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ABSTRACT

Atlantic bluefin tuna Thunnus thynnus (ABFT) support commercial and 
recreational fisheries throughout the North Atlantic Ocean. Due to heavy fishing pressure 
over the course of several decades, the eastern and western stocks of ABFT were 
overfished and the current biomass of the western stock is estimated to be approximately 
19% of the biomass necessary for maximum sustainable yield. Despite a variety of 
management measures, including the implementation of minimum sizes and reductions of 
the total allowable catch (TAG) and country-specific quotas, little change was observed 
in the status of the western stock. The U.S. commercial and recreational ABFT fisheries 
are managed by the National Marine Fisheries Service (NMFS), which distributes the 
U.S. quota among domestic fisheries by gear type. The U.S. recreational fishery, which 
has historically targeted small or “school-size” (69-119cm) ABFT, is managed by open 
seasons, a minimum size, and bag limits (the number of ABFT allowed to be landed per 
vessel per day). Over the past 20 years, bag limits have been severely reduced due to 
decreased annual quotas, increasing the number of ABFT released each year, mostly 
within the school-size category. It is important, for the management of ABFT, to account 
for all sources of fishing mortality and the large number of releases in the recreational 
fishery each year could be a significant source of mortality. However, there is very little 
information available to assess post-release mortality of school-size ABFT in the U.S. 
recreational fishery. In this study, twenty pop-up satellite archival tags (PSATs) were 
deployed to estimate the post-release mortality of school-size ABFT captured under 
normal fishing conditions in the recreational fishery. PSATs recorded pressure (depth), 
temperature, and light data and were deployed on school-size ABFT caught using trolling 
methods. These tags were programmed to record data approximately every five minutes 
for a 31-day deployment. Nineteen tags (95%) reported to the satellites of the ARGOS 
system and approximately 85% (range: 34-100%) of all archived data were transmitted 
from each tag. Depth and temperature profiles were used to infer the survival of all 19 
individuals whose tags reported (mortality=0% 95% CI=0%, 10%). Data from these tags 
were also used to investigate the short-term habitat utilization of school-size ABFT. 
During June to October, these fish spent the majority of their time in the upper 40m of the 
water column and at temperatures between 18 and 24°C. Individuals were more likely to 
make vertical excursions to depths exceeding 30m during the day than at night.

x
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BLUEFIN TUNA (Thunnus thynnus) IN THE U.S. RECREATIONAL

TROLL FISHERY



INTRODUCTION

Atlantic bluefin tuna Thunnus thynnus (ABFT) support commercial and 

recreational fisheries throughout the North Atlantic Ocean and its adjacent seas, including 

the Gulf of Mexico and the Mediterranean Sea. Currently the International Committee for 

the Conservation of Atlantic Tunas (ICC AT) recognizes separate eastern and western 

stocks of ABFT based on distinct spawning areas and putative differences in life history 

characteristics such as size and age at maturity. In the western Atlantic, the United States, 

Canada, and Japan are the major commercial harvesters of ABFT. Due to heavy fishing 

pressure in the 1960s and 1970s the western Atlantic stock of ABFT was overfished, and 

ICC AT instituted total allowable catches (TACs) and country-specific quotas to decrease 

fishing pressure on this stock. In addition, a minimum size of 30kg was implemented, but 

in recognition of the importance of the historical recreational fishery for small ABFT, the 

United States is permitted to land up to 10% of its ABFT quota in fish less than 30kg.

The U.S. ABFT quota is allocated among several gear types and the recreational 

sector is allotted 19% of the quota. Due to reduced TACs and country-specific quotas and 

the need to limit landings of undersized ABFT to no more than 10% of the U.S. quota, 

the U.S. National Marine Fisheries Service (NMFS) implemented increasingly restrictive 

bag limits for the recreational fishery between 1999 and 2013. As a result, the 

recreational fishery for juvenile ABFT is now largely a catch-and-release fishery. 

However, the fate of ABFT released from this fishery has not been investigated and may
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represent a significant source of fishing mortality. This thesis was designed to investigate 

the post-release mortality of recreationally caught ABFT between 27 and 47in (69- 

119cm) curved lower jaw fork length (CLJFL), commonly referred to as school-size 

ABFT. In addition, high-resolution pressure and temperature data recorded by the PSATs 

were used to investigate short-term habitat utilization and movement.

Bluefin Tuna Biology

Atlantic bluefin tuna have the largest geographical range of any pelagic species in 

the North Atlantic and are the only tuna species that permanently lives in temperate 

waters (Bard et al. 1998; Fromentin and Fonteneau 2001). Their range extends from the 

equator to areas north of Norway, and from the Mediterranean and its adjacent seas to the 

Gulf of Mexico (Mather et al. 1995). Peak spawning for ABFT occurs in May in the 

western Atlantic and June in the eastern Atlantic (Nishikawa et al. 1985; Mather et al. 

1995; Schaefer 2001a; Rooker et al. 2007). ABFT are asynchronous broadcast spawners 

(Medina et al. 2002) with fertilization occurring directly in the water column and the eggs 

typically hatch after a two-day incubation period (Fromentin and Powers 2005). Few 

studies have investigated the growth rates of ABFT larvae, but Brothers et al. (1983) 

indicated that it is relatively fast when compared with other teleost fishes. Juvenile ABFT 

also grow rapidly, up to 30cm yr"1 (Fromentin and Powers 2005). ABFT display 

allometric growth as they age, their growth in length slows while their mass increases 

disproportionately (Mather et al. 1995; Fromentin and Powers 2005; Restrepo et al.

2010). ABFT are thought to live for up to over 30 years and obtain weights of up to 

700kg (Restrepo et al. 2010).
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Studies using a variety of techniques indicate that ABFT undergo trans-Atlantic 

migrations (Mather 1995; Block et al. 2001), movements that are believed to occur for 

both spawning and foraging (Mather et al. 1995; Block et al. 2001; Rooker et al. 2003, 

2007, 2008; Dickhut et al. 2009). ABFT may migrate from the eastern Atlantic to western 

Atlantic foraging areas as early as age 1 (Rooker et al. 2003; Dickhut et al. 2009), and 

may remain in the western Atlantic for several years before returning to the 

Mediterranean Sea to spawn (Block et al. 2005; Dickhut et al. 2009). Conventional 

tagging studies suggest that juvenile ABFT spawned in the western Atlantic may also 

migrate from the New Jersey-Massachusetts area to the Bay of Biscay to forage (Mather 

et al. 1995). Electronic tagging studies performed by Block et al. (2005) also indicate that 

large ABFT (> 180cm CLJFL) may migrate from western spawning grounds to eastern 

Atlantic foraging areas.

Tagging studies have demonstrated that some ABFT participate in trans-Atlantic 

migrations, but the majority of fish tagged in the western Atlantic have been recovered in 

the western Atlantic (Mather et al. 1995; Stokesbury et al. 2004; Block et al. 2005;

Wilson et al. 2005; Teo et al. 2007; Galuardi and Lutcavage 2012). This may suggest site 

fidelity for the majority of fish in the western Atlantic, however the majority of fish had 

short times at liberty.

From electronic tagging studies we know that ABFT spend the majority of their 

time in the warm surface waters, typically from 0-30m and 15 to 23°C (Brill et al. 2002; 

Stokesbury et al. 2004; Wilson et al. 2005; Galuardi and Lutcavage 2012). However, they 

are capable of utilizing the water column down to 1,000m and 3°C (Block et al. 2005,

Teo et al. 2007). Larger ABFT exploit a greater range of temperatures and depths for
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foraging, and inhabit cooler waters than smaller ABFT during most times of the year 

(Brill et al. 2002; Stokesbury et al. 2004; Block et al. 2005; Wilson et al. 2005; Teo et al. 

2007; Galuardi and Lutcavage 2012). During the breeding season mature ABFT that 

enter the Gulf of Mexico experience mean surface temperatures between 25 and 30°C 

and may use vertical excursions to cooler waters to prevent overheating (Teo et al. 2007).

Juvenile and adult ABFT are opportunistic feeders. Stomach contents and stable 

isotope analyses indicate that ABFT consume a large variety of prey including teleosts, 

elasmobranchs, and invertebrates (Ortiz de Zarate and Cort 1986; Eggleston and 

Bochenek 1990; Chase 2002; Estrada et al. 2005; Sara and Sara 2007). ABFT are known 

to have a high rate of digestion which allows them to maintain an elevated metabolic rate 

in an energy-poor environment (Brill 1996).

Bluefin Tuna Commercial Fisheries

Atlantic bluefin tuna have been exploited as a food source in the Mediterranean 

Sea dating back to Phoenician and Roman times (Desse and Desse-Berset 1994). Many 

different gear types have been used to capture these fish including seines, handlines, 

harpoons, drift nets, and traps (de Gaetani 1948; Doumenge and Lahaye 1958; Mather et 

al. 1995; Fromentin and Powers 2005). During the 16th century, traps became the 

dominant fishing method used to catch ABFT in the Mediterranean (Doumenge 1998; 

Ravier and Fromentin 2001) and records from this fishery provide the first known 

information regarding ABFT landings, 7,000-30,OOmt yr'1 (Ravier and Fromentin 2002). 

There has been fishing pressure on ABFT in the Mediterranean for hundreds of years 

(Fromentin and Powers 2005).
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During the 19th and early 20th centuries new methods of fishing for highly 

migratory species (HMS) were developed, including trolling and large, boat-operated 

seines, increasing capture efficiency of ABFT in the pelagic environment (Ravier and

• •  f UFromentin 2001). In the mid-19 century a handline fishery specifically targeting 

juvenile ABFT and Atlantic albacore tuna in the Bay of Biscay (Bard 1981; Fromentin 

and Powers 2005) and a handline fishery in the North Sea (Tiews 1975; Mather et al. 

1995) were developed, increasing the range of the ABFT fishery beyond the 

Mediterranean Sea. During the latter part of the 19th century a subsistence fishery for 

ABFT developed in the western Atlantic. This fishery used a variety of gears and 

eventually expanded into a commercial fishery during the 20th century (Mather et al. 

1995).

The pelagic longline fishery for ABFT, led by the Japanese, developed during the 

1950s and 1960s and quickly expanded throughout the Atlantic and its adjacent seas 

(Mather et al. 1995; Miyake et al. 2004; Fromentin and Powers 2005). Catches in the 

Japanese fleet quickly rose largely due to the exploitation of spawning ABFT in the Gulf 

of Mexico and large fish off the coast of Brazil. The Brazilian fishery lasted from 1962- 

1967, collapsing within five years of its onset (Fromentin and Powers 2005). Since 

catches peaked in 1965, the Japanese longline fleet has decreased its overall effort and 

moved out of the Gulf of Mexico and into the Central North Atlantic. By 2011, overall 

Atlantic landings of ABFT within the pelagic longline fleet had decreased to 2,769mt 

(SCRS 2012).

Purse seines were first developed during the 1930s (Meyer-Waarden 1959) and 

were used to target a number of species ranging from menhaden and sardines to tunas

6



(Schmidt 1959). The advent of the power block in 1955 resulted in a more efficient 

means of setting and hauling purse seines (Schmidt 1959), allowing fishermen to capture 

and harvest entire schools of ABFT which led to the expansion of Nordic and U.S. tuna 

fleets. The Nordic fleet operated in the North and Norwegian seas while the U.S. fleet 

operated off the east coast of the United States. In 1963 the Nordic purse seine fishery 

collapsed due to a change in the migration pattern of ABFT, overfishing, or a 

combination of these factors (Fromentin and Powers 2005).From the late 1950s to the 

mid-1960s the ability of purse seines to land large numbers of ABFT led to the 

expansion of the U.S. fleet from two vessels targeting juvenile ABFT to 21 vessels 

(Squire 1959; Wilson 1965; Mather et al 1995).

The development of caging operations, primarily in the Mediterranean Sea, 

drastically changed the ABFT fishery in the 1990s. Caging operations allow large 

numbers of live fish to be brought back to port and fattened in pens, increasing their 

value and allowing gradual harvest to maximize market prices. Due to more efficient on

board refrigeration and flash freezing techniques, pelagic longline vessels were able to 

exploit distant areas while maintaining their product in excellent condition (Fromentin 

and Powers 2005; Fromentin and Ravier 2005; Porch 2005). In the 1990s catches of 

ABFT in the eastern Atlantic dramatically increased, peaking at or above 50,000mt yr'1 

(Fromentin and Powers 2005) and probably remained near that level for several years 

despite ICCAT measures to limit landings (Fromentin 2003; ICCAT 2005).
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Bluefin Tuna Recreational Fisheries

Sport fishing for large pelagic species such as tunas, billfishes, and sharks began 

in the late 1800s and early 1900s in the western Atlantic. Popularized by Ernest 

Hemingway and others, big game sport fishing became widespread among wealthy 

anglers but was cost prohibitive to many others at the time (Farrington 1937). It was only 

after World War II that the charter and headboat fleets expanded and the cost of offshore 

fishing decreased to a point where the general public could take part in the recreational 

bluefin tuna fishery (Farrington 1949). Currently, recreational fishing for ABFT in the 

western Atlantic occurs on both charter and private boats from North Carolina to Maine 

in the U.S. (Bochenek 1989) and on charter vessels in southern Canada.

A wide range of size classes of ABFT are encountered in the U.S. recreational 

fishery, but typically, the fishery is dominated by the school size class. The U.S. 

recreational fishing season for ABFT varies depending on geography and size class. 

Trophy-size fish, those greater than 185cm CLJFL, are targeted from December to 

February in North Carolina, and from August to October in Massachusetts. Beginning in 

late May or June, school-size ABFT are targeted off Virginia and Maryland before the 

fish migrate up the coast, following concentrations of bait, to New England where they 

are targeted by recreational anglers until October or November.

Landings and releases by U.S. recreational anglers are estimated through two 

survey programs instituted by the National Oceanographic and Atmospheric 

Administration (NOAA), the Marine Recreational Information Program (MRIP) and the 

Large Pelagics Survey (LPS). Both of these surveys include a telephone component and 

an angler intercept component which are combined to estimate fishing effort and landings
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for various species; however, the LPS is specifically designed for large pelagics fisheries 

while the MRIP includes many other species. The LPS was developed by NMFS in 1992 

and operates from Maine to Virginia between June and October. More recently, the LPS 

was modified to also estimate landings and releases of all size classes of ABFT and other 

large pelagic species encountered by the U.S. recreational fleet. From 1981 to 2011, 

estimates of U.S. recreational landings of ABFT ranged from 2,745 to 169,176 fish yr'1. 

In recent years LPS interceptors have recorded the method used to capture ABFT and the 

survey has begun to estimate the number of ABFT releases based on angler intercepts. 

From 2006 to 2010 estimates of ABFT releases ranged from 7,548 to 13,401 fish yr’1 

(LPS data), with 44 to 91% of these fish captured by trolling.

The 2003 year class was the strongest cohort in the western Atlantic since the 

1970s and has had a large impact on the U.S. recreational fishery (Figure 1). As this year 

class entered the recreational fishery at age 2, large numbers of school-size ABFT were 

captured by anglers. At that time (2005) the United States was allowed 8% of its quota in 

ABFT under 30kg and as a result of this influx of small fish, the United States was in 

danger of exceeding the 8% allowance in the third year of a four year management 

period. In response, NMFS severely reduced the ABFT fishing season in 2006, resulting 

in low landings in the recreational fishery (Figure 1). As the 2003 year class grew it 

increased the average size and weight of the overall recreational landings of ABFT in the 

United States and caused U.S. anglers to greatly exceed their allotted quota.
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Stock Status and Management

The member nations of ICCAT have been responsible for the management of 

tunas and tuna-like species in the Atlantic Ocean since 1969 (ICCAT 2013a). Currently, 

Atlantic bluefin tuna are managed as two separate stocks delineated by the 45 degree 

western meridian. However, this strict separation of stocks has come under scrutiny as 

recent studies indicate high mixing rates between juveniles of the eastern and western 

stocks on foraging grounds in the western Atlantic (Rooker et al. 2003; Dickhut et al. 

2009).

The ICCAT Standing Committee for Research and Statistics (SCRS) assesses the 

status of fish stocks and may recommend a TAC for a stock if management action is 

warranted. TACs, when implemented, are often allocated among the member nations 

harvesting the stock as country-specific quotas. The member nations are responsible for 

distributing their quota among domestic fisheries and ensuring that overharvesting does 

not occur.

The TAC for western Atlantic ABFT was 2,660mt in 1983. Since then, it has 

fluctuated, decreasing to 2,26 lmt in 1994, then slowly increasing to a maximum of 

2,700mt in 2003. The TAC was decreased in 2007 to 2,100mt and decreased further to 

l,800mt between 2008 and 2010. The current TAC for western ABFT is l,750mt 

inclusive of dead discards. The United States is allotted 923.7mt of the current TAC 

which is then divided among the domestic sectors of the ABFT fishery by NMFS based 

on the Fishery Management Plan for Atlantic HMS (NMFS 2006). Currently NMFS 

allocates the U.S. quota among seven sectors within the ABFT fishery: general (47.1%), 

angling (19.7%), purse seine (18.6%), longline (8.1%), harpoon (3.9%), trap (0.1%), and
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a reserve (2.5%). The reserve sector can be put to use if one or more sectors exceed the 

allotted catch to ensure that the U.S. does not surpass its overall quota (NMFS 2006).

In addition to decreasing the western ABFT TAC over time as mentioned above, 

ICCAT instituted a minimum size of 30kg throughout the Atlantic in 1992 to reduce 

landings of small ABFT. In recognition of the historical importance of undersized 

(<30kg) ABFT to the U.S. recreational fishery, ICCAT management recommendations 

have provided an allowance for the harvest of small (<30kg) ABFT. Through 2008 the 

United States was allowed to harvest 8% of its quota, by weight, as undersized ABFT. 

This percentage was increased to 10% at the 2008 ICCAT meeting when the TAC in the 

western Atlantic was reduced.

The U.S. recreational fishery for ABFT has been managed by NMFS since the 

late 1990s with size classes, open seasons and bag limits. The National Marine Fisheries 

Service recognizes six size classes of ABFT based on their length; young school, school, 

large school, small medium, large medium, and giant (Table 1). All size classes are 

encountered in the U.S. recreational fishery, but it is illegal to retain young school ABFT 

as they are under the U.S. minimum size (69cm CLJFL). Large medium and giant ABFT 

are caught in the recreational fishery and can be retained by recreational vessels but only 

one fish in this “trophy” category can be kept per vessel per year. In general, the season 

for ABFT in the United States begins January 1st and ends December 31st but can be 

closed within a given year for certain areas and size classes based on in-season estimates 

of landings. For instance, in 2006 the ABFT season was significantly shortened due to the 

United States nearly exceeding its four-year quota of small ABFT in the first three years 

of the management period. Bag limits have varied from 1999 to the present day both
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within and between years and for various size classes. For private vessels the bag limit in 

1999 was either two school and one large-school or small-medium ABFT per vessel per 

day, or one large-school or small-medium ABFT per vessel per day depending on the 

time of year. Bag limits ranged between one and six ABFT for private vessels over a 

number of years before the current bag limit of one school, large-school, or small- 

medium ABFT was set in 2009. The bag limits for charter vessels and headboats have 

also decreased over the past several years.

Despite the increased management measures and a decreasing TAC there has 

been little change in the status of the western stock of ABFT. The stock is still overfished 

and overfishing is still occurring based on the current assessment under the high 

recruitment scenario (ICCAT 2013b). While a 20 year rebuilding program was instituted 

in 1995 there has been little change in the state of the ABFT stocks. The lack of success 

in the rebuilding program is likely due to a combination of factors including low 

recruitment and a lack of information regarding mixing rates between the eastern and 

western stocks, making it difficult to incorporate these mixing rates into assessment 

models. Another factor that may have an impact on the success of the rebuilding program 

is cryptic fishing mortality, such as post-release mortality of ABFT released from 

recreational fishing gear. Considering the large numbers of ABFT released from the U.S. 

recreational fishery each year, it is critical for effective management to obtain accurate 

estimates of post-release mortality.
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Post-Release Mortality

Estimating post-release mortality of HMS such as ABFT is challenging. Small, 

coastal fishes can be maintained in captivity following capture facilitating observations of 

fate (Dunning et al. 1987), but it is not possible to study HMS under similar 

circumstances. Therefore, other methods must be used to estimate post-release mortality 

rates of HMS.

There are several methods that have been used to estimate the post-release 

mortality rates of HMS including inferences of mortality based on hooking location, 

acoustic tagging, and the use of pop-up satellite archival tags (PSATs). Skomal et al. 

(2002) and Prince et al. (2002) used hook location and tissue damage to infer the post

release mortality rate of juvenile ABFT and sailfish respectively. To properly assess the 

amount of damage caused by a hook, especially if the hook lodges deep in the viscera, it 

is necessary to sacrifice a large number of animals for dissection and make the 

assumption that any animal that is hooked deeply is moribund.

Acoustic tags have primarily been used to study short-term movements of several 

pelagic species including sailfish (Jolley and Irby 1979), blue marlin (Holland et al.

1990a; Block et al. 1992), black marlin (Pepperell and Davis 1999), and bluefin tuna 

(Brill et al. 2002). In these studies, fish were tagged with an acoustic transmitter and 

followed by boat using a hydrophone. The time that a fish was followed often depended 

on the availability of personnel and sea conditions, and typically ranged from hours to 

days. These studies typically selected only healthy individuals for tagging, but even with 

that bias, mortalities were observed.
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PSATs were first attached to pelagic fishes in the late 1990s and were primarily 

used for investigations of movement and habitat utilization. In these studies the high cost 

of the PSATs motivated investigators to deploy them on healthy animals. However, 

PSATs can be useful in determining the post-release mortality of HMS, such as blue 

marlin (Graves et al. 2002), white marlin (Horodysky and Graves 2005), striped marlin 

(Domeier et al. 2003), and Atlantic bluefin tuna (Stokesbury et al. 2011). Mortality rates 

for these species have been estimated using tag deployments ranging from 5 (Graves et 

al. 2002) to 30 days (Stokesbury et al. 2011). Post-release mortality rates reported for 

HMS have ranged from 5% (Stokesbury et al. 2011) to 35% (Horodysky and Graves 

2005) and vary greatly depending on species, fishing methods, and terminal gear. Based 

on these results, it is inappropriate to assume mortality rates are similar across species, or 

even within species if different methods or terminal gear are used (Horodysky and 

Graves 2005).

There has been only one study of the post-release mortality of ABFT using 

PSATs. Stokesbury et al. (2011) investigated the post-release mortality rate of large 

ABFT (114-432kg, small-medium to giant) caught in an experimental recreational fishery 

near Prince Edward Island, Canada. This study used experienced captains and anglers 

which decreased the likelihood of fish being fought for extended periods of time, and 

thereby reduced stress on the animal and increased the likelihood of survival. The fish 

were caught on drifted baits rigged with barbless circle hooks to reduce hook-induced 

trauma, further decreasing the likelihood of mortality.

In the U.S. recreational fishery, school-size (69-119cm CLJFL) ABFT typically 

constitute more than 50% of landed fish and normally comprise an even greater
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proportion of the released fish. LPS estimates indicate that between 3,427 and 45,722 

school-size ABFT were released per year between 2002 and 2010. Of those released fish, 

between 44 and 91% were caught using trolling methods. To date, the post-release 

mortality rate of these fish has not been investigated with PSATs and considering the 

large number of releases of school-size ABFT from the U.S. recreational fishery, it is 

important to understand the impact of post-release mortality on this fishery.

Habitat Utilization

Conventional tagging has been used for many years to investigate the movements 

of fishes, including large pelagic species such as ABFT. Conventional tags can remain 

attached to the study organisms for several years providing researchers with information 

regarding the net displacement of each animal; however they do not provide any 

information on movements occurring during the time at liberty.

Internal archival tags have been used in several studies of ABFT movement and 

habitat utilization and provide detailed information on the horizontal and vertical 

movements of these animals (Block 2001; 2005; Teo et al. 2007). However, to obtain 

information from internal archival tags, the tags must be physically recovered and 

returned, resulting in high dependence on the fishery to recover the archival tags.

PSATs have given scientists the ability to investigate the habitat utilization of 

fishes using fishery-independent methods, without the need for designating a chase boat 

(acoustic tagging), or the need for tags to be recovered and returned by the fishery. Since 

their first use on pelagic fishes in the late 1990s by Block et al. (2001), PSATs have been 

used to investigate the movements and habitat preferences of highly migratory fishes.
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Over the last decade the technology available for use in PSATs has advanced, resulting in 

increased data storage and processing capabilities and a smaller tag body. These features 

have allowed scientists to investigate horizontal and vertical movements of fishes on a 

finer time scale, as well as to deploy tags on smaller individuals (Graves et al. 2009; 

Galuardi and Lutcavage 2012).

Several studies have investigated the habitat utilization of large ABFT in the 

North Atlantic (Lutcavage 1999; Block et al. 2001; 2005; Stokesbury et al. 2004; Wilson 

et al. 2005; Teo et al. 2007), but only three studies have investigated the movements and 

habitat utilization of juvenile ABFT (Yamashita and Miyabe 2001; Brill et al. 2002; 

Galuardi and Lutcavage 2012). Yamashita and Miyabe used internal archival tags to 

investigate the movement and habitat utilization of seven school-size ABFT (70-90cm 

FL) in the Mediterranean for up to 7.5 months. Using ultrasonic telemetry Brill et al. 

(2002) tracked five school-size ABFT ranging from 74-106cm fork length (FL) for up to 

48hrs offshore of Virginia Beach, VA during June and July. Galuardi and Lutcavage 

(2012) used PSATs to investigate the habitat utilization of 26 juvenile ABFT (six of 

which were school-size, 115-119 CLJFL), caught between June and October, ranging 

from 105 to 168cm FL near Cape Cod, MA. Time at large for these fish ranged from four 

to 366 days. These two studies of juvenile ABFT habitat utilization show similar trends 

in habitat utilization over the summer indicating juvenile ABFT spent the majority of 

their time in the upper portion of the water column and in relatively warm surface waters 

(Brill et al. 2002; Galuardi and Lutcavage 2012). Neither study incorporated a robust 

sample size of school-size ABFT (n=5 and n=6, respectively). Therefore, greater insight
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into the movement and habitat utilization of school-size ABFT could be obtained through 

increasing the number of fish tagged within this size class.

Project Objectives

As noted above there is little information regarding the post-release mortality of 

school-size ABFT released from the U.S. recreational fishery and limited information 

regarding the habitat utilization of these fish. In this thesis we used PSATs to investigate

1) the post-release mortality of school-size ABFT caught in the recreational troll fishery 

and 2) the short-term habitat utilization of school-size ABFT released between June and 

September near Point Pleasant, NJ and Chatham, MA.
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METHODS

Fishing Operations

Based on their availability school-size ABFT were captured by trolling lures or 

lure/bait combinations in waters offshore of Point Pleasant, NJ and Chatham, MA during 

the summer of 2012. The gear used ranged from 30 to 130 class reels with 50-2001b test 

monofilament or braided line rigged with a variety of terminal tackle, including spreader 

bars, daisy chains, cedar plugs, Slug-gos, and Islander/ballyhoo combinations. All 

terminal tackle was rigged with large “J” style hooks. ABFT were tagged from both 

charter and private recreational vessels. To avoid biasing the results of this study all 

decisions regarding the use of tackle and fishing methods were left to the captain and 

crew. It was common practice for charter vessels to keep the first school-size ABFT 

captured for the client. On private recreational boats the decision to tag or keep a fish was 

made by the captain and crew once the fish was close enough to the boat to determine its 

size. Typically, with small bag limits (1 or 2 fish) recreational fishermen do not want to 

keep school-size fish and were more likely to retain a large-school ABFT to fill their bag 

limit. This allowed me a greater ability to tag school-size ABFT on recreational boats 

than on charter vessels. A minimum of 30 minutes was maintained between consecutive 

tagging events to avoid oversampling a single school and potentially biasing the results 

based on the condition of that school.
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Tagging Methods

The use of animals in this study was approved under the Institutional Animal Care 

and Use Committee guidelines (IACUC-2011-07-11-7390-jegrav). All fish in this study 

were handled in a manner typical of the recreational fishery and care was taken not to 

instruct anglers in catching or handling methods. The first 20 school-size ABFT available 

for tagging (not retained by the vessels) were tagged with a minimum time interval of 

30min between consecutive tagging events. This time interval was used to reduce the 

likelihood of sampling more than one fish from a single school. All fish were brought 

into the vessel by lifting them over the gunwale by the terminal tackle or a lip-gaff, or by 

pulling them through a door in the transom of the vessel (tuna door). Fish were then 

placed directly on the deck or on a salt-water soaked towel and their eyes were covered 

with a damp cloth. This had the effect of calming the fish and minimized the chances of 

further injury. The hook was removed, the fish measured (CLJFL), and a PSAT tag was 

inserted into the dorsal musculature using a 10cm stainless steel applicator attached to a 

0.3m tagging pole. The tag anchor was inserted approximately 8cm deep into an area 

approximately 6cm posterior and 4cm ventral to the origin of the first dorsal fin (Figure

2). In this area the nylon tag anchor passed the pterygiophores that supported the dorsal 

fin and was firmly attached (Graves et al. 2002). After tagging, the fish was released.

Gear type, fight time, total time (hooking to release), hooking location, location and 

severity of bleeding, overall condition, GPS coordinates of release, date, and length were 

recorded for each fish.
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Tag Features

The HR X-Tag model PSAT from Microwave Telemetry, Inc. (Columbia, MD, 

U.S.A.) was used in this study. This tag is slightly buoyant, measures 12cm by 3.2cm, 

and weighs 40g in air. The body of the tag contains a lithium composite battery, a 

microprocessor, a pressure sensor, a temperature gauge, a light sensor, and a transmitter, 

all housed in a black, resin-filled, hermetically sealed, carbon-fiber tube rated to 

withstand pressures equivalent to 2,500m (>3,500psi). Flotation is provided by a resin 

bulb embedded with buoyant glass beads. This tag model is also equipped with an 

emergency release mechanism, which is triggered if the tag exceeds a depth of 1,250m, 

and a constant depth release function causing the tag to release from the animal if it 

remains at the same depth (+/-3m) for 4 days. The tags were programmed to record and 

archive a continuous series of temperature, light, and pressure (depth) data every five 

minutes for 31 days. Once released from the study animal, the tags transmit archived and 

real-time temperature, light, and pressure (depth) data to orbiting satellites of the 

Advanced Research and Global Observation Satellite (ARGOS) system.

PSATs were rigged for deployment with an assembly composed of 16 cm of 200- 

pound test monofilament fishing line attached to a large hydroscopic, surgical grade 

nylon intramuscular tag anchor (3.2cm long x 2.4cm wide). The monofilament was 

double crimped and covered with heat-shrink tubing according to the methods of Graves 

et al. (2002).
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Data Analysis

Survival of released ABFT was inferred by analyzing the time series of water 

temperature, pressure (depth), and light level measurements recorded by the PSATs. 

Healthy ABFT move up and down in the water column, changing depth and temperature 

over time, whereas, moribund fish typically sink to the bottom. Although rare, predation 

of the tag (and fish) may occur. In these situations an ingested tag will likely continue to 

record changes in pressure and temperature, but the day/night light cycle will not be 

apparent. Most angling-related mortalities of HMS appear to occur within 48 hours of 

release (Graves et al. 2002; Stokesbury et al. 2004; Wilson et al. 2005). Therefore, for the 

purposes of this study, five days of data were used as the threshold for including tags in 

the analysis of post-release survival.

Confidence intervals (95%) for estimates of post-release mortality were calculated 

using bootstrapping methods implemented in software developed by Goodyear (2002). 

Confidence intervals were calculated based on 10,000 bootstrap samples with an 

underlying release mortality of 0% for experiments containing 10-200 tags, assuming no 

tagging induced mortality, no tag shedding, and a natural mortality rate of 0.2.

Net movement was estimated as a minimum straight line distance between the 

point of tag deployment (fish release) and the first reliable position of the detached tag 

(ARGOS location codes 1, 2, or 3). Directions and magnitudes of displacements were 

generated using ArcGIS 10 (Esri, Redlands, CA).

Time-at-depth and time-at-temperature data were summarized into 10m and 1°C 

bins, for each individual, as described in Holland et al. (1990b). These data were then 

expressed as a fraction of the total deployment time and averaged across all individuals.
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Proportion of time at depth and time at cool temperatures were calculated for each 

individual during day and night time periods for each day of tag deployment. Data from 

all individuals were pooled to create a time series of data extending from the first tag 

deployment to the last tag release. Diel differences in the proportion of time at depth and 

the proportion of time at cool temperatures were investigated where day was defined as 

the midpoint between sunrise and sunset +/-3hrs and night was defined as the midpoint 

between sunset and sunrise +/-3hrs. Six hour intervals were chosen to define day and 

night to allow sufficient data to detect potential diel differences while leaving enough 

time between day and night intervals to reduce the correlation. Sunrise and sunset times 

were taken from the U.S. Naval Observatory website 

fhttp://aa.usno.navv.mil/faq/docs/RST defs.php).

The proportion of time at depth was defined as the time spent below 30m divided 

by the total time in any day or night period, given the drastic decrease in the proportion of 

time spent at depths exceeding 30m (Figure 3). The proportion of time at cool 

temperatures was defined as the time spent at temperatures five or more degrees cooler 

than SST based on school-size ABFT spending 90% of their time within 5°C of SST 

(Figure 4). A generalized linear model with repeated measures (GENMOD procedure in 

SAS, vers. 9.2, SAS Inst., Inc., Cary, NC) was used to analyze the proportion of time at 

depth and the proportion of time at cool temperatures. Repeated measures were used 

because multiple measurements were taken for each fish. The proportion of time at depth 

was analyzed using the following model:

Yjk= p +  y+aj+5(k)+pk+co+y*ak+8ijk
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where Yjk is the mean proportion of time spent across all fish, at depths exceeding 30m in 

area j, in time period (day or night) k The overall mean proportion of time at depth (the 

intercept) is p, y is the effect of fish length (cm), a is the area effect (MA or NJ), 8 is the 

effect of the calendar date which is nested in time period p (day or night), co is the effect 

of sea surface temperature (degrees C), and e is the random unexplained error. All effects 

were considered fixed. Potential interactions were examined based on their potential 

biological relevance and were investigated using the Quasilikelihood Information 

Criterion (QIC), which is analogous to AIC analysis for non-likelihood based estimators. 

Interactions that were investigated included time period and sea surface temperature 

(SST), fish length and SST, fish length and area, and fish length and time period. 

GENMOD uses a non-likelihood based estimator and therefore the “best” model was 

selected based on the lowest QIC value.

The proportion of time at cool temperatures was also analyzed using a generalized 

repeated measures model (GENMOD procedure in SAS, vers. 9.2, SAS Inst., Inc., Cary, 

NC). The statistical model fit to these data was:

Yjk=p+ Y+aj+8(k)+Pk+®+£ijk

where Yjk is the mean proportion of time spent across all fish at temperatures five or 

more degrees cooler than SST in area j at time period k. The overall mean proportion of 

time at cool temperatures is p. All other effects were the same as in the previous model.
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The potential interactions investigated with QIC analysis were the same as in the 

previous model.

Potential diel and crepuscular differences in the mean depth and temperature of 

waters occupied by school-size ABFT were also investigated. For the purposes of these 

analyses, crepuscular periods were defined as sunrise and sunset +/- 30min, mid-day was 

defined as the midpoint between sunrise and sunset +/- 30min, and mid-night was defined 

as the midpoint between sunset and sunrise +/- 30min. One hour intervals were used for 

each of the four time periods to reduce the likelihood of any crepuscular signals being 

dampened by including extraneous data. Differences in mean depth were analyzed using 

a general linear mixed model with repeated measures (MIXED procedure in SAS, vers. 

9.2, SAS Inst. Inc., Cary, NC). The data were loge-transformed to meet the assumption of 

homogeneity of variance (Logan 2010). To allow for the loge transformation 0.01 was 

added where the mean depth was equal to 0. Potential interactions, including time period 

and area, time period and length, length and area, and time period and tagging day, were 

addressed using Akaike Information Criterion (AIC) and the “best” model was selected 

using the lowest AIC value (Logan 2010). The mean depth occupied by individual fish 

during different time periods was modeled using a general linear mixed model with 

repeated measures of the form:

Y ijk=p-a+7+aj+5+pk+Y* oij+5*pk+£ljk

where Yjjkis the loge-transformed mean depth occupied by fish i, in area j, during time 

period k. The overall mean depth (intercept) is p, y is effect due to the length of the fish
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(cm), a is the area (MA or NJ) effect, 8 is the effect of calendar date, p is the effect of 

time period (dawn, day, dusk, night), and X is the random effect of individual fish. All 

factors were considered fixed except X.

The mean temperature occupied by school-size ABFT was also modeled using a 

general linear mixed model with repeated measures (MIXED procedure in SAS, vers. 9.2, 

SAS Inst. Inc., Cary, NC) of the form:

Y ijk=p+^+Y+aj+8+pk+8* pk+£ijk

where Yykis the mean temperature occupied by fish i, in area j, during time period k. The 

overall mean temperature occupied by school-size ABFT is p. All other effects are the 

same as in the previous model. The data were loge-transformed to meet the assumption of 

homogeneity of variance (Logan 2010). Potential interactions were investigated as in the 

previous model.

Diel differences in vertical excursions, defined as any movement resulting in the 

fish exceeding a depth of 30m, were characterized for each fish where day was defined as 

the midpoint between sunrise and sunset +/-3hrs, and night was defined as the midpoint 

between sunset and sunrise +/-3hrs. Vertical excursions for school-size ABFT were 

generally of short duration, therefore, a higher proportion of these excursions could be 

missed in the brief time periods of dawn and dusk. Due to this potential sampling error 

crepuscular periods were excluded from these analyses following Kerstetter et al. (2003). 

Diel differences in the vertical movements of school-size ABFT were examined using a
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generalized linear mixed model (GLIMMIX procedure in SAS, vers. 9.2, SAS Inst. Inc., 

Cary, NC) of the form:

Y ik=H+Pk+^+5+8ik

Where Yjk is the mean number of vertical excursions that fish i undertook in time period k 

(day or night). The overall mean number of vertical excursions is p (the intercept), X is 

the random effect due to individual fish, p is the time period (day or night), and 5 is the 

random effect due to tagging day. These data were assumed to have a negative binomial 

distribution.
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RESULTS

Tagging

Twenty PSATs were deployed on ABFT between June 19 and September 22, 

2012 off Point Pleasant, NJ (n=3) and Chatham, MA (n=17, Table 2). All 20 fish tagged 

with PSATs were caught on spreader bars with artificial squid rigged with large “J”
t

hooks. Fight times ranged from 4 to 11 minutes (7.5 +/-1.9min). Once fish were brought 

into the vessel the entire tagging process took between 0.5 and 4 minutes (1.7 +/-0.8min). 

Total time, from hooking to release, ranged from 5.5 to 12 minutes (9.1 +/-0.5min). Fish 

length was 91 to 119cm CLJFL (108.4 +/-1.9cm) and all fish were hooked externally, 

meaning the hook was visible and generally lodged in or around the buccal cavity. Ten 

percent (n=2) of the fish tagged in this study were hooked in the comer of the jaw, 20% 

(n=4) were hooked in the lower jaw, 55% in the upper jaw (n=l 1), and 15% in the orbit 

not puncturing the eye (n=3). The severity of bleeding was categorized as no bleeding, 

light bleeding, and heavy bleeding. Twenty percent (n=4) of tagged fish did not bleed, 

70% (n=14) had light bleeding around the hook wound, and 10% (n=2) were 

experiencing heavy bleeding, one from the orbit and one from the upper jaw, where it 

was hooked, and from the lower jaw, where it was lip-gaffed.

Nineteen of the 20 PSATs (95%) deployed in this study reported. Of these, four 

tags released prematurely after 6, 7, 16, and 26 days at large (Table 3). All 19 reporting 

tags remained attached for at least six days, exceeding our minimum time threshold of 

five days to be included in the analysis of post-release mortality. Fifteen tags remained
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attached for 31 days and the mean time of tag attachment for the 19 reporting tags was 

27.3 +/-1.9days. Tags transmitted between 34 and 100% of their archived data (84.8 +/- 

3.1%, Table 3). Excluding the four premature releases, the minimum straight-line 

distance traveled for tagged ABFT ranged from 44.4 to 402.5km (163.8 +/- 23.8km) 

during the 31 day tagging period (Table 3, Figure 5).

All ABFT tagged in June were caught near Point Pleasant, NJ. Two of these fish 

had net displacements of less than 65km (Figure 5) over deployment periods of seven and 

26 days, while the third individual (BFT-1) had a net movement in a northeasterly 

direction approximately 266km over 31 days. The remaining 16 fish were caught near 

Chatham, MA; five in August and 11 in September. Of the fish tagged in August, three 

had net displacements of less than 100km of the tagging site and moved in a northerly 

direction while two fish (BFT-4 and BFT-8) had net displacements of approximately 

207km and 118km, respectively, in a southwesterly direction. Fish tagged in September 

typically had longer displacements (172.4 +/- 30.8km). Nine fish had net displacements 

in a southerly direction while two (BFT-10 and BFT-11) had net displacements almost 

due east.

Based on visual inspection of the depth, temperature, and light profiles we 

inferred that all 19 individuals with reporting tags survived. The tag of BFT-16 (and 

possibly the individual) appears to have been consumed 12 days after release. This is 

evident from a visual inspection of the depth, temperature, and light profiles from the tag 

data (Figure 6). The depth profile reveals a fairly consistent vertical behavior for the 

duration of the tag deployment, while the temperature profile indicates an abrupt increase 

in temperature from ambient on October 2nd. From October 2nd to October 6th the
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temperature remained elevated and did not vary with depth. Concurrent with the increase 

in temperature was a decrease in light and a loss of day/night differences. These 

temperature and light data are consistent with the tag having been consumed by an 

endothermic organism. As this apparent predation event occurred 12 days after release of 

the fish it was not considered a fishing-related mortality for the purposes these analyses. 

Based on these data, survival of all 19 fish results in an estimated mortality rate of 0% for 

school-size ABFT released in the recreational troll fishery. The 95% confidence intervals 

for the post-release mortality of school-size ABFT in this study were calculated using the 

software developed by Goodyear (2002), using an underlying mortality rate of 0%, based 

on the estimate from the current study. Based on the results of 10,000 simulated 

experiments the confidence intervals for an experiment deploying 19 tags on school-size 

ABFT in the recreational troll fishery range from 0 to 10% (Figure 7)

Habitat Utilization

Using a generalized linear model with repeated measures we determined that the 

diel difference in the proportion of time spent at depth was marginally significant 

(X =3.48, P=0.06), with fish spending a higher proportion of time at depth during the day 

than at night. The proportion of time at depth increased through time (June to October, 

X2=7.39, P=0.02) regardless of time period (day: 0.014, CI=0.002, 0.027; night: 0.019, 

CI=0.005, 0.033), where Cl designates the upper and lower limits of the 95% confidence 

interval. The interaction between the length of the fish and the capture location was not 

significant in this model (x2=1.97, P=0.16) indicating that the behavior of ABFT of a 

given length was the same regardless of the capture location. Sea surface temperature was 

not a significant predictor of the proportion of time at depth (x =0.00, P=0.96).
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The proportion of time at cool temperatures decreased through time (June to 

October) at night (-0.02, CI=-0.03, -0.005) but did not change significantly during the 

day (-0.009, CI=-0.02, 0.002). Individual variation among fish was an important factor in 

determining the proportion of time spent at cool temperatures. The proportion of time 

individual ABFT spent at temperatures five or more degrees cooler than was not affected 

by SST (x2=1-35, P=0.25), fish length (xM -23, P=0.27), or location (x2=0.63, P=0.43), 

and did not differ between day and night periods (j^=0.41, P=0.52).

The interaction between fish length and area was significant in predicting mean 

depth (F=6.86, P=0.03). As fish length increased, the mean depth occupied by fish in NJ 

increased, whereas the mean depth occupied by fish in Massachusetts decreased with 

increasing length (Figure 8). However, it is likely that this is an artifact of the low sample 

size of fish captured in NJ because the slope is not significantly different from 0. The 

interaction of time period (dawn, day, dusk, night) and tagging day was significant 

(F=3.38, P=0.02). As time progresses, from the first tag deployment to the last day, the 

mean depth occupied by individual fish increased during all time periods, but the rate of 

increase was significantly slower at dawn (Figure 9) indicating school-size ABFT have a 

narrow depth preference during the shift from night to day. The individual variation 

among fish was an important factor in determining the mean depth fish occupied at 

different time periods.

The interaction of tagging day and time period was also a significant predictor of 

the mean temperature occupied by school-size ABFT (F=:2.88, P=0.04). During day, 

dusk, and night the mean temperature occupied by school-size ABFT decreased through 

time (from July to October). The opposite behavior was observed at dawn; mean
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temperature increased with tagging day (Figure 10). Length was not significant in 

predicting the mean temperature occupied by school-size ABFT (F=0.01, P=0.90) and 

there was no significant difference in the mean temperature inhabited by fish in 

Massachusetts or New Jersey (F=0.56, P=0.46). Individual variation among fish was a 

significant factor in determining the mean temperature occupied by school-size ABFT. 

There was a significant difference in the number of vertical excursions that occurred 

during day and night (F=33.2, P<0.0001), such that vertical excursions are more likely to 

occur during the day.
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DISCUSSION

Post-Release Mortality

We deployed 20 PSATs to estimate the post-release mortality rate of school-size 

ABFT caught in the recreational troll fishery. Nineteen tags reported and the data were 

consistent with the survival of those individuals. Early PSAT studies of post-release 

mortality typically considered non-reporting tags as no data, but in some cases included a 

more conservative estimate in which non-reporting tags were considered mortalities 

(Graves 2002; Kerstetter 2003). More recently, it has become the convention to count 

non-reporting tags as no data rather than as mortalities (Domeier et al.2003; Horodysky 

and Graves 2005). This is due to technological advances in current PSAT models with 

mechanisms to release tags from moribund fish, including a maximum pressure release 

mechanism and a constant pressure release. If a mortality were to occur one of these 

mechanisms would likely be triggered, causing the tag to release and the data would be 

consistent with a mortality. However, it is possible that a non-reporting tag could result 

from a predation event during which the tag was damaged (Kerstetter et al. 2004). 

Predation of tags and tagged fish is not uncommon and has been documented in several 

studies using both acoustic tags (Jolley and Irby 1979; Block et al. 1992; Peppered and 

Davis 1999) and PSATs (Kerstetter et al. 2004; Polovina et al. 2008; this study). 

Including non-reporting tags as mortalities would bias the estimated mortality rate 

upwards if tags fail to report for reasons other than catch-and-
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release induced mortality (Goodyear 2002). Therefore, the single non-reporting tag in this 

study was considered as no data rather than as a mortality.

Data from one tag in this study (BFT-16) were consistent with a predation event 

occurring 12 days after the fish was released. In this instance, the depth profile (number 

and nature of vertical movements) was fairly consistent throughout the 16 day 

deployment of the tag and did not show a noticeable change over that time, but the 

temperature and light data revealed a significant change at day 12 leading to the inference 

of a predation event. The temperature recorded by the tag increased abruptly from 

approximately 19°C to 25°C on day 12 (Figure 6) and did not vary with depth, as was 

noted in this fish prior to that date, but remained elevated over a four day period before 

rapidly dropping back to 19°C (Figure 6). Over this same time period the light sensor was 

not subjected to changes in light (i.e., there was no day/night signal over the four days). 

These observations are consistent with the tag, and potentially the fish, being consumed 

on day 12 and regurgitated on day 16. The putative internal temperatures recorded by the 

tag are too low for most marine mammals, which have body temperatures closer to that of 

humans (Kasting et al. 1989), but are within the range reported for some endothermic 

sharks. The tag predator, in this case, was most likely a mako shark (Isurus oxyrinchus) 

or a porbeagle shark (Lamna nasus), both of which are known to consume scombrids 

(Stillwell and Kohler 1982; Joyce et al. 2002) and maintain internal temperatures 7-10°C 

above ambient (Carey and Teal 1969).

It has been shown in several studies that the majority of angling or tagging related 

mortalities of HMS occur within minutes to hours after release (Stokesbury et al. 2004; 

Horodysky and Graves 2005; Wilson et al. 2005). These mortalities are likely due to
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hook-induced tissue damage and bleeding, or the overall stress of the capture and tagging 

events. The inferred predation of BFT-16 occurred 12 days after release and we assume 

that this predation was not directly related to the capture and tagging of the fish.

The results of this study indicate that all 19 fish whose tags reported survived for 

a minimum of six days, yielding a post-release mortality rate of 0% (CI=0%, 10%; Figure 

7). The mortality rate for the current study is lower than that inferred based on hook 

location for juvenile ABFT (63-13 lcm curved fork length) caught on natural baits rigged 

with either circle hooks (4%) or “J” hooks (28%, Skomal et al. 2002). The fishing method 

used by Skomal et al. (2002) to catch juvenile ABFT is very different from high-speed 

trolling which was employed in this study. Fish are more likely to swallow the bait in a 

fishery involving chunking or when baits are dropped back during slow trolling, as in the 

white marlin and sailfish fisheries (Graves and Horodysky 2010). In these types of 

fisheries the fish has more time to consume the bait before the hook is set, increasing the 

chances of deep-hooking which can result in damage to vital tissues and organs. In high 

speed troll fisheries, the target species often attacks the bait more aggressively, often 

hooking itself, with the hook lodging in or around the mouth (Graves and Horodysky 

2010, this study).

In the only study of post-release mortality of ABFT, Stokesbury et al. (2011) used 

PSATs to investigate the post-release mortality of giant ABFT (114-455kg) in the Gulf of 

St. Lawrence, off the coast of Prince Edward Island, Canada. Their study focused on an 

experimental recreational fishery in which experienced anglers used the chunking method 

of fishing and rigged the baits with custom-made, barbless circle hooks. Sixty fish were 

caught in this study, one of which was dead upon inspection at the boat. Of the 59 tags
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deployed, four did not report and two transmitted data consistent with mortality of the 

tagged ABFT. The estimated mortality rate for this experimental fishery when removing 

the non-reporting tags from analyses and including the fish that died before tagging as a 

mortality was 5.6% (three mortalities out of 55 individuals). It should be noted that this 

value may underestimate the true mortality rate of the fishery if inexperienced anglers 

and captains were to participate.

The current study provides the first estimate of post-release mortality for school- 

size ABFT caught under normal recreational fishing conditions (0%, CI=0%, 10%). This 

study was limited by a small sample size (19 reporting tags) and it is likely that the true 

post-release mortality rate is greater than 0%. The 95% confidence interval of 0-10% 

mortality calculated for our results is smaller than that of Stokesbury et al. (2011),1 .7- 

13.6%despite the lower sample size in our study. This is due to the absence of observed 

mortalities in the current study versus the three mortalities (two inferred, one observed) in 

Stokesbury et al. (2011). If a single mortality had been inferred in this study it would 

change the estimated post-release mortality rate to 5.3% and greatly expand the 

confidence interval to between 0 and 21%. To obtain a more precise estimate of post

release mortality of school-size ABFT caught in the recreational troll fishery, more 

PSATs would need to be deployed. Based on simulations using an underlying mortality 

rate of 0% as estimated by this study, a minimum of 60 tags would be required to reduce 

the confidence intervals to within 5% of the true mortality rate. If the mortality rate is 

closer to that seen with a single mortality (5.3%) it would require a minimum of 200 tags 

to reduce the confidence .intervals to within 5% of the true mortality rate. With the current 

cost of PSATs near $4,000 it may not be feasible to explore the post-release mortality
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rate of school-size ABFT in the recreational troll fishery to the extent necessary to obtain 

a high-precision estimate.

Using the confidence interval of 0-10%, the post-release mortality calculated in 

this study, and the number of releases of school-size ABFT in the U.S. recreational 

fishery from 2002 to 2010 based on estimates from the LPS, it is possible to estimate the 

upper and lower limits of school-size ABFT that would have died after release. There 

would have been an additional mortality of 0 to 2,147 ABFT per year between 2002 and 

2010 (Table 4). For comparison, the recreational landings of ABFT in those years ranged 

between 1,450 and 10,848 school-size ABFT (Table 4) indicating that when compared 

with the landings of school-size ABFT, post-release mortality does not represent a 

significant source of fishing mortality.

Habitat Utilization

To date, only three studies have focused on the movement and habitat utilization 

of juvenile ABFT. Yamashita and Miyabe (2001) found that juvenile ABFT in the 

Mediterranean spent the majority of their time in the top 50m of the water column but 

made excursions exceeding 700m. Brill et al. (2002) reported that juvenile ABFT in the 

western Atlantic spent -90% of their time in the top 15m of the water column but 

exploited depths exceeding 160m. Similarly, Galuardi and Lutcavage (2012) found that 

juvenile ABFT spent the vast majority of their time in the upper 20m of the water column 

while making periodic excursions to depths up to 800m. Data from the current study 

indicated a similar trend in the proportion of time at depth with juvenile ABFT spending 

67% of their time in the top 20m of the water column and 90% of their time in the upper
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40m of the water column, while occasionally making excursions to depths exceeding 

190m. These studies clearly demonstrate that while juvenile ABFT are capable of 

exploiting depths exceeding 150m they spend the majority of their time at relatively 

shallow depths. The four studies of habitat utilization of juvenile ABFT indicate similar 

behaviors for this size range of fish (70-168cm FL). However, there are a few differences 

in depth and temperature utilization which may be due to factors such as location, time of 

year, the recording frequency of the devices used to gather data, or a combination of 

factors.

Roffer (1987) found that the distribution of juvenile ABFT is related to water 

temperature and that these fish appear to have a preferred temperature range between 18 

and 23°C. School-size ABFT in the current study spent 80% of their time between 17 and 

24°C (Figure 11). This temperature range is comparable to juvenile ABFT tagged off of 

Virginia Beach, VA which spent -90% of their time in waters exceeding 20°C (Brill et al. 

2002). While ABFT in the current study frequently experienced temperature changes of 

greater than 10°C over short time intervals, consistent with the findings of Brill et al. 

(2002), the fish spent 90% of their time within 5°C of sea-surface temperature (Figure 4).

The behavior of juvenile ABFT in the current study is similar to that reported for 

adult ABFT in several studies. Both juvenile and adult ABFT spend the majority of their 

time in the upper portion of the water column at relatively warm temperatures. However, 

tagged adult ABFT have been recorded at depths exceeding 1,000m and temperatures as 

cold as 3°C (Block et al. 2001; Teo et al. 2007) indicating a greater temperature range 

than that seen in juvenile ABFT. Adult ABFT tagged with either acoustic tags (Lutcavage 

et al. 2000) or PSATs (Stokesbury et al. 2004; Wilson et al. 2005) spent at least 50% of
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their time in the top 20m of the water column and the majority of their time at 

temperatures between 15 and 26°C. The difference in the range of temperatures exploited 

by adult and juvenile ABFT may be related to the development of endothermy in tunas. 

Endothermy is developed in the juvenile stages of tunas (Dickson 1994). It is 

accompanied by increases in the ability to produce and retain metabolic heat, and is 

correlated to changes in body shape (Graham and Dickson 2001). As tunas grow there is 

a decline in the ratio of surface area to volume and an increase in girth leading to a higher 

thermal inertia for larger fish (Graham and Dickson 2001). In addition, the red muscle of 

large tunas is more protected from the water than in small tunas, potentially decreasing 

the rate at which heat is lost (Graham and Dickson 2001). These observations were 

supported by data gathered from archival tags deployed on bigeye tuna in the Pacific 

Ocean. A bigeye tuna measuring of 131cm FL returned to the surface to thermoregulate 

approximately half as frequently as a fish measuring 79cm FL (Musyl et al. 2003) 

indicating a potential link between size and the ability to retain metabolic heat in tunas.

The results of the current study indicate that school-size ABFT spent a higher 

proportion of time at depth during the day than at night but there was no diel difference in 

the proportion of time spent at cool temperatures. The observation of mean depths 

corresponds to the results of Wilson et al. (2005) in adult ABFT, but contrasts with the 

studies done by Brill et al. (2002) and Galuardi and Lutcavage (2012), both of which 

indicated that there were no diel differences in the distribution of depths or temperatures 

experienced by juvenile ABFT. The difference between the studies of juvenile ABFT 

could be due to differing oceanographic conditions between locations or time of tagging, 

both time of year and different years. In addition, there may be differences in the
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availability of prey species that affected the distribution of juvenile ABFT over the time 

of tag deployment.

Mean depths and temperatures of school-size ABFT were not different through 

time for all time periods except dawn in the current study. The lack of diel differences in 

mean depth and temperature contrasts with the results reported for adult ABFT by 

Stokesbury et al. (2004), who reported deeper mean depths at night than during the day. It 

is likely that this behavior was not related to feeding as closely related species such as 

Pacific bluefin tuna (Thunnus orientalis) appear to have poorer low-light vision than 

other marine fishes (Ishibashi et al. 2009; Matsumoto et al. 2009; Matsumoto et al. 2011; 

Torisawa et al. 2011) and are presumed not to feed at night (Kitagawa et al. 2007). 

However, tunas may feed on nights near the full moon when it is likely that light 

penetrates further into the water column as several studies have documented an effect of 

lunar phase on nighttime depth distributions of various tuna species (Schaefer and Fuller 

2002; Musyl et al. 2003; Wilson et al. 2005; Bestley et al. 2009).

Crepuscular differences in mean depth and temperature of school-size ABFT have 

not been investigated in previous studies but the data from the current study indicate that 

mean depth at all time periods increased as time progressed from June to October. The 

rate of increase was slower for the dawn time period relative to all other time periods 

(Figure 9). Mean temperature decreased slightly through time (June to October) in all 

time periods except dawn, which increased slightly. The increase in mean depth with 

only a slight decrease in mean temperature is indicative of an increased mixed surface 

layer. This increase in the depth of the mixed layer may be due to storms mixing the 

water column in the latter portion of this study.
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The number of vertical excursions undertaken by school-size ABFT was greater 

during the day than at night. This may be linked to the highly visual nature of ABFT as 

predators. Tunas have the highest retinal cell density in the ventro-temperal region 

demonstrating that their best visual axis is up and forward (Tamura and Wisby 1963; 

Kawamura et al. 1981; Somiya et al. 2000) indicating that they are most likely to attack 

potential prey that are silhouetted by downwelling light from below. It follows that ABFT 

would be more likely to make excursions to depth during the day when downwelling light 

is at its greatest and they are more likely to see prey items as silhouettes against a bright 

background.

The four studies of western Atlantic juvenile ABFT habitat utilization reveal 

similar behavioral patterns although there are some minor differences among the studies 

which are likely due to variation in the spatial and temporal coverage of these studies, as 

well as variation in prey availability. The data from these studies indicate juvenile ABFT 

are surface oriented, spending the majority of their time in the upper 20-30m of the water 

column and in waters greater than 18°C during the summer (Yamashita and Miyabe 

2001; Brill et al. 2002; Galuardi and Lutcavage 2012; this study).
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Conclusions

Bluefin tuna are an important commercial and recreational resource throughout 

the North Atlantic Ocean. Recent stock assessments indicate that the biomass of the 

western stock of ABFT is approximately 19% of that necessary for maximum sustainable 

yield based on the high recruitment model (SCRS 2012). Despite management measures 

introduced over the past 20 years, including a minimum size and decreasing TACs, little 

recovery has been observed in the western Atlantic stock and overfishing is still 

occurring (SCRS 2012). Bag limits within the U.S. recreational fishery have been 

reduced over the last 20 years resulting in a recreational fishery that is largely catch-and- 

release. This has led to concerns regarding the fate of the high numbers of juvenile ABFT 

released from the recreational fishery. In light of these concerns this study investigated 

the post-release mortality of school-size ABFT caught using the most common method in 

the U.S. recreational fishery, trolling. Although somewhat limited by a small sample size 

of PSATs, the results of this study suggest the post-release mortality of school-size ABFT 

caught using trolling methods is relatively low and is likely not a major contributor to the 

overall fishing mortality of ABFT.

The recreational fishery uses methods other than trolling, including chunking, 

jigging, sight casting, and fly fishing (see Appendix 1). While trolling appears to result in 

a low post-release mortality rate other methods of recreational fishing will likely have 

different rates of post-release mortality. Therefore, it would be beneficial to investigate 

the effects of different fishing methods, gear types (circle versus “J” hooks), and fight
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times on the post-release mortality of ABFT. Different size classes of ABFT may also 

incur different mortality rates (Stokesbury et al. 2011) and this merits investigation. Other 

interactions with recreational fishing gear may also contribute to the overall fishing 

mortality of ABFT. Many ABFT interact with fishing gear but are not caught and these 

interactions probably results in another form of cryptic fishing mortality which should be 

investigated.

The results of this study, in conjunction with previous investigations (Yamashita 

and Miyabe 2001; Brill et al. 2002; Galuardi and Lutcavage 2012), provide insights into 

the habitat utilization of juvenile ABFT. Given the small sample size and limited spatial 

and temporal coverage the results of this study should only be applied to school-size 

ABFT offshore of New Jersey and Massachusetts during the summer. The higher 

frequency of dives and the increased proportion of time spent at depth during the day, in 

concert with studies of tuna vision (Ishibashi et al. 2009; Matsumoto et al. 2009; 

Matsumoto et al. 2011; Torisawa et al. 2011) suggest that juvenile ABFT are well-suited 

to foraging in areas where prey are likely to be backlit by the downwelling sunlight. 

Therefore, while ABFT are likely to forage in near-surface waters, the high proportion of 

time spent there is probably related to foraging, thermoregulation, or other reasons.

There have been several studies on the movements and habitat utilization of adult 

ABFT, however, juvenile ABFT habitat utilization has not been well studied. It is 

important to better understand the habitat utilization of juvenile ABFT in order to avoid 

potential interactions with commercial fisheries such as the longline fishery which has
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historically discarded large numbers of ABFT. To date, data have been recovered from 

25 PSATs deployed on school-size ABFT, 19 large-school ABFT, and 1 small-medium 

ABFT with limited spatial and temporal coverage. While acoustic and internal archival 

tags have been deployed within these size classes, short tracks and a small sample size for 

acoustic tags, and low tag returns for internal archival tags have resulted in less 

information than anticipated. Therefore, the habitat utilization of juvenile ABFT requires 

additional investigation to elucidate differences in behavior between different size 

classes, areas, and times of year.
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APPENDIX 1: History of the ABFT Fishery (Last 30 Years)

In order to gain insight into how the recreational ABFT fishery has changed over 

the last 30 years five captains with a minimum of 13 years of experience in the ABFT 

fishery were interviewed. These captains represented areas with historically high landings 

of ABFT: Cape Cod, MA (n=2), Point Judith, RI (n=2), and Ocean City, MD (n=l).

While there is some regional variation in the methods used to target school-size ABFT, 

trolling lures seems to be the dominant method, followed by chunking, the process of 

drifting baited hooks while chumming, though several captains mentioned that jigging 

and sight casting are both increasing in popularity. The methods used by the captains 

often depend on the behavior of the fish. Typically, early in the season when ABFT are 

dispersed, captains troll lures almost exclusively to cover a large area during the day and 

increase the odds of encountering fish. When ABFT begin to congregate on schools of 

bait, chunking and jigging methods are used increasingly. Different methods are also 

used to target different size classes of fish. Trolling is most commonly used for smaller 

ABFT (school and large-school) while chunking is common for larger fish (large- 

medium and giant), especially in Massachusetts. However, captains noted that all size 

classes can be caught using any method.

Several captains noted that there have been small but significant changes in the 

types of gear used in the ABFT fishery including smaller sized terminal tackle and a 

larger variety of lures. These changes also include the use of fluorocarbon line and 

leaders, which typically have a smaller diameter while maintaining the strength of
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monofilament. Fluorocarbon line is also virtually clear making it difficult for fish to see. 

The materials typically used to manufacture rods have also shifted from fiberglass to 

graphite and reels have become smaller and lighter.

The most significant change in the ABFT fishery in the last 30 years is probably 

the increasingly strict regulations placed on charter and recreational captains. The 

captains interviewed for this study generally believe that the current bag limits for ABFT 

have decreased the interest of clients in targeting ABFT. This tends to have two effects, 

1) a decrease in the number of trips targeting ABFT and 2) once the bag limit is reached 

the charter shifts their focus to other species. One captain indicated that in the last 20 

years the number of ABFT trips that he charters has decreased from 30 to 40 trips per 

year to two or three trips per year.
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Table 1. Size classes of Atlantic bluefin tuna. Lengths and weights were obtained from 
the Atlantic Bluefin Tuna Status Review Team (2011). Ages were obtained from 
Restrepo et al. (2010). Retention of young-school bluefin tuna is prohibited and the large- 
medium and giant size classes are considered “trophy” fish in the recreational fishery.
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Size Class
Length

(cm)
W eight

(kg)
Age

(Years)
Young School <69 <6.4 <2

School 69-<119 6.4-<30 2-4
Large School 119-<150 30-<62 4-6

Small
Medium 150-<185 62-<107 6-9

Large
Medium 185-<206 107-<141 9-11

Giant >206 >141 >11
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Table 2. Catch information for 20 school-size ABFT caught by trolling in the U.S. 
recreational fishery and tagged with PSATs in the summer of 2012. Deployment location 
NJ is off of Point Pleasant, NJ and MA is off of Chatham, MA.
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Table 3. Deployment and reporting dates of 20 PSATs deployed on school-size ABFT 
caught by trolling in the U.S. recreational fishery during the summer of 2012. Asterisks 
indicate tags that released prematurely.
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Fish Deployed Reported
Days

Deployed
%

Data Straight Line Distance (km)
1 6/19/2012 7/19/2012 31 79 266.1

2* 6/19/2012 6/29/2012 7 34 36.4
3* 6/19/2012 7/15/2012 26 86 62.1
4 8/2/2012 9/2/2012 31 89 207.3
5 8/2/2012 9/2/2012 31 85 44.4

6* 8/2/2012 8/8/2012 6 100 59.4
7 8/4/2012 9/4/2012 31 80 97.9
8 8/29/2012 9/28/2012 31 89 118.0
9 9/12/2012 10/12/2012 31 86 134.6
10 9/12/2012 10/12/2012 31 86 109.6
11 9/14/2012 10/14/2012 31 88 48.6
12 9/14/2012 10/14/2012 31 87 245.1
13 9/15/2012 10/15/2012 31 87 402.5
14 9/15/2012 10/15/2012 31 88 189.9
15 9/15/2012 10/15/2012 31 91 121.3

16* 9/21/2012 10/6/2012 16 98 18.0
17 9/21/2012 10/21/2012 31 89 169.8
18 9/22/2012 10/22/2012 31 90 116.4
19 9/22/2012 10/22/2012 31 80 185.8
20 9/22/2012 Did Not Report
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Table 4. Large Pelagics Survey estimates of the number of school-size ABFT landed and 
released from the U.S. recreational fishery each year (2002-2010) and the number of 
mortalities associated with either a 5% or 10% post-release mortality rate.
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Year Landings Releases Morality Rate
5% 10%

2002 10363 3252 163 325
2003 7589 2007 100 201
2004 10848 16962 848 1696
2005 7663 21469 1073 2147
2006 1450 8222 411 822
2007 6086 6902 345 690
2008 3014 4923 246 492
2009 2573 2100 105 210
2010 1836 4378 219 438
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Figure 1. Landings of Atlantic bluefin tuna in the U.S. recreational fishery by year 
estimated by the Large Pelagics Survey. Years 2004 and 2005 represent typical landings 
with most individuals within the school size-class. The reduced landings over all size 
classes in 2006 were due to a shortened open season because the United States was in 
danger of exceeding its quota of undersized ABFT in the fourth year of the four-year 
management period. Years 2004 to 2009 show the 2003 year class progressing through 
the recreational fishery size classes and into the commercial size range (> 185cm curved 
lower jaw fork length).

54



Fre
que

ncy
 (

No
. F

ish
)

2004  

M easured  n * 2 8 3

2 0 0 5  

Measured n -  3 4 1

2 0 0 7  

M ea su r e d  0  = 2 7 1

2 0 0 8

M e a su r e d  n  =  36 1

2 0 0 9  

M e a su r e d  0  =  2 1 1

2010 

M e a su r e d  o  =  174

2011

M ea su r e d o  =  128

69cm 150cm119cm

CLJFL (cm)

55



Figure 2. Tagging of school-size Atlantic bluefin tuna. The tag anchor was implanted 
into the dorsal musculature posterior and ventral to the anterior insertion of the first 
dorsal fin as indicated by the arrows.
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Figure 3. The proportion of time spent at depth in 10-meter bins pooled across all school- 
size Atlantic bluefin tuna. The vast majority of time, between June and October, was 
spent in the top 30 meters of the water column.
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Figure 4. The proportion of time spent at temperatures relative to sea surface temperature 
pooled across all school-size Atlantic bluefin tuna. School-size ABFT spent ninety 
percent of their time within 5°C of sea surface temperature.
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Figure 5. Tagging and pop-up locations of PSATs deployed on school-size Atlantic 
bluefin tuna during the summer of 2012. Tagging and pop-up locations are denoted by 
the yellow circles and red squares, respectively. The distance traveled by each fish is 
indicated by the purple lines for fish released in June, green lines for August, and red 
lines for September).

62



<§> Deployed Month Deployed
■  Pop-up  June
1 Fish ID  August

 September

Kilometers

63



Figure 6. Depth, temperature, and light profiles for BFT-16, a school-size Atlantic 
bluefin tuna, over the 16 day pop-up satellite archival tag deployment period. The data 
are consistent with the tag (and possibly the fish) being consumed. Note an abrupt 
increase in temperature on October 2nd (day 12), and a lack of variation in temperature 
with depth after that date. On October 2nd there was a loss of the day/night cycle. These 
data are consistent with predation by an endothermic predator, most likely a shark.
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Figure 7. Confidence limits around the estimated post-release mortality rate of 0% with 
varying numbers of tags deployed; confidence intervals were estimated following 
Goodyear (2002).
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Figure 8. The interaction of fish length and area for the mean depth occupied by school- 
size Atlantic bluefin tuna. Mean depth increased with fish length in NJ but decreased 
slightly with increasing length in MA. Log units of 0 to 4 correspond to depths of 0 to 25 
meters. This interaction, while statistically significant is likely not of biological 
significance as cardiac function of tunas is dependent on ambient temperature which 
decreases with depth and is not dependent on the size of the fish.
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Figure 9. The interaction between time period (dawn, day, dusk, night) and tagging days 
for the mean depth occupied by school-size Atlantic bluefin tuna. As tagging days 
increased mean depth also increased. The rate of increase was slower for dawn than all 
other time periods. Loge units of -1 to 4 correspond to depths of 0.3 to 40 meters.
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Predicted Effect of Date*Time Period on Mean Depth

  day, slope=0.022, P<0.05
  dusk, slope=0.024, P<0.05
  night, slope=0.018, P<0.05



Figure 10. The interaction of time period (dawn, day, dusk, night) and tagging day for 
mean temperature occupied by school-size Atlantic bluefin tuna. As tagging days 
increased the mean temperature decreased for all time periods except dawn, which 
increased. Loge units of 2.7 to 3.1 correspond to temperatures of 15 to 22°C.
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Figure 11. The proportion of time spent at temperature in l°C-bins pooled across all 
school-size Atlantic bluefin tuna. The majority of time, between June and October, was 
spent between 18 and 24°C.
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