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ABSTRACT

Hardened shorelines and their construction introduce stressors to a system by 
altering near-shore habitats. They can reduce biodiversity and abundance of benthic 
infauna and marsh-edge nekton and epifauna. In this study, I investigated the impacts of 
shoreline development on near-shore communities using a temporal and spatial approach, 
by use of a before-after control-impact (BACI) study design at four sub-estuaries within 
Chesapeake Bay that represent three different types of shoreline change. The BACI 
study was used to examine infaunal density, biomass, and diversity for two size classes of 
infauna (3-mm: larger species and adults, 500-pm: smaller species and juveniles), as well 
as abundance of blue crabs and abundance and diversity of near-shore fishes before and 
after shorelines were modified.

Data were analyzed with Akaike’s Information Criterion to compare candidate 
sets of linear models that contained year, shoreline treatment, sediment grain size, and 
salinity as predictors. In response to shoreline modification, infaunal density and 
biomass increased at sites that were newly developed (Timberneck, Dandy, and Holly 
Cove), but decreased at the site that changed from bulkhead to living shoreline (Windy 
Hill). In addition, infaunal diversity decreased at Timberneck and Windy Hill. Blue crab 
abundance increased at Timberneck, remained constant at Dandy, and decreased at Holly 
Cove. Blue crab abundance decreased at Windy Hill, though this may not be a shoreline 
modification response, as crabs concomitantly decreased at control shorelines. Fish 
abundance and diversity showed no distinct shoreline response at any site, which may 
reflect their transient nature.

At Timberneck, infaunal responses to shoreline modification were mainly driven 
by changes in habitat. At Dandy, and Holly Cove, infaunal responses to shoreline 
modification were mainly driven by opportunistic species. At Windy Hill, infaunal 
responses were driven by a more uniform reduction in all species after the conversion. 
Sediment grain size was an important predictor of infaunal response variables at 
Timberneck and Holly Cove, and also changed concomitantly with shoreline 
modification at Timberneck. Salinity was an infrequent predictor of infaunal responses, 
though it did vary between years.

The importance of opportunistic species and changes in sediment grain size one 
year after shoreline modification emphasizes the need to monitor shoreline modifications 
as ecological disturbances and changes in habitat, and the need to consider the role of 
shoreline modification in ecological succession rather than compare shorelines as static 
habitats. Lengths of shorelines that were modified were generally short, except at Windy 
Hill. Negative impacts of shoreline modification at Windy Hill likely reflect a larger 
disturbance than other sites, and a longer time needed to see positive improvements 
expected with a living shoreline. Fish species are more motile in nature, may be faster 
positive responders to positive changes in shoreline condition than infaunal benthos, and 
provided a first look at the positive effects of living shorelines at Windy Hill.
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INTRODUCTION

Ecosystem Function and Shoreline Development in Mid-Atlantic Estuaries

Within the Mid-Atlantic United States, estuarine subtidal benthic fauna provide 

many ecosystem functions such as secondary production and trophic transfer (Valiela 

1995, Seitz et al. 2003, 2005), benthic-pelagic coupling (Caliman et al. 2007), and 

cycling and storing toxicants (Diaz and Schaffner 1990). Infauna in Chesapeake Bay are 

responsible for production of about 194,000 metric tons C yr'1, supporting 27,500 mt of 

fisheries yield (Diaz and Schaffner 1990). Benthic infauna serve as critical links 

(benthic-pelagic couplers) between sources of organic matter in estuaries, consuming 

carbon from phytoplankton, benthic microalgae and macroalgae, and detritus, and 

providing food for economically and ecologically important finfish and crustaceans, such 

as the blue crab Callinectes sapidus (Seitz et al. 2001, 2003, Caliman et al 2007, Gillett 

and Schaffner 2009). About 50 % of fish production in Chesapeake Bay is linked to the 

benthic food web (Baird and Ulanowicz 1989), and benthic-feeding (demersal) nekton 

landings yielded an average of $39.8 million of revenue between 1998-2002 (Gillett and 

Schaffner 2009).

Benthic communities affect water and sediment quality in estuaries. Filter 

feeding organisms in the benthos remove particles from the water column, leading to 

faster deposition than natural sinking can provide (Graf and Rosenberg 1997), resulting 

in enhanced water clarity and SAV coverage (Gillett and Schaffner 2009). Biodeposition 

by filter feeders may transfer water-column production to the sediment bed, where 

benthic, not pelagic, processes determine transport, transformation, and fates of 

sediments (Cohen et al. 1984). Bioturbation, or biological structuring and reworking of
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the sediment surface by benthic organisms, has major effects on nutrient and contaminant 

cycling and fate (Diaz and Schaffner 1990), enhancing breakdown of organic matter and 

contaminants.

Tidal marshes in Mid-Atlantic estuaries such as Chesapeake Bay are important in 

sustaining high levels of primary production, contributing to detritus production and 

availability, supporting wildlife and waterfowl, buffering shorelines to prevent erosion, 

and maintaining water quality (Bertness 2007, Perry and Atkinson 2009). Primary 

productivity in tidal wetlands of the Chesapeake can reach 4 metric tons ha'1 yr'1, leading 

to high levels of detritus production and providing the base of a major source of marine 

trophic transfer to crabs, other shellfish, and finfish among others (Lipcius et al. 2005, 

Perry and Atkinson 2009). Additionally, tidal marshes provide spawning and nursery 

habitat (Minello et al. 2003), with an estimated 95% of Virginia’s annual fish harvest 

from tidal waters depending on wetlands to some degree (Wass and Wright 1969). Blue 

crabs, oysters, clams, striped bass, spot, croaker, and menhaden represent some of the 

important wetland-dependent fisheries in Chesapeake Bay (Perry and Atkinson 2009).

For blue crabs, tidal marshes in the York River serve a nursery role that is nearly 

as important as that of seagrass, especially in upriver, non-SAV-dominated sites (Lipcius 

et al. 2005). Tidal marshes are also responsible for maintaining and improving water 

quality, as they trap sediment and potentially pollution from upland runoff and the water 

column, and reduce siltation of shellfish beds, SAV areas, and navigation channels (Perry 

and Atkinson 2009). In addition to their biological functions, tidal marshes dissipate 

incoming wave energy, providing a natural buffer against shoreline erosion and acting as
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the least erodible natural shoreline (Rosen 1980); over 50% of wave energy is dissipated 

in the first 2.5 m of a Spartina alterniflora marsh (Knutson et al. 1982).

Shoreline erosion is a natural process in estuaries, but can be exacerbated by 

human activity. Roughly one third of shorelines in Chesapeake Bay are classified as 

eroding, with some areas losing as much as 20 -  40 cm of shoreline per year (Chesapeake 

Bay Program 2005). Meanwhile, coastal landscapes, which surround most major 

worldwide cities and 53% of the U.S. population, are being transformed rapidly to meet 

the demands of commercial, residential, and tourist activities (Bulleri and Chapman 

2010) including shipping, fisheries, recreation, and transportation among other uses. The 

Chesapeake Bay watershed’s human population is currently home to over 17.5 million 

people, rapidly growing by about 157,000 people per year, and projected to grow to 20 

million by 2030 (Chesapeake Bay Program 2012), and with population growth comes 

increased environmental pressure from upland and shoreline development as a larger 

population utilizes coastal resources. Over half (60%) of Virginia’s population lives on 

the coastal plain which makes up just under 25% of the state’s land mass (Rappaport and 

Sachs 2003, Perry and Atkinson 2009), and -70 to 90% of Virginia and Maryland’s 

populations live in coastal counties (Crossett et al. 2004), putting pressure on coastal 

systems and salt marshes.

In Chesapeake Bay, some sub-watersheds’ coastlines are over 50% “hardened” to 

protect against damage to infrastructure, replacing natural shoreline habitats with 

artificial hard surfaces, such as bulkheads and riprap revetments (Berman et al. 2000). 

Since the 1970s, hundred of miles of shoreline in Virginia and Maryland have been 

armored (Titus 1998, Barnard 2004). Even as artificial substrates are becoming
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increasingly ubiquitous in intertidal and shallow subtidal habitats, related ecological 

issues have received little attention (Halpem et al. 2008), presumably due to a lack of 

information (Bulleri and Chapman 2010).

Shoreline Development as a Stressor

Shoreline development can be operationally defined as waterfront development 

with anthropogenic structure (Silliman and Bertness 2004, Seitz et al. 2006, Bulleri and 

Chapman 2010). Placement of anthropogenic structures is an environmental disturbance 

that introduces stressors to a system, such as alteration of the natural shape, near-shore 

wave dynamics, and shallow water habitat of the shoreline, and habitat fragmentation 

(Bilkovic and Roggero 2008, Bulleri and Chapman 2010).

Coastal development with hard structures, such as boat docks, bulkheads, and 

riprap represent a substantial disturbance to near-shore environments and reduction in 

their performance of ecosystem services. In Waquoit Bay, Massachusetts, eelgrass 

decreased in density under and directly adjacent to boat docks, as light availability 

decreased under the docks, shifting in position throughout the day with the angle of sun 

(Burdick and Short 1999). This may also translate to reduced benthic microalgae and/or 

phytoplankton reserves for benthic infauna, as well as a reduced ability for seagrass beds 

to perform sediment stabilization and provide habitat (Burdick and Short 1999). In 

Mobile Bay, Alabama, bulkhead shorelines have led to a complete loss of adjacent 

intertidal habitat, with length of impacted shoreline increasing with population growth 

from the mid-1950s to mid-1990s to encompass 30% of the 100-mile long shoreline at 

that time (Douglass and Pickel 1999).
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Shoreline structures alter the physical characteristics of the environment and 

affect adjacent infaunal communities. Bulkheads typically increase wave reflection and 

sediment scour, causing a decrease in the width of the near-shore environment and 

increasing water depth, and often affect adjacent beaches (Douglass and Pickel 1999). 

Depth and sediment types at bulkhead shorelines are significantly deeper (Jivoff 2005) 

and contain coarser sediments such as gravels (Ahn and Choi 1998, Jivoff 2005). Thus, 

bulkheads contribute to the narrowing and eventual loss of intertidal beaches in front of 

them by contributing to sediment loss, at which point tidal differences are only seen as 

water height against the vertical bulkhead (Douglass and Pickel 1999), and sometimes 

lead to their own failure if sediment scour continues unchecked. Riprap revetments are 

typically sloped structures parallel to the shoreline and are constructed to protect the 

shoreline from erosion and absorb wave energy (Burcharth and Hughes 2002, Bendell 

2006). Wave energy absorption at riprap shorelines is improved over bulkheads, but 

riprap also deepens water and concentrates turbulence, alters the physical structure of the 

shoreline, alters patterns of sedimentation and erosion, and replaces vegetation with hard 

structures (Burcharth and Hughes 2002, Bendell 2006).

While bulkhead and riprap can provide effective erosion control, they alter natural 

habitats in ways that reduce their ability to perform important ecosystem services 

(Bendell 2006). Replacement of natural shoreline vegetation with hard structures reduces 

filtration and nutrient transformation of runoff (Kemp et al. 2005), accumulation of fine 

sediments and organic matter (Snelgrove et al. 2000), habitat for shoreline-associated 

nekton (Jennings et al. 1999, Bilkovic and Roggero 2008), energy input to near-shore 

detritus based food webs at the land-water interface (Burkholder and Bomside 1957, Teal
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1962), and dissipation of wave energy (Bendell 2006, Perry and Atkinson 2009). Intact 

shoreline vegetation normally supports abundant benthic communities also capable of 

nutrient transformation and trophic transfer through secondary production (Diaz and 

Schaffner 1990, Valiela 1995, Nixon and Buckley 2002). Despite the importance and 

ubiquitous nature of soft bottom habitats (Snelgrove 1999, Levin et al. 2001), shoreline 

development impacts on infauna remain under-studied.

An estimated 50 -  80% of the remaining wetland marsh habitat in Virginia may 

be lost due to sea level rise without shoreward progression of the marsh (Perry and 

Atkinson 2009), which may affect benthic species and their predators. Homeowners may 

harden their shorelines in response to sea level rise to prevent erosion, potentially 

stopping shoreward progression of tidal marshes and exacerbating their loss (Silliman 

and Bertness 2004, Perry and Atkinson 2009). The subsequent inability of tidal marshes 

to provide their valuable ecosystem services and perform their role in detritus production 

will likely impact infaunal benthos, especially key species such as the Baltic clam, 

Macoma balthica, a facultative deposit feeder (Lin and Hines 1994). Benthic infauna are 

widely recognized as the base of the food web in shallow systems within Chesapeake Bay 

(Baird and Ulanowicz 1989, Gillett and Schaffner 2009), and provide an important food 

source for the blue crab, with M. balthica composing up to 55% of adult blue crabs’ diet 

(Hines et al. 1990, Seitz et al. 2001, Lipcius et al. 2007) (Figure 1). Therefore, shoreline 

development may be deleterious to one of the most valuable fisheries within the Bay 

(Kennedy et al. 2007).

Anthropogenic environmental disturbances, such as habitat destruction (Thrush et 

al. 2001), hypoxia (Dauer 1993), and toxic pollution (Gray 1979, Dauer 1993, Preston
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and Shackelford 2002) reduce biological diversity and/or biomass at wide spatial scales 

in relatively low-structure, soft-sediment systems (Dauer 1993, Thrush et al. 2001, 

Preston and Shackelford 2002). In models of estuarine benthic succession after a 

disturbance, the number of individuals (density), biomass, and number of species (species 

richness) tend to change in different ways through ecological succession (Pearson and 

Rosenberg 1978, Rhoads et al. 1978, Newell et al. 1998). Biomass and diversity can be 

reduced in favor of opportunistic species that respond quickly after a disturbance, though 

the density of these organisms can increase rapidly and can be highly variable (Dauer 

1993, Thrush et al. 2001). Opportunistic species in marine systems respond quickly by 

increasing their population densities after disturbances such as pollution (Pearson and 

Rosenberg 1978), hypoxia (Santos and Simon 1980, Dauer 1993), dredge spoil disposal 

(Rhoads et al. 1978, Newell et al. 1998), and sediment movement (Zajac and Whitlatch 

1982, Commito et al. 1995). Known opportunistic infaunal species include spionid 

polychaetes (Rhoads et al. 1978, Santos and Simon 1980, Zajac and Whitlatch 1982, 

Quintino et al. 2006), clam worms (Neanthes succinea, Holland 1985), Owenia fusiformis 

(Rhoads et al. 1978), Macoma mitchelli (Holland et al. 1987), Mulinia lateralis (Rhoades 

et al. 1978, Santos and Simon 1980, Holland 1985), Gemma gemma (Commito et al. 

1995), and gammarid and corophiid amphipods (Santos and Simon 1980, Newell et al.

1998). Capitellid polychaetes (e.g. Capitella capitata) are known to be opportunistic 

species in some systems (Pearson and Rosenberg 1978, Rhoads et al. 1978). However, in 

shallow mesohaline Chesapeake Bay, two non-opportunistic capitellid species are most 

abundant: Mediomastus ambiseta is the most abundant and exhibits relatively prolonged 

recruitment, low mortality (Diaz 1984, Holland et al. 1987), and sensitivity to pollution



(Weisberg et al. 1997), and Heteromastus filiformis, which is a long-lived eurytolerant 

species with a relatively large standing stock biomass (Holland et al. 1987).

Benthic communities exhibit high natural variability, and their density, biomass 

and diversity are correlated with salinity, sediment, latitude, physical energy, and depth 

(Boesch 1977, Dauer et al. 1984, Dauer et al. 1987, Holland et al. 1987, Schaffner et al. 

1987, Diaz and Schaffner 1990, Snelgrove and Butman 1994). In the York River Estuary, 

the distribution and abundance of species is correlated with salinity, bottom sediment 

type, hydrodynamics, oxygen regime, and other variables (Schaffner et al. 2001, Gillett 

and Schaffner 2009). Benthic invertebrates are often restricted in mobility, which makes 

them ideal candidates for the study of changes in local environments, such as pollution 

(Gray 1979). As bottom type, hydrodynamics, and other correlates with benthic 

community structure are altered by shoreline development, infaunal distribution, density, 

and biomass are likely to be altered. Over the long term, shoreline development reduces 

biodiversity and abundance of benthic infauna (King et al. 2005, Seitz et al. 2006) and 

marsh-edge nekton and epifauna (Peterson et al. 2000, Jivoff 2005, Partyka and Peterson 

2008). Sediment chlorophyll-a concentration, percent total organic carbon, sediment 

grain size and predator abundance varied by shoreline type (natural marsh, riprap, or 

bulkhead) in the Patuxent River, MD, and the benthic species assemblage differed by 

shoreline, likely driven by changes in the aforementioned variables (Bradley 2011).

Infaunal density, biomass, and diversity vary by different shoreline types, 

generally showing reductions adjacent to hardened shorelines. In a study of two sub­

estuaries of the lower Chesapeake Bay, the Elizabeth-Lafayette River system and York 

River, there were reduced densities and diversities of subtidal infauna at shorelines
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developed with bulkheads in both systems (Seitz et al. 2006). Specifically, abundance of 

M. balthica was significantly lower at bulkhead shorelines, intermediate at riprap, and 

higher at marsh shorelines in the Elizabeth-Lafayette, an urban, highly developed estuary, 

with over 50% of its shoreline developed (Seitz et al. 2006). In the York River, which is 

much less developed, abundance and Shannon diversity (H’) of the entire benthic 

infaunal community was reduced adjacent to bulkhead shorelines compared to marsh or 

riprap shorelines (Seitz et al. 2006). In a study of the suitability of four types of shoreline 

as juvenile blue crab habitat, infaunal prey density was highest adjacent to marsh 

shorelines, intermediate adjacent to bulkhead, and lowest adjacent to riprap shorelines, 

where it was characterized by opportunistic species such as small polychaetes and 

nematodes (Long et al. 2011).

As shoreline development alters biodiversity and abundance of biota, predator- 

prey interactions and trophic transfer between these organisms are subject to stressors 

(Peterson et al. 2000, Carroll 2002, King et al. 2005). Blue crabs were at higher 

abundance in watersheds with high % marsh shorelines (King et al. 2005). Additionally, 

decreased abundance of blue crabs has been documented at riprap compared to natural 

marsh shorelines (Carroll 2002). A study of both infauna and epifauna in the Pascagoula 

River estuary, MS, examined habitat conditions across a gradient of shoreline 

development that considered two factors: level of total alteration as low, medium, and 

high zones, and adjacent shoreline condition as “restricted” (i.e. hard structures, spoil 

beaches or leveed banks) or “unrestricted” natural shorelines (Partyka and Peterson 2008). 

Infaunal density and taxa richness do not differ significantly by total alteration zone or 

adjacent shoreline condition, though sites with adjacent unrestricted shorelines tend to
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have higher abundance than those with adjacent restricted shorelines. Epifaunal density 

and richness, however, are significantly greater at sites with adjacent unrestricted than 

restricted shorelines, and density is highest in the low-development zone, intermediate in 

the medium-development zone, and lowest in the high-development zone (Partyka and 

Peterson 2008). In a cluster analysis, there is close association between infaunal 

communities in medium-development zones adjacent to restricted shorelines and 

communities adjacent to both types of shorelines in high-development zones. On the 

contrary, there are close associations in epifaunal communities between adjacent 

unrestricted shorelines from medium- and low-development zones (Partyka and Peterson 

2008). Thus, responses to shoreline development may depend on the amount of 

undeveloped shoreline in the neighboring area. In the James River, VA, fish 

communities respond to shoreline condition and upland land use (Bilkovic and Roggero 

2008). Fish community index (a multimetric index comprised of species richness/ 

diversity, abundance, trophic composition and species composition) is reduced adjacent 

to bulkhead in comparison to marshes and riprap shorelines (Bilkovic and Roggero 2008).

Given the prevalence of hardened shorelines within Chesapeake Bay and the 

evidence linking altered shoreline habitats to reduced infaunal and predator community 

metrics, it is essential to continue to examine the effects of shoreline development on the 

infaunal benthos and its predators. Previous work has examined patterns for existing 

shorelines, but few studies have examined changes before and after development.

Living Shorelines: Alternatives to Conventional Shoreline Protection

Shoreline development does not always have to result in hardening and 

destruction of the land-water interface and intertidal zone. Shoreline stabilization
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methods that incorporate as many natural habitat elements as possible, while still 

protecting shorelines from erosion are called “living shorelines”.

Living shorelines represent an alternative to conventional shoreline armoring 

methods (bulkheads, seawalls and riprap revetments) for reducing and preventing erosion, 

and are highly variable and tailored to a specific location. Natural habitat elements used 

in living shorelines include marsh grasses, submerged aquatic vegetation, riparian 

vegetation, coarse woody debris, and oyster reef and shell, particularly as formed into 

offshore breakwaters to mimic natural reefs that have largely disappeared from 

Chesapeake Bay (Erdle et al. 2006). Use of natural elements for shoreline erosion control 

are hypothesized to perform as well as, if not outperform, conventional methods, in 

addition to providing better water quality habitat functions for near-shore organisms 

(Erdle et al. 2006), especially when used in lower-energy environments (Smith 2006).

Beach nourishment, dune restoration, tidal marsh creation and enhancement, bank 

grading and fiber logs are also nonstructural elements used in living shorelines (Duhring 

2006). Hybrid living shorelines include rock and natural elements in combination (e.g. 

marsh edge stabilization or marsh toe revetments, marsh sills, marshes with groins, and 

offshore breakwaters), and have particular effectiveness in higher energy environments 

(Duhring 2006, Smith 2006). Rock is often placed offshore, as part of a breakwater or 

sill oriented to wind and waves, to dampen wave energies and maintain or allow for the 

development of marshes and beaches behind them (Smith 2006). Breaks in sills are often 

intentionally added to allow for tidal flushing and connectivity of the shoreward water to 

the channel-ward water; these breaks are called gaps or tidal gates. While living 

shorelines may not provide as much erosion protection as conventional hard structures,
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they allow for mobility of the shoreline and near-shore sediments and act as part of the 

natural system rather than against it. In so doing, these shorelines are likely to improve in 

effectiveness over time as planted marsh grasses grow and stabilize sediment, oyster shell 

breakwaters become covered with live oysters, and sedimentary processes stabilize 

(Smith 2006).

Living shorelines are dynamic structures, thus, building effective shorelines 

capable of erosion control requires a good deal of skill and planning, more so than 

conventional strategies, and even a single failure can be detrimental to public acceptance 

(Smith 2006). In Virginia, examination of the effectiveness of these procedures has been 

limited since they are still in their infancy. Nonetheless, structures placed along the 

edges of natural fringing marshes adjacent to low banks and marshes planted in spring 

were the most effective methods of structural and nonstructural (respectively) erosion 

control at study sites built within the past 10 years (Subramanian et al. 2006). In 

Maryland, study of living shorelines has been much more extensive, and 32 of 35 projects 

in Talbot County, including marsh sills, groins and marsh edge stabilization, showed 

improvement in erosion control and habitat; 83% of banks inspected were stable and 74% 

of marshes exhibited minimal or no erosion. For all projects, diligence by landowners and 

contractors for inspections and repairs was necessary to ensure function (Subramanian et 

al. 2006). In Maryland, a 2008 law now states that “living shorelines” are the preferred 

method for controlling erosion as they “trap sediment, filter pollution, and provide 

important aquatic and terrestrial habitat” (MD House of Delegates 2008).

In a before-after control-impact (BACI) study of a bulkhead site modified with 

installation of a living shoreline, densities of some marsh-associated organisms
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(mummichog: Fundulus heteroclitus, grass shrimp: Paleomonetes pugio, and 

pumpkinseed: Lepomis gibbosus) increased after just two months, indicating that some 

organisms can respond immediately to restoration with living shorelines and suggesting 

that multiple structural habitat elements may help expand the ecological function of 

living shorelines (Davis et al. 2006). Additionally, four structural habitat types (riprap, 

oyster shell, vegetation and woody debris) host different suites of species, with blue crabs 

best suited to oyster reefs, and older life-history stages of organisms better suited to 

riprap habitats (Davis et al. 2006). As study of the ecological roles of living shorelines is 

currently limited, continued study will help to identify which aspects of living shoreline 

construction are best for both erosion control and support of near-shore communities 

(National Research Council 2007).

While placement of living shorelines does constitute a type of anthropogenic 

development of the shoreline, their use is intended to provide the best habitat condition 

possible for the near-shore community while still maintaining erosion control. Given this 

intention of living shorelines to obtain to a more natural state, and the inclusion of one 

living shoreline change in this project, shoreline development will hereafter be referred to 

as "shoreline modification" so as to remove the connotation that development must 

always result in shoreline hardening.

Quantitative Methods

To reliably determine the degree to which shoreline modification impacts near­

shore communities, a BACI, or before-after control-impact design was employed in this 

study. This method is widely used in determining environmental impacts on populations 

caused by anthropogenic disturbances (Underwood 1992). BACI sampling involves
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collection of samples before a disturbance at both the future impacted site and control 

sites that are assumed to remain constant with respect to the impact. Shoreline 

modification projects are particularly well suited to be studied with this framework 

because they are planned disturbances. In Virginia, permits are required before 

beginning a project; full plans are made and reported to the Wetlands Board, the Virginia 

Marine Resources Commission (VMRC), and the Department of Environmental Quality 

(DEQ), and proposed shoreline modifications undergo public interest review, site visits, 

and hearings before permission is granted to build (Watkinson and Moon 2006).

In the BACI sampling framework, an anthropogenic disturbance in the impacted 

location (i.e. modified shoreline) is likely to cause a different pattern of change from that 

of the temporal variation in the control (i.e. unchanged shoreline) location. The 

difference is detected as a significant interaction term in the statistical analysis; in an 

ANOVA, this would be an interaction between the main effects of time (i.e. before and 

after) and treatment (i.e. control and impacted shorelines; Underwood 1992). In a linear 

modeling framework with model comparison, this would be an interaction that is not only 

included in a well-supported model, but has a significant parameter estimate (Johnson 

and Omland 2004), and whose sign indicates the direction of response to shoreline 

modification.

To improve the ability to detect inter-annual variation from temporal change in a 

potentially impacted location, an asymmetrical design with a randomly selected set of 

control locations can be used. In this study, two control sites (with replicates) were 

included for each study location. Thus, a significant impact must cause a temporal 

change that is different from what is expected based on the multiple control locations,
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preventing the interpretation of inter-annual variation as an impact of shoreline 

modification.

Samples in an ideal BACI framework are taken at replicated, random intervals of 

time before and after the impact starts to ensure that chance temporal fluctuations in 

either location do not confound the detection of an impact. Changes in the environment 

can be perceived as disturbances, and can be categorized in two ways: pulse and press 

disturbances. Pulse disturbances result from short-duration impacts, such as disposal of 

dredge material (Schaffner 2010) or an accidental spill of a toxin (Pearson and Rosenberg 

1978), after which population, community, or ecosystem metrics return to their original 

values (Underwood 1992). Press disturbances result from sustained impacts, such as the 

placement of a dam, persistence of heavy metal pollutants, or climate change (Lake 2000, 

Schiel et al. 2004) after which population, community, or ecosystem metrics do not return 

to their original values but remain constant at a higher or lower value (Underwood 1992, 

Lake 2000). Differences can be detected for pulse and press impacts through the 

expression of different patterns of significant interactions between times and locations of 

sampling (Underwood 1992, 1994, Underwood et al. 2003). If a significant interaction 

only occurs at a single time frame, a pulse disturbance is likely; in contrast, if significant 

interactions continue to occur in time, a press disturbance is likely.

Current work has tended to focus on metrics of communities that do not examine 

particular species within the community using a BACI study, and thus, might be missing 

elements of ecological succession as communities respond to shoreline modification 

stressors. Most studies do not examine species-specific responses, with the exception of 

studies that include multivariate analyses. Multivariate analyses tend to be dominated by
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cluster analysis (King et al. 2005), ANOSIM with nMDS or ordination (Chapman and 

Bulleri 2003, Seitz et al 2006, Bilkovic and Roggero 2008, Partyka and Peterson 2008), 

which effectively cluster communities that respond similarly to shoreline changes and are 

able to detect species-specific differences. I was only able to find two studies that 

examined species-specific responses of infauna to shoreline changes over time. In one 

study, there was an increase in filter feeders after shoreline modification with bulkhead, 

but this study did not include control sites without modification (Ahn and Choi 1998). In 

the other study, there were higher abundances of oligochaetes and nematodes at natural 

shorelines through time, but this was not a before-after study (Sobocinski et al. 2010). In 

light of this, I have examined species-specific community structure, examining 

differences among species within the BACI sampling design.

Study Objectives and Hypotheses

In this study, I investigated the impacts of shoreline modification on near-shore 

communities using a temporal and spatial approach. The specific objectives of the study 

were three-fold. 1)1 examined the direct effects of three different types of shoreline 

modification on benthic infaunal density, biomass, and diversity immediately before and 

one year after completion of the projects, using a before-after control-impact, or BACI 

study design. 2) I examined infaunal community composition by groups of the most 

common taxa and by the lowest possible taxonomic classification (typically species) to 

document changes in community composition with time and shoreline treatment. 3) I 

examined effects of shoreline modification on near-shore predator abundance (blue crabs 

and shoreline-associated fishes) and diversity (shoreline-associated fishes) at each of the 

BACI study sites.
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I hypothesized that infaunal abundance, biomass, and diversity would differ from 

2010 to 2011 sampling periods between control and impact sites as a result of changes 

due to shoreline modification. Based on the empirical examples outlined in the 

introduction, I expected the three community response variables (infaunal density, 

biomass, and diversity) to decline in three study locations changing from undeveloped to 

developed shorelines (Holly Cove, VA; Timbemeck Creek, VA; and Dandy, VA). In 

contrast, I expected the three community response variables to increase at one study 

location changing from bulkhead to living shoreline (Windy Hill, MD). Based on 

previous literature, I expected these changes to be predicted most by shoreline treatment 

and sediment grain size. Additionally, I expected predator density to vary similarly to 

benthic infauna, as soft-sediment systems in Chesapeake Bay tend to be structured by 

bottom-up control (Seitz and Lipcius 2001).
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METHODS

Study Locations

Using permitting data for the construction and removal of structures that altered 

shoreline and near-shore habitats, four locations in the Chesapeake Bay (Figure 2) were 

chosen based on their timing of construction, accessibility, and length of impacted 

shoreline. The study locations were restricted to areas developed in summer 2010 within 

Chesapeake Bay that were accessible by boat or trailer in one day trip from Gloucester 

Point, VA, were no more than 1.2 m deep 5 m from the shoreline at mid-tide, and 

included at least 30 m (preferably longer) of impacted shoreline length.

Three sites were changed from undeveloped to developed (riprap, boat slips) 

shorelines, and one site was changed from developed (bulkhead) to living shoreline 

(Figure 3). Timbemeck Creek, VA, contained a natural marsh and tidal wetland shoreline 

that was developed with boat docks and slips (84 m in linear length along the shoreline) 

and three discontinuous sections of riprap (sections are 81, 37, and 26 m in length). 

Dandy, VA, contained a Phragmites australis (invasive common reed) marsh shoreline 

that was replaced by riprap of 49 m linear length. Holly Cove, VA, contained a tidal 

wetland shoreline that was replaced by riprap of 34 m linear length. Windy Hill, MD, 

contained a section of bulkhead (149 m in length) that was removed and replaced by a 

living shoreline consisting of an offshore breakwater, marsh sills, and planted marsh 

grasses. The length of the living shoreline is now 309 m when measured around the 

breakwaters and along the perimeters of the coves between the breakwaters.

BACI Sampling

To understand the impacts of shoreline modifications, it is important to directly
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measure the faunal changes that occur over the time frame in which modifications occur. 

A before-after control-impact (BACI) study design (Stewart-Oaten et al. 1986, 

Underwood 1992, 1994, Underwood et al. 2003) was used to examine changes in 

community structure due to shoreline modification at each of the four study locations. 

The BACI study design involves sampling at impact sites (subjected to shoreline change) 

sites and similar, paired control sites, both before and after the impact (Underwood 1992, 

1991, Hewitt et al. 2001). Samples at nearby control groups should respond similarly to 

temporal fluctuations, whereas impact shorelines may start out similar or different to 

control sites, but respond differently in 2011, after shoreline modification than control 

shorelines (Figure 4). Replicate samples were taken before construction in May-June 

2010 and again in May-June 2011, after construction was complete (Table 1). This is an 

important advance in shoreline modification studies, as it provides a method to account 

for many site-specific differences (such as wave influence, intra-annual variation, and 

differences in physical parameters) prominent in data sets of comparative studies by 

comparing fauna at individual sites before and after a change (Stewart-Oaten et al. 1986, 

Underwood 1992, Underwood et al. 2003).

BACI sampling schemes can also benefit from asymmetrical designs, that is, 

more than one control group, and one or more impact groups (Underwood 1992). More 

often than not, environmental impacts are not replicated in nature, but that does not 

prevent the inclusion of multiple controls with which to compare an environmental 

impact. This strategy of assigning multiple controls allows the researcher to increase the 

likelihood of detecting an impact in a variable environment subjected to disturbances in 

addition to temporal heterogeneity (Underwood 1992). This way, multiple control
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groups may differ from one another, capturing spatial variation, but should respond 

similarly to temporal change, whereas impact shorelines may respond differently after 

shoreline modification. Thus, having multiple control groups is another way to account 

for variability within the control observations, which is beneficial given the high degree 

of variability and patchiness in benthic communities with salinity, sediment, 

hydrodynamics, latitude and depth (Boesch 1977, Dauer et al. 1984, Dauer et al. 1987, 

Holland et al. 1987, Schaffner et al. 1987, Diaz and Schaffner 1990, Snelgrove and 

Butman 1994). In this experiment, two control sets were grouped separately at each 

study site, blocked by close geographical proximity or shoreline type. Sites changing 

from undeveloped to developed shorelines (Timbemeck, Dandy, and Holly Cove) had 

controls grouped by geographical proximity, as the impact shoreline started with the 

same shoreline type as other shorelines in the area. The site changing from bulkhead to 

living shoreline (Windy Hill) had controls blocked by shoreline type, as the shoreline 

started as bulkhead and changed to a more natural type shoreline, so the controls were 

assigned to resemble both the before (bulkhead) and after (marsh) conditions of that 

impacted shoreline. Impact shorelines were sampled as two separate blocks at 

Timbemeck Creek, given the differing nature of the impacts (one changed from tidal 

wetland and marsh to boat docks), whereas impact shorelines at all other study sites were 

sampled as one block.

Numbers of replicate samples at each site are slightly different due to constraints 

of time and space (Table 1). For example, infauna and crab scrape samples were 

collected in one day at Windy Hill, MD and Holly Cove, VA, to reduce travel costs, thus 

limiting the number of samples that could be collected. The length of impacted shoreline
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available for sampling differed at each site, leading to more samples taken adjacent to 

longer shoreline change areas (Table 1). The field time required to process seine samples 

put a constraint on seine sampling, leading to fewer seines than other sample types at all 

sites (Table 1).

Infauna

To examine benthic infauna, two types of samples were taken at each site, one for 

larger, deep-dwelling macrofauna, and another for shallower macrofauna. At least two 

and up to 12 replicate infaunal sample pairs were taken at each shoreline treatment in 

each year (Table 1). To collect deep-dwelling infauna, a large PVC core 38 cm in inner 

diameter was pushed 40 cm into the sediment and evacuated with a suction apparatus (as 

in Seitz et al. 2006) into a 3-mm mesh bag, collecting a sample 0.113 m2 in surface area 

(Eggleston et al. 1992). Samples were bagged and placed on ice immediately and 

transported back to the lab where they were frozen until processing. In the lab, these 

samples were sorted, transferred to 70% ethanol, enumerated, identified to the lowest 

possible taxonomic level, measured with calipers to the nearest 0.1 mm and biomassed to 

ash-free dry weight in a muffle furnace at 550°C for 4 hours. Preservation of 

invertebrates in ethanol does not have any different effects on biomass estimates than 

preservation in formalin (Wetzel et al. 2005).

To collect smaller macrofauna, a hand-held PVC core 10 cm in inner diameter 

was pushed 15 cm into the sediment and sieved in a 500-pm mesh bag, collecting a 

sample 0.008 m in surface area. All animals from these 500-pm samples were fixed in 

normalin for at least 24 hours, then sieved again on a 500-pm mesh screen, transferred to
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70% ethanol, sorted, enumerated, identified to the lowest possible taxonomic level, and 

biomassed to ash-free dry weight by incineration in a muffle furnace at 550°C for 4 hours.

At each infaunal sampling site, surface salinity, dissolved oxygen (DO), and water 

temperature were measured using a calibrated YSI Pro-Plus Multi-Parameter Water 

Quality Meter. Additionally, two sediment samples were taken at each site with a 2.6-cm 

diameter syringe core pushed into the sediment to a depth of 5 cm. These samples were 

used to analyze grain size using a standard wet sieving and pipetting technique (Plumb 

1981).

Due to logistical constraints, a subsample of replicates for the 500-pm samples 

was sorted. For Timbemeck, a random number generator was used to select the first 11 

(2010) or 10 (2011) samples from all control groups, and the first four samples from 

either impact groups for both years. Subsampling provided insufficient sample sizes for 

analysis of each impact separately, preventing them from analysis as separated impacts, 

so they were combined. Control groups were each well represented and were left 

separated. For Dandy, Holly Cove, and Windy Hill, a random number generator was 

used to subsample 500-pm infauna by selecting two impact shoreline samples from each 

year, and two control shoreline samples from one of the control groups for each year.

The control group from which samples were pulled was decided by whichever sample 

was chosen first, i.e. if a sample from control group 2 was selected first, only samples 

from control group 2 were sorted and included in the study.

Crab Scrapes

In addition to infaunal samples, epifaunal predator samples were collected at each 

location, targeting blue crab predators. At least two and up to 12 scrapes were taken at
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each shoreline treatment in each year (Table 1). The sampling device used was a “crab 

scrape”, which is a crab dredge 1 m in width modified with teeth removed and skis 

placed on the lowered side of the dredge. The scrape was lowered from a small boat, and 

dragged along the bottom along the shoreline for 20 m (measured using a GPS), leading 

to samples 20 m2 in area. A bag with approximately 7-mm mesh was attached to the 

scrape to collect crabs with > 10-mm carapace width as well as fish. All crabs and fish 

were collected from each scrape, identified to the lowest taxonomic level (typically 

species), enumerated, measured (standard length) to the nearest mm, and released on site.

Seines

Near-shore fishes and blue crabs were collected using beach seines 15.24 m in 

length. At least two and up to six seines were taken at each shoreline treatment in each 

year, except in 2010 at Dandy, where the construction began early and before our 

predator samples could be taken (Table 1). Seines were deployed according to the 

methods of the VIMS Seine Survey (www.fisheries.vims.edu/trawlseine/sbintro.htm), in 

which one person anchors one end of the net at the shoreline. Another person then walks 

the other end straight out perpendicular to the shoreline as far as possible, and sweeps in 

a quarter-circle arc motion back towards the shoreline, resulting in a sample 182.4 m in 

area. All fishes and blue crabs were collected from each tow, identified to the lowest 

taxonomic level possible (typically species), enumerated, total length measured to the 

nearest mm, and released on site, as per approved IACUC regulations; permit # IACUC- 

2010-05-10-6718-rdseit). Individuals that could not be positively identified were placed 

in ice slurry and taken back to the lab for species confirmation, and about 10 specimens 

of each species were kept for future gut-content analysis from each seine. Dr. Denise
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Breitburg’s Lab at the Smithsonian Environmental Research Center (SERC) in 

Edgewater, MD, collected seine samples at Windy Hill in 2010 using both quarter-arc 

and parallel seining methods. To compare these seines with those taken by our lab group, 

abundances were normalized by total area seined.

Data Analysis

Assessment o f Linear Modeling Assumptions

Before model construction and analysis, all response variables were examined to 

assure their accordance with assumptions of linear models: normality, homogeneity of 

residual variance, and independence of predictor variables. Normality was assessed 

through visual interpretation of QQ plots and histograms, and homogeneity of residual 

variance (homoscedasticity) was assessed through visual interpretation of Residuals vs. 

Fitted and Scale-Location plots as well as a Brown-Forsythe Test (Brown and Forsythe 

1974, Logan 2010). If assumptions for normality or homoscedasticity were not met for 

abundance or biomass data, the response variable was transformed using Box-Cox 

transformation, and analyses run on transformed data. All diversity data were 

transformed using the logit transformation, as the raw data are constrained between 0 and 

log(S), and are thus not normal (Warton and Hui 2011).

To examine the possibility of collinearity of the environmental predictor variables, 

DO (mg/L), Salinity (PSU), and Temperature (°C), I examined the correlation structure 

of those three variables over all four sites, visually assessed a scatter plot matrix 

(“splom”) of the three variables regressed against one another, and calculated tolerance 

and variance inflation factors, hereafter VIFs (Logan 2010, R.J. Latour pers. comm.). 

Tolerance values below 0.2 and VIF values above 5 are considered to be evidence of
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collinearity (Logan 2010, R.J. Latour pers. comm). For salinity, the tolerance value was 

the lowest (0.49) and the VIF value the highest (2.02) of all three predictor variables. 

While these values are within an acceptable range, I decided they were high enough to 

support my choice of using salinity as a single predictor variable. Salinity is a major 

determinant of infaunal distribution patterns in estuaries (Boesch 1977, Barnes 1989,

Diaz and Schaffner 1990, Llanso 2002). In addition, sampling during a given day was not 

randomized among control vs. impact treatments (e.g., samples were taken adjacent to all 

impact sites, then all controls, based on proximity to the next sample), and DO and 

temperature tend to vary more by time of day than does salinity. Thus, salinity is the 

most robust choice for a single environmental predictor value.

Independence of predictor variables for individual sites was also assessed through 

visual examination of sploms and by calculating VIFs (Logan 2010, R.J. Latour pers. 

comm.). Models with collinear variables were removed from the model sets before 

model comparison.

Linear Modeling and A1C

Linear models were used to model infaunal response variables (abundance, 

biomass, and diversity) for the 3-mm size-class data at all study sites, as well as the 500- 

pm size class at Timbemeck Creek only. Models were constructed with a combination of 

several explanatory variables, or parameters, in addition to the year and shoreline 

treatment effects of the BACI design (Table 2).

The explanatory parameters included in different combinations in the linear 

models are year (“Year” or “Y”, 2010 or 2011), shoreline treatment (“Treat” or “T”, 

control 1, control 2, or impact), an interaction term of year and shoreline treatment (Y*T),
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sediment grain size as percent of sand + gravel (“Sed”), and salinity in PSU (“Sal”). 

Impact samples in the 3-mm size class were assigned to either impact 1 or impact 2, 

depending on whether they were taken at boat slips and docks (impact 1) or riprap 

(impact 2) shorelines. Impact samples in the 500-pm size class were all assigned to one 

impact group, since subsampling provided insufficient sample sizes for analysis of each 

impact separately.

Linear modeling is the basis for the ANOVA analysis framework, for which a 

BACI study assigns year and treatments, in this case different shorelines. In this study, 

multiple linear models were employed to analyze the 3-mm size class because additional 

parameters were included in the candidate models to account for some of the variance in 

the response variables not attributed to year and shoreline treatment. The efficacy 

(probability of best describing the data) of multiple candidate models that contain 

different combinations of parameters can be compared using model comparison (e.g. 

AIC). In this study, year ("Y") and shoreline treatment ("Treat") are categorical, or 

“dummy” predictor variables, analogous to the “main effects” in an ANOVA comparison 

of means. In addition, sediment grain size (Sed) as % coarse sediments (a combination of 

gravel and sand fractions), and salinity (Sal) were selected as explanatory variables.

For each response variable (abundance, biomass, and diversity), a set of proposed 

candidate linear models was developed (Tables 2, 3), and the relative efficacy of these 

models for each response variable was analyzed using an information-theoretic approach 

with Akaike’s Information Criterion, or AIC (Johnson and Omland 2004, Anderson 

2008). This approach allows the user to build models to represent the information “loss” 

when a model approximates reality (Gotelli and Ellison 2004, Johnson and Omland 2004,
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Anderson 2008) and allows for model comparison and selection, particularly useful in 

observational studies where uncontrolled variables exist (Johnson and Omland 2004, 

Stephens et al. 2005, Anderson 2008).

The relative strength of each model of the set is determined by its AIC value 

corrected for low sample size (Equation 1). Within the equation below, n represents the 

sample size, k the number of parameters included in each candidate model, and a the 

residual sum of squares divided by n (from least squares regression) which can be used as 

a proxy for log-likelihood, and is typically used in AIC calculations.

Equation 1. A lC c  = n * ln(cr ) + 2k
n

n - k - 1
Next, delta Acid values are calculated to compute simple differences between the 

best-fitting model and the rest of the models (equation 2), representing the expected 

information loss between the best model and the ith model as compared to the model with 

the lowest AICc value (AICcmin).

Equation 2. = A lC ci — AICcmin

From these delta values, a discrete weighted probability, or Akaike weight, is

calculated to determine the model with the highest probability of being that which best

fits the data (equation 3). In the equation below, the numerator represents the model of

interest’s likelihood, and the denominator represents the sum of all other model

likelihoods. An Akaike weight (wj) >0.10 indicates strong support of a model (Anderson

2008), as it best describes the dataset. Hereafter, these models will be referred to as

“best-supported” models. exp(--^A.)
w; = - ^

Equation 3. * A  1
2 ,e x p ( - -A r)
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To examine the absolute support for the model (not in comparison to the other 

models, but in comparison to the data itself), adjusted R2 values, which provide a penalty 

for unnecessary parameters, were calculated for all models in each candidate set. 

Individual parameter estimates for the best-supported models were examined to 

determine important predictor variables for each response.

Within the BACI framework, if a model that included an interaction term between 

year and shoreline treatment (YxT) had a high Akaike weight, and the estimated beta 

coefficient (P) of that interaction term was significant (that is, the confidence interval 

associated with its standard error did not overlap with 0), there is evidence to say that the 

year and shoreline treatment interaction was significant.

A significant interaction between year and shoreline treatment indicates an effect 

of shoreline treatment, as long as it compared control to impact shorelines (Underwood 

1992, Underwood 2003), and was designated by 80% confidence intervals round the 

mean that do not overlap 0 (Underwood 1997). This significant interaction term would 

show that the response variable (e.g. abundance) was affected differently at control 

versus impact shoreline treatments in 2011, after the shoreline modification project has 

been completed. For example, if abundance were to decrease at the impact shoreline 

treatment but increase or remain constant at both control shorelines, and the interaction 

term between year and treatment was significant, this would indicate that the change in 

abundance was due to the change in shoreline condition (Underwood 1992, 1994, 

Underwood et al. 2003). However, if the interaction term between the two control 

shoreline treatments were significant, this would indicate a highly variable data set and an 

effect of shoreline modification could not be inferred.
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This method is more desirable than analyzing response variables with a single 

model, as it allows the user to develop a set of competing, biologically relevant 

hypotheses of different combinations of parameters (Johnson and Omland 2004), provide 

evidence for each model, and examine those parameters that are most important in 

modeling the response variable (Johnson and Omland 2004, Anderson 2008). Therefore, 

even if a statistically significant interaction term between year and shoreline treatment is 

found in a model, if there is no evidence that the model fits the data, the interaction is not 

important to the response variable.

Subsampled Datasets

At Dandy, Holly Cove, and Windy Hill, the subsampling procedures on the 500- 

pm data set resulted in two replicates, preventing the ability to analyze these data reliably 

using linear models that include additional predictor variables. Instead, these data were 

analyzed with two-way ANOVA, using year and shoreline treatment as the factors. Since 

ANOVA is a special case of linear models with only categorical predictor variables, this 

is analogous to the model comparison of 3-mm data set, but without the inclusion of 

additional predictor variables and model comparison that require additional degrees of 

freedom.

Before ANOVA analysis, all response variables were examined to assure their 

accordance with the assumptions of ANOVA. Normality was assessed through visual 

interpretation of QQ plots and histograms, and homogeneity of variance 

(homoscedasticity) was assessed through visual interpretation of Residuals vs. Fitted and 

Scale-Location plots as well as a Brown-Forsythe Test (Brown and Forsythe 1974, Logan 

2010). If assumptions were not met for abundance or biomass data, the response variable
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was transformed using Box-Cox transformation, since it consistently performed best as a 

transformation for the response variables of the 3-mm data set, and allows the 

transformation to be derived from the data itself (R.J. Latour, pers. comm.). All diversity 

data were transformed using the logit transformation, as they represent data constrained 

between 0 and log(S), and are thus not normal (Warton and Hui 2011).

Analyses were completed and figures developed using R statistical and graphing 

software (version R-2.15.1.tar.gz; http://cran.r-project.org), and several packages (car, 

ggplot2, HH, MASS, MuMIn, plyr, stats) on the R-studio platform (0.96.331; 

http://rstudio.org). Individual analyses were conducted for each response variable: 

infaunal density, diversity, and biomass.
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RESULTS

Water Quality and Sediment Grain Size

Salinity, DO, and temperature did not vary greatly between treatments, but 

differed between years at the four sites (Table 4). At Timbemeck, salinity was slightly 

higher in 2010 than in 2011. Neither of the other two variables differed considerably 

among shoreline treatments or from 2010 to 2011 (Table 4). At Dandy, salinity and DO 

decreased while temperature increased at all shoreline treatments from 2010 to 2011, 

though there were no notable differences by shoreline treatment (Table 4). At Holly 

Cove, salinity, DO, and temperature decreased at all shoreline treatments from 2010 to 

2011, though there were no notable differences by shoreline treatment (Table 4). At 

Windy Hill, salinity decreased slightly, DO decreased markedly (by over half in some 

areas), and temperature increased from 2010 to 2011, though there were no notable 

differences by shoreline treatment (Table 4).

Substrate grain size encompassed fines (silt and clay, < 62.5 pm diameter), sands 

(62.5 pm < diameter < 2,000 pm), and gravel (>2,000 pm diameter). Across all 

treatments at Timbemeck, notably, mean % sand increased from 55.70 in 2010 to 66.83 

in 2011. From 2010 to 2011, mean % clay decreased from 15.48% to 10.92%, mean % 

silt decreased from 28.55 to 20.94, and mean % gravel increased from 0.27 to 1.31. 

Trends in mean sediment grain size were driven by increases in fine grains (clay and silt) 

and decreases in coarse grains (sand and gravel) at impact 2, with both control and impact 

1 shorelines remaining relatively constant (Figure 5). Across all treatments at Dandy, 

notably, mean % sand decreased from 94.86 in 2010 to 89.51 in 2011 and mean % gravel 

increased slightly from 0.85 in 2010 to 3.17 in 2011. From 2010 to 2011, mean % clay
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remained virtually constant (1.94 to 2.02), and mean % silt remained virtually constant 

(2.35 to 2.33). The main trends were driven by: (1) an increase in clay at control 1 and 

impact, but decrease at control 2 shorelines, (2) an increase in silt at control 1, but 

decrease at control 2 with little change at impact shorelines, (3) a decrease in sand at all 

treatments from 2010 to 2011, and (4) an increase in gravel at all shoreline treatments 

(Figure 5). Across all treatments at Holly Cove, mean % gravel increased from 8.32 in 

2010 to 13.21 in 2011. From 2010 to 2011, mean % clay remained relatively constant 

(2.14 to 1.78), mean % silt decreased slightly (10.31 to 8.89), and mean % sand 

decreased slightly (79.23 to 76.13). The main trends were driven by and reflect changes 

at impact sites, with little change at control shorelines (Figure 5). At Windy Hill, 

mean % silt increased substantially from 1.47 in 2010 to 8.34 in 2011, and mean % sand 

decreased from 65.98 in 2010 to 58.09 in 2011. From 2010 to 2011, mean % clay tripled 

from 0.99% to 2.99%, and mean % gravel remained nearly constant (31.57 to 30.58). 

These trends were driven by: 1) increases in clay and silt at control 2 and impact 

shorelines, 2) decreases in sand at control 2 shorelines, 3) decreases in gravel at impact 

shorelines, and 4) little change at impact 1 shorelines (Figure 5).

Infauna

Benthic infauna were characterized by patchy distributions, including several 

samples with no infauna, and a few dominant taxa that varied depending on the site.

Timbemeck

Density of 3-mm infauna at Timbemeck Creek increased from 2010 to 2011 at 

both impact 1 (boat docks) and impact 2 (riprap), while staying constant at both control 

(Timbemeck Creek and Catlett Island marshes) shorelines (Figure 6A). However, the
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single best-supported model for Box-Cox transformed density was that including year 

and treatment without interactions (g2 : Y+T; Wi= 0.875; Adj. R2 = 0.1480; Table 5). 

Density at control 2 and impact 1 shorelines differed significantly from the reference 

(control 1) based on their parameter estimates (Table 6), though interactions between 

year and treatment were not estimated by model g2 .

Biomass of 3-mm infauna at Timbemeck increased at impact 1 (boat docks), 

while remaining virtually constant at both control shorelines and at impact 2 (riprap) 

shorelines (Figure 6B). The best-supported models for Box-Cox transformed 3-mm 

biomass were the global model (gi: global; Wi= 0.619; Adj. R2 = 0.4676) and that 

including year and treatment with interactions (g4 i YxT + Sed; Wi = 0.327; Adj. R = 

0.4407), both of which had higher Adj. R2 values than models for density (Table 5). For 

biomass modeled by gi, sediment grain size was an important predictor and impact 2 

shorelines differed significantly from the reference (control 1) based on parameter 

estimates (Table 6), though interactions between year and treatment were not significant. 

Biomass modeled by g4  did not differ significantly between shoreline treatments, but 

sediment grain size was an important predictor, and the interaction between year and 

impact 1 (compared to the reference, control 1) was significant and positive based on 

parameter estimates (Table 6), indicating a positive effect of shoreline modification on 

biomass.

Diversity of 3-mm infauna at Timbemeck, in contrast to biomass, increased at 

both control shorelines and impact 2, but stayed consistent at impact 1 (Figure 6C). The 

best-supported models for logit-transformed 3-mm diversity were that for sediment alone 

(g6: Sed; wi= 0.485; Adj. R2 = 0.2931), that including year and treatment with
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interactions and sediment grain size (g4 i Yx T + Sed; Wi= 0.409; Adj. R2 = 0.3971), and 

the global model (gi: global; Wi= 0.105; Adj. R2= 0.6159; Table 5). For diversity 

modeled by g6, sediment grain size was an important predictor (Table 6). Sediment grain 

size was also an important predictor for diversity modeled by g4 and gi, and the 

interaction between year and impact 1 was significant and negative based on parameter 

estimates (Table 6), indicating a negative effect of shoreline modification on diversity. 

Across response variables at Timbemeck for 3-mm infauna, biomass and diversity were 

reasonably well explained by the candidate models, with high Adj. R values (between 

~0.4 to 0.6). Abundance was not very well explained by the candidate model set, with 

relatively low Adj. R2 values (< 0.2; Table 5).

Regarding community composition of 3-mm infauna by common taxa, bivalves 

decreased at both controls and impact 2, but increased at impact 1 from 2010 to 2011 

(Figure 6D). Polychaete density increased at all shorelines, but at impact 2 it increased by 

a factor of almost 17 compared to increases by factors of 1.5 to 3.5 at the other shorelines 

(Figure 6D). Regarding species-specific community composition of 3-mm infauna, 

Macoma balthica drove the decrease in bivalve density at both controls, and M. balthica 

and Macoma. mitchelli drove the decrease of bivalve density at impact 2 (Figure 6E). 

Additionally, M. balthica also drove the increase in bivalves at impact 1. Aligena elevata 

were lost at impact 1, but replaced by M. balthica and Tagelus plebeius. Clymenella 

torquata, Neanthes succinea, and capitellids drove the increase of polychaetes at impact 1, 

and capitellids drove the increase at impact 2 (Figure 6E). Drilonereis longa recruited to 

all shorelines, but their densities were lower at both impact shorelines.
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Density of 500-pm infauna at Timbemeck Creek decreased from 2010 to 2011 at 

impact shorelines and control 1 shorelines (within Timbemeck, the system where the 

impact occurred), but remained constant at control 2 (in the Catlett Islands, outside of the 

impact area) (Figure 7A). The best-supported models for density (untransformed) were 

that including year and treatment with interactions (g3 : YxT; Wj = 0.381; Adj. R = 

0.5728), year and treatment with interactions and sediment grain size (g4 : YxT + Sed; Wi 

= 0.302; Adj. R2 = 0.6029), and year and treatment with interactions and salinity (gs:

YxT + Sal; Wi= 0.227; Adj. R2 = 0.5950), each with relatively high Adjusted R2 values 

(Table 7). For density modeled by g3, g4 , and g5, density was significantly lower in 2011 

(Year) and at control 2 shorelines compared to the reference (2010, control 1) and 

interactions between year and impact or control 2 were significant and positive based on 

parameter estimates (Table 8). Significance of both interactions indicates that both 

control 2 and impact shorelines differed in 2011 from the reference (control 1), so a 

distinct shoreline development effect cannot be inferred.

Biomass of 500-pm infauna at Timbemeck Creek responded positively to 

shoreline change, increasing at impact shorelines but remaining constant (Control 2) or 

decreasing (Control 1) at control shorelines (Figure 7B). The best-supported model for 

Box-Cox transformed biomass contained salinity only (gf. Sal; wi= 0.854; Adj. R = 

0.1764; Table 7). Salinity was an important predictor for biomass based on parameter 

estimates (Table 8), and interactions between year and treatment were not included in the 

model and therefore not estimated.

Diversity of 500-pm infauna at Timbemeck remained constant at both impact and 

control 2 shorelines, but increased at control 1 shorelines (Figure 1C). However, the
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best-supported model for logit-transformed diversity contained grain size only (g6i Sed; 

Wi= 0.738; Adj. R = 0.2431; Table 7). Sediment grain size was an important predictor 

for diversity based on parameter estimates (Table 8), and interactions between year and 

treatment were not included in the model and therefore not estimated. Across response 

variables at Timbemeck for 500pm infauna, density was well explained by the candidate 

models (Adj. R - 0.6; Table 7), and they performed much better for 500-pm than for 3- 

mm infauna (Table 5). Biomass was not well explained by the candidate models, with 

Adj. R2 <0.2 (Table 7), although they performed much better for 3-mm infauna (Table 5). 

Finally, diversity was also not very well explained by the candidate models, with Adj. R 

= 0.2 (Table 7), although they performed much better for 3-mm infauna (Table 5).

Regarding community composition of 500-pm infauna by common taxa, 

polychaete density increased at both control shorelines, but decreased at impact 

shorelines (Figure 7D). Cmstaceans were largely absent from all shorelines in 2011 and 

they were clearly the drivers of reduced overall densities at control 1 shorelines and 

impact shorelines (Figure 7D). Bivalves decreased at impact shorelines but increased at 

control 2, with no change at control 1 (Figure 7D). Regarding species-specific 

community composition of 500-pm infauna, the density of N. succinea increased at all 

control shorelines, but decreased at impact shorelines, where density was already low in 

2010. The density of C. torquata increased at all shorelines, but more so at impact 

shorelines than control shorelines. Density of capitellid polychaetes increased at control 2 

by a factor of about 4, but only increased slightly (factor of 1.5) at control 1, and did not 

increase at impact shorelines (Figure 7E). M. balthica drove the decrease in bivalve
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density at impact shorelines, though A. elevata and M. mitchelli were also lost at impact 

shorelines (Figure 7E).

Dandy

Density, biomass, and diversity of 3-mm infauna at Dandy did not change from 

2010 to 2011 by year or shoreline treatment (Figure 8A-C). Year and salinity were 

correlated (VIF for Year = 40.9, Salinity = 35.9, all others < 5) at Dandy, so models 

containing both of these parameters (gi: global and gs: YxT + Sal) were removed from 

the candidate model set for all response variables.

The best-supported models for Box-Cox transformed density of 3-mm infauna at 

Dandy were those containing sediment (g6i Sed; wj= 0.564; Adj. R2= 0.0085), salinity 

(g7 : Sal; Wi= 0.286; Adj. R2= -0.0249), and year and treatment (g2 : Y+T; Wi= 0.135; Adj. 

R2 = 0.0098), all of which performed very poorly (Table 9). None of these three models 

contained significant predictors for density based on parameter estimates, and 

interactions between year and treatment were not included in the models and therefore 

not estimated (Table 10).

The best-supported models for Box-Cox transformed biomass of 3-mm infauna at 

Dandy were those containing sediment (g6j Sed; Wi= 0.560; Adj. R = -0.0082) and 

salinity (gy. Sal; Wi= 0.394; Adj. R2 = -0.0256), and again, both of these models 

performed very poorly (Table 9). None of these three models contained significant 

predictors for biomass based on parameter estimates (Table 10).

The best-supported models for logit-transformed diversity of 3-mm infauna at 

Dandy were those containing year and shoreline treatment (g2 i Y+T; Wi= 0.495; Adj. R 

= 0.1055), salinity (g7 : Sal; Wi= 0.251, Adj. R2 = 0.0074), and sediment (g6: Sed; wi =
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0.200, Adj. R2 = -0.0038). Again, all models performed poorly (Table 9). None of these 

three models contained significant predictors for diversity based on parameter estimates, 

and interactions between year and treatment were not included in the models and 

therefore not estimated (Table 10). Across response variables at Dandy for 3-mm infauna, 

none of the candidate models performed well to explain any of the response variables, as 

all Adjusted R2 values were < 0.07 (Table 9).

Regarding community composition of 3-mm infauna at Dandy by common taxa, 

there were only slight changes from 2010 to 2011 (Figure 8D). Bivalve density 

decreased at control 2 (marshes south of impact) and impact (riprap) shorelines, but 

increased slightly at control 1 (marshes north of impact) shorelines (Figure 8D). 

Polychaete density decreased at control 1 and decreased slightly at control 2, but 

increased slightly at impact shorelines (Figure 8D). In species-specific community 

composition of 3-mm infauna, decreases in bivalve density were due to M. balthica at 

control 2 and both M. balthica and T. plebeius at impact shorelines (Figure 8E).

Decreases in polychaete density at controls 1 and 2 were driven by losses of N. succinea 

at control 1 and C. torquata and capitellids at control 2, whereas increased polychaete 

density at impact shorelines was driven by N. succinea and C. torquata. Leitoscoloplos 

spp. seemed to counter this overall trend, as they increased in density at controls 1 and 2, 

but decreased at impact shorelines (Figure 8E). Similarly, D. longa increased in density 

at control 2, showed little change at control 1, but decreased at impact shorelines. Spionid 

polychaetes recruited in 2011 to all shorelines, and seem to replace capitellids in density 

(Figure 8E).
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Density of 500-pm infauna at Dandy decreased from 2010 to 2011 at both control 

and impact shorelines (Figure 9A). Modeling output for 500-pm infauna at Dandy 

should be interpreted cautiously. Low sample size made thorough interpretation of 

diagnostic plots difficult and also resulted in unreliable Brown-Forsythe tests for 

homogeneity of variance. A linear model containing year and treatment with interactions 

somewhat explained density (untransformed) of 500-pm infauna at Dandy (g3 i YxT; Adj. 

R2 = 0.2378; Table 11), though density did not vary significantly by year or shoreline, 

and the interaction between year and treatment was not significant based on parameter 

estimates (Table 11).

Biomass of 500-pm infauna at Dandy increased slightly at impact shorelines but 

decreased at control shorelines (Figure 9B). A linear model containing year and 

treatment with interactions somewhat explained Box-Cox transformed biomass (g3 i YxT; 

Adj. R2 = 0.2616; Table 11). Biomass also did not vary significantly by year or shoreline, 

but the interaction between year and treatment was significant and positive based on 

parameter estimates (Table 11), indicating a positive effect of shoreline modification on 

biomass.

Diversity of 500-pm infauna at Dandy responded similarly to density as it 

decreased at both control and impact shorelines (Figure 9C). A linear model containing 

year and treatment with interactions somewhat explained logit-transformed diversity (g3 i 

YxT; Adj. R2 = 0.2258; Table 11). Diversity also did not vary significantly by year or 

shoreline, and the interaction between year and treatment was not significant based on 

parameter estimates (Table 11). Across all three of the response variables, biomass was
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predicted the best by the model, though density and diversity were predicted only slightly 

less well (Table 11).

Regarding community composition of 500-pm infauna at Dandy by common taxa, 

bivalves decreased from 2010 to 2011 at impact shorelines but did not change at control 

shorelines (Figure 9D). Polychaete density decreased at all shorelines (Figure 9D). 

Regarding species-specific community composition of 500-pm infauna, the decrease in 

bivalve density at impact shorelines was accompanied by reduced species richness from 

five to two species (Figure 9E), although density of Gemma gemma remained constant 

(Figure 9E). Capitellid polychaete density decreased at control shorelines by a factor of 

about 2, but decreased much more at impact shorelines, by a factor of about 7. Spionid 

polychaete density remained constant at control shorelines, but increased at impact 

shorelines (Figure 9E). Density of Eteone heteropoda decreased at control shorelines, 

but increased slightly at impact shorelines.

Holly Cove

Density of 3-mm infauna at Holly Cove decreased from 2010 to 2011 at all 

shorelines, but most sharply at control 1 (tidal wetland within Holly Cove) shorelines 

(Figure 10A). Year and salinity were correlated (VIF for Year = 170.3, Salinity = 174.4, 

all others < 5) at Holly Cove, so models containing both of these parameters (gi: global 

and g5 : YxT + Sal) were removed from the set of candidate models for all response 

variables. The best-supported models for Box-Cox transformed density were that 

including year and treatment with interactions and sediment grain size (g4 : YxT + Sed; Wi 

= 0.573, Adj. R = 0.4984; Table 12) and that including sediment grain size alone (g6:

Sed; Wi= 0.409, Adj. R2 = 0.2970; Table 12). For density modeled by g4 , sediment grain
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size was a significant predictor, density was significantly lower in 2011 (Year) and the 

interaction between year and control 2 was significant based on parameter estimates 

(Table 13). While control 2 shorelines differed in 2011 from the reference (control 1), 

this was not an effect of shoreline modification. For density modeled by g6, sediment 

grain size was a significant predictor and interactions between year and treatment were 

not included in the models and therefore not estimated (Table 13).

Biomass of 3-mm infauna at Holly Cove decreased at control 2 (tidal wetland in 

adjacent branch) shorelines, remained the same at control 1, and increased at impact 

(riprap) shorelines (Figure 10B). The best-supported models for Box-Cox transformed 

biomass were that containing sediment grain size (g6i Sed; Wi= 0.893, Adj. R2 = 0.3756, 

Table 12) and that containing year and treatment with interactions and sediment (g4 i YxT 

+ Sed; Wi= 0.106, Adj. R2 = 0.4776; Table 12). For biomass modeled by g6, sediment 

grain size was a significant predictor, and interactions between year and treatment were 

not included in the models and therefore not estimated (Table 13). For biomass modeled 

by g4 , sediment grain size was a significant predictor, biomass was significantly higher at 

control 2 shorelines (than the reference, control 1) and the interaction between year and 

control 2 was significant based on parameter estimates (Table 13). While control 2 

shorelines differed in 2011 from the reference (control 1), this is not an effect of shoreline 

modification.

Diversity of 3-mm infauna at Holly Cove remained constant at impact and control 

1 shorelines, and there was a slight decline at control 2 shorelines (Figure 10C). The 

best-supported models for logit-transformed diversity were that containing sediment 

grain size only (ĝ : Sed; wi= 0.689, Adj. R2 = 0.0913; Table 12) and that containing year
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and treatment (g2 : Y+T; Wi= 0.203, Adj. R2 = 0.1159; Table 12). Diversity modeled by g6 

contained no significant predictors (Table 13), and for g2 , diversity was significantly 

higher at impact shorelines (than control 1), though interactions between year and 

treatment were not included in the model and therefore not estimated (Table 13). Across 

response variables at Dandy for 3-mm infauna, candidate models explained abundance 

and biomass reasonably well (Adj. R2 > 0.3), but did not explain diversity very well (Adj. 

R2 < 0.2; Table 12).

Regarding community composition of 3-mm infauna at Holly Cove by common 

taxa, bivalve density decreased at both control shorelines, but remained constant at 

impact shorelines from 2010 to 2011 (Figure 10D). Polychaete density decreased at 

control 1 and impact shorelines, but remained constant at control 2 shorelines. 

Chironomids appeared to recruit into control shorelines but not impact shorelines (Figure 

10D). Regarding species-specific community composition of 3-mm infauna, decreased 

bivalve density at control shorelines was driven by decreases in M. balthica and M  

mitchelli at control 1 and T. plebeius in addition to both Macoma species at control 2 

(Figure 10E). Increases in bivalve density at impact shorelines were driven by increases 

in M. balthica and the addition of some T. plebeius and M. lateralis, though M. mitchelli 

decreased (Figure 10E). Thus, density of M. balthica decreased at both control shorelines, 

but increased at impact shorelines. Density of Leitoscoloplos spp. decreased at all 

shorelines in 2011 (Figure 10E). Density of E. heteropoda increased at all shorelines, but 

more so at impact shorelines than controls. Spionid polychaetes recruited in 2011 to all 

shorelines, and seemed to replace capitellids in density (Figure 10E).
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Density of 500-|Lim infauna at Holly Cove increased at impact shorelines and 

remained constant at control shorelines (Figure 11 A). Modeling output for 500-pm 

infauna at Holly Cove should be interpreted cautiously. Low sample size made thorough 

interpretation of diagnostic plots difficult, and also resulted in unreliable Brown-Forsythe 

tests for homogeneity of variance. A linear model containing year and treatment with 

interactions sufficiently explained density (untransformed; g3 : YxT; Adj. R2 = 0.7033; 

Table 14). Density did not vary significantly by year or shoreline, but interaction 

between year and treatment was significant and positive based on parameter estimates 

(Table 14), indicating a positive effect of shoreline modification on density.

Biomass of 500-pm infauna at Holly Cove remained constant at both control and 

impact shorelines, and variation among replicates was high (Figure 1 IB). A linear model 

containing year and treatment with interactions did not explain Box-Cox transformed 

biomass well (g3 i YxT; Adj. R2 = -0.3575; Table 14). Biomass did not vary significantly 

by year or shoreline, and the interaction between year and treatment was not significant 

based on parameter estimates (Table 14).

Diversity of 500-pm infauna at Holly Cove remained constant at both control and 

impact shorelines, and variation among replicates was high (Figure 11C). A linear model 

containing year and treatment with interactions did not explain logit-transformed 

diversity well (g3 ; Adj. R2 = -0.1619; Table 14). Diversity did not vary significantly by 

year or shoreline, and the interaction between year and treatment was not significant 

based on parameter estimates (Table 14). Across all three of the response variables, the 

model predicted density best by far (Table 14).
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Regarding community composition of 500-pm infauna at Holly Cove by common 

taxa, bivalve and polychaete density increased at impact compared to control shorelines, 

though Chironomids seemed to recruit at a greater density to control than impact 

shorelines (Figure 11D). Regarding species-specific community composition of 500-pm 

infauna, the increase in bivalve density at impact shorelines was driven by increases in G. 

gemma, while a few M. balthica were lost (Figure 1 IE). Changes in polychaete density at 

impact shorelines were driven by capitellids, spionids, and E. heteropoda, all of which 

increased at impact shorelines but remained constant (capitellids) or decreased (spionids 

and E. heteropoda) at control shorelines (Figure 11E).

Windy Hill

Density of 3-mm infauna at Windy Hill decreased at impact shorelines (changed 

to living shoreline) and to a lesser extent at control 2 (marsh) shorelines, but remained 

constant at control 1 (bulkhead) shorelines from 2010 to 2011 (Figure 12A). Year and 

salinity were correlated (VIF for Year = 55.4, Salinity = 50.86, all others < 5) at Windy 

Hill, so models containing both of these parameters (gi, global and g5, YxT + Sal) were 

removed from the set of candidate models for all response variables. The best-supported 

models for density (untransformed) were that containing salinity only (g7: Sal; w; = 0.669; 

Adj. R2 = 0.1461; Table 15) and that containing year and treatment (gy Y+T; Wi= 0.234; 

Adj. R2 = 0.1688; Table 15). For density modeled by g7, salinity was a significant 

predictor (Table 16), but model g2 contained no significant predictors and interactions 

between year and treatment were not included in the models and therefore not estimated 

(Table 16).
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Biomass of 3-mm infauna at Windy Hill remained constant at control 1 

(bulkhead) shorelines but dropped at control 2 (marsh) and impact shorelines (Figure 

12B). The best-supported models for (untransformed) biomass were that containing year 

and treatment with interactions and sediment (g4 : YxT + Sed; Wi= 0.344; Adj. R2 = 

0.3797; Table 15), that containing salinity only (gf. Sal; w; = 0.323; Adj. R2 = 0.2040; 

Table 15), and that containing year and treatment with interactions (g3 i YxT; wi= 0.235; 

Adj. R = 0.3281; Table 15). For biomass modeled by g4  and g3 , control 2 and impact 

shorelines had significantly higher biomass than reference (control 1) shorelines, and the 

interactions between year and impact or control 2 were significant and negative based on 

parameter estimates (Table 16). Significance of both interactions indicates that both 

control 2 and impact shorelines differed in 2011 from the reference (control 1), so a 

distinct shoreline development effect cannot be inferred. For density modeled by gq there 

were no significant predictors (Table 16).

Diversity of 3-mm infauna at Windy Hill decreased at impact shorelines but 

increased at both control shorelines from 2010 to 2011 (Figure 12C). The best-supported 

models for 3-mm diversity were that containing year and treatment with interactions (g3 i 

YxT; Wj= 0.485; Adj. R2= 0.2925; Table 15), that containing year and treatment only 

(g2 : Y+T; Wj= 0.248; Adj. R2= 0.1865; Table 15), and that containing year and treatment 

with interactions and sediment grain size (g4 i YxT + Sed; Wi = 0.180; Adj. R2 = 2950; 

Table 15). For diversity modeled by g3 and g4 , year and shoreline did not differ from the 

reference, but the interaction between year and treatment was significant and negative 

based on parameter estimates (Table 16), indicating a negative impact of shoreline 

development on 3-mm infaunal diversity at Windy Hill. For diversity modeled by gj
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there were no important predictors and interactions between year and treatment were not 

included in the models and therefore not estimated (Table 16). Across response variables 

at Windy Hill for 3-mm infauna, biomass was explained somewhat by the candidate 

models, with Adj. R values s 0.2 to 0.4, though it was modeled the best of the three

'y
responses. Diversity was somewhat explained by the candidate models with Adj. R 

values between s 0.2 and 0.3, while abundance was poorly explained by the candidate

model set, with Adj. R2 < 0.2 (Table 15).

Regarding community composition of 3-mm infauna at Windy Hill by common 

taxa, polychaetes decreased at all shorelines from 2010 to 2011, but most substantially at 

impact shorelines (Figure 12D). Crustaceans appeared to recruit to control shorelines in 

2011 where they were not found in 2010, but showed no temporal change in density at 

impact shorelines (Figure 12D). Regarding species-specific community composition of 

3-mm infauna, the bivalve Rangia cuneata and spionid polychaetes increased at control 

shorelines, but decreased at impact shorelines (Figure 12E). Capitellid polychaetes 

showed a similar pattern, having increased in density at control 2 (bulkhead) shorelines 

and remained constant at control 1 (bulkhead) shorelines, but decreased at impact 

shorelines (Figure 12E). M. balthica clams decreased in density at both control 

shorelines, but changed very little at impact shorelines (Figure 12E). In contrast, N. 

succinea polychaetes decreased in density across all treatments, but most substantially at 

impact shorelines (Figure 12E).

Density of 500-pm infauna at Windy Hill decreased slightly at impact shorelines 

and increased at control shorelines from 2010 to 2011, though variance at control 

shorelines is very high (Figure 13 A). Modeling output of 500-pm infauna at Windy Hill
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should be interpreted cautiously. Low sample size made thorough interpretation of 

diagnostic plots difficult, especially given the high variability at control shorelines, and 

also resulted in unreliable Brown-Forsythe tests for homogeneity of variance. A linear 

model containing year and treatment with interactions did not explain Box-Cox 

transformed density well (g3 i YxT; Adj. R2 = -0.2129; Table 17). Density did not vary 

significantly by year or shoreline, and the interaction between year and treatment was not 

significant based on parameter estimates (Table 17).

Biomass of 500-pm infauna at Windy Hill remained constant at control shorelines 

and decreased at impact shorelines, but variance at control shorelines was again very high 

(Figure 13B). A linear model containing year and treatment with interactions poorly 

explained (untransformed) biomass (g3 i YxT; Adj. R2 = 0.1855; Table 17). Biomass did 

not vary significantly by year or shoreline, but interaction between year and treatment 

was negative and significant based on parameter estimates (Table 17), indicating a 

negative effect of shoreline modification on biomass.

Diversity of 500-pm infauna at Windy Hill remained constant at both impact and 

control shorelines (Figure 13C). A linear model containing year and treatment with 

interactions somewhat explained logit-transformed diversity (g3 : YxT; Adj. R2 = 0.3694; 

Table 17). Diversity did not vary significantly by year or shoreline, and the interaction 

between year and treatment was not significant based on parameter estimates (Table 17). 

Across all three of the response variables, the model best predicted diversity, though 

biomass was the only response with any significant predictors (Table 17).

Regarding community composition of 500-pm infauna at Windy Hill by common 

taxa, bivalve density was very low overall, with only about 60-150/m per shoreline
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treatment (Figure 13D). Polychaetes declined in density at both control and impact 

shorelines from 2010 to 2011, but more substantially at impact shorelines with a roughly 

75% decline compared to roughly 50% at control shorelines (Figure 13D). Crustaceans 

increased by a factor of -20 at control shorelines, but decreased by half at impact 

shorelines. Generally, responses of 500-pm polychaetes and crustaceans seem to mirror 

responses of the 3-mm size class (Figure 13D). Chironomids increased in density at both 

control and impact shorelines, but roughly twice as much at impact shorelines as control 

shorelines (Figure 13D). Regarding species-specific community composition of 500-pm 

infauna, the decrease in polychaetes was accompanied by a loss of Leitoscoloplos spp. at 

impact shorelines and a greater reduction of N. succinea, spionids and capitellids at 

impact than control shorelines, leaving capitellids and spionids to dominate polychaete 

density at both impact and control shorelines after the shoreline change (Figure 13E). The 

most marked change was in Crustaceans, where the density of Corophium spp. decreased 

by a factor of -3  at impact shorelines, but increased at control shorelines by a factor of 

-65. Tanais cavolinii was lost at impact shorelines in 2011, but did not occur at control 

shorelines in either year (Figure 13E).

Predators

Timberneck

Blue crab abundance at Timberneck increased at both impact 1 (boat docks) and 

impact 2 (riprap) shorelines, but stayed constant at both control 1 (Timberneck) and 

control 2 (Catlett Islands) shorelines from 2010 to 2011 (Figure 14A). A linear model 

containing year and treatment with interactions did not explain Box-Cox transformed 

blue crab abundance well at Timberneck (g3 : YxT; Adj. R2 = 0.0541; Table 18). Blue
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crab abundance did not vary significantly by year or shoreline, but the interaction 

between year and treatment for both impact shorelines was positive and significant based 

on parameter estimates (Table 18), indicating a positive effect of shoreline modification 

on blue crab abundance.

Abundance of fishes at Timberneck decreased at both control shorelines and 

impact 2, but remained constant at impact 1 shorelines (Figure 14B). A linear model 

containing year and treatment with interactions somewhat explained Box-Cox 

transformed fish abundance (g3 i YxT; Adj. R2 = 0.3940; Table 18). Fish abundance was 

significantly lower in 2011 than 2010, but the interactions between year and treatment 

were not significant based on parameter estimates (Table 18).

Diversity of fishes at Timberneck decreased at both control shorelines and impact 

1, but remained constant at control 2 shorelines (Figure 14C). A linear model containing 

year and treatment with interactions did not explain logit-transformed fish diversity well 

(g3 : YXT; Adj. R2 = 0.0567; Table 18). Fish diversity did not vary significantly by year 

or shoreline, and the interactions between year and treatment were not significant based 

on parameter estimates (Table 18).

Dandy

Blue crab abundance at Dandy remained roughly constant at all shorelines from 

2010 to 2011; standard error was large at control 1 shorelines, preventing differentiation 

of this mean increase other treatments (Figure 15 A). A linear model containing year and 

treatment with interactions did not explain Box-Cox transformed blue crab abundance 

well (g3 : YxT; Adj. R2 = 0.0839; Table 19). Blue crab abundance did not vary
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significantly by year or shoreline, and the interactions between year and treatment were 

not significant based on parameter estimates (Table 19).

Abundance of fishes at Dandy decreased at both control shorelines, and 

abundance at impact shorelines was similar to controls in 2011, though changes in time at 

impact shorelines are unknown since seines were not taken before the impact took place 

(Figure 15B & C). Due to the lack of impact shoreline samples before development, fish 

abundance and diversity at Dandy were not modeled.

Diversity of fishes at Dandy remained constant at control 1 shorelines and 

increased at control 2 shorelines. Diversity at impact shorelines in 2011 was slightly 

higher than both controls (Figure 15C).

Holly Cove

Blue crab abundance at Holly Cove remained constant at control 1 shorelines, 

decreased at control 2 shorelines, and decreased to a higher degree at impact shorelines 

from 2010 to 2011 (Figure 16A). A linear model containing year and treatment with 

interactions adequately explained (untransformed) blue crab abundance at Holly Cove 

(g3 .‘ YxT; Adj. R2 = 0.4254; Table 20). Blue crab abundance was significantly higher at 

impact shorelines, but the interaction between year and impact shorelines was negative 

and significant based on parameter estimates (Table 20), indicating a negative effect of 

shoreline modification on blue crab abundance.

Abundance of fishes at Holly Cove remained constant at all shorelines, but was 

higher at control 1 shorelines (Figure 16B). A linear model containing year and treatment 

with interactions somewhat explained Box-Cox transformed fish abundance (g3 : YxT; 

Adj. R2 = 0.3395; Table 20). Fish abundance did not vary significantly by year or
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shoreline, but the interaction between year and control 2 was significant based on 

parameter estimates (Table 20). While control 2 shorelines differed in 2011 from the 

reference (control 1), this is not an effect of shoreline modification on fish abundance.

Diversity of fishes at Holly Cove remained constant at all shorelines, with no 

differences between shorelines (Figure 16C). A linear model containing year and 

treatment with interactions did not explain logit-transformed fish diversity well (g3 i YxT; 

Adj. R2 = -0.1919; Table 20). Fish diversity did not vary significantly by year or 

shoreline, and the interactions between year and treatment were not significant based on 

parameter estimates (Table 20).

Windy Hill

Blue crab abundance at Windy Hill was very low overall, at least an order of 

magnitude lower than the other sites (compare Figure 17A with Figures 14A, 15A, and 

16A). Blue crab abundance increased at both control sites, while showing no change at 

impact sites from 2010 to 2011 (Figure 17A). A linear model containing year and 

treatment with interactions poorly explained (untransformed) blue crab abundance at 

Windy Hill (g3 : YxT; Adj. R2 = 0.1943; Table 21). Blue crab abundance was 

significantly higher in 2011 than 2010, and the interactions between year and impact or 

control 2 were significant and negative based on parameter estimates (Table 21). 

Significance of both interactions indicates that both control 2 and impact shorelines 

differed in 2011 from the reference (control 1), so a distinct shoreline development effect 

cannot be inferred.

Abundance of fishes at Windy Hill remained constant at control 1 shorelines, but 

was higher at control 2 and impact shorelines during both 2010 and 2011, though there is
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a high degree of variability at both control 2 and impact shorelines in 2010 (Figure 17B). 

A linear model containing year and treatment with interactions adequately explained 

Box-Cox transformed fish abundance (g3 : YxT; Adj. R2 = 0.41319; Table 21). Fish 

abundance did not vary significantly by year or shoreline, and the interactions between 

year and treatment were not significant based on parameter estimates (Table 21).

Diversity of fishes at Windy Hill increased at both control 2 and impact shorelines, 

but decreased at control 1, though variability was high at all shorelines (Figure 17C). A 

linear model containing year and treatment with interactions somewhat explained logit- 

transformed fish diversity (g3 i YxT; Adj. R2 = 0.2073; Table 21). Fish diversity did not 

vary significantly by year or shoreline, but the interactions between year and impact or 

control 2 were significant and positive based on parameter estimates (Table 21). 

Significance of both interactions indicates that both control 2 and impact shorelines 

differed in 2011 from the reference (control 1), so a distinct shoreline development effect 

cannot be inferred.

Summary

Responses to shoreline modification were variable by site and organism. Infaunal 

density and biomass responded positively to shoreline modification at Timberneck,

Dandy, and Holly Cove, but negatively at Windy Hill, whereas infaunal diversity 

responded negatively at Timberneck and Windy Hill (Table 22). Blue crab abundance 

responded positively at Timberneck, did not change at Dandy, and responded negatively 

at Holly Cove (Table 22). Blue crab abundance decreased at Windy Hill, though a 

distinct shoreline effect cannot be inferred (Table 22). Fish abundance and diversity 

showed no distinct shoreline response at any site (Table 22).
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DISCUSSION

Using a before-after, control-impact study aimed at examining effects of shoreline 

modification, changes in benthic infauna and predators were detected, sometimes 

attributable to the shoreline modification, or otherwise attributable to secondary 

environmental effects that changed in accordance with shoreline modifications.

Effects of Shoreline Modification on Infauna

Overall, 3-mm infauna tended to show significant responses for biomass and/or 

diversity at shoreline modification sites (seen in AIC models with significant treatment 

by year interactions), with large-scale shoreline impacts (> 80 m), though the direction of 

change was sometimes opposite of that hypothesized. Timberneck Creek (shoreline 

changed from natural to riprap and boat docks) showed positive changes in biomass but 

negative changes in diversity, but Windy Hill (bulkhead to living shoreline) showed 

negative changes in diversity. Responses of 3-mm infauna were often related to changes 

sediment grain size or physical structure accompanying shoreline modifications, leading 

to either opportunistic species or species common to the new physical conditions (e.g., 

sediment type).

Responses of 500-pm infauna to shoreline modification are particularly 

noteworthy, as effects of disturbances are more likely to manifest in smaller individuals 

and recruits. Larger species and adults (represented in 3-mm samples) can react 

differently than small species and recruits (represented in 500-pm samples) to 

disturbance, as seen in a previous B ACI study where recruitment of Cerastoderma edule 

and Macoma balthica decreased for up to 8 years following dredge disturbance, whereas 

adults were largely unaffected (Piersma et al. 2001). Juveniles and smaller organisms
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with shorter-life spans are likely to respond before changes become evident for larger 

species or adult populations, which are more likely to reflect longer-term changes (Levin 

1984, Piersma et al. 2001). For example, the Dandy and Holly Cove, which were subject 

to shorter lengths of developed shoreline, showed significant effects of shoreline 

development on 500-pm infauna but not on the 3-mm infauna. At Timberneck Creek, 

significant impacts were inferred from shoreline development only for 3-mm infauna, but 

may have influenced 500-pm infauna as well. Density of 500-pm infauna at control 2 

sites (at Catlett Islands, an adjacent but similar system) deviated significantly from 

control 1 sites (within Timberneck Creek), which more closely resembled impact sites 

than control 2 sites. This suggests a potential spillover of shoreline disturbance for 500- 

pm infauna, meaning that shoreline development may have disturbed recruitment of 

benthic infauna throughout Timberneck Creek, affecting both impact and control 1 sites.

Effects of Shoreline Modification on Predators

Shoreline development resulted in a significant increase in blue crab abundance at 

both impact sites at Timberneck. This likely occurred because blue crabs feed on benthic 

organisms (Vimstein 1977, Seitz et al. 2001), tend to have smaller foraging areas and 

may be more heavily reliant upon the benthos at the particular shorelines than fishes 

(Clark et al. 1999, Hines et al. 2009). At Timberneck, biomass of 3-mm infauna 

increased significantly at impact 1 (boat docks) potentially allowing for more food for 

blue crabs at impact sites (i.e., bottom-up control). Blue crabs aggregate around structure 

(Lipcius et al. 2007), and the inclusion of boat docks, pilings, and riprap at Timberneck 

may represent potential sources of structure resulting in aggregation of crabs rather than a 

true increase in their abundance.
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In contrast, at Holly Cove, blue crab abundance responded negatively to shoreline 

modification. Though 500-pm density increased, the small infauna that increased in 

density may not be preferred prey items for blue crabs (Lipcius et al. 2007).

Blue crab abundance at Windy Hill was characterized by many tows with zero 

abundance, particularly at impacted shorelines. This may be a result of sampling bias.

For 2010 samples, there were not many blue crabs collected, and those collected were 

almost always large adult males, which was not the case at the other study sites, where 

juvenile crabs were common in scrape samples. It is possible that the crab scrape method 

led to inefficient sampling and bias for 2 reasons: (1) sampling was not able to capture 

crabs given the more sparse distribution of blue crabs in Maryland than Virginia (King et 

al. 2005), and (2) the crab scrape could not be set within the small coves of the living 

shoreline in 2011 where crabs, especially juveniles, are more likely to be found 

associated with structure (Lipcius et al. 2007).

Fish abundance and diversity showed no significant effects of shoreline 

modification at any site, which may have been a result of high variability, as fishes are 

more transient with exception of directly shoreline-associated species such as 

mummichogs, which are not benthic feeders (Kneib 1984; Minello et al. 2003). The lack 

of shoreline modification influence on fishes indicates (1) a general lack of impact of 

shoreline modification at the scales studied on fishes, or (2) the need for either more 

sampling or more efficient fish sampling strategies. The need for more efficient sampling 

is particularly evident at shorelines without a beach, which is a common characteristic of 

impacted shorelines in this study, as it is much more difficult to ensure an efficient seine
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was taken without a beach (Williams 2010). A different sampling method, such as a fyke 

net (Fago 1998) or minnow traps might be a more successful alternative approach.

At Windy Hill, seines were particularly difficult to pull through the impact 

shorelines, as logs and trees were included in the coves to provide habitat structure, 

which may have introduced sampling bias. Additionally, while seine abundances were 

corrected for area, different techniques and collection equipment used by the two labs 

over the different years may have influenced abundances.

Diversity is not as sensitive to differences in sampling techniques as abundance as 

it depends on ratios of species abundance to richness, may have been subject to less 

sampling bias. Impact and marsh control shorelines at Windy Hill mirrored one another, 

and diversity increased at these sites from 2010 to 2011. Fish species are more motile 

and may be faster responders to positive changes in shoreline condition than infaunal 

benthos, providing a first look at the positive effects of living shoreline restoration.

Environmental Drivers

Several models included sediment type (Timberneck 3-mm infaunal biomass and 

diversity, Timberneck 500-pm infaunal diversity, Holly Cove 3-mm infaunal density and 

biomass) and salinity (Timberneck 500-pm infaunal biomass, Windy Hill 3-mm infaunal 

density) as significant predictors. For Timberneck 3-mm biomass and diversity, both the 

year and impact shoreline interaction and sediment were important predictors, indicating 

that sediment likely changed with shoreline modification. This suggests the importance 

of monitoring sediment changes with shoreline modification, especially as biomass and 

diversity responded differently to changes in sediment grain size. At Timberneck impact 

2 shorelines (tidal wetland to riprap), infaunal community-wide metrics (density, biomass,
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and diversity) did not change significantly but species composition did. The polychaete 

Clymenella torquata was largely responsible for the increase in density at impact 2, 

though their density did not change much at other sites. In 500-pm infauna at impact 2,

C. torquata increased and M. balthica decreased, driving the overall decrease in bivalve 

density. This corresponds with the large increase in % sand at impact 2 (riprap) after 

development, as C. torquata inhabits muddy sand in high densities (Lippson and Lippson 

2006), and M. balthica prefers muddier environments (Seitz et al. 2001). The change in 

sediment grain size and subsequent changes in community composition suggest that 

faunal changes resulted from changes in habitat.

At Holly Cove, sediment was an important predictor for 3-mm density and 

biomass, so changes in sediment grain size between years may have also influenced 500- 

pm density where infaunal changes with shoreline modification were detected, but 

models with sediment were not compared for the smaller size class due to small number 

of samples processed.

Shoreline modification at Windy Hill resulted in an observable change in bottom 

type and the largest increase in fine sediments across all sites. The impact site (a 

bulkhead shoreline prior to modification) was characterized by predominantly gravel and 

sand with a little bit of clay, while after one year, about 10 cm of silty and detrital 

material had collected in the constructed coves. Although grain size was not a significant 

predictor of 3-mm infauna, grain size measurements may not have been optimized for 

this site as the current grain size protocol does not include a specific method to remove 

detritus (Plumb 1981), and detrital material ended up in coarse sediment fractions, where 

it may have prevented detection of sediment changes at Windy Hill impact shorelines.
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For future studies, removing detrital material by elutriation may help to improve 

sediment grain size classification at sites with high levels of detritus.

Given the observed changes in sediment grain size, an examination of sediment 

organic content would be helpful to determine whether changes in sediment grain size 

also translate to changes in organic input, which may alter biomass with more available 

food for production (Pearson and Rosenberg 1978). Samples were taken for sediment 

TOC / TN analysis, but at this writing have not yet been analyzed.

Timberneck 500-pm infaunal biomass and Windy Hill 3-mm infaunal density 

both decreased as salinity decreased, suggesting the importance of monitoring salinity in 

this study. In 2010, mean river discharge into Chesapeake Bay was 51.6 gallons per day, 

whereas in 2011 it was 73 gallons per day (Chesapeake Bay Program 2012), leading to a 

decrease in salinity during the course of the current study. Macrobenthic abundance is 

known to show systematic changes with long-term physicochemical environmental 

changes, particularly in response to salinity gradients, and increases in productivity with 

increased salinity (Moller et al. 1985; Diaz and Schaffner 1990). In a 14-year study of 

mesohaline mid-Chesapeake Bay, annual freshwater inflow decreased, salinity increased, 

and bottom DO below the pycnocline declined (Holland et al. 1987). Concomitantly, 

eurytolerant marine species, and particularly ubiquitous opportunists responded to 

increased salinity by increasing their abundances, whereas estuarine species declined. 

The four current study sites are all mesohaline; Dandy is high mesohaline, Timberneck 

and Holly Cove mid-mesohaline, and Windy Hill is low mesohaline, so their responses 

should be considered within their large-scale settings.
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Environmental drivers are important for managers to consider when modifying 

shorelines. If sediments are kept similar to the original condition, species composition is 

more likely to remain largely unchanged, but species composition changes with sediment 

grain size. If salinity changes in an area, near-shore communities are likely to respond 

regardless of changes in the local habitat.

Scope o f the Present Study Versus Previous Studies

While the results of this study did not directly support the original hypotheses, 

they did complement findings of previous studies by providing direct evidence of the 

ability of shoreline modification to influence near-shore community structure. To explain 

this discrepancy, it is important that the current study and previous studies from which 

hypotheses were developed be examined within their experimental scope.

Variability in density, biomass, and diversity of the benthos is very high given the 

patchy nature of benthic infauna (Holland 1985, Dauer et al. 1987, Diaz and Schaffner 

1990, Snelgrove and Butman 1994) and may have been higher than that captured 

conclusively by the sampling effort. Specifically, for 500-pm infauna at Dandy, Holly 

Cove, and Windy Hill, sample sizes of analyzed data were low, making the interpretation 

of results difficult. Spionid polychaetes were observed to change in density with 

shoreline development at both Dandy and Holly Cove, and this consistency in results is 

encouraging, but given the high variability in biomass and low adjusted R values at 

Dandy, these results should still be interpreted with caution. Density of 500-pm infauna 

at Holly Cove increased at impact shorelines accompanied by low variability and a 

relatively high adjusted R2, which provide more compelling evidence of a significant
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effect of shoreline modification despite the small sample size. Increasing the sample size 

for 500-pm infauna will be helpful to further elucidate shoreline development effects.

Additional stressors outside the scope of the study may have been acting on near­

shore communities and driving community changes in addition to shoreline changes. 

Recent work suggests shoreline modification interacts with upland use and percent of 

developed shoreline within a system (King et al. 2005, Bilkovic and Roggero 2008, Seitz 

and Lawless 2008, R.D. Seitz unpublished data) Blue crab abundance varies with not 

only shoreline condition (as % of marsh along 100 m of shoreline) but with watershed 

land use and salinity (King et al. 2005). Nekton assemblages at natural or riprap 

shorelines in watersheds with <23% upland development are different from those at 

bulkhead shorelines (Bilkovic and Roggero 2008). In the lower Chesapeake Bay, 

diversity and abundance of subtidal benthic infauna is higher adjacent to natural marsh 

than to bulkhead shorelines; however, abundance and diversity are high (low) adjacent to 

riprap if shorelines throughout the system are (not) mostly undeveloped (Seitz and 

Lawless 2008). Thus, it is important to consider upland development and the percent of 

developed shoreline (scope for change) with the effects of shoreline development.

The length and age of impacted shorelines may have impacted the detection of 

shoreline modification effects in this study. Previous studies indicate decreases in near­

shore community metrics (density, biomass, and diversity) at developed as compared to 

natural shorelines compared stretches of impact shoreline that are generally longer than 

those in the present study (> 50 m Seitz et al 2006, > 80 m Bradley 2011), and at 

shorelines that have been developed for much longer than those in this study (e.g. sites 

selected from shoreline maps developed 3 years prior to sampling; Bradley 2011).
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Modified shoreline lengths at Dandy (49 m), Holly Cove (34 m), and Timberneck (84, 81, 

37, and 26 m, as discontinuous sections) tended to be shorter than those in previous 

studies, and may have been small enough and surrounded by source populations.

Shoreline development and blue crab abundance are negatively correlated in Chesapeake 

Bay, but at shoreline stretches at least 100 m long (King et al. 2005). In Puget Sound,

WA, abundances of insects and talltrid amphipods is reduced on shorelines altered with 

bulkhead or riprap compared to beach at shorelines over 100 m in length (natural 

shorelines), and up to 200 m (altered shorelines; Sobocinski et al. 2010, K. Sobocinski 

per s. comm. 2012). In contrast, the present study was designed to examine direct effects 

of shoreline modification disturbances before and after modification rather than compare 

communities at static shoreline habitats. Interestingly, Windy Hill, where the impacted 

shoreline was longest (149 m of bulkhead removed and replaced with 309 m of shoreline 

around breakwaters), was the only site to show negative responses of infaunal 

communities to shoreline modification. While the decrease in biomass and diversity at 

Windy Hill contrasts the original hypotheses, the overall scope of the shoreline change 

was much greater at Windy Hill than the other three study sites, which may have led to a 

large disturbance effect that was still apparent after one year. Windy Hill’s shoreline 

modification altered the shape of the shoreline, its linear length, and resulted in changes 

farther channel-ward than the other sites.

Results of many previous studies of shoreline development effects that found 

decreased community metrics adjacent to developed shorelines did not directly examine 

changes before and after modification or with ecological succession, but generally 

examined differences at shoreline types as static habitats. However, previous studies
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with similar designs to this study that included repeated sampling tended to concur with 

the results of the present study. In a study that monitored benthic assemblages dining and 

after construction of a bulkhead in highly polluted Kyeonggi Bay, Korea, there were 

significant over two-fold increases in total infaunal community biomass and abundance 

and significant increases in sediment grain size after completion of the bulkhead 

compared to samples taken during its construction (Ahn and Choi 1998). Species 

diversity did not change, though species-specific changes favored organisms that live in 

coarser sediments, such as the paraonid polychaete Aricidea spp. and orbiinid polychaete 

Scoloplos armiger (Ahn and Choi 1998). In addition, the predominance of K-selected 

species was reduced, indicating that the new communities are probably undergoing 

ecological succession after the disturbance. The findings of Ahn and Choi (1998) are 

similar to those at my Timberneck, Dandy, and Holly Cove sites, in that grain size tended 

to increase, and infaunal abundance and biomass tended to increase driven by 

opportunistic species. While the Ahn and Choi (1998) study is on a much larger scale 

than the present study, its more similar sampling structure than most previous studies and 

more similar findings emphasize the importance of studying communities through time to 

characterize the disturbance caused by developing shorelines.

In a before-after control-impact (BACI) study of a bulkhead site modified with 

installation of a living shoreline, densities of some marsh-associated organisms increased 

after just two months, indicating that some organisms can respond immediately to 

restoration (Davis et al. 2006), and emphasizing the need to look at individual species- 

level responses. Additionally, in a BACI study where recruitment of C. edule and M  

balthica were studied following dredge disturbance, adults and juveniles respond
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differently, emphasizing the need to examine different ages and size classes of organisms 

separately (Piersma et al. 2001).

Opportunistic Species and Habitat Changes Drive Significant Impacts o f Shoreline 

Modifications

Anthropogenic environmental disturbances, such as habitat destruction (Thrush et 

al. 2001), hypoxia (Dauer 1993), toxic pollution (Gray 1979, Dauer 1993, Preston and 

Shackelford 2002), and dredge spoil disposal (Rhoads et al. 1978) reduce biological 

diversity and/or biomass of soft-bottom infauna (Dauer 1993, Thrush et al. 2001, Preston 

and Shackelford 2002), and their effects on in time and with ecological succession have 

been documented. Biomass and diversity can be reduced in favor of opportunistic 

species that respond quickly after a disturbance, though the density of these organisms 

can increase rapidly and be highly variable (Dauer 1993, Thrush et al. 2001).

Opportunistic species in marine systems respond by rapidly increasing their population 

densities immediately after disturbances, such as pollution (Pearson and Rosenberg 1978), 

hypoxia (Santos and Simon 1980, Dauer 1993), dredge spoil disposal (Rhoads et al. 1978, 

Newell et al. 1999), and sediment movement (Zajac and Whitlatch 1982, Commito 1995).

Within estuarine environments, reference benthic infaunal communities contain 

species with combinations of both r-selected and K-selected traits (Schaffner 1990,

Newell et al. 1998, Schaffner 2010), including many opportunistic species as 

characterized by their life histories and responses to disturbance (Boesch 1977, Holland 

et al. 1987, Marsh and Tenore 1990, Schaffner 1990). Opportunists tend to have short 

life-spans, rapid reproduction in favorable habitats, and tolerance to a wide range of
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environmental conditions, and are often adapted to feed at the sediment-water interface 

and brood early-development stages (Santos and Simon 1980, Holland et al. 1987).

Infaunal communities in Chesapeake Bay are composed largely of species 

considered to be euryhaline opportunists, and are conspicuous in macrofaunal 

assemblages (Boesch 1977, Diaz 1984, Holland et al. 1987, Marsh and Tenore 1990). 

Within Chesapeake Bay, euryhaline opportunistic species include spionid polychaetes 

(Streblospio benedicti and Polydora ligni; Rhoades et al. 1978, Santos and Simon 1980, 

Diaz 1984, Marsh and Tenore 1990), clam worms (Neanthes succinea; Holland et al. 

1987), small bivalves (Gemma gemma, Mulinia lateralis and Macoma mitchelli; Rhoades 

et al. 1978, Santos and Simon 1980, Holland et al. 1987, Commito et al. 1995, Schaffner 

2010), and amphipods (e.g. Leptocheirus plumulosus, which is not euryhaline but an 

estuarine endemic opportunist; Holland et al. 1987, Marsh and Tenore 1990).

In the present study, opportunistic species drove significant responses in 

community metrics to shoreline modification at three of four sites. At Dandy, the 

positive effect on 500-pm biomass was driven by an increase of spionids and 

maintenance of G. gemma while all other (larger) bivalves decreased. At Holly Cove, the 

positive effect on 500-pm density was also driven by an increase of both spionids and G. 

gemma. At Windy Hill, the negative effect on 3-mm diversity was driven by a loss of 

spionids and N. succinea, whereas density of M. balthica remained largely the same. The 

negative effect on 500-pm biomass at Windy Hill was driven by the recruitment of 

corophiid amphipods at control shorelines but not impact shorelines, and a reduction in N. 

succinea and spionids at all shorelines, but most severely at impact shorelines.
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Within mesohaline and polyhaline Chesapeake Bay, annual recruitment of infauna 

classified as opportunists follows a single sharp increase in density once per year, in 

spring and early summer (in contrast to their continued recruitment in other locations), 

following the spring bloom in water column production when sedimentation rates of 

organic matter are high (Holland et al. 1987, Baird and Ulanowicz 1989, Marsh and 

Tenore 1990). This peak is quickly followed by a rapid decrease, resulting in a single 

boom and bust for opportunistic species (Holland et al. 1987). The spionid polychaete S. 

benedicti (Diaz 1984, Marsh and Tenore 1990) and the amphipod L. plumulosus (Holland 

et al. 1987, Marsh and Tenore 1990) exhibit very large recruitment in spring (mesohaline, 

Marsh and Tenore 1990) or summer (polyhaline, Diaz 1984), with the increase in labile 

organic matter available for deposit feeding, followed by mass mortality after one or two 

months after depletion of the organic material. The small bivalve G. gemma, is a 

eurytolerant marine species capable of rapidly increasing its population size in patchy, 

favorable environments as it reproduces with a short generation time, broods its young, 

and disperses by passive bedload transport (Commito et al. 1995). High densities of G. 

gemma provide evidence for a disturbance effect, and G. gemma has been shown at high 

density adjacent to riprap (Bradley 2011). Alternatively, longer-lived, larger species such 

as M. balthica show an increase in abundance in late spring or summer followed by 

slower growth stages and an increase in standing stock biomass for (Holland et al. 1987). 

Larger infauna may take longer to respond and are also subject to changes in abundance 

with longer-term physiochemical environmental changes (e.g. salinity, sediment changes, 

and hydrodynamics; Schaffner 2010).
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While opportunistic species are expected to increase around or soon after the time 

of sampling, the BACI design allows for the separation of an increase in opportunists due 

to their natural boom and bust dynamics from an impact of shoreline modification. A 

normal temporal increase in response to the spring bloom would have been seen at all 

shorelines, not just at impacted shorelines. Furthermore, if infauna were simply 

responding to large-scale changes in their environment, such as the decrease in salinity 

found this study from 2010 to 2011, a decrease in euryhaline marine organisms and 

opportunists would be expected. At Dandy and Holly Cove, this did not happen; 

eurytolerant opportunists increased in spite of decreased salinity, and their response is 

seen well after the typical opportunistic response time frame, supporting the notion of a 

prolonged response to shoreline development. At Windy Hill, eurytolerant opportunists 

declined, but estuarine endemics, such as M. balthica did not increase, suggesting an 

additional driver of change besides salinity alone. In addition, a typical initial 

opportunistic species' response to a pulse disturbance within Chesapeake Bay occurs 

within a short timeframe such as weeks or months (Diaz 1994, Schaffner 2010) as 

compared to the full year between sampling events in this study.

Given that opportunistic species drove community responses to shoreline 

modification, but opportunists did not respond at control shorelines, the timeline of 

change does not fit the classic opportunistic response timeframe, and infaunal responses 

were not driven by large-scale changes in salinity, shoreline modification at Dandy, Holly 

Cove, and Windy Hill may represent a disturbance to these systems and thus a 

fundamental change in habitat. With continued responses of infauna one year after the 

disturbance, there have likely been fundamental changes at the altered shorelines that
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either favor opportunists (Dandy and Holly Cove) or restrict them (Windy Hill).

Potential changes to habitats at impacted shorelines include sedimentary changes (as 

evidenced by grain size changes at Holly Cove and Windy Hill), enhanced wave energy 

due to hardening, or altered food availability.

In contrast, changes in infaunal communities at Timbemeck with shoreline 

modification were not driven by opportunistic species. At Timbemeck impact 1 (boat 

docks), 3-mm infauna experienced a positive effect on biomass driven by an increase in 

capitellid polychaetes and a negative effect on diversity driven by increases in M  

balthica and capitellids as dominant species. Capitellid polychaetes include some 

opportunistic species, such as Capitella capitata, but the most common capitellids in 

shallow mesohaline Chesapeake Bay are Mediomastus ambiseta, and Heteromastus 

filiformis. M. ambiseta exhibits relatively prolonged recruitment and low mortality (Diaz 

1984, Holland et al. 1987) and is sensitive to pollution (Weisberg et al. 1997), thus it is 

not an opportunist. H. filiformis is larger, long-lived, and eurytolerant, but with its 

relatively large standing stock biomass, it is not considered to be opportunistic (Holland 

et al. 1987). Without species-level identifications, it is difficult to determine if the 

response at Timbemeck was driven by opportunistic species, though the changes at 

Timbemeck are also indicative of an alteration in habitat that has lasting impacts on 

resident infauna, concordant with observed changes in sediment grain size at this site.

Examination of community structure over a longer period after shoreline changes 

would be helpful to monitor any further changes in habitat and characterize continued 

responses to habitat changes caused by shoreline modification.

Characterizing Shoreline Modification as a Stressor on Estuarine Benthic Infauna
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Ecological stressors are chemical or physical perturbation events that alter the 

environment and may or may not lead to a response in a biological system- such as an 

organism, population, or community of interest, whereas ecological disturbances are 

perturbation events caused by humans, and include anthropogenic stressors (adapted from 

White and Pickett 1985, Underwood 1989, and MarLIN Glossary 2005, see Constable 

1999 and Elliott et al. 2007 for reviews). Ecological resistance is the degree to which a 

variable resists change in structure or behavior in the face of disturbance (Holling 1986) 

or is changed following a perturbation (Costanza et al. 1992). Resilience is the ability of 

an ecosystem to return to its original state after being disturbed (MarLIN Glossary 2005).

Chesapeake Bay is a semi-enclosed drowned-river valley estuary where ocean 

water is mixed and diluted with freshwater, and as such is subject to fluctuations in 

sedimentation (coarse sands and fine muds), water and air temperature, freshwater 

delivery, seasonal stratification and mixing, nutrient delivery, and an intense diatom- 

based spring bloom, making it a highly variable environment. Given their immobility in 

a highly variable environment, resident infauna in Chesapeake Bay are naturally resilient 

to stressors, partially due to the abundance of opportunistic species (Elliott et al. 2007).

In addition, natural and anthropogenic stressors are common in estuaries, and occur 

within a high degree of spatial and temporal variability (Dauer et al. 1993, Newell et al. 

1998, Elliott et al. 2007), preventing estuarine infaunal communities from reaching 

ecological "equilibrium". In lieu of equilibrium communities, managers are more 

interested in measuring recovery back to a reference condition, such as that found in 

communities at similar but undisturbed habitats (Weisberg et al. 1997, Schaffner 2010).
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In the lower York River Estuary, a major mesohaline tributary to Chesapeake Bay, 

sediments are “biologically dominated” in that they are constantly being reworked by 

infaunal bioturbators and bioirrigators, while those in the upper estuary are "physically 

dominated" and subject to high variability of physical drivers such as salinity and 

sedimentation (Schaffner et al. 2001, Dickhudt et al. 2009). Constant bioturbation or 

physical variability represent a constant state of flux within the benthos, making its 

residents tolerant and stable to disturbance, and potentially leading to lesser influences of 

shoreline disturbances on an already highly dynamic infaunal community. Given the 

highly dynamic setting, observation of effects of shoreline modification within estuaries 

such as Chesapeake Bay provides compelling evidence of the ability of shoreline 

modification to impact near-shore communities.

Shoreline modifications have the capacity to act as pulse or press disturbances 

depending on the environment in which they act. Recovery from short-term (pulse) 

disturbances, such as organic enrichment, pollution, changes in water quality, depends on 

the size of the patch disturbed, the species available to colonize the patch (as larvae or 

adults Levin 1984), and species interactions (Zajac and Whitlatch 1982). Recovery from 

these long-term (press) perturbations, such as dam placement, or climate change (Lake 

2000, Schiel et al. 2004) depends on the organisms available to recolonize the patch, the 

life histories and dispersal mechanisms of these organisms, spatial and temporal 

variability of the stressor, and interactions between the stressor and other stressors or 

environmental factors (Constable 1999).

At Windy Hill, shoreline modification was the most extensive in length and 

distance of influence channel-ward of the study sites examined. Results after several
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years may reflect an improvement in habitat quality from the addition of a living 

shoreline, represented by a press disturbance. The two controls at Windy Hill were 

designed to represent the beginning (bulkhead) and ending (marsh) shoreline conditions. 

In time, as impact shorelines more closely mirror marsh shorelines than bulkhead 

shorelines, this press disturbance resulting in a permanent increase in community metrics 

will be realized. Currently, density and biomass of 3-mm infauna as well as crab 

abundance and fish abundance and diversity at impact sites more closely followed trends 

at marsh (control 2) shorelines.

Additionally, the density of deep-dwelling M. balthica clams decreased only 

slightly whereas most organisms decreased more markedly, which may reflect the 

adaptive ability of M. balthica in several ways: (1) adult M. balthica clams are deep 

burrowers (Hines and Comtois 1985) and may be buried deep enough in the sediment to 

be protected from major physical damage during construction, (2) M. balthica adapts to 

changes in sediment grain size and resuspension of sediments by performing both filter 

and deposit feeding (Lin and Hines 1994), and 3) fine sediments which contain the 

preferred food source of M. balthica increased at impact shorelines (Lin and Hines 1994). 

Infaunal samples taken two years post-construction at the impact shoreline show a 

marked increase in abundance and diversity of large clams (R.D. Seitz, unpublished data), 

and are likely indicators that the living shoreline modification takes longer than one year 

for benefits to the benthos to manifest.

While the other shoreline modifications in the present study had shorter 

continuous stretches of impact shorelines, the changes in the infaunal communities at 

these sites indicated that shoreline modification is likely to manifest as a press

71



disturbance even in otherwise healthy environments, if they have undergone a change in 

habitat such as in sediment grain size or organic matter (Underwood 1994). Shoreline 

modifications at Timbemeck, Dandy, and Holly Cove sites in this study are likely to 

represent press impacts, as density and biomass of infaunal communities increased as a 

result of an influx of opportunistic species that continue to respond, despite the fact that 

these sites are not subjected to a high degree of external stressors, adjacent to otherwise 

largely pristine environments, and are likely to have ample resources {e.g. recruits, 

allochthonous carbon). In addition, shoreline modifications that impact long stretches of 

shoreline, extend far channel-ward, or are part of environments with additional stressors 

are also likely to represent a (more intense) press impact, particularly when they sever 

long stretches of the land-water interface, removing sources of allochthonous carbon 

from detrital marsh material, or induce additional stressors (such as altered 

hydrodynamics, increased mnoff from upland development). Shoreline modification at 

Windy Hill is likely to represent more intense press impact than the other sites given its 

sediment disturbance and alterations of hydrodynamics and reintroduction of the land- 

water interface to an environment that was degraded prior to the change to living 

shoreline (in 2010, biomass and diversity were lower here than at any of the other sites), 

evidenced by the lack of community improvement after one year. In opposition to the 

other sites, however, sediment may stabilize with maturity of the living shoreline at 

Windy Hill, and the press impact is expected to result in positive community responses as 

the bulkhead has been removed, reducing wave exposure in the created protected 

embayments, and restoring the land-water interface and potentially increasing 

allochthonous carbon inputs. In otherwise relatively pristine environments, where habitat
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conditions are unchanged, shoreline modifications may manifest as pulse disturbances, 

but this result was not seen in the present study.

Given the characteristics of benthic infauna in Chesapeake Bay, the importance of 

opportunistic species in driving responses to shoreline modification, and their continued 

response after a year, it is reasonable to assume that recovery from the shoreline 

disturbances at Dandy, Holly Cove, and Windy Hill are not complete, and the 

communities have not returned to their reference conditions.

Suitability o f the BACI Design and Linear Modeling

The BACI study design is particularly well suited to meet the need of examining 

effects of shoreline modification on community succession, as it provides direct evidence 

of shoreline modification impacts by comparing communities undergoing change to 

controls both before and alongside the change in time, controlling for age of the shoreline 

change, and allowing for the comparison of multiple years of study.

In addition, most studies that monitored artificial habitats and shoreline 

modifications examined patterns- what species are present, in what assemblages and 

associations. Little research effort has taken on an examination of the process of changes 

due to shoreline modification (Chapman and Underwood 2011), which is a significant 

advancement afforded by the BACI study. For instance, if early successional species 

arrive after shoreline modification at the peak of predation, they may be highly 

susceptible to predation and unable to recolonize a healthy assemblage. Knowledge of 

this process may allow for better advising as to when to complete projects to achieve the 

best possible assemblage of infauna.
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Expanding on the standard BACI-ANOVA approach, the present study employed 

the use of linear models with additional predictor variables to help attribute some of the 

variability in benthic infaunal responses to known benthic estuarine predictors, salinity 

and sediment grain size. This study illustrates the value of including environmental 

drivers besides the driver of interest (shoreline modification) in various combinations of 

models to be compared. In several cases, sediment grain size or salinity was more 

important in modeling community responses than shoreline treatments, stressing the 

importance of outside environmental variables in modeling benthic communities. 

Comparing linear models within the BACI sampling framework is also well suited to 

examine community responses to multiple stressors such as upland use and shoreline 

modification, and look for interactions between these stressors.

With previous work characterizing succession and community response after 

disturbances such as nutrient enrichment (oil spills, sewage drainage, pulp mill wastes; 

Pearson and Rosenberg 1978) and disposal of dredged material (Rhoads et al. 1978, 

Newell et al. 1998, Schaffner 2010) and the use of this information in characterizing the 

quality of the benthos for management purposes, consideration of infaunal benthic 

community succession after different types (length, complexity) of shoreline modification 

may help managers make decisions about the use of different practices and develop 

indicators for management use.

To date, examination of shoreline development effects through time has been 

limited and has very rarely been examined with a before-after-control-impact study. 

Previous studies have examined communities during and after development with 

bulkhead, but lacked control sites (Ahn and Choi 1999), or examined bulkheads (Bulleri
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et al. 2005, Sobocinski et al. 2010) and riprap (Sobocinski et al. 2010) through time with 

controls, but without sampling prior to shoreline change. The importance of the present 

study is largely driven by its inclusion of samples before and after development, which 

allows simultaneous examination of control (unchanged) and impacted shorelines, as well 

as control over the age of the shoreline, as succession of communities back to their 

reference conditions may occur over different time frames in different environments. For 

instance, upper Chesapeake Bay infaunal communities in muddy sand environments take 

18 months to recover from dredge disturbance (Pfitzenmeyer 1970), whereas freshwater 

James River infaunal communities in semi-liquid muds take only about 3 weeks to 

recover from dredge disturbance (Diaz 1994). Thus, macrobenthic succession occurs 

over different time scales after dredge disturbance for different habitats (Newell et al. 

1998), emphasizing the need for monitoring changes after shoreline modification in time 

in different habitats. Adults and longer-lived species may take longer to recover than the 

single year included in this study, whereas recruits may show responses in much shorter 

time frames (Levin 1984), and may have already rebounded between the two years in the 

present study, especially if shoreline modification represents a pulse disturbance.

Additional years of study would be beneficial to this study especially in the case 

of Windy Hill, where recovery and acclimation of the community to the living shoreline 

is expected to take some time. For instance, there may be a large influence of 

modification at first, particularly on opportunistic species (a pulse impact or disturbance) 

followed by a rebound in the community, but as time passes, the severance of the land 

and water interface may become more influential, with a long-term consequence on the 

community (a press impact). If responses to shoreline modification change over time,
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ages of shorelines should be accounted for in future studies (i.e. mature marsh shorelines 

are not comparable to new bulkhead shorelines, old bulkhead shorelines are not 

comparable to new riprap shorelines, etc.). With continued sampling, it may be possible 

to capture the longer-term responses to shoreline modification and determine the major 

species that influence the response as ecological succession continues. This information 

would help inform management of coastal systems.

CONCLUSIONS

In spite of the variability of trends with shoreline modification, and the differing 

direction of responses as compared to previous studies, the present study was able to 

corroborate previous findings in that shoreline modification impacted near-shore 

communities. Impacts of shoreline modifications on infauna were predominantly driven 

by increases in opportunistic species, which suggests the importance of viewing the 

results in light of ecological succession after a disturbance. Impacts of shoreline 

modifications on blue crabs varied by site, with increased blue crab abundance adjacent 

to added structure (Timbemeck) and decreased blue crab abundance with smaller, 

potentially less-preferred prey species (Holly Cove). The lack of impacts on fishes 

indicates their motility and larger foraging range.

Results from the present study in opposition to the direction of those in previous 

literature are likely a result of major differences between this and previous study designs, 

most notably (1) the inclusion of small-scale shoreline modifications in the present study, 

(2) the lack of information regarding age and degree of succession of altered shorelines in
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previous studies, and (3) the influence of succession after a disturbance in the present 

study.

This study demonstrated the efficacy of applying the BACI method of monitoring 

the impact of shoreline modification on near-shore communities, and the first known use 

of this approach to examine impacts of shoreline development on near-shore 

communities. The present study encompassed a thorough examination of community 

dynamics, including temporal and spatial data, and allowed inference of causal 

relationships from shoreline modification. The BACI design allows for causal 

mechanisms to be inferred as it follows treatments (in this case, impacted or control 

shorelines) that were subjected to the same background environmental conditions over 

time (before and after the shoreline modification), with shoreline modification as the 

difference between the treatments. In addition, BACI sampling can also be used to 

monitor the process of recolonization through changes in community composition in time, 

and it can allow for consideration of longer-term or larger-scale trends in site 

characteristics (e.g. salinity, DO, temperature, sediment grain size). The BACI design 

was enhanced through the use of linear model comparison, to examine changes using the 

most relevant models (of shoreline and other environmental factors), and determine 

outside drivers of particular influence to infaunal communities.

Several new research directions can be realized as a result of this study. Longer 

time-courses of study are necessary to examine the long-term responses of near-shore 

communities to shoreline modification and to determine the nature of the disturbance as 

pulse (short-term) impacts, or press (long-term, continued) impacts. A focus on 

additional environmental drivers and/or outside stressors within the context of a shoreline
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development BACI study may help to elucidate community changes in response to these 

known drivers along with shoreline development. I suggest the management of shoreline 

erosion control strategies include monitoring of long-term effects, and if possible, avoid 

changes in sediment type to maintain community composition.
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Table 1. Numbers of replicates (n) of all BACI samples, infaunal suctions and cores, 
crab scrapes, and seines at all four sites. Sample sizes of 500-pm infauna differ from 3- 
mm infauna due to subsampling, number of samples sorted are in parentheses. Site 
abbreviations as follows: Tim = Timbemeck, Dan = Dandy, Hoi = Holly Cove, Win = 
Windy Hill. Dates under site names are the approximate date that shoreline modification 
project was completed in 2010. Dates = when samples were taken. Treat = shoreline 
treatments: Cl = control 1 shorelines, C2 = control 2, II = impact 1 (boat docks, 
Timbemeck only), 12 = impact 2 (riprap, Timbemeck only), I = impact.

Infauna: suctions and cores Crab Scrapes Seines

Site Year Treat n: 3 
mm

n: 500 
pm Dates n Dates n Dates

TIM 2010 Cl 12 12(7) 5/10, 5/12 12 6/2 5 6/8

7/10
C2 12 12(4) 5/11,5/13 12 5/21, 6/2 6 6/10
11 3 12(1) 5/10 2 6/2 2 6/7
12 3 12(3) 5/10 4 6/2 3 6/7, 6/8

2011 Cl 12 12(4) 5/6, 5/10 18 5/11,5/18 6 5/11,5/12
C2 12 12(6) 5/5 6 5/11 6 5/12
11 3 3(2) 5/10 4 5/18 2 5/11
12 5 5(2) 5/10 3 5/11,5/18 5 5/11

DAN 2010 Cl 6 6(0) 5/20 4 5/21 2 6/11

6/10
C2 11 11(2) 5/19, 5/20 8 5/21 2 6/11
I 6 6(2) 5/19 6 5/21 0 -

2011 Cl 6 6(0) 5/19 4 5/24 2 5/26
C2 6 6(2) 5/19 6 5/24 2 5/26
I 6 6(2) 5/19 8 5/24 2 5/26

HOL 2010 Cl 4 4(2) 6/14 4 6/14 3 6/21

6/25
C2 6 6(0) 6/14 6 6/14 5 6/21
I 5 5(2) 6/14 6 6/14 4 6/16

2011 Cl 5 5(2) 6/6 5 6/6 2 6/7
C2 3 3(0) 6/6 4 6/6 2 6/7
I 8 8(2) 6/6 8 6/6 3 6/7

WIN 2010 Cl 6 6(2) 5/26 7 5/26 2 6/1

6/14 C2 6 6(0) 5/26 6 5/26 2 6/1
I 6 6(2) 5/26 6 5/26 2 6/1

2011 Cl 6 6(2) 6/1 10 5/31 2 5/27
C2 6 6(0) 6/1 6 5/31 2 6/4
I 6 6(3) 6/1 6 5/31 3 5/27
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Table 2. Candidate models and parameters for linear models to be compared with AICc 
analysis for the Timbemeck Creek site with 2 impact groups. Each p symbol indicates 
the inclusion of that parameter in the model, and represents the coefficient associated 
with that parameter. K = the number of parameters for a given model (gl-g7), including 
c2. po indicates the reference condition, or intercept of the linear model, which is the 
mean of each response variable at control 1 shorelines in 2010. Year = 2011. Treat = 
shoreline treatment (control 2, impact 1, or impact 2). YxT = year and treatment 
interaction. Sed = sediment grain size. Sal = salinity (PSU).

Model K Intercept Year Treat YxT Sed Sal
gi (global) 11 Po p. p2-4 P 5-7 08 P9
g2 (Year+Treat) 6 Po pi p2-4
g3 (Yearx Treat) 9 Po pi p2-4 p5-7
g4 (YxT+ Sed) 10 Po pi p2-4 P5-7 Ps
g5 (YxT + Sal) 10 Po p . P2-4 P5-7 P9
g6 (Sed) 3 Po Ps
g7 (Sal) 3 Po P9
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Table 3. Candidate models and parameters for linear models to be compared with AICc 
analysis for sites with 1 impact group: Dandy, Holly Cove, and Windy Hill. Each p 
symbol indicates the inclusion of that parameter in the model, and represents the 
coefficient associated with that parameter. K = the number of parameters for a given 
model (gl-g7), including a2. po indicates the reference condition, or intercept of the 
linear model, which is the mean of each response variable at control 1 shorelines in 2010. 
Year = 2011. Treat = shoreline treatment (control 2 or impact). YxT= year and 
treatment interaction. Sed = sediment grain size. Sal = salinity (PSU).

Model K Intercept Year Treat YxT Sed Sal
gi (global) 9 Po Pi P2-3 p4-5 P6 Pt
g2 (Year+Treat) 5 Po Pi P2-3

g3 (Year x Treat) 7 Po Pi P2-3 P4-5
g4 (YxT+ Sed) 8 Po Pi P2-3 P4-5 P6
g5 (YxT + Sal) 8 Po Pi P2-3 P4-5 P7
g6 (Sed) 3 Po P6
g7 (Sal) 3 Po P7
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Table 4. Mean values of water quality and sediment characteristics (± SE) by year and 
treatment. Treat = Treatment shorelines. C l = control 1 shorelines. C2 = control 2 
shorelines. II = impact 1 shorelines (boat docks, Timbemeck only). 12 = impact 2 
shorelines (riprap, Timbemeck only). I = impact shorelines. % Coarse = percent of 
coarse sediments: sand + gravel. Site abbreviations as in Table 1.

Site Year Treat n % Coarse Salinity (PSU) DO (mg/L) Temp (°C)
TIM 2010 Cl 12 45.78 (9.73) 14.93 (0.09) 8.28 (0.35) 21.37 (0.49)

C2 12 59.31 (5.77) 15.30 (0.20) 8.88 (0.39) 18.55 (0.40)
11 3 92.65 (0.86) 14.49 (0.10) 7.30 (7e-08) 20.97 (0.30)
12 3 46.70(13.31) 14.99 (0.31) 7.93 (0.23) 20.20 (0.35)

2011 Cl 12 61.15(8.53) 14.33 (0.18) 9.59 (0.46) 20.19(0.44)
C2 12 59.59 (8.39) 13.76 (0.07) 9.68 (0.19) 18.38(0.24)
11 3 91.69 (2.70) 14.93 (0.09) 8.07 (0.20) 21.03 (0.20)
12 5 91.25 (2.67) 14.94 (0.11) 8.16(0.09) 21.38(0.13)

DAN 2010 Cl 6 97.53 (0.33) 21.33 (0.16) 9.00 (0.19) 16.98 (0.06)
C2 11 94.40 (0.80) 19.69 (0.44) 8.94 (0.37) 15.98 (0.62)
I 6 96.27 (0.34) 19.5 (0.09) 9.93 (0.22) 16.63 (0.01)

2011 Cl 6 94.42 (2.18) 15.36 (0.02) 8.70 (0.15) 20.98 (0.05)
C2 6 96.85 (0.60) 15.19(0.004) 8.14(0.17) 21.2 (0.34)
I 6 95.67 (0.42) 15.16 (le-07) 7.75 (0.02) 20.9 (0)

HOL 2010 Cl 4 88.85 (0.65) 14.17(0.02) 9.55 (0.55) 31.38(0.10)
C2 6 82.68 (8.12) 14.19(0.01) 8.63 (0.21) 30.60 (0.10)
I 5 92.36 (4.08) 14.16(0.01) 9.10(0.23) 31.36 (0.09)

2011 Cl 5 82.57(1.91) 9.79 (0.05) 7.29 (0.31) 28.98 (0.07)
C2 3 79.73 (6.15) 9.48 (0.34) 8.20 (0.25) 28.93 (0.09)
I 8 97.16(0.29) 9.74 (0.06) 7.66 (0.25) 28.18(0.14)

WIN 2010 Cl 6 98.31 (0.35) 5.38 (0.04) 15.45 (0.64) 25.92 (0.60)
C2 6 95.85 (1.69) 5.4 (0.05) 14.08 (0.31) 26.97 (0.28)
I 6 98.47 (0.22) 5.38 (0.02) 13.52 (0.24) 26.52 (0.15)

2011 Cl 6 96.49 (0.88) 3.5 (0.06) 7.43 (0.50) 30.60 (0.32)
C2 6 84.84 (9.12) 3.53 (0.13) 7.00(1.12) 30.17(0.59)
I 6 84.67 (4.46) 3.62 (0.04) 6.47 (0.22) 30.32 (0.20)

94



Table 5. AIC results for all models of 3-mm infauna at Timbemeck Creek, ordered by
decreasing Akaike weight (wi). Indications of data transformations are in parentheses
under response variable name. Bolded rows indicate models with strong support (wj >

2 2 2 0.1). Abbreviations for models and K as in table 2. R and Adjusted R (Adj. R ) are also
listed for each model.

Timbemec c 3-mm

Response Model K AICc AAICc Weight
(Wi) R2 Adj. R2

g2 6 263.8 0 0.875 0.204 0.148

g3 9 270.1 6.23 0.039 0.225 0.125

g6 3 270.1 6.31 0.037 0.011 -0.005
Density

(Box-Cox) g 7 3 270.8 7.01 0.026 1.3E-04 -0.017

g5 10 272.7 8.84 0.011 0.229 0.112

g4 10 272.8 8.93 0.01 0.227 0.111

gl 11 275.5 11.67 0.003 0.230 0.097

gl 11 149.9 0 0.619 0.546 0.468

g4 10 151.2 1.27 0.327 0.514 0.441

g6 3 154.8 4.87 0.054 0.313 0.301
Biomass 19.85 0 0.220 0.165g2 6 169.7(Box-Cox)

0.178g3 9 173.4 23.47 0 0.272

g5 10 174.3 24.43 0 0.294 0.188

g7 3 176.5 26.65 0 0.023 0.007

g6 3 188.4 0 0.485 0.305 0.293

g4 10 188.7 0.34 0.409 0.476 0.397

gl 11 191.4 3.07 0.105 0.673 0.616
Diversity

(logit) g2 6 201.3 12.96 0.001 0.236 0.182

g3 9 205.9 17.56 0 0.276 0.182

g7 3 206.4 18.08 0 0.281 0.173

g5 10 208.3 19.96 0 0.069 0.039
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Table 7. AIC results for all models of 500-pm infauna at Timbemeck Creek, ordered by 
decreasing Akaike weight (wi). Indications of data transformations are in parentheses 
under response variable name. Bolded rows indicate models with strong support (wi > 
0.1). Abbreviations for models and K as in table 2. R2 and Adjusted R2 (Adj. R2) are also 
listed for each model.

Timbemeck 500-pm 
infauna

Response Model K AICc AAICc Weight
(Wi) R2 Adj. R2

g3 7 306.8 0 0.381 0.649 0.573

g4 8 307.3 0.47 0.302 0.688 0.603

g5 8 307.8 1.03 0.227 0.682 0.595
Density

(raw) gl 9 310.1 3.3 0.073 0.703 0.640

g2 5 313.1 6.29 0.016 0.451 0.385

g6 3 320 13.17 0.001 0.153 0.122

g7 3 320.8 14.02 0.000 0.128 0.096

g7 3 42.5 0 0.854 0.206 0.176
g3 7 48.1 5.63 0.051 0.371 0.234

g2 5 48.3 5.86 0.046 0.200 0.104
Biomass 49 6.49 0.033 0.007 -0.030g6 3(Box-Cox)

g4 8 51.9 9.41 0.008 0.372 0.201

g5 8 51.9 9.45 0.008 0.372 0.200

gl 9 56 13.57 0.001 0.375 0.141

g6 3 85.8 0 0.738 0.270 0.243

g2 5 90.2 4.43 0.081 0.300 0.216

g4 8 91.1 5.31 0.052 0.499 0.363
Diversity

(logit) g5 8 91.2 5.39 0.050 0.498 0.361

g3 7 92 6.17 0.034 0.411 0.283

gl 9 92.7 6.92 0.023 0.543 0.391

g7 3 92.7 6.94 0.023 0.073 0.039
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Table 9. AIC results for all models of 3-mm infauna at Dandy, ordered by decreasing 
Akaike weight (wi). Indications of data transformations are in parentheses under 
response variable name. Bolded rows indicate models with strong support (wi >0.1). 
Abbreviations for models and K as in table 3. R and Adjusted R (Adj. R ) are also listed 
for each model.

Dandy 3--mm

Response Model K AICc AAICc Weight
(Wi) R2 Adj. R2

g6 3 29.0 0 0.564 0.033 0.008
g7 3 30.4 1.36 0.286 0.001 -0.025

Density
(Box-Cox) g2 5 31.9 2.85 0.135 0.084 0.010

g3 7 37.1 8.12 0.01 0.093 -0.036

g4 8 38.9 9.88 0.004 0.123 -0.032

g6 3 145.3 0 0.56 0.017 -0.008

g7 3 146.0 0.7 0.394 0.000 -0.026
Biomass 0.014 -0.066g2 5 150.5 5.2 0.042(Box-Cox)

g3 7 155.5 10.21 0.003 0.030 -0.109

g4 8 158.2 12.88 0.001 0.400 -0.130

g2 5 113.9 0 0.495 0.173 0.106

g7 3 115.3 1.36 0.251 0.032 0.007
Diversity

(logit) g6 3 115.8 1.82 0.2 0.021 -0.004

g3 7 119.1 5.11 0.038 0.184 0.067

g2 8 120.8 6.86 0.016 0.211 0.071
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Table 10. Parameter estimates for Dandy 3-mm infauna from the models supported with 
Wi > 0.1. Parameter estimates with 95% confidence intervals that do not include 0 
(estimates significant at a = 0.05) are in bold, and with 80% confidence intervals (for 
interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are parameters not 
included in the selected models. Abbreviations for models as in table 3, candidate models. 
Year = 2011. Treat = shoreline treatment (C2 = control 2 ,1 = impact). YxT = year and 
treatment interaction for the shoreline treatment in parentheses. Sed = sediment grain 
size as % coarse (sand + gravel) sediments. Sal = salinity (PSU).

Dandy 3--mm Parameter Estimates (±SE)
Po p. p2 p3 04 05 06 07

Response Model
Intercept Year

(2011)
Treat
C2 Treat I YxT

(C2)
YxT
(I)

Sed Sal

g6
4.40 ± 
1.82 X X X X X -0.02

±0.02 X

Density
(Box-Cox) g7

2.48 ± 
1.10 X X X X X X -0.01

±0.07

g2
2.45 ± -0.01 -0.19 ± -0.24 ± X X X X0.11 ±0.10 0.13 0.14

Biomass
g6

6.21 ± 
7.51 X X X X X -0.06

±0.08 X

(Box-Cox)
g7

-0.17 ± 
4.49 X X X X X X 0.01 ± 

0.28

g2
1.15 ± 0.29 ± -0.54 ± 0.21 ± X V X X0.31 0.31 0.34 0.37 A

Diversity
(logit) g7

4.61 ± 
3.09 X X X X X X -0.22 ± 

0.19

g6
5.92 ± 
5.24 X X X X X -0.05

±0.05 X
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Table 11. Parameter estimates for Dandy 500-pm infauna from the linear model (similar 
to g3 for 3-mm infauna). Parameter estimates with 95% confidence intervals that do not 
include 0 (estimates significant at a = 0.05) are in bold, and with 80% confidence 
intervals (for interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are 
parameters not included in the model. Year = 2011. Treat = shoreline treatment (I = 
impact). YxT = year and treatment interaction for the shoreline treatment in parentheses.

Dandy 500-pm infauna Parameter Estimates (±SE)

Response Adj. R2 Po
Intercept

pi
Year (2011)

P2
Treat I

(*3
YxT (I)

Density
(raw) 0.238 78 ± 13.87 -34.5 ± 19.62 -6.5 ± 19.62 6.5 ± 27.74

Biomass
(Box-Cox) 0.262 -3.91 ± 0.93 -3.04 ± 1.31 -1.84 ± 1.31 3.45 ±1.86

Diversity
(logit) 0.226 0.63 ± 0.43 -1.16 ± 0.61 -0.20 ±0.61 0.46 ±0.86
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Table 12. AIC results for all models of 3-mm infauna at Holly Cove, ordered by 
decreasing Akaike weight (wi). Indications of data transformations are in parentheses 
under response variable name. Bolded rows indicate models with strong support (wj > 
0.1). Abbreviations for models and K as in table 2. R2 and Adjusted R2 (Adj. R2) are also 
listed for each model.

Holly Cove 3-mm

Response Model K AICc AAICc Weight
(Wi) R2 Adj. R2

g4 8 137.3 0 0.573 0.599 0.498

g6 3 138.0 0.68 0.409 0.320 0.297
Density

g7 3 145.0 7.63 0.013 0.150 0.120(Box-Cox)
g2 5 146.9 9.53 0.005 0.243 0.159

g3 7 150.2 12.87 0.001 0.316 0.179

g6 3 120.0 0 0.893 0.396 0.376

g4 8 124.3 4.26 0.106 0.582 0.478
Biomass 134.3 14.28(Box-Cox) g7 3 0.001 0.043 0.010

g2 5 137.9 17.85 0 0.101 0.001

g3 7 140.7 20.7 0 0.200 0.040

g6 3 71.4 0 0.689 0.122 0.091

g2 5 73.8 2.44 0.203 0.204 0.116
Diversity

(logit) g7 3 75.4 4.02 0.092 2.0E-05 -0.034

g3 7 79.6 8.16 0.012 0.223 0.062

g4 8 81.5 10.06 0.005 0.267 0.083
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Table 13. Parameter estimates for Holly Cove 3-mm infauna from the models supported 
with wj > 0.1. Parameter estimates with 95% confidence intervals that do not include 0 
(estimates significant at a = 0.05) are in bold, and with 80% confidence intervals (for 
interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are parameters not 
included in the selected models. Abbreviations for models as in table 3, candidate models. 
Year = 2011. Treat = shoreline treatment (C2 = control 2 ,1 = impact). YxT = year and 
treatment interaction for the shoreline treatment in parentheses. Sed = sediment grain 
size as % coarse (sand + gravel) sediments. Sal = salinity (PSU).

Holly Cove 3-mm Parameter Estimates (±SE)

Response Model
Po

Intercept

p.
Year

(2011)

P2
Treat

C2

p3 

Treat I

P4
YxT
(C2)

p5
YxT

(I)

fc

Sed

f*7

Sal

-5.07 ± -3.09 ± -0.04 ± -0.08 ± 2.96 ± 0.79 ± 0.14 ± Y

Density
g4 3.16 1.19 1.15 1.18 1.71 1.56 0.03 A

(Box-Cox) -4.62 ± 0.12 ±
g6 2.96 X X X X X 0.03 X

-12.98 ± 0.11 ±
Biomass

g6 2.21 X X X X X 0.02 X

(Box-Cox) -15.26 ± 0.32 2.08 ± 0.25 ± -2.83 ± -0.83 ± 0.13 ±
Yg4 2.56 ±0.97 0.93 0.95 1.39 1.29 0.03 A

-1.93 ± 0.02 ±
Diversity

g6 1.01 X X X X X 0.01 X

(logit) -0.39 ± -0.04 ± 0.53 ± 0.795 Y Y Y Yg2 0.27 0.26 0.33 ±0.30 A A A A
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Table 14. Parameter estimates for Holly Cove 500-pm infauna from the linear model 
(similar to g3 for 3-mm infauna). Parameter estimates with 95% confidence intervals that 
do not include 0 (estimates significant at a = 0.05) are in bold, and with 80% confidence 
intervals (for interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are 
parameters not included in the model. Year = 2011. Treat = shoreline treatment (I = 
impact). YxT = year and treatment interaction for the shoreline treatment in parentheses.

Holly Cove 500-pm 
infauna Parameter Estimates (±SE)

Response Adj. R2 p .
Intercept

Pi
Year (2011)

P 2
Treat I

03 
YxT (I)

Density
(raw) 0.703 11.5 ±5.41 -3.0 ±7.65 2 ±7.65 28 ±10.82

Biomass
(Box-Cox) -0.358 -2.54 ±0.13 0.01 ±0.18 -0.11 ±0.18 0.18 ±0.25

Diversity
(logit) -0.162 0.95 ± 0.55 0.12 ±0.77 -0.87 ±0.77 0.66 ± 1.10
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Table 15. AIC results for all models of 3-mm infauna at Windy Hill, ordered by 
decreasing Akaike weight (wi). Indications of data transformations are in parentheses 
under response variable name. Bolded rows indicate models with strong support (wi > 
0.1). Abbreviations for models and K as in table 2. R2 and Adjusted R2 (Adj. R2) are also 
listed for each model.

Windy Hill 3-mm

Response Model K AICc AAICc Weight
(wj) R2 Adj.

R2
g7 3 332.4 0 0.669 0.171 0.146

g2 5 334.5 2.1 0.234 0.240 0.169
Density

(raw) g3 7 337.6 5.22 0.049 0.298 0.181

g4 8 339.0 6.62 0.024 0.335 0.198

g6 3 339.1 6.71 0.023 0.000 -0.029

g4 8 45.2 0 0.344 0.486 0.380

Biomass
g7 3 45.3 0.13 0.323 0.227 0.204

(raw) g3 7 46.0 0.77 0.235 0.424 0.328

g2 5 47.8 2.58 0.095 0.284 0.217

g6 3 54.6 9.38 0.003 2.0E-05 -0.029

g3 7 92.3 0 0.485 0.394 0.293

g2 5 93.6 1.35 0.248 0.256 0.187
Diversity

(logit) g4 8 94.2 1.98 0.18 0.416 0.295

g7 3 96.6 4.33 0.056 0.065 0.038

g6 3 97.8 5.52 0.031 0.034 0.005
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Table 16. Parameter estimates for Windy Hill 3-mm infauna from the models supported 
with wi > 0.1. Parameter estimates with 95% confidence intervals that do not include 0 
(estimates significant at a = 0.05) are in bold, and with 80% confidence intervals (for 
interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are parameters not 
included in the selected models. Abbreviations for models as in table 3, candidate models. 
Year = 2011. Treat = shoreline treatment (C2 = control 2 ,1 = impact). YxT = year and 
treatment interaction for the shoreline treatment in parentheses. Sed = sediment grain 
size as % coarse (sand ± gravel) sediments. Sal = salinity (PSU).

Windy Hill 3-mm Parameter Estimates (±SE)
Po pi P2 p3 P4 Ps P6 P7

Response Model
Intercept Year

(2011)
Treat

C2 Treat I YxT
(C2)

YxT
(I)

Sed Sal

Density
g7

-18.05 ± 
18.74 X X X X X X 10.85

±4.11
(raw)

g2
31.61 ± -19.89 16.25 10.08 X X v v

7.54 ±7.54 ±9.24 ±  9.24 A A

g4
-0.13 ± 0.02 ± 0.57 ± 0.48 ± -0.75 -0.97 -0.01 ± X0.67 0.22 0.22 0.22 ±0.31 ±0.32 0.007

Biomass
(raw) g7

-2.28 ± 
0.35 X X X X X X 0.24 ± 

0.08

g3
-1.35 ± 0.05 ± 0.60 ± 0.48 ± -0.63 -0.82 X X0.16 0.23 0.23 0.23 ± 0.32 ±0.32

g3
-0.39 ± 0.87 ± 0.37 ± 0.14 ± 0.06 ± -1.34 X X0.30 0.43 0.43 0.43 0.61 ± 0.61

Diversity
(logit) g2

-0.18 ± 
0.27

0.45 ± 
0.27

0.40 ± 
0.33

-0.53 ± 
0.33 X X X X

g4
0.96 ± 0.85 ± 0.34 ± 0.14 ± -0.06 -1.50 -0.01 ± X1.32 0.43 0.43 0.43 ±0.62 ±0.63 0.01
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Table 17. Parameter estimates for Windy Hill 500-pm infauna from the linear model 
(similar to g3 for 3-mm infauna). Parameter estimates with 95% confidence intervals that 
do not include 0 (estimates significant at a = 0.05) are in bold, and with 80% confidence 
intervals (for interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are 
parameters not included in the model. Year = 2011. Treat = shoreline treatment (I = 
impact). YxT = year and treatment interaction for the shoreline treatment in parentheses.

Windy Hill 500-pm 
infauna Parameter Estimates (±SE)

Response Adj. R2 Po
Intercept

Pi
Year (2011)

P2
Treat I

Pa
YxT (I)

Density
(Box-Cox) -0.213 5.90 ± 1.24 1.57 ± 1.76 1.48 ± 1.76 -2.99 ±2.38

Biomass
(raw) 0.186 0.02 ± 0.009 0.0002 ± 

0.01 0.015 ±0.01 -0.025 ± 
0.016

Diversity
(logit) 0.369 -0.03 ±0.31 -0.14 ±0.44 0.92 ± 0.44 -0.26 ± 0.59
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Table 19. Parameter estimates for Dandy predators from the linear model (similar to g3 

for 3-mm infauna). Parameter estimates with 95% confidence intervals that do not 
include 0 (estimates significant at a = 0.05) are in bold, and with 80% confidence 
intervals (for interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are 
parameters not included in the model. Year = 2011. Treat = shoreline treatment (C2 = 
control 2 ,1 = impact). YxT = year and treatment interaction for the shoreline treatment in 
parentheses. Fish abundance and diversity at Dandy were not modeled due to a lack of 
seines in 2010 at impact sites.

Dandy Predators Parameter Estimates (±SE)
Po p. p2 p3 P4 Ps

Response Adj. R2
Intercept Year

(2011)
Treat

C2 Treat I YxT
(C2) YxT (I)

Blue Crab 
Abundance 
(Box-Cox)

0.084 0.33 ± -2.14 ± 1.30 ± 1.38 ± 1.37 ± 1.16 ±
1.08 1.53 1.33 1.40 1.93 1.93
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Table 20. Parameter estimates for Holly Cove predators from the linear model (similar 
to g3 for 3-mm infauna). Parameter estimates with 95% confidence intervals that do not 
include 0 (estimates significant at a = 0.05) are in bold, and with 80% confidence 
intervals (for interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are 
parameters not included in the model. Year = 2011. Treat = shoreline treatment (C2 = 
control 2 ,1 = impact). YxT = year and treatment interaction for the shoreline treatment in 
parentheses.

Holly Cove Predators Parameter Estimates (±SE)

Po pi p2 P3 P4 Ps
Response Adj. R2

Intercept Year
(2011)

Treat
C2 Treat I YxT

(C2) YxT (I)

Blue Crab 
Abundance 

(raw)
0.425 6.0 ± -0.80 -1.5 ± 6 ± -2.45 ± -6.7 ±

1.72 ±2.31 2.22 2.22 3.2 2.96

Fish
Abundance
(Box-Cox)

0.340 4.69 ± 0.52 ± -0.58 ± -0.86 ± -1.16 ± -0.28 ±
0.32 0.51 0.41 0.43 0.69 0.67

Fish
Diversity

(logit)
-0.192 -0.17 ± 

0.38
0.02 ± 
0.60

0.40 ± 
0.48

0.55 ± 
0.50

0.20 ± 
0.82

-0.19 ± 
0.79
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Table 21. Parameter estimates for Windy Hill predators from the linear model (similar to 
g3 for 3-mm infauna). Parameter estimates with 95% confidence intervals that do not 
include 0 (estimates significant at a = 0.05) are in bold, and with 80% confidence 
intervals (for interaction estimates only) that do not include 0 (a = 0.2) in italics. Xs are 
parameters not included in the model. Year = 2011. Treat = shoreline treatment (C2 = 
control 2 ,1 = impact). YxT = year and treatment interaction for the shoreline treatment in 
parentheses.

Windy Hill Predators Parameter Estimates (±SE)

Response Adj. R2
Po

Intercept

Pi
Year

(2011)

fc
Treat
C2 Treat I

P4
YxT
(C2)

Ps 

YxT (I)

Blue Crab 
Abundance 

(raw)
0.194 2.77E-16

±0.25
1.00 ± 
0.32

0.17 ± 
0.37

0.17 ± 
0.37

-0.67 ± 
0.50

-1.17 ± 
0.50

Fish
Abundance
(Box-Cox)

0.413 3.40 ± 
0.32

-0.87
±0.46

0.11 ± 
0.46

0.47 ± 
0.46

0.39 ± 
0.64

0.28 ± 
0.62

Fish
Diversity

(logit)
0.207 -0.28 ± 

0.58
1.04 ± 
0.82

-1.41 ± 
0.82

-0.26 ± 
0.82

2.01 ± 
1.16

1.77 ± 
1.11
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Fish

Blue crab

Polychaetes

Detritus
Plants

Baltic Amphipods
Isopods

Marsh snails 
Gastropods

Atlantic croaker 
Spot 

Hogchoker

Figure 1. Simplified Chesapeake Bay food web in soft sediment benthic systems 
showing important linkages for the Baltic clam, M. balthica. The bold line between the 
Baltic clam and the Blue crab emphasizes the importance o f this trophic link. Adapted 
from Lipcius et al. 2007.
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BACI sam pling locations. C h e sa p e a k e  Bay. USA
 —«C" JML" --

%
vrv<'

iC  ■J \  - y A
^ * S l x HY

V *Y.
<  2 Ho«ty Cove,

*
1^ qJon»cov..vA

■ ' ^ ; dy VA : L l

i
80 Kilamelen

Figure 2. Map o f  Chesapeake Bay showing general locations o f study sites within three 
subestuaries o f Chesapeake Bay. Windy Hill is located on the Corsica River, which is a 
tributary o f the Chester River in Maryland; Holly Cove is located in Tabbs Creek, a 
tributary o f  Fleets Bay just north o f  the Rappahannock River in Virginia; Timbemeck 
Creek is a tributary o f  the York River, and Dandy is located at the mouth o f the York 
River in Virginia. Map created by Theresa Davenport.
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Undeveloped to Developed

Timbernedc: M arsh and Tidal Wetland-> Riprap, Boat: Mips

Dandy: Phrogm ttes M arsh •> Riprap

HoMy Cove: Tidal Wetland-> Riprap

D eveloped  to  Living Shoreline

W indy Hill: Bulkhead-> Living shoreline

Figure 3. Photos o f impact shorelines at BACI project sites before (left panels) and after 
(right panels) shoreline modification.
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Before
Development:
Summer 2010

Control 1 

shorelines

Control 2 
shorelines

Impact
shorelines

After
Development:
Summer 2011

Control 1 
shorelines

Control 2 
shorelines

Figure 4. Schematic diagram o f sampling treatments and differences between the 
treatments (as seen in different color shades) for the BACI study at each location. The 
box shading indicates the high level o f similarity between all sites in 2010, and the 
control site in 2011, with a bigger dissimilarity expected at impact sites in 2011.
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Timberneck

Size Class

I Clay 
Silt

Gravel
Sand

C1C2I1 12 C1C2I1 12 
Shoreline Treatment

Dandy
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:Gravel

C1 C2 I C1 C2 I 
Shoreline Treatment
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d
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Hollv Cove
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Shoreline Treatment
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50-

25-

0-

Wind
2010

V Hill
2011

Size Class
| Clay 
Silt

[Gravel 
Sand

Size

I
C1 C2 I C1 C2 I 

Shoreline Treatment
Figure 5. Effect o f year and shoreline treatment on mean sediment grain size as 
represented by mean percent o f four size classes: sand, gravel, silt, and clay. Gravel 
fractions include detritus. Site names are labeled at the top o f each plot. Sample size as 
in table 4, infauna.
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600 Shoreline
♦  Control 1: Timberneck Creek
•  Control 2: Catlett Islands
•  Impact 1: Boat Docks
♦  Impact 2: Riprap

0.8

E 20
500 ^0.7-
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100-

-

iI
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Mysida
M. m ercenaria  
A. elevata 
T. plebeius 
M. mitchelli 
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Capitellidae 
D. cuprea 
Leitoscoloplos spp. 
O. fusiformis 
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L. m edusa  
C. torquata 
G. am ericana 
G. dibranch iata 
N. succinea

C2 11 12 C1 C2 11
Shoreline TreatmentShoreline Treatment

Figure 6 A-E. Effect o f year and shoreline treatment on 3-mm infauna at Timberneck, 
measured by A) mean density per m2 (top left), B) mean biomass (g ash-free dry mass) 
per m2 (top center), C) mean Shannon diversity, FT logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as follows: C l = control 1: Timberneck Creek, 
C2 = control 2: Catlett Islands, II = impact 1: boat docks, 12 = impact 2: riprap.
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Shoreline
•  Control 1: Timberneck Creek
•  Control 2: Catlett Islands
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Figure 7 A-E. Effect o f year and shoreline treatment on 500-pm infauna at Timberneck, 
measured by A) mean density per m2 (top left), B) mean biomass (g ash-free dry mass) 
per m2 (top center), C) mean Shannon diversity, H’ logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as in Figure 6.
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Figure 8A-E. Effect o f year and shoreline treatment on 3-mm infauna at Dandy, 
measured by A) mean density per m (top left), B) mean biomass (g ash-free dry mass) 
per m2 (top center), C) mean Shannon diversity, IT logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as follows: C l = control 1: marsh shoreline north 
o f impact, C2 = control 2: marsh shoreline south o f impact, I = impact: riprap.

120



Shoreline
•  Control 2: South
•  Impact 0.710000

0.6
o>5.0c  7500 Q)

>  0.5- O 
c roCD
;> 0.42.5

5000

0.3

0.0
2010 2011 2010 2011 2010 2011

Year

10000

7500-

5000-

2500-

Taxa
| N em ertea 
Chironom idae 

; C rustacea  
I Bivalvia 
| Polychaeta

10000 -

7500-

5000-

2500

C2 I C2
Shoreline Treatment

C2 I C2
Shoreline Treatment

Species
|H N em ertea 

L. plum ulosus 
Corophium spp.

IG. gem m a 
M. lateralis 
M. arenaria  
A. elevata 
T. plebeius 

balthica 
Cirratulidae

IE. heteropoda 
Capitellidae 
Spionidae 
Leitoscoloplos spp. 
O. fusiformis 
L. m edusa  

H e .  torquata 
G. dibranchiata 

I n .  succinea

Figure 9A-E. Effect o f year and shoreline treatment on 500-pm infauna at Dandy, 
measured by A) mean density per m (top left), B) mean biomass (g ash-free dry mass) 
per m (top center), C) mean Shannon diversity, FF logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as in Figure 8.
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Figure 10 A-E. Effect o f year and shoreline treatment on 3-mm infauna at Holly Cove, 
measured by A) mean density per m (top left), B) mean biomass (g ash-free dry mass) 
per m (top center), C) mean Shannon diversity, H ’ logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as follows: C l = control 1: tidal wetland adjacent 
to impact at Holly Cove, C2 = control 2: tidal wetland in adjacent branch, I = impact: 
riprap.
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Figure 11A-E. Effect o f year and shoreline treatment on 500-pm infauna at Holly Cove, 
measured by A) mean density per m 2 (top left), B) mean biomass (g ash-free dry mass) 
per m2 (top center), C) mean Shannon diversity, H ’ logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as in Figure 10.
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Figure 12 A-E. Effect o f year and shoreline treatment on 3-mm infauna at Windy Hill, 
measured by A) mean density per m 2 (top left), B) mean biomass (g ash-free dry mass) 
per m2 (top center), C) mean Shannon diversity, H ’ logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as follows: C l = control 1: bulkhead shorelines, 
C2 = marsh shorelines, I = impact: living shoreline.
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Figure 13 A-E. Effect o f year and shoreline treatment on 500-pm infauna at Holly Cove, 
measured by A) mean density per m 2 (top left), B) mean biomass (g ash-free dry mass) 
per m2 (top center), C) mean Shannon diversity, H ’ logio (top right) D) community 
composition by the most common taxa (bottom left), and E) community composition to 
the lowest possible taxonomic classification (bottom right). Error bars are 1 SEM, and 
sample sizes per year and treatment combination as in Table 3. For error bars o f plots D 
and E, see plot A. Shoreline treatments as in Figure 12.
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Figure 14 A-C. Effect o f year and shoreline treatment on mean abundance o f  blue crabs
9 9

per 20 m tow  (far left), abundance o f fishes per 182.4 m seine (center), and Shannon 
diversity, (H’ logio) o f fishes per seine (far right) at Timberneck. Error bars are 1 SEM, 
and sample size as in Table 3.
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Figure 15 A-C. Effect o f year and shoreline treatment on mean abundance o f blue crabs
9 9

per 20 m tow (far left), fishes per 182.4 m seine (center), and Shannon diversity, (H ’ 
logio) o f fishes per seine (far right) at Dandy. Error bars are 1 SEM, and sample size as 
in Table 3. Note that no seines for fishes were conducted in 2010 at impact sites (center 
and right plots).
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Figure 16 A-C. Effect o f year and shoreline treatment on mean abundance o f  blue crabs 
per 20 m2 tow (far left), fishes per 182.4 m2 seine (center), and Shannon diversity, (H ’ 
logio) o f fishes per seine (far right) at Holly Cove. Error bars are 1 SEM, and sample size 
as in Table 3.
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Figure 17 A-C. Effect o f  year and shoreline treatment on mean abundance o f blue crabs 
per 20 m tow (far left), fishes per 182.4 m seine (center), and Shannon diversity, (H’ 
logio) o f fishes per seine (far right) at Windy Hill. Error bars are 1 SEM, and sample size 
as in Table 3.
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