO2 (Siegenthaler and Sarmiento, 1993). The sinking of 

particulate organic matter (POM) in the ocean, such as marine snow, is a key mechanism 

for transporting carbon to depth (Fowler and Knauer, 1986; Alldredge and Silver, 1988; 

Kiorboe, 2001). Marine snow is made of large, fractal aggregates (>500 pm) composed 

of phytoplankton aggregates, zooplankton fecal material, or other large organic 

structures, including mucous structures and secretions (Alldredge and Silver, 1988; 

Kiorboe et al. 2003). Marine snow constitutes up to 63% of total particulate organic 

carbon in some areas (Alldredge and Silver, 1988). Large fluxes of aggregates are 

typically coupled to primary productivity (Alldredge and Silver, 1988; Alldredge and 

Gottschalk, 1990; Kiorboe 2001) and are associated with the termination of 

phytoplankton blooms (Smetacek, 1985; Allredge, 1995; Logan et al. 1995).

Aggregation of phytoplankton depends on the abundance (Hill, 1992) and size 

spectrum of particles (Jackson 2001), the physical environment (McCave, 1984), and the 

stickiness of the particles (Kiorboe et al. 1996; Jackson 1995; Jackson 2001), which can 

depend on growth stage (Passow et al. 2002a), physiological condition of the 

phytoplankton (Hong et al. 1997) and the presence of exopolymeric secretions (EPS). 

One type of EPS is transparent exopolymer particles (TEP) (Passow and Alldredge,
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1995), which are discrete particles that are considered a primary factor in determining 

particle stickiness (Passow et al. 1994b).

Organic macroaggregates are sites of elevated heterotrophic activity which 

undergo a succession of microbial colonizers that change the character of the particles as 

they are transported to depth (Alldredge and Silver, 1988). These microbial colonizers 

include bacteria (Smith et al. 1992; Kiorboe et al. 2002), protozoans, (Silver et al. 1984; 

Artolozaga et al. 1997; Kiorboe et al. 2003), and larger zooplankton (Bochdansky and 

Hemdl, 1992; Steinberg et al. 1994; Dilling et al. 1998).

Colonization of Marine Aggregates by Heterotrophic Bacteria

Heterotrophic bacteria play an important role in the degradation and solubilization 

of POM (Azam et al. 1983) although particle-associated bacteria make up only a small 

portion (< 10%) of that total activity (Alldredge and Youngbluth, 1985; Karl et al. 1988). 

Aggregate-associated heterotrophic bacteria play an important role in the biogeochemical 

cycling of POM (Smith et al. 1992; Smith et al. 1995) because these bacteria release 

exoenzymes and solubilize particulates (Cho and Azam, 1988) faster than they can take 

up the dissolved products (Vetter et al. 1998).

Initial colonization of aggregates by bacteria, occurring on a time scale of 

minutes, can influence the subsequent population dynamics, diversity, and community 

development on aggregate surfaces (Lawrence et al. 1995). The early stages of bacterial 

colonization on aggregates have been modeled (Kiorboe et al. 2002), and these models 

can be used to predict the steady-state abundances of attached bacteria based on the 

ambient bacterial concentration, the size of the aggregate, bacterial motility, and the flow
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environment (Kiorboe et al. 2002). Behaviors like chemotaxis (Fenchel, 2001), quorum 

sensing (Gram et al. 2002), and antagonism (Grossart et al. 2004) further complicate the 

colonization process. Colonizing bacteria have also been shown to detach from 

aggregates, even after relatively short residence times (Kiorboe et al. 2002), suggesting 

that, while an aggregate may be a rich source of nutrients, it is also a risky environment 

in terms of predation (Kiorboe et al. 2003).

Although many microscale processes involved in the bacterial colonization and 

degradation of particles have been described (Kiorboe et al. 2002, 2003; Grossart et al. 

2003b), there are still many areas that remain understudied or unexamined, including the 

role of nutritional status on changing bacterial behavior and aggregate encounter. The 

complex interactions and subsequent responses of heterotrophic bacteria occurring on 

aggregates have implications in the flux of elements from particulate to dissolved phases, 

aggregation processes, and food web dynamics.

Heterotrophic Bacterial Interactions with Transparent Exopolymer Particles (TEP)

Microbial dynamics associated with TEP, an important component in 

phytoplankton aggregates, may also influence aggregate formation. Microbially- 

mediated aggregation depends on the nutrient environment (Mykelstad, 1977; Guerrini et 

al. 1998; Grossart, 1999), the distribution of heterotrophic bacteria between the 

particulate and dissolved fractions (Grossart et al. 2006b), grazing pressure (Caron,

1987), and production of enzymes (Martinez et al. 1996) and extracellular exudates.

Grossart et al. (2006b) reported that bacteria were required for the aggregation of 

the diatom Thalassiosira weissflogii, but not for Navicula sp., which is a “stickier”
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diatom. Bacteria may contribute to phytoplankton aggregation by producing TEP 

(Decho, 1990; Stoderegger and Hemdl, 1999), that make phytoplankton cells stickier or 

that can aggregate with other TEP (Jackson, 2001). Bacteria have been shown to take up 

DOM and create extracellular exudates which contribute to particle formation (Paerl, 

1978). In addition to producing TEP or TEP precursors, bacteria may also degrade, 

transform, and utilize TEP as an energy source (Passow, 2002b; Radic et al. 2006). 

Passow and Alldredge (1994) indicate that the variability in microbial colonization on 

TEP could be explained by variability in composition of TEP precursors. However, 

colonization patterns on other surfaces (aggregates, biofilms, and the like) suggest that 

interactions may be more complex, and could be strain-specific (Passow, 2002a). The 

strain-specific interactions between bacteria and TEP are not well-studied, but could have 

larger implications in aggregation dynamics because of the role of TEP as a biological 

glue and organic substrate.

Objectives

Heterotrophic bacteria clearly have a strong influence on the formation and fate of 

aggregates in the ocean. The microscale processes occurring on aggregates are 

determined by the strain-specific responses of the bacteria to the environment on and 

around the aggregates. The purpose of this thesis was to examine the specific responses 

of heterotrophic bacteria in a controlled, laboratory setting and to describe the possible 

ecological implications of these responses on the dynamics of marine aggregates. My 

specific research objectives were:
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(1) To determine the species-specific effects of starvation on bacterial 

colonization on, and detachment from, aggregates. (2) To compare the motility of starved 

and fed bacteria. (3) To compare the effects of interactions between the bacteria and the 

diatom Thalassiosira weissflogii leading to differences in TEP abundance, size, and 

bacterial distributions, and examine the implications of these differences in bacterial 

population dynamics, grazing, and aggregate formation.

Thesis Organization

This thesis is organized into the following chapters:

Chapter 2: Starvation effects on aggregate colonization and motility of marine bacteria. 

In this chapter, I report the effects of starvation on the bacterial colonization of 

aggregates through changes in bacterial motility.

Chapter 3: Production of transparent exopolymer particles by the diatom Thalassiosira 

weissflogii under the influence of two different bacterial strains. In this chapter, I 

examine how species-specific interactions between marine snow bacterial isolates and the 

marine diatom Thalassiosira weissflogii may affect TEP quantity, characteristics, and 

bacterial distributions between free-living and TEP-associated fractions, and the 

ecological implications of those interactions.

Chapter 4: Summary and concluding remarks. I conclude with a discussion on how 

results from these studies further our understanding of the specific role of baeteria- 

particle interactions on microscale processes involved with the dynamics of marine snow.
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CHAPTER 2

Starvation effects on aggregate colonization and motility of marine bacteria
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ABSTRACT

Fluxes of particulate matter to depth and dynamics of dissolved organic matter in the 

water column are influenced by microbial processes associated with organic aggregates 

like marine snow. These microscale processes include the encounter between bacteria 

and aggregates, which has been previously modeled and tested with well-fed and actively 

growing bacteria. In this study, we investigated the effects of starvation on initial 

bacterial colonization of aggregates by measuring colonization and detachment of six 

isolates in different physiological states (fed vs. starved) using model aggregates.

Because aggregate encounter depends on motility, the motility behaviors of fed and 

starved bacteria of three select strains were also compared using image analysis. All six 

fed isolates colonized faster and achieved significantly higher steady-state abundances on 

model aggregates than those that were starved. However, there was no difference in 

detachment rates between fed and starved bacteria. Three select strains had significantly 

lower average swimming speeds when starved. Diffusivities calculated from motilities of 

two starved isolates were more than six times lower than those of their fed counterparts. 

Our results show that starvation significantly affects bacterial behavior and bacteria- 

aggregate interactions, which may lead to differences in particulate and dissolved organic 

matter fluxes and cycling under different productivity regimes.
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INTRODUCTION

Marine aggregates constitute up to 63% of the total particulate organic carbon in 

some parts of the ocean (Alldredge 1979), and could be important for carbon 

sequestration even in oligotrophic waters (Benitez-Nelson et al. 2001, Pilskaln et al. 

2005). Marine aggregates are often sites of elevated heterotrophic activity (Alldredge & 

Gottschalk 1990, Silver et al. 1978, Caron et al. 1982, Artolozaga et al. 1997, Dilling et 

al. 1998), and colonization and subsequent solubilization of aggregates by bacteria can 

influence biogeochemical cycling of organic matter (Cho & Azam 1988, Smith et al. 

1992). Aggregate-associated bacteria typically comprise a small portion of the total 

bacteria in the water column (Kirchman, 1993, and references therein). However, per 

unit volume, aggregates are highly enriched with bacteria relative to the ambient water 

(Simon et al. 2002). Three functional types of bacteria have been described based on 

their interactions with aggregates (Riemann et al. 2000, Kirchman 2002, Grossart et al. 

2006b): (1) Free-living bacteria that tend not to attach to aggregates, (2) “particle- 

specialists” that specialize in colonizing particles and aggregates, and (3) “generalists” 

that can grow both in suspension and on particles. Particle-specialists are 

phylogenetically distinct from the others (DeLong et al. 1993, Grossart et al. 2006b), and 

their survival may depend on their ability to locate and colonize aggregates.

Short-term colonization of aggregates by bacteria, occurring on a scale of minutes 

to a few hours, is governed by the rate at which bacteria encounter, attach to, and detach 

from the aggregates (Kiorboe et al. 2002). In still water, encounter rate depends on the

9



aggregate size, ambient concentration of bacteria, and diffusivity of the bacteria, which is 

in turn determined by motility of the bacteria. Bacterial motility can be described as 

‘random walk’ where straight runs are interrupted by tumbles when the bacteria randomly 

reorient their swimming direction (Berg, 1983). Differences in bacterial diffusivity can 

be partly attributed to differences in run speeds, run duration, turn angles and turn 

frequency (Mitchell & Kogure 2006). Bacteria may also change their motility patterns in 

response to chemical stimuli (Mitchell 1991, Fenchel 2001, Thar & Kuhl 2003) or 

physiological stress (Malmcrona-Friberg et al. 1990, Wrangstadh et al. 1990, Stretton et 

al. 1997, Wei & Bauer 1998), and these responses can be heterogeneous even within a 

population (Stretton et al. 1997). A study by Wrangstadh et al. (1990) suggests that both 

adhesion and detachment of Pseudomonas sp. from surfaces could be affected by 

starvation in as little as three hours. After the onset of starvation, peripheral exopolymer 

substance (EPS) production prevented flagellar movement in bacteria by increasing the 

viscosity around the cell (Wrangstadh et al. 1990). Malmcrona-Friberg et al. (1990) 

showed the portion of motile cells decreased from 60% to nearly zero after 3 to 24 hours 

of starvation due to the loss of flagella. Wei and Bauer (1998) reported that prolonged 

starvation in the terrestrial bacterium Rhizobium meliloti resulted in a graded response, 

ranging from loss or modification of flagella to inactivation of the flagellar motor.

Kiorboe et al. (2002) estimated that the search time for a bacterium to encounter 

an aggregate in the upper ocean was 0.02 to 12 d, with a median of 0.4 d; thus, most 

bacteria should reach an aggregate within one day of continuous searching. However, 

this estimation assumes constant diffusivity and velocity for well-fed, exponentially- 

growing bacteria (Kiorboe et al. 2002). Because bacteria may change motility or
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physiology within only a few hours of starvation, previous estimates of search time, 

encounter, and colonization rates may not apply to situations where bacteria may starve 

between successful encounters with aggregates, especially in nutrient-limiting 

environments.

The goal of this study was to investigate starvation effects on short-term bacterial 

colonization of aggregates and motility patterns. First, we compared the colonization and 

detachment rates of six strains of marine bacteria under fed vs. starved conditions using 

model aggregates (agar beads). To further describe the effects of starvation on 

colonization rates, we selected three of the bacterial strains and studied their motility 

patterns under different nutritional conditions.
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MATERIALS AND METHODS

Bacterial Isolates

Bacteria strains HP1, HP5, HP11, HP66 were originally isolated from aggregates 

in the Wadden Sea, Germany (Grossart et al. 2004). Cultures of the isolates were 

maintained on solid media (2% marine broth agar). Additional strains (YR2, YR7) were 

isolated from the York River, Virginia, on solid media. Fed and starved bacteria were 

prepared by resuspending isolates in liquid media for 24 h at 22° C in the dark: For the 

fed treatment, bacteria were inoculated in 1% marine broth (MB); for the starved 

treatment, bacteria were inoculated in organic matter-free, nutrient-free water (NFW) 

prepared according to Kemp et al. (1990).

Bacterial Colonization and Detachment

We used model aggregates made of 2% agar (Fisherbrand) in artificial seawater 

according to Cronenberg (1994). The use of agar beads as an analog to marine 

aggregates is a proven and effective means for studying initial microbial colonization of 

aggregates (Kiorboe et al. 2002, 2003). Fed or starved bacteria were resuspended into 

experimental chambers with 500 ml of NFW at a concentration of 105 cells ml'1. 

Negligible levels of MB from the fed treatment were introduced into the experimental 

chambers (less than 0.4% of the final experimental volume). As such, observed
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differences between fed and starved bacteria could be attributed to the different

physiological status of the bacteria rather than differences in the ambient environments.

For the colonization experiments, agar beads (4 mm in diameter) were suspended 

by glass needles in the experimental chambers for up to 150 minutes. At each sampling 

point, triplicate beads were removed and bacteria attached to the bead surfaces were 

enumerated using DAPI direct counts at 600 x magnification. A 1-ml aliquot of the 

ambient bacteria was also counted at the start and end of the colonization experiment. 

The model of Kiorboe et al. (2002) was fitted to the data to estimate diffusivities (Dm) 

and detachment rates (8m):

Equation 1.

0.5
N t = AnaCDm (1 + exp(-Smt) ■ e r f

2V a y Dm
-1 ) / S m

where Nt is bacterial abundance on agar beads; a is radius of agar beads; C is ambient 

bacterial concentration; t is time; e r f  is the imaginary error function for integrating a 

Gaussian distribution. Dm determines the rate at which the bacteria encounter an 

aggregate based on random-walk motility, whereas 8m determines the rate at which 

recently attached bacteria detach from the aggregate. Because Dm and 8m are not 

independent of each other in the model, we further define a colonization coefficient Rm as 

the numerical value of Dm/8m, which characterizes the net accumulation of bacteria on the 

aggregate, and allows us to compare the colonization rates between treatments.

At the end of the colonization experiments, remaining beads with attached 

bacteria were transferred to nutrient-free water, and the detachment of bacteria from the 

agar beads was monitored over a course of 60 to 100 min. An exponential decay function
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was fitted to the remaining bacterial counts over time to estimate an empirically-derived 

detachment rate (8e) (Kiorboe et al. 2002).

Bacterial Motility and Image Analysis

Three Wadden Sea isolates (HP1, HP11, HP66) were selected for detailed 

motility observations. Starved and fed bacteria were resuspended in an observation 

chamber consisting of two rubber o-rings (1.9 cm in diameter) glued together and affixed 

to a microscope slide. The chamber was 0.5 cm deep and sealed with a cover slip. The 

bacteria were observed using dark-field microscopy and filmed at a 100 x magnification. 

Twenty seconds of footage were recorded for each treatment. Bacterial swimming tracks 

were digitized using ImagePro 5 software. The digital field of view was approximately 

900 pm x 600 pm. Forty to fifty projected 2-dimensional swimming tracks that were in 

focus were analyzed for run length at a 0.1 s resolution and turn angle at a 0.5 to 0.7s 

resolution. Convective heating created a small net flow in the chambers, which was 

corrected for in the analysis using additional tracks of abiotic particles in the field of 

view. The average 3-dimensional speed of the bacterium was estimated as (3/2)1/2 

multiplied by the corrected 2-dimensional speed, and the empirically derived diffusivity 

(De) was calculated according to Kiorboe et al. (2002):

U^TEquation 2. D  = ----------
e 6(1 - a )

where u is the swimming velocity; x is the run length; and a  is the mean cosine of the 

angles between two successive runs. Additionally, swimming speed data were used to 

generate frequency distributions for both starved and fed treatments. Bacterial 

diffusivity, swimming speed and turn angles between treatments were tested for

14



significant differences by Student’s t-test. When data were not normally distributed, the 

Mann-Whitney test was used. Analyses were performed using MiniTab.
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RESULTS 

Colonization

All six strains of bacteria accumulated on agar spheres over time in a fashion 

similar to that previously described (Figure. 2.1). Ambient cell counts showed were not 

significantly different before and after the 150-minute colonization incubation (student’s 

t-test, p > 0.147) and no dividing cells were observed. Bacterial abundances on the beads 

were normalized to ambient bacterial concentration to correct for slight differences in 

ambient bacterial concentrations within treatments. A two-way ANOVA was performed 

on rank-transformed, normalized abundances for each strain. For all six strains, there 

was a significant difference between fed and starved treatments ( p < 0.001), a significant 

effect over time ( p < 0.001), and a significant effect of treatment and time on the rank of 

the normalized abundance ( p < 0.001).

Significant differences between normalized starved and fed bacterial abundances 

on beads were tested using Mann-Whitney test for each time point. For all strains tested, 

fed bacteria accumulated to higher overall abundances than starved bacteria. Normalized 

abundances of fed HP5 and YR3 bacteria were always significantly higher on beads than 

their starved bacterial abundances for all sampled time points (HP5, p < 0.031; YR3 ,P <  

0.011). Three strains tested (HP1, HP11, YR7) had fed and starved normalized 

abundances that were not significantly different at time zero but diverged thereafter 

(HP1, p = 0.163; HP 11, p = 0.186; YR7, p = 0.104). Fed bacterial abundances for those 

three strains were significantly higher from 5 to 150 min (HP1, p < 0.003; HP 11, p <

16



0.026; YR7, p < 0.005). Normalized abundances for fed and starved HP66 were not 

statistically different for time 0 (p = 0.427) or 5 min (p = 0.385). However, fed HP66 

accumulated to significantly higher levels after 10-150  min (p < 0.031).

The model of Kiorboe et al. (2002; Equation 1) fit significantly to the data (p < 

0.011). The coefficient Rm averaged ( ± 1 s.d.) 9.1 x 10'3 ( ± 3.8 x 10'3) for all starved 

bacteria and 24.9 x 1 O'3 ( ± 13.7 x 10"3) for all fed bacteria (Table 2.1). Rm for fed 

Wadden sea isolates was 2.4 to 3.7 times greater than their starved counterparts. Fed 

York River isolates had an Rm 1.5 to 2 times higher than their starved counterparts. The 

model, run in Matlab, does not output measures of error for diffusivity or detachment.
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Figure 2.1 Colonization of model aggregates (agar beads) by fed (closed circles) and 

starved (open circles) bacteria. Abundances of attached bacteria per aggregate are 

normalized to ambient bacteria counts. Error bars indicate the standard deviation of ten 

counts. Plotted lines represent fits of colonization model (Kiorboe et al. 2002) to the 

data. “HP” bacteria were originally isolated from the Wadden Sea, Germany; “YR” 

strains were isolated from the York River, VA, USA.
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Table 2.1 Colonization coefficient (Rm) based on diffusivity (Dm) and detachment rate 

(8m) derived from model fits to the colonization experiment data using Equation 1.

Strain Starved

Rm

Fed

HP1 0.0089 0.0289

HP5 0.0104 0.0248

HP11 0.0058 0.0214

HP66 0.0152 0.0482

YR3 0.0100 0.0192

YR7 0.0045 0.0067

Mean ( ± SD) 9.1 (±  3.8) x 10J 24.9 (±  13.7) x 10'3

Detachment

Bacterial detachment from the agar beads followed an exponential decay function 

(Figure 2.2). Curve fits were significant (p < 0.05) except for HP5 and HP66 fed, and 

YR3 starved, where scatter was larger. Calculated detachment rates (5e) were on the 

order of 10'4 to 10'3 s’1 (Table 2.2). Raw data were natural log transformed to linearize 

the data. Linearized data were analyzed using a student’s t-test to compare slopes; slopes 

were not statistically different between starved and fed treatments for any of the six 

strains tested (p > 0.05).
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Figure 2.2 Detachment of fed (filled circles) and starved (open circles) bacteria from 

model aggregates (agar beads). Error bars indicate the standard deviations from ten 

bacteria counts. Plotted lines represent fits of exponential decay functions to the data. 

Note the change in y-axis for HP11.
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Table 2.2 Empirically derived detachment rate (5e) based on detachment experiments.

Se (x l0 ‘3 s'1)

Strain Starved ( ± SD) Fed ( ± SD)

HP1 1.88 (0.4) 3.01 (0.4)

HP5 1.39(0.5) 1.10(0.6)

HP11 3.55 (0.7) 5.81 (1.8)

HP66 1.23 (0.2) 1.38(1.2)

YR3 0.79 (0.6) 1.38(0.4)

YR7 0.69 (0.2) 1.05 (0.2)

Mean (SD) 1.59(1.05) 2.29(1.87)

Motility and Image Analyses

Motility data were collected for HP1, HP11, and HP66. Average diffusivities 

(De) calculated from motility data ranged from 0.20x10‘5 to 4.23x1 O'5 cm V 1 (Table 3). 

Average De of fed bacteria was 6.9-7.7 times higher than that of starved bacteria for HP1 

(t-test; p < 0.0001) and HP11 (t-test; p = 0.008). De of starved and fed HP66 were not 

significantly different (Mann-Whitney, p = 0.61). Swimming speeds varied by 2- to 3-
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fold even within treatments (Table 2.3). The frequency distributions of swimming speeds 

between starved and fed treatments overlapped to different extents among the tested 

strains (Figure 2.3). About 70% of starved HP1 had average speeds between 10 and 20 

pm s'1, where nearly 88% of fed HP1 had average speeds between 30 -  60 pm s'1. The 

average speed for starved HP1 (18.4 pm s'1) was significantly lower than fed HP1 (37.8 

pm s'1; Mann-Whitney, p < 0.0001). For HP11, 86% starved and 22% fed bacteria had 

average speed between 20 and 40 pm s'1. The average speed for starved HP11 (22.6 pm 

s'1) was significantly lower than fed HP11 (45.6 pm s’1; t-test, p < 0.0001). Turn angles 

were not statistically different between treatments for either strain (Mann-Whitney, p = 

0.21 and 0.78 for HP1 and HP11, respectively).

Approximately 98% of the starved HP66 and 91% of the fed HP66 swam at 

speeds from 20 to 75 pm s '1. A small percentage of fed HP66 had speeds reaching 88.6 

pm s'1. Despite the overlap, average speeds for starved HP66 were lower than fed HP66 

(t-test, p < 0.007). The average turn angle was significantly higher for starved versus fed 

treatments (Mann-Whitney, p = 0.007) such that HP66 had an average a  of 0.82 in the 

starved treatment and 0.73 in the fed treatment. Overall diffusivities for starved and fed 

HP66 bacteria were not statistically different (Mann-Whitney, p = 0.62).

The empirically derived De and 6e were used to calculate the coefficient Re, The 

calculated Re was higher for the fed treatments in HP1 and HP11, but not HP66. Re 

values for starved and fed HP1 were 1 x 10'3 and 5.1 x 10‘3, respectively. HP11 had an

3 3Re of 1.7 x 10' in the starved treatment and a higher Re in the fed treatment (7.3 x 10'). 

Re for HP66 showed the reverse trend, where starved bacteria had a higher Re (31.3 x 

10'3) compared to the fed bacteria (17.4 x 10'3).
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Figure 2.3 Frequency distributions of swimming speeds for fed (filled bars) and starved 

(unshaded bars) bacteria. Frequencies are expressed as percentages of the observed 

populations.
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Table 2.4 Colonization coefficient (Re) based on empirically derived diffusivity (De) and 

detachment rate (8e).

Strain Starved

Re

Fed

HP1 0.0010 0.0051

HP11 0.0017 0.0073

HP66 0.0313 0.0174

Mean ( ± SD) 0.0113 (±0.0173) 0.0099 ( ± 0.0066)

DISCUSSION

Previous experimental and modeling studies of aggregate-bacteria interactions 

have not adequately considered the effects of starvation on bacteria, and are largely 

biased toward actively growing bacteria in non-limiting nutrient environments. However, 

studies using metabolic dye or micro-autoradiography typically reveal a high percentage 

of inactive bacteria across different aquatic systems (Smith & del Giorgio 2003), and a 

recent study showed that marine snow bacteria can up- and down-regulate their enzyme 

activity while on and off aggregate surface in as little as 2 h (Grossart et al. 2007). Other 

studies have also shown clear effects of starvation on bacterial physiology and behavior 

(Kjelleberg et al. 1984, Wrangstadh et al. 1986, 1990), and that these effects could occur 

within the time required for a bacterium to encounter an aggregate in the upper ocean

28



(Malmcrona-Friberg et al. 1990, Wrangstadh et al. 1990, Wei & Bauer, 1998). Much of 

the world’s surface ocean is characterized by low nutrients and primary production, and 

aggregate distribution is highly patchy such that starvation (short to long term) is an 

important consideration for understanding bacteria-aggregate interactions.

In this study, starvation effects were evident within 24 h, resulting in 40 to 70% 

reduction in Rm such that starved bacteria colonized the model aggregates at a much 

lower rate, and accumulated to significantly lower steady-state abundance on the model 

aggregates. Differences in the colonization behaviors between fed and starved bacteria 

were corroborated by independently observed bacterial motility, in which starvation 

resulted in nearly 50% reduction in average swimming speeds for two of the three strains. 

Empirically derived diffusivities (De) and detachment rates (8e) were similar to those 

reported in other studies (Kiorboe et al. 2002, Kiorboe et al. 2003, Grossart et al. 2006b). 

Starvation had no effect on detachment rates. This indicates that, although starvation 

may affect motility, it may not change cell surface structure and bacterial attachment to 

particles. Another possible explanation is that the starved bacteria could have been able 

to derive some organics from the agar bead after colonization and could have returned to 

a similar physiological state as fed bacteria.

Despite the limited effect of starvation on detachment, detachment is still an 

important factor in understanding microbial dynamics on marine snow. Although 

aggregates represent a source of nutrients for marine snow bacteria, they are also risky 

environments where bacteria could be exposed to high grazing pressure (Caron 1987, 

Kiorboe et al. 2003). In a recent mesocosm study, Tang et al. (2006) showed that strong 

grazing pressure from flagellated protozoa could limit the residence time of bacteria on
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aggregate surfaces, calculated as the steady-state abundance of bacteria divided by the 

colonization rate, to 21 min or less. The duration of attachment to aggregates may be a 

trade-off between the risk of predation and the need for nutrients.

The motility response of HP1, HP11 and HP66 to starvation varied even within 

the populations. Heterogeneous physiological responses to starvation have been 

observed by others. For example, Wei & Bauer (1998) reported that after 8 h of 

starvation, while the majority of the bacterium Rhizobium meliloti had shortened or lost 

flagella, some maintained at least two full-length flagella. Similarly, Stretton et al. (1997) 

showed that after 24 h of starvation, the cell morphology of Vibrio sp. S14 varied from 

coccoid to rod shaped cells with or without flagella. Heterogeneity in flagellation and cell 

morphology may also account for the variations in motility in our experiments.

Despite the variation, starved HP1 and HP11 typically moved slower, which 

would lead to lower encounter rate with aggregates, consistent with the observed lower 

colonization rates in our experiments. Analyses of the swimming tracks also showed that 

differences in diffusivities between fed and starved treatments were mainly driven by 

differences in swimming speeds and not turn angles.

Not all of the strains were affected by starvation in the same way. For HP66, 

colonization data show that fed and starved treatments were not significantly different for 

the first several minutes, consistent with the observations that fed and starved HP66 had 

similar swimming speeds and turn angles. Nevertheless, fed HP66 did accumulate to a 

significantly higher abundance than starved HP66 on the model aggregates. This 

observation could not be explained by a difference in their detachment rate (5e), but 

rather may be a result of their different chemotactic response to the model aggregates or
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ability to attach upon encounter. These factors could not be adequately accounted for by 

the colonization model or motility observations.

In this study we define a coefficient R (= D/6) to characterize the overall 

colonization process. Comparisons between starved and fed treatments were similar for 

both Rm (model) and Re (empirical) such that the R values were consistently higher for 

fed bacteria (except for HP66). However, the calculated Re tend to be smaller than Rm 

within treatments. A number of factors may contribute to a discrepancy between R« and 

Rm: (1) Empirically derived diffusivities (De) were based on observed motility of the 

bacteria in suspension, but not all motile bacteria that encounter an aggregate will 

necessarily attach, in which case De would overestimate the true diffusivity. (2) On the 

other hand, De assumes that the presence of aggregates would not affect the motility 

pattern of the bacteria. Many bacteria, however, exhibit chemotactic response to 

aggregates (Kiorboe et al. 2002, Grossart et al. 2007). Although we used plain agar 

beads to minimize this effect, it is still possible that the bacteria were chemically attracted 

to the agar beads, resulting in a higher diffusivity than De. (3) Lastly, attached marine 

snow bacteria may produce signaling molecules (Gram et al. 2002) that facilitate or 

inhibit the subsequent arrival of other bacteria (Grossart et al. 2003b). These cell-cell 

interactions could not be revealed by motility observations.

Microbial dynamics on marine snow are complex and involve processes leading 

to encounter and the development of microbial populations on the aggregates, and fate of 

microbes either through death, grazing, or detachment. Marine snow bacteria play a 

critical role in solubilizing marine aggregates and mediating organic matter fluxes 

between particulate and dissolved phases (Smith et al. 1992). Understanding how
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bacteria influence microscale processes in biogeochemical cycling requires determining 

not only the mechanisms by which bacteria colonize aggregates, but also potential shifts 

in behavior and responses to starvation, which is a likely condition given rapidly 

changing nutrient conditions and the patchy distribution of aggregates in the open ocean. 

Changes in physiology due to starvation should be incorporated into models examining 

microscale processes occurring on marine snow aggregates, as these processes have 

important implications for the fluxes of organic matter on a global scale.
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CHAPTER 3

Production of transparent exopolymer particles by the diatom Thalassiosira 

weissflogii under the influence of two different bacterial strains
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ABSTRACT

Transparent exopolymer particles (TEP), produced by phytoplankton and bacteria, 

play an important role in aggregate formation. We performed laboratory experiments in 

which one of two strains of marine snow bacteria (either Microscilla furvescens or 

Curacaobacter baltica) were added to jars containing an axenic culture of the marine 

diatom Thalassiosira weissflogii. During the time series, we observed changes in total- 

and TEP-associated- bacterial abundance and characteristics of TEP produced in the 

system. The two systems showed different responses. The jars inoculated with 

Microscilla furvescens had no increases in overall TEP abundance and no change in the 

area of TEP. M. furvescens had higher densities on TEP, although a lower fraction of the 

total bacteria was TEP associated. On the other hand, jars inoculated with 

Curacaobacter baltica had a significantly higher fraction of total bacteria that were TEP 

associated, although the bacteria colonized TEP at lower densities. We also observed 

increases in median TEP area, and total TEP increased (mean ± 1 SD) from 1.6 ( ± 

0.2)% of the total filter area on day 0 to 4.4 (± 0.7)% on day 7. Total TEP area in jars 

inoculated with M. furvescens remained at 1.2 (± 0.3)% of the filter area throughout the 

time course. The amount and character of the TEP produced as well as the distribution of 

bacteria have broader implications in microbial food web dynamics and the 

sedimentation of phytoplankton blooms.
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INTRODUCTION

A key mechanism for carbon sequestration in the ocean is aggregation and sinking 

of phytoplankton. The termination of diatom blooms is marked with increased 

flocculation, which may be aided by the production of phytoplankton exudates (Passow 

et al. 1994). One type of exudate is an exopolymeric secretion called transparent 

exopolymer particles (TEP), which are operationally defined as discrete organic particles 

made of acidic polysaccharides that can be visualized using alcian blue (Alldredge et al. 

1993). TEP act as ‘biological glues’ in aggregate formation (Alldredge et al. 1993;

Logan et al. 1995). As such, TEP are important components of marine snow (Alldredge 

et al. 1993), thereby influencing sedimentation processes (Wells and Goldberg, 1993) by 

increasing aggregation. Engel et al. (2004) reported that TEP dominated polysaccharide- 

aggregation dynamics in a bloom of Emiliana huxleyi; TEP concentrations increased 

overall particle concentration, which lead to increased sedimentation.

Although phytoplankton are typically considered the major producer of TEP, both 

laboratory and field studies have shown that bacteria also produce TEP (Passow, 2002a). 

Stoderegger and Hemdl (1999) estimated that, in the North Sea, 4-5% of total 

abundances (by mass) of exopolymeric particles were derived from bacteria. The 

production of high molecular weight polysaccharides derived from capsular coatings shed 

by bacteria could be an important component in the cycling of dissolved organic carbon 

(DOC) due to the sheer abundance of bacteria in the ocean (Stoderegger and Hemdl, 

1999).
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The interactions between bacteria and phytoplankton can ultimately influence 

aggregation dynamics and sedimentation of particles (Grossart et al. 2006a). Grossart et 

al. (2006a) showed continuous TEP formation and enhanced aggregation of the diatom 

Thalassiosira rotula in the presence of bacteria. Guerrini et al. (1998) reported that, in a 

phosphorous-limited environment, bacteria could stimulate more polysaccharide 

production in the diatom Cylindrotheca fusiformus, since bacteria are more efficient at 

assimilating any available phosphorous. Passow et al. (1994) suggest that bacteria 

colonizing TEP could supply nutrients for phytoplankton growth. Additionally bacteria 

could contribute polysaccharides to the overall TEP pool (Grossart et al. 2006a).

TEP also provide a substrate for bacteria attachment and are utilized by bacteria 

(Passow, 2002b), although the importance of TEP mineralization by bacteria is still 

controversial (Mari and Kiorboe, 1996). Passow and Alldredge (1994) found that 

bacterial abundance on TEP varied inversely with TEP size, such that small TEP particles 

(<10 pm) had more attached bacteria per unit area than did larger particles (>100 pm).

On the other hand, Mari and Kiorboe (1996) found that bacterial abundance on TEP did 

not correlate with surface area or volume, but scaled with the radius of the particles raised 

to a power of 1.5, indicating that TEP must be fractal.

Bacterial colonization and subsequent usage of TEP likely depends on the 

composition of TEP, which can be highly variable based on its origin. The partitioning 

of carbon that is assimilated into phytoplankton or released as carbohydrates can depend 

on the nutrient status of the medium in which the phytoplankton grows (Myklestad and 

Haug, 1972). An additional source of variability in the composition of TEP comes from 

its ability to scavenge nitrogen-rich particles from the water column, including low
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molecular weight amino acids (Schuster et al. 1995; Decho, 1990). Although bacteria use 

TEP as an organic substrate, TEP-associated bacteria can be grazed upon by protozoans 

(Tranvik et al., 1993) and other organisms (Passow and Alldredge, 1999; Ling and 

Alldredge, 2003).

The goal of this study was to compare the effects of two strains of bacteria on the 

production of TEP by the marine diatom Thalassiosira weissflogii. To accomplish this, 

we measured the length, area, and amount of TEP, as well as bacterial distributions and 

densities associated with TEP during a 7-day incubation period. We discuss the species- 

specific interactions between bacteria and this diatom leading to differences in TEP 

abundance, size, and bacterial distributions, and the implications of these differences for 

bacterial population dynamics, grazing, and aggregate formation.
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MATERIALS AND METHODS 

Experimental Set Up

One-liter axenic cultures of Thalassosira weissflogii (TW) cultures were grown in 

f/2 medium supplied with silica. Cultures were maintained at 20° C in continuous light 

for 25 days on an orbital shaker and grown to a concentration of ~2 x 105 cells ml"1. TW 

cells were resuspended into 10 acid-washed, sterile 940 ml glass jars filled with 0.2 pm- 

filtered, sterile Instant Ocean ™ artificial seawater at a concentration of 3 x 104 cells ml"1. 

Each jar was inoculated with a monoculture of bacteria. Two time-series experiments 

were run a week apart. Seed cultures originated from the same culture, and were 

staggered a week apart when aging. Therefore, the phytoplankton used in each 

experiment was grown under identical conditions for the same duration.

Cultures of Curacaobacter baltica (HP1) and Microscilla furvescens (HP11), 

isolated from aggregates in the Wadden Sea (Germany) (Grossart et al., 2004) were used 

in this study. Isolates were grown in marine broth made from artificial seawater.

Cultured bacteria were inoculated into each of the jars of phytoplankton at a 

concentration of 1 x 104 cells ml'1. TW jars inoculated with HP1 will be referred to as 

Experiment A; jars inoculated with HP11 will be referred to as Experiment B.

Sampling Regime

Jars were sampled for phytoplankton counts, total bacteria counts, TEP-associated 

bacteria counts, TEP abundance and TEP size distribution on days 0, 4, and 7. Once jars 

were inoculated with phytoplankton and bacteria, three jars were randomly selected for
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sampling on day 0. The remaining jars were placed on a rolling table in continuous light, 

rolling at a speed of 2.2 rpm, and sampled as described below. Thalassiosira weissflogii 

is considered a low-flocculent species on its own (Kiorboe and Hansen, 1993; Logan et 

al. 1994b), although it has been used to generate aggregates in the laboratory (Grossart et 

al., 2006b). During this incubation, no phytoplankton aggregates formed.

Sterile double-plungered syringes were used to gently collect TEP samples. 

Samples were transferred to a filtration tower using a wide-bore pipet. Two-milliliter 

samples were filtered at low pressure (< 50 mm Hg) onto 0.2-pm pore size black 

polycarbonate filters until nearly dry and stained with 100 pi of freshly prepared, 0.2 pm- 

filtered 0.03% alcian blue stain for 10 seconds. Samples were rinsed with sterilized milli- 

Q water to prevent precipitation of salts, and no support filter was used. The filtered 

samples were then transferred to prefrosted Cytoclear slides and embedded with 

immersion oil. TEP were counted and measured from 20 randomly selected grids at a 

magnification of 200X using image analysis software (Image Pro v. 5.0) to obtain TEP 

size distributions. A total of 150-450 TEP per slide were measured. The vast majority of 

TEP observed were small, ovate particles. TEP were grouped into geometric size classes 

based on maximal length. The maximal and minimum length axes were used to calculate 

the elliptical areas of the TEP. The size spectrum from 20 grids was also used to 

calculate the total amount of TEP on each slide.

Two additional one-milliliter samples were filtered onto 0.2-pm pore size black 

polycarbonate filters, double stained with 4'-6-Diamidino-2-phenylindole (DAPI), 

followed by Alcian Blue. Filters were rinsed with sterilized milli-Q water when stained 

with Alcian Blue and transferred onto Cytoclear slides (Logan et al., 1994a). Double­
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stained slides were used to enumerate bacteria associated with TEP. First, TEP were 

observed with light microscopy and were manually, digitally outlined using Image Pro 

software. The resulting digital outline was then superimposed onto the same field of 

view under UV illumination and the bacteria were counted. Bacteria falling within or on 

the boundary of the digital outline were counted as “TEP-associated bacteria”. About 10 

TEP per slide were analyzed this way. The average number of bacteria per unit area of 

TEP was multiplied by the total cumulative area of TEP per unit volume to calculate the 

number of TEP-associated bacteria per unit volume.

One milliliter aliquots were collected from each jar and diluted by 10-fold with 

sterile artificial seawater. One milliliter of the diluted aliquots were filtered onto 0.2-pm 

pore size black polycarbonate filters for DAPI direct count of total bacteria (Porter and 

Feig, 1980). Samples were kept in the freezer until they were counted. An additional 

aliquot from each jar was preserved using Lugol’s solution, and settled in a Sedgwick- 

Rafter counter for phytoplankton counts. Ten counts were made for each jar.

Data Analysis

Two-way ANOVA was used to compare phytoplankton concentration, total area 

of TEP, total bacteria, percentage of the total bacteria associated with TEP, and densities 

of bacteria on TEP. When data did not have equal variances, data were rank-transformed 

(as indicated in the results). TEP length and area measurements were binned into 

frequency tables; these tables were analyzed in SAS using the Cochran-Mantel-Haenszel 

test. In this case, we used the test to assign row-mean scores to TEP lengths or area 

distributions to test changes through time, while controlling for strain.
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RESULTS

TEP Length and Area

The concentration of Thalassiosira weissflogii was not significantly different on 

day 0 (Student’s t-test, p = 0.242, n = 60). Experiment A had an average concentration ( 

± 1 SD) of 3.12 ( ± 0.64) x 104 cells ml'1 and Experiment B had an average concentration 

of 2.52 (± 0.34) x 104 cells m f1 on day 0. Between days 0 and 7, the concentration of 

TW increased significantly faster in Experiment A than in B (Two-way ANOVA, p < 

0.001, n = 180) (Figure 3.1). By day 7, Experiment A had an average concentration ( ± 1 

SD) of 4.77 ( ± 0.79) x 104 cells ml'1 where Experiment B had an average concentration 

of 3.54 (± 0.73) x 104 cells ml"1. There was a significant interaction between treatment 

and time (p < 0.001).

A total of 3860 and 2088 TEP were measured in Experiments A and B, 

respectively. Size frequency distributions of the individual lengths and areas of TEP over 

time were analyzed using the Cochran-Mantel-Haenszel (CMH) Test. There was no 

significant change in TEP lengths between Experiments A and B (p = 0.423). Mean 

maximal lengths had a great deal of variability; the majority of particles were between 4 

-  16 pm in both experiments, although there were a few particles whose lengths exceeded 

64 pm.

Frequency distributions of TEP area increased significantly over time between 

experiments (CMH test, p = 0.033) (Figure 3.2). Although there was considerable
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variability, Experiment A produced TEP with larger individual areas over time. Most

9 9particles had individual areas between the 8-16 pm and 16-32 pm size classes, although 

the distribution for day 0 in Experiment B did had particularly large TEP which inflated 

the mean area for that time point. Approximately 40 - 55% of the total number of

9 9particles sampled on a given day fell between the 8-16 pm and 32 pm size classes. 

While TEP in Experiment B maintained the same approximate average area and median 

area, particles in Experiment A were increasing in area, as seen in shifts in both the 

means and medians (Table 3.1).

Over the time course, Experiment A had more TEP, as measured by the area of 

coverage on a filter per volume filtered (Two-way ANOVA, n -  16, p < 0.001). There 

was a significant interaction between time and treatment (Two-way ANOVA, n = 16, p = 

0.003). By the end of the time course, the total area covered by TEP was 3.5 times 

higher in Experiment A than in B (Figure 3.3). The total area of TEP ( ± 1 SD) in 

Experiment A was 8.28 (± 1.25) mm2 TEP ml'1, representing 4.39 (± 0.66)% of the total 

filter area. Throughout the time course, Experiment B maintained a low total-TEP area 

of 2.31 (±  0.63) mm2 TEP ml’1, equivalent to 1.22 (± 0.33)% of the total filter area.
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Table 3.1 Statistics summary for the area of individual TEP.

exp strain day
mean
(pm2) SD

median
(pm2) n

A HP 1 0 53.56 103.11 23.72 1242
A HP 1 4 84.23 228.51 20.70 1348
A HP 1 7 145.63 415.40 30.30 1270
B HP 11 0 92.41 380.98 16.38 536
B HP 11 4 46.44 107.25 19.18 1151

B HP 11 7 43.02 90.11 20.15 401
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Figure 3.1 Average concentration of Thalassiosira weissflogii. Filled circles represent 

the average phytoplankton concentration in Experiment A (phytoplankton + HP 1 

bacteria) and open circles show Experiment B (phytoplankton + HP11 bacteria) over the 

course of one week. Error bars indicate standard deviation of the mean of three 

replicates.
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Figure 3.2 Frequency distribution, expressed as a percentage, of area of individual TEP 

in (A) Experiment A and (B) Experiment B. Unfilled bars represent day 0, hatched bars 

are day 4, and shaded bars are day 7. The total number of particles (n) measured on a 

given day are also provided. There was a significant change in the distribution over time 

(Cochran Mantel Haenszel Test, p = 0.033).
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'y iFigure 3.3 Total area of TEP per volume (mm TEP m l '). Triplicate jars were sampled 

for TEP size; the circles indicate the cumulative area of TEP per milliliter for each jar. 

Filled circles are for Experiment A, open circles are for Experiment B. The small crosses 

indicate the average calculated from the pooled raw data from all three replicates for each 

experiment sampled each day.
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Bacteria Colonizing TEP

Total bacterial abundances increased in both experiments during the time course. 

Experiment B, inoculated with HP11 bacteria, had more variance in bacterial counts, but 

still had significantly higher overall abundances than Experiment A (rank transformed 

Two-way ANOVA, n = 180) (p < 0.001). Mean concentrations in Experiment B started 

at 3.01 x 105 cells ml"1 on day 0, and rose to 3.37 x 106 cells ml'1 by day 7. In 

Experiment A, mean bacterial concentrations increased from 2.88 x 105 cells ml"1 on day 

0 to 1.94 x 106 cells ml"1 on day 7 (Figure 3.4).

.The percentage of total bacteria that was associated with TEP was significantly 

different over time and between strains (two-way ANOVA, n = 18, p < 0.03). In 

Experiment B, the percentage of bacteria associated with TEP was less than 4% of total 

bacteria. Experiment A showed increases in the fraction of bacteria associated with TEP; 

on day 0, 2% of HP1 were associated with TEP, increasing to about 8% on days 4 and 7 

(Figure 3.5). Post-hoc analyses show that the percentages of bacteria associated with 

TEP were not significantly different on day 0 and 4 ( p > 0.24) but were different on day 

7 (p = 0.05).

Bacterial densities associated with TEP varied a great deal, as some particles were

5 2not colonized by any bacteria, while others had more than 1 x10  cells per mm TEP 

(Figure 3.6). The average density ( ± SD) of HP11 bacteria in Experiment B was 4.5 (± 

4.0) x 104 cells per mm2 TEP. Experiment A had an average density of 2.34 (± 1.8) x 104
a

cells per mm TEP. Rank-transformed two-way ANOVA (n = 182) showed that 

Experiment B had higher densities of bacteria per area TEP than Experiment A ( p =
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0.001). Post-hoc pair-wise analyses on ranks show that densities were the same between 

treatments on day 0 ( p = 0.386), but different on days 4 and 7 (p < 0.013).
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Figure 3.4 Box plots of total bacteria sampled each day collected from pooled, triplicate 

jars, each with ten counts for Experiment A (grey boxes) and Experiment B (unshaded 

boxes). Means are plotted as filled circles in each box. Median values are.represented by 

lines in each box. The lower and upper boundaries represent the 25th and 75th percentiles. 

Whiskers represent 10th and 90th percentiles. Experiment B (HP11) had significantly 

higher bacterial concentrations on day 4 and day 7 (rank transform ANOVA, p < 0.001).
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Figure 3.5 Percentages of total bacteria that were TEP-associated in Experiment A (grey 

boxes) and B (unshaded boxes). Averages are represented by filled circles in Experiment 

A and open circles in Experiment B. Medians are plotted as lines in boxes. TEP- 

associated bacteria were significantly higher in Experiment A between day 4 and 7 (two- 

way ANOVA, p < 0.03).

54



TE
P 

Ba
ct

er
ia

 
(as

 
% 

of 
to

ta
l 

ba
ct

er
ia

)

55



Figure 3.6 Densities of bacteria associated with TEP. Box plots show the densities of 

bacteria associated with TEP in Experiment A (grey boxes) and Experiment B (unshaded 

boxes). Whiskers represent the 10th and 90th percentiles.
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DISCUSSION

TEP Production and Characteristics

TEP have been recognized as an important factor in aggregation dynamics (Hill, 

1992; Logan et al. 1995) because they increase the number and size of particles, while 

also contributing to particle stickiness (Jackson, 1995). Jackson (1995) also discussed the 

need for aggregation models to include different phytoplankton morphologies, TEP- 

particle interactions, and the dispersion of TEP particles. Current theories of TEP 

dynamics, however, have not sufficiently considered the species-specific interactions 

between bacteria and phytoplankton and the resultant effects on TEP production and 

characteristics.

In this study, the addition of two different strains of bacteria to T.weissflogii 

cultures resulted in different TEP production and characteristics over the time course. In 

Experiment B, length, area, and total area remained relatively unchanged during the 

incubation. Bacterial abundances and TEP characteristics in Experiment A, on the other 

hand, seem to suggest that bacteria-phytoplankton interactions contribute more strongly 

to TEP formation. Total TEP area normalized to phytoplankton abundance was more 

than 2.3 -  2.6 times higher in Experiment A than in B on days 4 and 7. Such a difference 

suggests that the bacteria in Experiment A must be contributing TEP to the system, or the 

diatom was producing more TEP under the influence of HP1. Other studies have shown 

that some bacteria are capable of contributing to the TEP pool (Decho, 1990; Stoderegger
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and Hemdl, 1998, 1999; Passow, 2002b). Laboratory experiments using natural 

populations of marine bacteria showed that treatments without antibiotics produced 

significantly higher quantities of TEP when compared to bacteria treated with antibiotics 

(Passow, 2002b). Stoderegger and Hemdl (1998) used radio-labeled DOM to 

demonstrate that capsular material released into the water by bacteria was equivalent to 

-25% of carbon respired. Stoderegger and Hemdl estimate that 17 -  33% of bacterial 

capsular material coagulates to form exopolymers which can also coagulate quickly, 

especially under turbulent conditions (Stoderegger and Hemdl, 1999).

Although individual TEP length did not change over the time course, individual 

area and total area of TEP was significantly higher in Experiment A than in B. Our 

results suggest that the amount of TEP and TEP characteristics produced by diatoms vary 

under the influence of different bacterial strains. Potential mechanisms for increased 

TEP production could include bacterial stimulation of exudates production in 

phytoplankton, or secretion of TEP by bacteria.

The different TEP abundances and dimensions resulting from interactions 

between bacteria and phytoplankton could indicate different strategies by the bacteria to 

reduce predation by specific types of grazers. TEP concentration was experimentally 

shown to have effects on the structure of protozoan community structure and, therefore, 

control on the microbial food web (Mari et ah, 2004b). Mari and Rassoulzadegan 

(2004a) demonstrated that increased TEP production changed the prey size spectrum for 

the ciliate Strombidium sulcatum, leading to a decline in population because particles 

became too large for ingestion. In Experiment A, HP1 bacteria could interact with 

phytoplankton to enhance TEP production as a strategy for protection from grazers which
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specialize in selecting small particles and free-living bacteria. HP11 bacteria and 

phytoplankton maintain low, steady levels of TEP, lowering the potential for aggregation, 

and therefore, lowering the chance of being preyed upon by aggregate- or substrate- 

associated ciliates and flagellates.

Alternatively, differences in TEP characteristics could result from specific 

bacteria-phytoplankton interactions causing the release of DOM and TEP precursors. 

Bidle and Azam (1999) reported that the exoenzyme activities of bacteria colonizing 

diatoms resulted in the dissolution of diatom frustules. Some bacterial extracellular 

products isolated and identified in the laboratory have been shown to cause the lysis of 

algal cells (Lee et al. 2000). Although we did not test for these products, it is possible 

that specific interactions between bacteria and phytoplankton could also be contributing 

to the pool of TEP precursors.

Bacterial Distributions

Our experiments showed that interactions between HP1 and HP11 with TW 

resulted in different bacterial densities on the surface of TEP. Dense populations of 

HP11 could change the distribution of hydrolytic enzyme activity on the particle. If 

bacteria colonizing TEP also utilize it as organic substrate, it would be an advantageous 

strategy for the bacteria to colonize TEP at some critical threshold density to maximize 

enzymatic hydrolysis without breaking down too much of the matrix, destroying the 

substrate, and diluting the utilizable organic matter from TEP. This enzyme activity 

influences the flux of materials to the dissolved fraction, which can be substrates for both 

bacteria and phytoplankton. Although this was not measured in these experiments, an 

increase in the concentration of exoenzymes could have resulted in the solubilization of
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more TEP in Experiment B. This may explain the lower total area of TEP measured in 

Experiment B, although many other factors could also be involved.

At the population level, the distributions of the two strains of bacteria are 

different. A significantly higher overall percentage of HP1 was associated with TEP. 

This suggests that HP1 may be better able to exploit nutrient resources associated with 

TEP, while at the same time being more vulnerable to grazer mortality associated with 

TEP. These different distribution patterns could reflect different strategies between the 

two bacterial populations for exploiting TEP resources while minimizing TEP-related 

grazing mortality.

The density of both strains of bacteria and the fraction of total bacteria associated 

with TEP remained relatively unchanged between day 4 and 7. This suggests that the 

majority of the colonization occurred between days 0- 4, after which the population 

reached a steady state. Passow (2002b) reports unpublished data from experiments 

(conducted by Passow and Azam), which indicated that newly-formed laboratory­

generated TEP were colonized quickly (<16 h) and bacterial density remained constant 

thereafter. TEP may provide bacteria with an energy source although the degree of 

utilization and the amount of degradation varies (Mari and Kiorboe, 1996; Passow et al., 

2001; Passow, 2002b).

Initial analyses on densities of bacteria associated with TEP on day 4 and day 7 

suggest that HP11 colonized at higher densities than HP1. According to the model 

published by Kiorboe et al. (2002), colonization of bacteria on aggregates is determined 

in part by encounter rate, ambient bacterial concentration, and aggregate size. The model 

can also be generally applied to TEP as a substrate for colonization, in lieu of aggregates.
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Results from Chapter 2 indicate that the net colonization (i.e., colonization that also 

accounts for detachment) on particles and motility behaviors between HP1 and HP11 are 

similar; therefore it is unlikely that differences in density can be attributed to motility and 

resultant encounter rates. If the size of the substrate was primarily controlling the 

differences in density, Experiment A would have had higher densities because the 

observed TEP area was greater. However, this was not the case.

The average densities of TEP-associated bacteria on day 4 and 7 were normalized 

to ambient bacterial concentration on those days. The normalized abundances were 

virtually identical for Experiments A and B (0.013 ml mm2 TEP'1 in Experiment A, and

9 10.015 ml mm TEP' in Experiment B). Therefore, differences in densities could be 

explained by the higher ambient concentration of bacteria in Experiment B.

The Kiorboe et al. (2002) model describes initial colonization, which occurs on a 

time scale of minutes (< 150 minutes). The density of bacteria on aggregates in the 2002 

study reached steady-state abundances quickly. This was also observed during the 

colonization experiments in the previous chapter. Because this study was conducted on a 

time scale of days, differences in density could also be driven by other factors not 

described by the model. Bacteria associated with aggregates can grow quickly on time 

scales that exceed the initial period of colonization (Kiorboe et al. 2003); the dense 

populations of HP11 associated with TEP may be the result of rapid, post-colonization 

growth, suggesting that HP11 can utilize TEP as a nutrient source better than HP1. Some 

marine snow bacteria are also known to exhibit chemosensing behaviors which can 

increase colonization on aggregates (Kiorboe et al. 2002, Grossart et al. 2007). The high
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densities of bacteria associated with TEP could result from a stronger chemotactic 

response on the part of HP11 compared to that of HP1.

Substrate-associated life can make bacteria susceptible to predation by surface- 

associated protozoans and some mesozooplankton. Protozoans may also consume TEP 

directly (Tranvik et al. 1993). TEP-dominated microaggregates, which concentrate TEP 

as well as bacteria and other nanoparticles, can be grazed upon by Euphausia pacifica 

(Passow and Alldredge, 1999). Ling and Alldredge (2003) determined that the copepod 

Calanus pacificus consumed TEP, and suggested that zooplankton grazing on TEP is a 

possible “short cut” in the microbial loop.

Species-specific Interactions

Other laboratory and field observations have shown that the production of TEP 

depends on the species of phytoplankton (Kiorboe and Hansen, 1993; Passow, 2002a). 

The chemical composition and degradability of TEP can, in turn, affect utilization by 

bacteria (Mari and Kiorboe, 1996; Zhou et al. 1998). TEP are readily colonized by 

bacteria, but colonization may depend on the age (Mari et al. 2001), and size of TEP 

(Mari and Kiorboe, 1996), as well as grazing pressure (Mari et al. 2004b). At the species 

level, associations between phytoplankton and bacteria can result in different responses 

(Grossart et al. 2006a), even when bacteria are interacting with the same species of 

phytoplankton (this study). These relationships are often complex, but studying them on 

a species-level allows us to explain possible effects seen at multi-species, ecologically 

relevant levels. Species-specific interactions between bacteria and phytoplankton have 

not been studied extensively, although it is clear that the relationship between bacteria,
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phytoplankton, and TEP production could play a role in microbial food web dynamics, 

aggregation dynamics, and the sedimentation of diatom blooms.
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CHAPTER 4
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SUMMARY AND CONCLUDING REMARKS 

The role of bacteria in marine snow dynamics

Bacteria and marine aggregates interact through many complex, microscale 

processes which determine their biogeochemical fate as they sink through the water 

column. Many of the processes that are mediated by bacteria have been well described, 

including colonization, detachment (Kiorboe et al. 2002), enzyme activity (Grossart et al. 

2007), and production of component particles like TEP (Passow, 2002a). Improving our 

understanding of some of these complex processes requires examining individual shifts in 

behavior and bacterial interactions with aggregate components.

In this thesis, I conducted two studies showing different, strain-specific responses 

of heterotrophic bacteria interacting with aggregates or components of aggregates. The 

major findings of the first study are:

(1) Starvation effects were observed in heterotrophic bacteria in less than 24 hours, 

resulting in lower steady-state abundances associated with aggregates. There was 

no effect of starvation on detachment from aggregates.

(2) Motility responses to starvation were varied. Two strains of bacteria displayed 

reduced swimming speeds which subsequently affected encounter opportunities 

between bacteria and aggregates, reducing overall colonization. One strain of 

bacteria showed no changes in motility.

These results suggest that bacteria that are starved may have reductions in motility 

which decrease their chances of encounter with marine snow aggregates. But is this a
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likely situation in a natural environment, given the distribution of marine snow 

aggregates? A review by Alldredge and Silver (1988) reported marine snow abundances 

between 1-10 aggregates per liter in near-surface waters across sites in the Atlantic as 

well as off the coast of California. These values are close to the values in the north 

Pacific gyre (Pilskaln et al. 2005), which ranged from 6 -1 3  aggregates per liter. 

However, Wells and Shanks (1987) reported marine snow abundances which were orders 

of magnitude higher off the coast of North Carolina, nearly 500 aggregates per liter. In a 

hypothetical, 1 m volume of water, monodispersed marine snow aggregates would be 

5.5 cm apart from one another at the gyre concentration (6 aggregates per liter), and only 

1.26 cm apart from on another at the coastal concentration (500 aggregates per liter.)

If two HP1 bacteria (one starved and one fed) were swimming in the hypothetical 

volume of water containing marine snow, my motility data suggests that the starved 

bacterium would be able to travel a straight-line distance of 1.73 m in one day, and the 

fed bacterium could swim twice that distance. However, bacterial swimming is 

characterized by series of runs, interspersed by tumbles which change the direction of 

swimming (Berg, 1983). The diffusivities calculated from my motility data reflect a 

more realistic search area for each bacterium. In one day, a fed HP1 bacterium would 

cover an area of 1.33 cm , and a starved HP1 bacterium would be able to search an area 

of 0.17 cm2.

Based on these rough estimates, a fed bacterium may encounter an aggregate in an 

environment with coastal concentrations of marine snow, but not gyre concentrations. A 

starved bacterium has such low diffusivity, it would not cover enough area in a day to 

encounter a particle in water at either concentration. Although the monodisperse
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condition is far from what is observed in-situ, these calculations suggest that, within a 

day’s time (equivalent to the starvation time in this study) diffusivities decreased and 

resulted in much smaller search areas under starvation. Even at typical densities of 

marine snow, a starved bacterium would not encounter an aggregate. Starvation can 

clearly change and adversely affect the behaviors of marine snow bacteria searching for a 

nutrient source.

Starvation occurs when bacteria are in areas where the availability of energy- 

yielding substrates is suboptimal (Morita, 1982; Kjelleberg, 1993). The primary means 

of measuring bacterial responses to substrate availability is to measure bacterial 

production of cell biomass (Kjelleberg, 1993). However, production rates can vary on 

different time and space scales (Sherr et al. 2001) and growth may become unbalanced; 

the rate of DNA synthesis, measured by thymidine incorporation, does not equal the rate 

of protein synthesis, as measured by leucine incorporation (Kjelleberg, 1993; Ducklow, 

2000). Bacterial productivity can be relatively low (0.79 pg C I'M'1 -  6.19 pg C I'M'1) in 

oligotrophic regions, like the Sargasso Sea (Fuhrman et al. 1989); but starvation does not 

necessarily mean that production will be zero. Kjelleberg (1993) suggests these 

measurements may be dominated by a few species in a diverse population of bacteria, so 

while some bacteria in the population better adapted to utilizing the organic matter 

available, there are others that are starving. Considering that most of the world’s ocean is 

nutrient limited and have patchy distributions of aggregates, starvation is a likely 

condition among bacteria.
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My results from the study indicate that future models about microscale processes 

occurring on aggregates should incorporate changes in bacterial physiology and behavior 

due to starvation, as these changes are strain-specific.

Additional findings from the second study in this thesis suggest that:

(3) The amount and character of TEP produced by diatoms can vary under the 

influence of different bacterial strains.

(4) Strains of bacteria exhibit different distributions between TEP-associated and 

free-living fractions and can reach different steady state densities on TEP.

Results from this study indicate that bacteria-phytoplankton interactions depend

on the bacteria involved and that the resulting net TEP production could potentially affect 

aggregation dynamics. The density and distribution of bacteria may also be strain- 

specific and may represent a trade off between metabolic demands and protection from 

predation. Dense populations of bacteria may produce areas of concentrated exoenzyme 

activity, creating more DOM that can be effectively utilized by both bacteria and 

phytoplankton. Dense populations can also create microzones in which oxygen may be 

limited. However, high-density colonization on substrates also increases bacterial 

susceptibility to predation and viral infection.

Both studies detailed in this thesis describe the tradeoffs of substrate-associated 

life as a balance between the need to maximize nutrient uptake and utilization while 

minimizing predation. The development of bacterial populations on aggregates or on 

TEP depends on colonization and detachment on shorter time scales, and growth and 

predation on longer time scales. The strategies of bacteria operating in this balance are 

not as direct as it may seem. Bacteria do not “decide” to leave and detach from
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aggregates, and bacteria do not “decide” to produce more TEP, although both behaviors 

have been observed and may be important aspects of success for marine snow bacteria.

In fact, the behaviors that make bacteria successful in a stressful environment 

could have both proximal and ultimate causes. For example, grazing pressure by 

bacterivorous protists has been shown to cause shifts in bacterial community 

composition, as well as changes in bacterial morphologies (Jurgens et al. 1999; Hahn and 

Hofle, 2001, and references therein). Although the majority of these studies have been 

conducted on free-living bacterial populations, it is likely that similar mechanisms occur 

on aggregates as well, whereby grazing pressure selects for certain bacterial genotypes 

that minimize losses to predation, including the production of antagonistic chemicals, or 

the growth of grazing-resistant filamentous structures (Jurgens et al. 1999). Some 

bacteria are also known to possess chemosensory behaviors, such that they can detect low 

concentrations of DOC from lysed cells (Fenchel, 2002). These behaviors are associated 

more with bacteria that are looking for concentrated, point sources of organics (Fenchel, 

2002), but could also signal the presence of predators, in theory. It is already well- 

established that bacteria can use chemical signals, like acylated hemoserine lactones, to 

communicate with one another via quorum sensing if a critical density of bacteria is 

present (Gram et al. 2002).

Future research could include the effects of grazer populations on bacterial 

community composition associated with aggregates, as well as interactions between 

chemosensory behaviors, grazing pressure, and other anti-grazer behaviors, like the 

production of EPS. These mechanisms are not well-studied, and could play a role in the
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dynamics on marine snow, as well as the fluxes of particulate and dissolved organic 

matter.

While field studies describe the net effects of bacterial communities acting upon 

aggregates, the results of my thesis indicate that interactions of individual strains are also 

important. Bacteria may change their physiology or behavior when interacting with other 

particles like TEP and phytoplankton. Although complex inter- and intraspecific 

interactions may also occur, describing strain-specific responses can help us to piece 

together microscale processes influencing aggregation dynamics as well as processes that 

maintain bacterial diversity on aggregates. Combining our understanding of individual 

bacterial responses and changes in behavior with more information on community 

composition and interspecific behaviors will allow us to more effectively describe the 

dynamics and fate of marine snow aggregates in the ocean.
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