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ABSTRACT

With the recent growth of the hard clam aquaculture industry, sites of intensive 
aquaculture have emerged as large-scale agro-ecosystems where the success of 
aquaculture production is dynamically linked to ecosystem function. Large scale clam 
aquaculture operations are associated with a range of potential positive and negative 
feedbacks related to nutrient dynamics, water and sediment quality, proliferation of 
macroalgae, and carrying capacity. Quantitative modeling tools are needed to support 
system-level planning related to site selection, scale of operations, production capacity 
and ecosystem function. The purpose of this study was to develop a model for 
Cherrystone Inlet, VA, where one-third (1.9 km2) of the sub-tidal bottom area is held as 
37 separate, private shellfish leases with an estimated 100-150 million cultured clams.
A reduced complexity estuarine ecosystem model was coupled with a hard clam 
energetics and growth model and a watershed loading model. The linked models 
facilitate ecosystem-based management and enable regional spatial planning in a full 
ecosystem context, through coupled simulations of aquaculture activities, land use 
changes, nutrient loading, climate change, and estuarine response. Modeled output for 
hard clam growth and water column chlorophyll-o, dissolved oxygen, and dissolved 
inorganic nitrogen and phosphorous reproduced in situ data. Simulations with 
increasing clam numbers up to 500 million resulted in diminishing returns in terms of 
reduced growth rates, increased time to harvestable size, and reduced harvestable 
biomass, confirming observations by Cherrystone farmers of reduced clam growth rates 
above 200 million cultured clams. Modeled hard clam production capacity decreased in 
the absence of benthic microalgal resuspension (6%) and without the input of external 
production from the Chesapeake Bay (41%), and increased in simulations with increased 
water column chlorophyll-o (11%) and the removal of predator exclusion nets (13%). 
Simulations to optimize siting indicated that the highest hard clam growth rates 
occurred up-estuary. Model simulations with changes in land use and climate indicated 
that clam growth is most sensitive to increasing temperature, with rates decreasing by 
37% when temperatures were increased by 5°C, while changes in land use, sea level rise 
and salinity did not result in large changes in hard clam production. At the system scale 
hard clam aquaculture was predicted to account for 14% of total nitrogen inputs to the 
water column between sediment recycling of clam feces (13%) and direct clam excretion 
(1%). The Cherrystone ecosystem model fills a critical gap on the Eastern Shore of 
Virginia and in similar coastal systems, providing resource managers with the most 
current available science in a decision-support framework to promote effective regional 
spatial planning and sustainability of hard clam operations and the surrounding coastal 
ecosystems.
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1.0 INTRODUCTION

Global aquaculture in marine and estuarine waters has grown by an average of 

8.8% in the last three decades (FAO 2012). This large growth in global production of 

farmed fish has been driven by demand from human consumption, in a time when 

global wild catch is declining largely due to an increasing percentage of overexploited 

fish stocks and a decreasing percentage of healthy stocks. Bivalve aquaculture makes up 

20% of the total farmed fish product in North America and increased from 2M to 12M  

tons per year worldwide since 1980 (FAO 2012).

Hard clam (Mercenaria mercenaria) harvest in North America has existed since 

pre-colonial times and has grown substantially within the last century, largely attributed 

to stability of the hard clam fishery due to the longevity and relatively slow growth rate 

of the species (Mackenzie et al. 2001). Commercial aquaculture operations of the hard 

clam in the Chesapeake Bay region were not fully established until the 1950s, when the 

previously dominant fishery of the Eastern oyster (Crassosterea virginica) collapsed due 

to extensive overfishing and disease. Hard clam aquaculture thrives in the relatively 

saline waters along the Delmarva (Delaware-Maryland-Virginia) Peninsula, with the 

Virginia hard clam aquaculture industry now generating between $22M and $34M in 

annual revenues (Hudson and Murray 2014).

Hard clam aquaculture on the Eastern Shore of Virginia is dominated by large- 

scale industry operations occupying many of the bay-side tributaries and ocean-side
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lagoons. Clams are planted and grown to market size (~40 - 60 mm shell length) on the 

estuarine sediment surface in privately leased plots under predator exclusion nets to 

avoid predation by crabs, rays, birds, and other large marine species. This study is 

focused on Cherrystone Inlet, VA, a tidal tributary of the Chesapeake Bay on the 

western side of the Delmarva Peninsula (Figure 1), where over one third of the sub-tidal 

bottom is covered with over 800 privately leased clam beds which are planted at 

densities of 600-800 clams per m2.

Critical evaluation of the sustainability of the hard clam industry requires 

quantitative assessment of multiple factors including clam carrying capacity at the 

system scale, nutrient dynamics within and adjacent to the clam beds, effects relating to 

predator exclusion methods, and disease dynamics (NRC (National Research Council) 

2010). In recent years, the industry has reported slower growth rates in some grow-out 

areas, which translates to a longer time for the clams to reach market size (Condon 

2005). Condon (2005) developed a carrying capacity model to predict that system-level 

clam production in Cherrystone Inlet was near exploitation carrying capacity with clam 

growth potentially food limited for part of the growing season. Additionally, the 

predator exclusion nets, which are designed to protect growing clams from predation 

mortality, were reported to have negative effects on clam feeding rates by reducing 

suspended particulates available to the clams (Condon 2005). These predator exclusion 

nets may have a detrimental effect on clam feeding, either by interfering with clam 

suspension feeding directly, or by indirectly modifying the benthic environment and 

negatively affecting clam growth.
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Feedbacks associated with the benthic environment, particularly nutrient and 

oxygen dynamics, can indirectly affect hard clam growth at the clam bed scale. Large- 

scale aquaculture operations promote enhanced biodeposition and excretion from hard 

clams which have the ability to alter nitrogen cycling processes at the sediment-water 

interface (Bartoli et al. 2003, Viaroli et al. 2010, Kellogg et al. 2013). With increasing 

hard clam densities and restricted water flow from the presence of predator exclusion 

nets, alterations in nitrogen cycling processes have the ability to promote retention of 

nitrogen within the system, further promoting growth of macroalgae (Ulvo and 

Gracilaria) (Bartoli et al. 2003), which have been suggested to further reduce clam 

growth rates (Newell et al. 2002, Viaroli et al. 2010). Secrist (2013) found that 

macroalgal proliferation associated with predator exclusion nets can potentially affect 

the availability of food sources to the cultured clams by acting as a barrier restricting 

water flow. Since the dominant primary producers within shallow coastal systems can 

vary spatially and temporally (Viaroli et al. 2010), it is also important to consider 

multiple sources of food (phytoplankton, benthic microalgae (BMA), and macroalgae) 

that may be available for clam production throughout the year.

Holistic assessment of hard clam aquaculture sustainability in coastal systems 

must also take into consideration effects of watershed nutrient loading and climate 

change (Najjar et al. 2010, Kremer and Pinckney 2011, Ingram et al. 2013). Increased 

nutrient loading from the watershed has the ability to impact aquaculture operations 

indirectly by increasing the rate of supply of organic matter to coastal systems, defined 

as coastal eutrophication (Nixon et al. 1995, Nixon 2009), which presumably increases

4



the food supply for cultured clams. Alternatively, decreases in allochthonous inputs of 

nutrients could reduce the organic matter supply, a process defined as 

oligotrophication, which may ultimately reduce the food supply to the benthos including 

filter feeding bivalves (Nixon et al. 2009). In addition to these bottom-up effects of 

watershed loading, large scale aquaculture operations may have the ability to exert a 

top-down control on eutrophication by utilizing the increased primary production as a 

food source, effectively increasing water clarity (Cloern 1982, Cloern 2001, Grail and 

Chauvaud 2002). Moreover, this filtration of phytoplankton may alter the relative 

presence of primary producers in the system by creating adequate water quality 

conditions to promote enhanced benthic primary production by BMA and macroalgae 

(Cloern 2001, Bartoli et al. 2003, Viaroli et al. 2010). However, some studies have 

postulated that shellfish species, especially clams, may actually increase ecosystem 

deterioration through localized eutrophication by not only enhancing inorganic nutrient 

regeneration through the decomposition of clam biodeposits, but also by providing a 

hard substrate to which macroalgae can attach (Bartoli et al. 2003, Condon 2005, Viaroli 

et al. 2010).

Ongoing climate change as manifested by increases in temperature and sea level 

(and in turn salinity) (Najjar et al. 2010) will further alter primary production and 

therefore clam food supply, clam physiology, and feedbacks associated with 

biogeochemical buffers (Ingram et al. 2013). Lake and Brush (in press) found that 

modeled primary production and ecosystem metabolism in the polyhaline York River 

estuary, VA decreased in the summer and fall in simulations with increased
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temperatures, suggesting a decrease in food availability for clams with warming. 

Increased water temperatures are expected to have a large effect on the physiology of 

shellfish species, leading to changes in metabolism, reproduction, and species 

distribution within marine and estuarine environments (Ingram et al. 2013). Sea level 

rise is expected to have the greatest impact on aquaculture in shallow coastal estuaries 

such as Cherrystone Inlet by shifting the distribution of established oyster reefs and the 

productivity and accessibility of privately leased aquaculture operations (Ingram et al. 

2013). Changes in sea level rise are also expected to increase salinity and modify 

estuarine salinity gradients (Najjar et al. 2010), potentially altering shellfish species 

distribution and estuarine circulation (Hilton et al. 2008). Climate change is also 

expected to alter the timing and magnitude of freshwater delivery to coastal systems, 

which could further alter rates of watershed loading, salinity gradients, and flushing 

time (Herman et al. 2007, Najjar et al. 2010).

To holistically assess the production capacity of hard clam aquaculture 

operations at the ecosystem level as a function of density, land use, and climate change, 

this work developed and implemented a reduced complexity ecosystem model (Brush 

2002, 2004, 2013, Lake and Brush in press) coupled with a hard clam bioenergetics and 

growth model (Hofmann et al. 2006, Wiseman 2010) and a watershed nitrogen loading 

model (Giordano et al. 2011). The linked model was used to address the following 

objectives: (1) to evaluate the sustainability of the hard clam aquaculture industry in 

Cherrystone Inlet, and (2) to assess the resiliency of hard clam growth metrics and 

ecosystem function. These objectives were addressed through simulations with
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increasing clam populations under changes in system food availability, land use and 

climate. The estuarine ecosystem model used in this study will ultimately be served as a 

dynamic online interface to assist managers, planners, and industry personnel in 

fostering a sustainable aquaculture industry within a resilient ecosystem.

2.0 METHODS

2.1 Site Description

Cherrystone Inlet is a shallow tidal system in lower Chesapeake Bay (Figure 1). 

One-third (1.9 km2) of its sub-tidal bottom area is reserved as 37 separate private 

shellfish leases with an estimated 100-200 million cultured clams (Anderson and Brush 

2012). Cherrystone Inlet is composed of a central basin and five principal creeks 

covering an area of 5.6 km2, with an average depth of 1.1 m at mean sea level. The 

basin volume at high tide is 8.8 x 106 m3 and the volume of the time-averaged tidal 

prism is 4.4 x 106 m3. The inlet is a well-mixed, polyhaline system, with water column 

salinities ranging from 16.5 to 27.3 based on monitoring data from the Virginia 

Department of Environmental Quality (VA DEQ). The mean range of tide (MN, mean 

high -  mean low water) for the most recent 19-year tidal epoch at the nearest NOAA 

monitoring station in Kiptopeke, VA is 0.792 m (tidesandcurrents.noaa.gov).

Cherrystone Inlet Flushing Time Calculations

Flushing times for shallow coastal systems can vary greatly based on seasonality 

as a function of freshwater input, sustained winds, and topography. Mean flushing 

times in Cherrystone Inlet were estimated by three approaches. The tidal prism method
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(Monsen et al. 2002) is a common estimate of flushing time in tidal systems which 

converts the tidal prism volume (the volume of water between high and low tide marks) 

into a volumetric flow rate modified by a return flow factor (b), which is the fraction of 

ebbing water that re-enters the estuary during the following flood tide:

T =  VT
f  (1 - b ) P

where the volume of water at mean sea level (V) is multiplied by the tidal period (T) and 

divided by the tidal prism volume (P). Estimates generated from this method resulted in 

flushing times for the entire Cherrystone basin for a range of return flow factors (10- 

90%) from <1 to 7 days (Figure 3). Past estimates of flushing time in Cherrystone Inlet 

used a return flow factor of 30% (Kou et al. 1998).

Flushing times were also computed using the fraction of freshwater method 

(Officer 1980), which incorporates the input of freshwater, estimated from the 

Chesapeake Bay Program (CBP) Phase 5.3 Watershed Model (USEPA 2010), and 

observed salinity distributions based on interpolations from VA DEQ monitoring data 

(see below):

Tf =  ^ * « S 0 - S , ) / S 0)

This equation calculates the volume of fresh water in the estuary, where the total 

volume of the basin (V) is divided by the river flow (R) and multiplied by the difference 

between the salinity downstream from the system (S 0) and within the estuary (S j) . This
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method resulted in large variations in estimated flushing time, ranging from <1 to >200 

days with an annual mean of 7.5 days (Figure 3).

Finally, Herman et al. (2007) computed a flushing time for Cherrystone Inlet 

using a "simple equation" which was estimated to be between 2-3 days (Figure 3):

V

This "simple equation" divides the mean volume of water (V) in the basin by the 

quantity of mixed water that leaves the bay on the ebb tide (Q b ) .

2.2 Estuarine Ecosystem Model

A reduced complexity estuarine ecosystem model (Brush 2002, 2004, 2013, Lake 

and Brush in press) was implemented in seven spatial elements (boxes; Table 1) within 

Cherrystone Inlet defined by geomorphic constrictions and fed by inputs of nutrients, 

sediments, and freshwater from the associated watersheds (Figure 1). Bathymetric 

soundings were obtained from CBP bathymetric grids for the Chesapeake Bay and tidal 

tributaries and were interpolated using ESRI® ArcMAP 10.1. The surface area and 

volume within each box was calculated from mean sea level (MSL) to the estuary 

bottom (Table 1). Watershed areas were delineated using the ESRI® ArcMAP 10.1 

watershed delineation tool by calculating flow vectors based on topography. The model 

was implemented using STELLA software (www.iseesystems.com) with a time step (DT) 

of 0.125 days.

The model includes only state variables and rate processes that are of direct

importance to the processes associated with shallow coastal systems, and integrates
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robust empirical relationships that have been shown to apply across multiple temperate 

estuaries to predict key rate processes (Table 3: Brush et al. 2002, Brush and Brawley 

2009). State variables include the biomass of phytoplankton (PHYTO) and benthic 

microalgae (BMA), simulated in units of carbon (C) with chlorophyll-o (Chl-o), nitrogen 

(N), and phosphorus (P) computed stoichiometrically, hard clam biomass as individual 

dry weight in three size classes (CLAM), dissolved inorganic nitrogen (DIN) and 

phosphorus (DIP), dissolved oxygen (O2), and labile organic carbon in the water column 

(C w c ) sediments (C Sed) , with the associated N and P computed stoichiometrically (Figure 

2). Given the shallow depths within Cherrystone Inlet and an active BMA community, a 

newly developed BMA sub-model (Brush 2013, Lake and Brush in press) was coupled to 

the ecosystem model (Table 3). BMA production and respiration were simulated in 0.5 

meter depth intervals within each box, as a function of irradiance at depth and 

temperature. During calibration of the model, water column chlorophyll-a was 

consistently underestimated compared to VA DEQ monitoring data. Secrist (2013) 

reported high abundance of pennate diatoms in the water column of Cherrystone Inlet, 

which suggests the importance of BMA resuspension. A temperature (T)-dependent 

(Logan 1988), seasonal BMA resuspension term was therefore added to the model to 

resuspend a fraction of the BMA biomass ( B M A Stock) ( B M A RESusp, g C m'2 d'1):

B M A r e s u s p  — B M A s to c k  *  k 7
(  fcifr-fc2)fe3 \ _  p y p f n  _  f k 5 - ( T - k 2) \ \

V(k4k3) + ( r —fe2)k3 / ^  7 V (ks-ke) ) )

where T is the daily average temperature forced in the model, ki scales the amount of 

resuspended BMA over yearly temperature cycles, k2 is the lower temperature
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threshold at which BMA resuspension does not occur, k3 drives the slope of BMA 

resuspension, k4 is the temperature at which BMA resuspension is half of its maximum 

value , k5 is the maximum temperature at which BMA resuspension occurs, k6 is the 

temperature at which the value of BMA resuspension is maximal, and k7 is the amount 

of BMA stock allotted for BMA resuspension (Haefner 2005). Parameter values used in 

the BMA resuspension term are reported in Table 2.

W ater exchange within the ecosystem model is driven by a tidal prism approach, 

which computes volumetric exchanges among the seven spatial elements as a function 

of the tidal prism volume. Each box within the model is treated as a single vertical layer, 

as Cherrystone Inlet is considered a well-mixed estuary. While this approach loses 

spatial resolution due to the use of homogeneous aggregated spatial elements 

compared to higher resolution 3-D hydrodynamic circulation models, the type of 

reduced complexity model used in this study is able to reproduce the correct magnitude 

of state variables and typical down-estuary gradients, operates at the scale of available 

monitoring data, and enables fast run times (seconds to minutes) on personal 

computers. These fast run times make possible multiple runs required for adequate 

calibration and sensitivity analysis, and enable ready translation to user-friendly, online 

decision-support tools directly usable by managers and industry personnel. Recent work 

has confirmed the utility of boxed approaches (Menesguen et al. 2007, Testa and Kemp 

2008, Kremer et al. 2010).
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2.3 Forcing Data and Site-Specific Functions

VA DEQ collected monthly monitoring data at three stations in Cherrystone Inlet 

from January 2001 to December 2002 (Figure 1); this is the most complete set of 

monitoring data for this system so the model was calibrated to this time period. DEQ 

data for temperature, salinity, total suspended solids (TSS), water column chlorophyll-o 

(WC Chl-o), dissolved oxygen (0 2), and dissolved inorganic nitrogen (DIN) and 

phosphorus (DIP) were downloaded from the Chesapeake Bay Program (CBP) website 

(www.chesapeakebay.net). Surface temperature, salinity, and TSS data were linearly 

interpolated between sampling dates and forced into boxes 2 and 3 of the model; for 

the remaining Cherrystone boxes (which did not have associated DEQ sampling stations) 

the nearest respective DEQ data were used. Boundary conditions for salinity, water 

column Chl-o, 0 2, DIN, and DIP were specified using long-term monitoring data from the 

CBP at the nearest monitoring station (CB7.3E), which is located 6.5 km southwest of 

Cherrystone Inlet. All boundary data were linearly interpolated and forced into the 

model.

Chlorophyll-o was converted to carbon biomass using a carbon to chlorophyll-o 

ratio of 45.1 g g"1, which was determined using the spring and summer regressions 

between C:Chl and light attenuation (KD) in Cerco & Noel (2004). Light attenuation (kD) 

within the model was computed from modeled water column Chl-o and forced TSS using 

the baywide regression of Xu et al. (2005).

Photosynthetically active radiation (PAR) data from T. Fisher at the Horn Point 

Laboratory, MD (January 2001 - December 2002: Fisher et al. 2003) were forced into the
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model as this was the most complete dataset available. Mean daily wind speed data 

from the meteorological station at Kiptopeke, VA (January 2001 -  December 2002) were 

downloaded from NOAA (tidesandcurrents.noaa.gov). Watershed loading of total 

nitrogen was estimated using a Nitrogen Loading Model (NLM, see below); the load of 

phosphorus was computed stoichiometrically.

2.4 Model Calibration and Skill Assessment

The Cherrystone Ecosystem Model was calibrated to VA DEQ data for water 

column Chl-a, O2, DIN, and DIP from January 2001 to December 2002 (Figure 4). 

Following the calibration to 2001-2002 data, the model was updated for the period 

January 2011 -  December 2013 and verified against water quality and rate process data 

(i.e., phytoplankton net primary production, BMA gross primary production, water 

column and sediment respiration, and the rate of denitrification) measured in 

Cherrystone from a preliminary one-year dataset of baseline conditions and mid­

summer nutrient fluxes from Virginia Sea Grant (VASG) project R/715157.

A detailed skill assessment was conducted on Cherrystone Ecosystem Model 

output for water column Chl-o, 0 2, DIN, and DIP. Absolute (ABS Error), percent (%

Error), and root mean square error (RMS Error), as well as the Nash-Sutcliffe efficiency 

and regressions of observations against predictions were calculated for each parameter 

(Fitzpatrick 2009, Stow et al. 2009). Skill metrics were computed by comparing 

observations and predictions on the same day of the observations, and within 1 and 2

13
h a r g i s  Li b r a r y
Virginia institute of 
Marine Science



weeks of the observations. The utility of these single metrics for assessing model-data 

misfit is enhanced when multiple quantitative measures are evaluated in combination.

2.5 Nitrogen Loading Model (NLM) for Cherrystone Inlet

Watershed loading of total nitrogen (TN) to Cherrystone Inlet was computed 

with the Nitrogen Loading Model (NLM), a lumped parameter, spatially-aggregated 

spreadsheet model. The NLM was originally developed for Cape Cod (Valiela et al.

1997), and has been subsequently adapted for the Delmarva Peninsula (Cole 2005, 

Giordano et al. 2011). The original formulations of the NLM were generated in Waquoit 

Bay, MA which is characterized by sandy sediments which tend to transport N in a 

conservative fashion. The Delmarva Peninsula is characterized by finer sediments and 

likely mixes N non-conservatively. This distinction in sediment type with respect to 

transport of N through the sediments is not accounted for within the model 

formulations in the Cherrystone NLM; nevertheless the NLM accurately reproduces 

measured TN loads across the Delmarva ( Giordano et al. 2011: Brush, unpublished 

data). The NLM model was initially calibrated by Giordano and Brush (see Brush 2010) 

to 14 Virginia watersheds monitored by Stanhope (2009) and successfully predicts 

annual TN loads in the region, with only a few values falling outside the estimated 38% 

accuracy of the model (Valiela et al. 1997).

The model computes TN inputs from atmospheric deposition, fertilizer 

application (agricultural and residential), poultry waste, and human waste through 

septic systems, and accounts for inputs onto four land use categories: natural
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vegetation, residential turf, impervious surfaces, and agriculture computed based on the 

2005 Mid-Atlantic Regional Earth Science Applications Center land use -  land cover 

dataset (RESAC 2005). Each land use category is subject to an annual rate of 

atmospheric N deposition of 6.2 kg N ha'1 y'1, obtained from Stanhope et al. (2009) who 

based the N deposition calculation on long-term measurements of both wet (National 

Atmospheric Deposition Program) and dry (EPA CASTNet) deposition on the Virginia 

Eastern Shore.

Extensive row crop agriculture on the Delmarva Peninsula require further 

breakdown of the agriculture land use term into main crops of the region which include 

corn, soybeans, winter wheat, hay, and tomato plasticulture. Values for the model crop 

parameters were compiled by Giordano et al. (2011) and include fertilization rate (less 

volatilization), N content, and crop yield specific to Virginia and adjusted to 2007 Census 

of Agriculture data specific for Northampton County, VA (USDA 2007). Poultry waste is 

estimated in the NLM by the number of birds in the watershed (a function of the 

number houses, stocking densities, and rotation schedules) and an individual poultry N 

release per year; only waste in excess of the required fertilizer is leached to the 

groundwater. Cherrystone Inlet did not have any poultry operations during the time of 

this study.

Residential inputs of N enter the model through fertilization of lawns (less 

volatilization) and septic field leaching, computed for the septic population (100% of 

residents in the watershed) using US Census Bureau data (TIGER 2010) and assuming a
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release of 4.8 kg N person'1 y 1 (Valiela et al. 1997). The model attenuates each of these 

N sources to account for plant uptake and losses/immobilization in the vadose zone and 

aquifer (Valiela et al. 1997). Finally, the Cherrystone watershed is characterized by a 

number of retention ponds. Losses of N in these ponds are included in the original NLM 

(Valiela et al. 1997) but not in Giordano et al/s (2011) version; they were added to the 

current version of the model using Valiela et al/s (1997) formulations.

2.6 Hard Clam Bioenergetics and Growth Model

Hard clam (Mercenaria mercenaria) bioenergetics were simulated with an 

individual-based model originally developed by Hofmann et al. (2006) and modified by 

Wiseman (2010). The model computes individual clam dry weight (W) as a balance 

between ingestion, respiration, and reproduction, which are in turn functions of 

temperature, salinity, TSS, Chl-o, and individual weight.

For the current application, the following modifications were made to 

Wiseman's (2010) model. The dry weight (W, g) to shell length (SL, mm) relationship 

was replaced with a regression developed for clams in Cherrystone Inlet (Arnold, 

unpublished):

W  =  (2  * 1 0 ” 6 ) *  (S L )3-394 

Wiseman's (2010) parameters for time open (topen,time clams spend feeding) and algae 

lost to pseudofeces (P) were removed since they were found to double count the effects 

of temperature and TSS.
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The effect of temperature on filtration was reset to Hofmann et al/s (2006) 

original function, as it yielded output closer to observed weight and growth rates for 

clams in Cherrystone Inlet (Condon 2005). Similarly, the base respiration rate (ar-  pL O2 

h"1 g 1 dw) was changed back to the original value of 52.1 published by Hofmann et al. 

(2006). Finally, assimilation efficiency (AE) was set at a fixed value of 0.75, based on 

other bivalve studies (Tenore and Dunstan 1973), as this produced more realistic 

weights and growth rates than Hofmann et al/s (2006) weight-dependent function.

Empirical data from Cherrystone Inlet were used when available to aid in 

parameterization and calibration of the hard clam model. Hard clam numbers in 

Cherrystone Inlet in 2003-2004 were estimated at 101,079,410 from data collected by 

Cherrystone Aqua-Farm personnel (Condon 2005, Arnold personal comm.). This 

estimate was used for model calibration in 2001-2002 since hard clam numbers likely 

did not vary considerably between the two time periods (M. Pierson , personal comm.). 

Further model verification of key rate process data using VASG project data (2011-2013) 

used estimated clam numbers in Cherrystone Inlet in 2012 of 144,263,376, with clam 

densities of 797 clams m'2 (Emery in prep).

Hard clam aquaculture operations in Cherrystone Inlet are characterized by a 

range of clam sizes from juveniles to market size (<40.04 mm SL) growing in aquaculture 

beds throughout the year to allow for a near constant harvest cycle. Since clams 

typically reach market size in approximately three years, the hard clam model simulated 

three clam size classes. The initial weight for the first size class was set to 0.19 mg in 

weight. Initial in situ weights for the youngest size class are variable and more data is
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needed to determine site specific first size class initial weights. Subsequently, Initial 

hard clam weight (W, mg) for the second and third size class was calibrated so that final 

weights after the first year of growth equaled the initial values for the next size class.

The hard clam model was coupled to the ecosystem model through clam 

filtration of phytoplankton and resuspended BMA, respiratory consumption of oxygen 

and associated remineralization of nutrients, and deposition of feces into the sediment 

carbon pool. The hard clam model accounts for the effects of macroalgal growth on 

predator exclusion nets by reducing the amount of food (phytoplankton and 

resuspended BMA) available to the clams for filtration by 33% (Condon 2005).

2.7 Model Simulations

Once the ecosystem and hard clam models were calibrated, the coupled models 

were used to evaluate the effect of clam numbers, food availability, land use, and 

climate change on water quality and system-level parameters including clam growth, 

time to market size, and harvestable biomass at 1096 days (3 years being the ideal 

harvest growth cycle for Cherrystone Aqua-Farms). Hard clam growth scenarios were 

run with system-wide clam numbers that increased by 25 million from 25 to 200 million 

and then by 50 million up to 500 million during the standard run (2001-2002); this 

output was used as a baseline for comparison to all subsequent simulations. All other 

hard clam growth scenarios, as well as land use and climate change simulations were 

run up to 300 million clams. Clam population simulations were conducted by changing 

the quantity of predator exclusion nets (72 m2) within each box using a clam density of 

797 clams m'2 and assuming an equal number of clams in each size class. 57% of hard
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clams in each scenario were placed in Box 2 and 43% in Box 3 based on calculation of 

suitable shoreline length (i.e., shoreline where the adjacent shallow water substrate is 

suitable for clam aquaculture operations) using Arc GIS (Table 6).

Food Availability Scenarios

All simulations specific to clam food availability were conducted under 

calibration conditions (2001-2002). Scenarios were conducted with the entire clam 

population placed in Box 1, 2, or 3 (Figure 1), in-order to assess spatial differences in 

clam food availability and growth along the estuarine gradient and optimal planting 

locations. The importance of BMA resuspension and availability as a food source to 

clams was assessed by a scenario without BMA resuspension. The effect of food 

reduction under predator exclusion nets was assessed by running a simulation without 

this reduction. Based on results from the skill assessment (Table 8), modeled 

chlorophyll-o is underestimated by approximately 34% even with the addition of BMA 

resuspension; the impact of this underestimation was quantified in a model simulation 

where water column chlorophyll was increased by this amount. Lastly, model 

simulations were conducted to determine the relative influence of internal versus 

external primary production on clam growth by removing the input of Chesapeake Bay 

chlorophyll-o, along with an additional simulation simultaneously removing the input of 

Chesapeake Bay nutrients.
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Land Use Change Scenario

External factors influencing clam production were evaluated through land use 

and climate change scenarios. In order to evaluate the influence of watershed nutrient 

loading due to potential changes in land use, the NLM was used to determine an 

extreme case of nutrient loading. Agricultural land use in the region results in the most 

elevated rates of nutrient loading (Giordano et al. 2011), so a simulation was conducted 

where all land use in the watershed was converted into agricultural use, changing the 

export rate of nitrogen from 9.0 kg ha 1 y 1 to 16.2 kg ha 1 y'1 (Table 12).

Climate Change Scenarios

Potential changes in water temperature due to climate change were evaluated 

through scenarios with increased temperatures of 1, 2, 3, 4, and 5 ° C, bracketing 

projections for Chesapeake Bay by 2100 (Najjar et al. 2010). Separate climate change 

scenarios were run to assess the impacts of increases in sea level and associated 

increases in salinity within the Chesapeake Bay. Potential changes in sea level were 

evaluated through scenarios of increased mean sea level of 0.4, 0 .7 ,1 .0 ,1 .3 , and 1.6 m, 

bracketing projections for the Chesapeake Bay by 2100 (Hilton et al. 2008). Increases in 

salinity associated with sea level rise in the Chesapeake Bay were previously computed 

with regressions based on hydrodynamic model simulations (Hilton et al. 2008). Thus, 

for this study, scenarios of increasing salinity of 0 .8 ,1 .4 , 2.0, 2.6, and 3.2 were run 

concurrently with sea level rise scenarios (Table 14; Hilton et al. 2008).
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3.0 RESULTS

3.1 Nitrogen Loading Model Calibration

The NLM estimated a watershed TN load to Cherrystone Inlet of 33,759 kg N y 1 

(9.0 kg N ha 1 watershed y'1) (Table 4). The modeled TN yield was lower than the 

modeled export rate for all of Northampton County generated by the CBP Phase 5.3 

Model (USEPA 2010), which includes more urban development and poultry houses than 

that found in the Cherrystone watershed (Table 4). The modeled TN yield fell within the 

measured range on the seaside of the Virginia Eastern Shore by Stanhope et al. (2009), 

measured during a drought period, for all watersheds and for those with the most 

similar land use characteristics (Table 4).

Agricultural fertilization was estimated to contribute 80% to the annual 

watershed TN load while inputs from direct atmospheric deposition to the surface of 

Cherrystone Inlet contributed 11%. Contributions from residential sources were 

relatively small with waste water contributing just over 3% and urban drainage 

contributing less than 1%. NLM results were further broken down to annual TN load 

from watershed areas that directly drain into the estuary, as well as sub-watersheds 

that first drain into ponds that retain approximately 56% of the N inputs as described in 

Valiela et al. (1997). Roughly one third of the total N loading to the Cherrystone Inlet 

had been attenuated by these ponds in the watershed. Loads and relative contributions 

of nitrogen sources were different within each watershed box, reflecting differences in 

land use patterns, indicating the ability of the NLM to predict differences over relatively 

small spatial scales (Table 5).
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3.2 Model Calibration and Skill Assessment

Overall modeled water quality followed observed VA DEQ data, with generally 

low absolute, percent, and root mean squared errors; errors were further reduced when 

observed and predicted values were compared within one week of each other (Figure 4; 

Table 7-8). Modeled water column chlorophyll-o matched the observes throughout the 

fall, winter, and spring in both calibration years (2001-2002) (Figure 4a,b). However, the 

model failed to capture the highest chlorophyll-o concentrations during summer of both 

years. Percent error between observations and predictions for the standard run with 

respect to chlorophyll-o was 31.9% (± one week mean comparison); this error decreased 

when clams were not included in the standard run (24.8%) (Table 7). The standard run 

illustrates that 33.7% of observed VA DEQ chlorophyll-o was not accounted for in the 

model predictions (Table 8). Modeled BMA biomass was within the range of 

observations near the clam beds (Anderson and Murphy, unpublished data; Table 10).

The model does particularly well capturing the seasonal cycle of dissolved 

oxygen (Figure 4c,d). Percent error between observations and predictions for dissolved 

oxygen were the lowest of all the parameters (3.1%: Table 7). Modeled nutrient 

concentrations (DIN and DIP) were within the range of measured concentrations and 

followed the expected seasonal cycles (Figure 4e,f,g,h). During the end of the second 

standard run year (2002), observed VA DEQ DIN and DIP data are marked by a distinct 

elevation in concentrations that is not represented by the model. While the mean 

percent error for DIN and DIP were relatively large (26.2% and 25.5%, respectively) due
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to differences in the second calibration year, the absolute error was less at 0.32 and 

0.04 uM for DIN and DIP, respectively (Table 7).

3.3 Hard Clam Growth Scenarios

3.3.1 Standard Run

Initial clam weights were calibrated to ensure a continuous transition between 

size classes and reach harvestable size after three years (Figure 5). The standard run of 

the model with 100 million clams, which reflects the estimated size of the population in 

2001-02, produced hard clam growth rates of 13.4 mm y'1 in Box 2 ,12 .9  mm y'1 in Box 3, 

and 13.2 mm y 1 averaged over the system, compared to an observed growth rate of

13.6 mm y 1 (Condon 2005, Figure 6a). Further comparison of clam growth rates by size 

class indicate a close correspondence between modeled and observed rates for the 

youngest size class, while the model underestimated growth rates for size classes 2 and 

3 (Table 9). This underestimation of growth rates in the older size classes may be due 

to the underestimation of modeled chlorophyll-o in the summer.

Model simulations across a range of clam population sizes illustrated an inverse 

relationship between clam growth rates and total clam numbers ranging from 15.5 to

12.4 mm y 1 (Figure 6a). Increasing clam numbers also resulted in increases in days until 

clams are of a harvestable size and system wide harvestable biomass at three years, 

ranging from 741 to 867 days and 7.4 to 79.1 kg dry weight, respectively (Figure 6b,c). 

Increasing clam populations resulted in a decrease of average annual water column 

chlorophyll-o in the system from 4.4 to 2.4 mg m'3 (Figure 7). With increasing clam
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populations chlorophyll-o was drawn below that in the incoming Chesapeake Bay water 

by 200M clams (Figure 7).

3.3.2 Location/Siting

Siting all clams in Box 1 resulted in an increase in growth rates by 22.8% and 

15.4% as compared to the standard run in simulations with 100M and 150M clams, 

respectively (Table 11). Days until the clams reach harvestable size was reduced by 306 

and 261 days and the overall harvestable biomass increased by 69.4% and 57% for 

100M and 150M clams, respectively (Table 11). System-wide water column chlorophyll- 

a concentrations increased minimally by 7.3% and 8.8% for the 100M and 150M clam 

simulations, respectively (Table 11).

Siting all clams in Box 2 resulted in minimal differences compared to the 

standard run (Table 11), as a majority (57%) of the privately leased aquaculture plots in 

the standard run are within this box (Table 6). However, when clam operations were 

relocated solely to Box 3, there was a negative effect on all clam growth parameters 

with a slight reduction in growth rates, increase in days until harvest, and reduction in 

harvestable biomass at three years (Table 11). System-wide water column chlorophyll-o 

values decreased by 12.3% and 11.8% for the two simulations (Table 11).

3.3.3 Benthic Microalgal Resuspension

Removal of BMA resuspension decreased clam growth rates by an average 6.8% 

ranging from 12.6 to 11.52 mm y'1 (Figure 8a). This scenario resulted in an average 

increase of 153 days until harvest (Figure 8b), and total system-wide harvestable
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biomass at three years decreased by an average of 64% (Figure 8c). Average annual 

water column chlorophyll-o concentration decreased in this scenario by an average of 

20.5% (Figure 9).

3.3.4 Removal of Predator Exclusion Nets

When the reduction in chlorophyll-o due to predator exclusion nets was 

removed from the model, hard clam growth rates increased by an average of 13.3% 

ranging from 15.8 to 13.7 mm y 1 (Figure 10a). Removal of the nets resulted in an 

average decrease in time to harvest of 24.5%, translating to a decrease of 194 days 

(Figure 10b), and total system-wide harvestable biomass after three years increased by 

an average of 54.5% (Figure 10c). Average annual water column chlorophyll-o 

concentration in this scenario decreased minimally by an average of 6.4% (Figure 11).

3.3.5 Increase in Water-Column Chlorophyll-o

Increasing the concentration of water column chlorophyll-o to better match DEQ 

observations resulted in increased system-wide growth rates by an average of 11.3% 

compared to the standard run (Figure 12a). Increased chlorophyll-o further resulted in 

an average reduction of 161 days until the hard clams reach harvestable size (Figure 

12b), and total system-wide harvestable biomass at the three year harvest date 

increased by an average of 47.5% (Figure 12c). Average annual water column 

chlorophyll-o increased in these scenarios by an average of 32.4% (Figure 13).
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3.3.6 Importance of Chesapeake Bay Chlorophyll-o

Removing the input of nutrients and chlorophyll-o from Chesapeake Bay reduced 

hard clam growth rates by an average of 41.1% (Figure 14a). Under this scenario, hard 

clams did not reach marketable size after three years, and total system-wide 

harvestable biomass after three years decreased by an average of 87.9% (Figure 14b). 

Average annual water column chlorophyll-o concentration decreased by an average of 

70.1% in this scenario (Figure 15).

3.4 Watershed Nutrient Load Simulation

Running the NLM under the extreme case with 100% agricultural land use more

than doubled the predicted export of nitrogen to Cherrystone Inlet from 9.0 kg N ha'1 y 1 

to 16.2 kg N ha 1 y 1 (Table 12). Based on watershed export rates elsewhere on the 

Eastern Shore of Virginia, this yield lies at the high end of current loading rates (Table 4). 

Increased watershed nutrient loading had minimal effects on all hard clam metrics 

(Figure 16) and mean water column chlorophyll-o concentrations (Figure 17).

3.5 Climate Change Scenarios

3.5.1 Temperature Scenarios

Temperature time series from the climate simulations are shown in Figure 18.

Hard clam growth rates consistently decreased as temperatures increased with rates

decreasing by 0.3% to 37.6% in the 100M clam scenario and from 0.4% to 37.3% in the

150M clam scenario (Figure 19a). The amount of days until harvest increased

continually as temperature increased, and after an increase of 3 °C clams did not reach

harvestable size in three years. As a result, total system-wide harvestable biomass after
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three years decreased by an average of 47% and 47.2% respectively for the 100M and 

150M scenarios (Figure 19b). Average annual water column chlorophyll-o 

concentrations also decreased throughout the temperature simulations by an average 

of 6.5% and 8.9%, respectively for the 100M and 150M clam scenarios compared to an 

average concentration of 4.5 mg m'3 in the absence of clams (Figure 20).

3.5.2 Sea Level Rise and Salinity Scenario

Sea level rise and increase in salinity for the climate simulations are shown in 

Table 14. Hard clam growth rates displayed a unimodal response to increases in sea 

level and salinity reaching an intermediate maximum; overall growth increased an 

average of 0.6% and only in the most extreme simulation did growth decrease below 

that in the standard run (Figure 21a). The number of days until the clams reached 

harvestable size reduced minimally by an average of 1.2% and 4.3% (Figure 21b), and as 

a result harvestable biomass after three years also exhibited a unimodal relationship 

and increased by an average of 6.7% and 6.4% for the 100M and 150M clam scenarios, 

respectively (Figure 21c). The average annual water column chlorophyll-o concentration 

decreased throughout the sea level and salinity simulations by an average of 7.9% and 

11% for the 100M and 150M clam scenarios, respectively, compared to an average of

4.3 mg m'3 without clams (Figure 22).

27



4.0 DISCUSSION

4.1 Model Calibration

The model correctly simulated both the magnitude and seasonal variations of 

water quality variables in Boxes 2 and 3 where VA DEQ data were available for 

calibration (Figure 4; Tables 7-8). Similarly, the model accurately reproduced observed 

BMA biomass (Table 10) and predicted hard clam growth rates close to observed values 

(Figure 6a; Table 9), although the latter were underestimated particularly for the second 

size class. We attribute this underestimation to a tendency of the model to 

underestimate concentrations of water column chlorophyll during the summer (Figure 

4a,b; Table 8), even with the inclusion of BMA resuspension. The effect of this 

underestimation in summer chlorophyll was addressed through the simulation with 

increased chlorophyll (Section 3.3.5), which resulted in hard clam growth that exceeded 

observations (Figure 12). This illustrates first that hard clam growth is quite sensitive to 

food supply in this system, and second that the model is able to bracket observed rates 

of hard clam growth in Cherrystone Inlet (Figure 6a). Modeled clam growth rates for 

the second and third size classes, while underestimates, were also calibrated to obtain 

harvestable sizes within the typical three year rotation employed by Cherrystone 

farmers. Improvement of modeled growth rates would be aided by data associated 

with initial planting sizes and specific planting and harvest schedules in Cherrystone 

Inlet but this information is currently unavailable. Nevertheless, the overall quality of 

the calibration indicates that the model is suitable for conducting scenario analysis.
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4.2 Standard Run

The standard run of the model demonstrated that increasing clam numbers were 

associated with diminishing returns in terms of clam growth rates, time to harvest size 

(>40 mm SL), and harvestable biomass (Figure 6). As expected water column 

chlorophyll-o concentrations decreased with increasing clam numbers (Figure 7).

Notable in this simulation is that as clam numbers approached 200M the chlorophyll-o 

concentration approached the average annual concentration, 3.7 mg m'3, in the lower 

Chesapeake Bay that exchanges with Cherrystone on every flood tide. Cherrystone clam 

farmers have reported reduced growth rates and increased time until the clams reach 

harvestable size at numbers approaching 200M (M. Pierson , personal comm.).

4.3 Siting /  Location

Optimal site selection for hard clam grow out areas requires the assessment of 

the supply and exchange of phytoplankton throughout the estuary (Grant 1996, Condon 

2005), which our model is able to provide at the scale of individual boxes. The upper 

estuary (Box 1) was predicted to provide the best conditions with the most available 

food for hard clam production, with diminishing returns moving down the estuarine 

gradient to Box 3 at the mouth of the system (Table 11). Siting clams in the upper 

estuary allowed for increased utilization of the elevated phytoplankton biomass and 

internal primary production in Box 1, and the absence of grazing down-estuary resulted 

in an increase in overall water column chlorophyll throughout the system. Alternatively, 

siting clams in Box 3 resulted in depletion of chlorophyll-o to concentrations below that 

of the incoming Chesapeake Bay water (Figure 7), which not only consumes the external
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food supply but also reduces internal primary production by removing flooding 

phytoplankton before they can grow within Cherrystone Inlet. We note, however, that 

this analysis only accounts for food supply while many other factors are important in 

siting of aquaculture operations, including bottom substrate, area available for nets, and 

access by land or water.

4.4 Importance of Tides and BMA Resuspension

The tidal regime in Cherrystone Inlet plays an integral role in the growth and 

production of the hard clams. Physical factors and large scale influences on local seston 

and water quality characteristics impact clearance rates in Cherrystone Inlet (Condon 

2005) and in other systems dominated by bivalve aquaculture (Prins et al. 1998, Newell 

2004). The tides have a two-fold influence on seston availability for clams in 

Cherrystone, resulting in both an influx of chlorophyll-o from the Chesapeake Bay and 

increased benthic microalgal and detrital resuspension to the water column, and 

thereby provide an important 'auxiliary energy source' supporting benthic production in 

this system (Nixon et al. 1971).

The short flushing time of Cherrystone Inlet, largely driven by the expansive 

shallow shoals and wide estuary mouth, has been postulated to cause extensive 

resuspension of benthic microalgae (Condon 2005). Benthic microalgae are often 

overlooked in hard clam production capacity modeling studies, however they have been 

identified as an adequate supplement to phytoplankton for hard clam growth (Grant 

1996; Secrist 2013). In this study, the benthic microalgal resuspension term was critical 

for matching modeled water column chlorophyll-o to observed values, and the

30



simulation without BMA resuspension illustrates the importance of BMA as a food 

source for clams (Figure 8). This simulation focused solely on an increased quantity of 

organic matter; however, the quality of different sources of organic matter may also 

play a role in hard clam growth (Secrist 2013) and warrants further investigation.

4.5 Removal of Predator Exclusion Nets and Potential Importance of Macroalgae

Reduced seston concentrations as a result of biofouling and macroalgal growth 

on the predator exclusion nets was found to limit hard clam growth and decrease 

overall harvestable biomass (Figure 10). Condon (2005) and Secrist (2010) recognized 

that macroalgal growth on the nets in Cherrystone Inlet significantly depleted local 

seston concentrations available to the hard clams and this has similarly been observed 

in other bivalve aquaculture operations (Muschenheim and Newell 1992). The effect of 

macroalgal growth and reduced filtration on bivalve growth has been observed in many 

systems (Bartoli et al. 2001, Marinov et al. 2008, Viaroli et al. 2010). Cherrystone 

growers recognize that the proliferation of macroalgae is an issue impacting the growth 

of the hard clams, and they actively clean the nets of the macroalgae in an effort to 

improve filtration capacity (Anderson and Brush 2012).

Alternatively, the macroalgal growth on the predator exclusion nets has been 

considered as a viable food source for the clams (Condon 2005, Secrist 2013, Hondula 

and Pace 2014). This study did not incorporate macroalgal production within the model 

given the lack of data on the amount and availability of macroalgal detritus in the water 

column and below the nets. It is possible that this macroalgal detritus is at least 

partially reflected in the observed water column chlorophyll-o concentrations from VA
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DEQ, which the model underestimates in summer. As noted above, the simulation with 

increased chlorophyll-o biomass resulted in increased clam growth rates (Figure 12) and 

this simulation combined with the standard run bracket the observed clam growth in 

Cherrystone (Condon 2005). While this scenario partially demonstrates the role of 

macroalgae in this system, future versions of the model should more explicitly evaluate 

macroalgae as both a food source and a sink for regenerated nutrients derived from the 

clam beds.

4.6 Internal vs. external production

The importance of horizontal hydrological exchange and influx of allochthonous 

chlorophyll has been documented in shallow estuaries (Grant 1996). Condon (2005) 

reported a positive correlation between chlorophyll and salinity in Cherrystone, 

indicating that the major source of chlorophyll comes from the mainstem Chesapeake 

Bay. Our study highlights the importance of this external source to clam production in 

Cherrystone Inlet (Figure 14). Further analysis of simulation results with 100M clams 

indicated that 59% of clam growth was supported by the input of organic matter from 

Chesapeake Bay; in fact, 52% of modeled water column primary production within 

Cherrystone was derived from the input of Chesapeake Bay phytoplankton (64% in 

Boxes 2-3). To assess the relative importance of the external supply of nutrients versus 

chlorophyll from the Chesapeake Bay, the simulation was run with and without the 

input of nutrients which had a negligible impact on internal production, thus the input 

of Bay phytoplankton was the more important driver of internal production.
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The hard clam aquaculture industries along the Delmarva Peninsula should 

monitor future changes in quality and quantity of chlorophyll originating from the main 

stem Chesapeake Bay as this may significantly impact future clam aquaculture 

production. The capacity of the model to differentiate between allochthonous and 

autochthonous sources of primary production available for hard clam growth provides a 

useful quantitative tool to predict aquaculture production within Cherrystone Inlet and 

address regional food resources supporting the industry. Growth impacts on bivalve 

aquaculture (Bartoli et al. 2001), as well as on wild hard clams (Henry and Nixon 2008), 

to changes in the quantity and quality of both allochthonous and autochthonous 

sources of organic matter have been documented in other temperate estuaries.

Nutrient reduction efforts in the lower Chesapeake Bay (and in similar estuaries 

worldwide) aimed at reducing eutrophication could have negative consequences for 

hard clam production. The biomass of benthic infauna in Chesapeake Bay is directly 

related to water column primary production (Hagy 2002, Kemp et al. 2005), and the 

recent loss of the winter-spring phytoplankton bloom in Narragansett Bay has reduced 

the supply of organic matter to the benthos, which potential negative consequences for 

benthic secondary production (Nixon et al. 2009). Future changes to the quantity and 

quality of organic matter in the lower Chesapeake Bay have been predicted to alter 

internal production in other neighboring tidal tributaries (Havens et al. 2001, Lake and 

Brush in press), and may present future concerns for both bivalve aquaculture and 

restoration. These results underline the utility of modeling efforts to assess the supply 

and movement of organic matter through varying hydrological dynamics for managing
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the sustainability of aquaculture operations (Luckenback and Wang 2004, Marinov et al. 

2008).

4.7 System-Level Effects of Clams

Numerous studies have highlighted the impact that suspension feeding bivalves 

have on controlling phytoplankton biomass through feeding (Officer 1980, Cloern 1982, 

Cohen et al. 1984, Prins et al. 1998, Henry and Nixon 2008). In an aquaculture setting, 

the nutrients assimilated within the tissues of the clams are also permanently removed 

from the system upon harvest potentially preventing further eutrophication. 

Additionally, under certain environmental conditions, cultured bivalves may promote 

nutrient cycling processes such as sedimentary denitrification, a microbial process that 

converts bioavailable nitrogen to N2 gas (Kellogg et al. 2013). The removal of 

bioavailable nitrogen through bivalve-promoted nutrient cycling has been postulated as 

an approach to mitigating eutrophication within estuaries (Lindahl et al. 2005; Rose et 

al. 2012; Bricker et al. 2014; Petersen et al. 2014).

At the system level, 100M cultured clams in Cherrystone were computed to 

reduce water column chlorophyll by 9%, indicating a limited ability to drive 'top-down' 

control on the ecosystem (Figure 7). The presence of 100M clams increased DIN and 

DIP concentrations by 3% system-wide and had no change on water column dissolved 

oxygen concentrations. Despite these relatively small impacts on system-level water 

quality, clams were computed to have a much larger impact on the overall nitrogen 

budget of the system (Table 13). Annual remineralization of hard clam feces far 

outweighed the release of nutrients from bare sediments, and the amount of
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bioavailable nitrogen released to the water column attributed to hard clams (through 

excretion and remineralization of feces) was comparable to the inputs from the 

watershed and atmosphere.

Cultured clams can also exert numerous impacts at the smaller, farm-scale not 

currently resolved by the model. For example, clams may influence local 'bottom-up' 

effects on production by enhancing nutrient recycling at the sediment-water interface 

(Newell et al. 2002, Nizzoli et al. 2006, Nizzoli et al. 2011, Murphy et al. in press). Thus, 

Cherrystone clams may have the effect of decreasing or increasing localized 

eutrophication, depending on environmental conditions and specific culture densities 

(Hondula and Pace 2014; Murphy et al. in press). Commercial-scale bivalve aquaculture 

has been shown to reduce sediment and water quality and cause local nutrient 

enrichment, which has been linked to changes in the quantity and quality of organic 

carbon production further altering industry bivalve growth standards (Prin et al. 1998; 

Bartoli et al. 2001). Increased localized eutrophication originating from the growth of 

macroalgae on the predator exclusion nets in Cherrystone Inlet (dominated by the 

opportunistic Gracilaria spp.) may be a result of the high capacity of macroalgae to 

intercept recycled nutrients from the clams and sediments under the nets. In 

Cherrystone Inlet, Murphy et al. {in press) showed that sediments under the clam nets 

were reduced via high rates of biodeposition, and in the presence of sulphide the 

nitrogen removal process of nitrification-denitrification was inhibited and dissimilatory 

nitrate reduction to ammonium (DNRA) promoted the retention of bioavailable 

ammonium (NH4+) within the system, further fueling macroalgal production. Murphy et
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al. (in press) estimated that the macroalgae in Cherrystone Inlet on the clam nets 

reduced benthic ammonium effluxes by 20-77%. The enhanced nutrient recycling 

within clam sediments observed in Cherrystone Inlet suggests that the aquaculture 

operations serve as an important autochthonous source of nutrients to primary 

producers within the system.

4.8 Land Use Scenarios

Changes in land use and climate are important factors to consider when 

predicting the production of hard clams in the Chesapeake Bay. In this model, we 

evaluated the potential effects of land use changes to more extensive agricultural use by 

investigating the impacts of increased nitrogen and phosphorus loads (Table 12). Export 

rates derived from the Nitrogen Loading Model under this scenario were still within the 

range of nutrient loads found on the Eastern Shore (Table 4). While this scenario is 

extreme, even under this unlikely scenario the watershed load and resulting effects on 

water quality are small. Nutrient loads from the watershed of Cherrystone Inlet, and 

other locations on the Delmarva Peninsula with land uses primarily associated with 

forested land, are primarily derived from ground water and the attenuation of nutrients 

through the aquifer, as well as in freshwater ponds, results in relatively minimal export 

of nutrient loads to the estuary (Stanhope et al. 2009, Giordano et al. 2012).

Additionally these watersheds are small in area; for example, the ratio of watershed to 

open water area for Cherrystone is 5.9 compared to a value of 14 for the Chesapeake 

Bay (Kemp et al. 2005).
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Changes in hard clam production due to changes in land use and watershed 

nutrient loading were small (Figure 16). However, ecosystem response and aquaculture 

production due to changes in land use characteristics were simulated under current 

hydrologic patterns, where the system is well-flushed and any enhanced primary 

production as a result of increased nutrient loading was likely flushed out of the system 

before causing adverse effects. Future land use planning should continue to utilize 

quantitative ecosystem modeling efforts to test the effects of land use changes. While 

many systems along the Delmarva Peninsula have minimal watershed loading rates 

(Giordano et al. 2011), other regions have larger watershed areas relative to open water 

and changes to land use and nutrient loading may have greater implications for 

ecosystem function and bivalve growth (Carmichael et al. 2012).

4.9 Climate Change 

Temperature simulations

Changes in the global climate are likely to have a major impact on marine 

ecosystems, affecting both biodiversity and productivity (Najjar et al. 2010). These 

changes will in turn have large impacts on marine industries, including bivalve 

aquaculture (Kimmel and Newell 2007, Viaroli et al. 2010). Model simulations of 

changing climate with respect to temperature, salinity and sea level provided potentially 

important implications for the hard clam aquaculture industry. Under the enhanced 

temperature scenarios both clam growth rates and harvestable biomass dramatically 

decreased (Figure 19). Warmer water temperatures are expected to have negative 

effects on the physiology of bivalves, leading to impacts on metabolism and
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reproduction (Grant et al. 1996; Ingram et al. 2013). A comparison of net clam 

production (growth -  respiration) from the scenarios indicated that under the most 

extreme case of increased temperatures (+5°C) with 150M clams, net production was 

reduced by 94% and 51% in Boxes 2 and 3, respectively, compared to the standard run. 

The large differences in net production between Boxes 2 and 3 are indicative of internal 

variability in temperatures along the estuarine gradient and suggest that cooler 

temperatures from the Chesapeake Bay closer to the mouth of the system reduce the 

impact of simulated warming on clam production. The reduction in net clam production 

likely resulted in increases to overall water column chlorophyll (Figure 20). Increased 

temperatures are also likely to enhance macroalgal growth on predatory exclusion nets, 

and could lead to a negative feedback loop associated with increased hypoxia, reduced 

sediment quality, alterations to sediment nutrient cycling, and decreased water quality 

(Viaroli et al. 2010).

Sea Level Rise and Salinity Simulations

Increases in sea level have been predicted to have the greatest impacts on 

aquaculture operations in shallow water estuaries, as distribution of suitable benthic 

habitat for clam growth could shift and affect the productivity and accessibility of 

privately leased clam farms (Ingram et al. 2013). While our model does not have the 

capability to assess shifts in accessibility to leased clam operations, the model does 

indicate that changes in salinity and sea level do have adverse effects on clam 

production (Figure 21). Noteable however, is the fact that with a moderate increase in 

salinity and sea level (salinity of 1.4 and 0.7 m increase in sea level) there was an
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increase in clam production (Figure 21). Through further simulations which imposed 

increased depth and salinity independently, it was determined that this unimodal 

relationship in clam industry metrics (Figure 21) was best explained by increased water 

depth, whereas salinity had minimal effects on clam growth. It may be the case that 

deeper waters initially provided for more water column primary production which 

increased food availability to the hard clams, while at increased depths above 0.7 m, 

decreased water column light availability may limit system primary production. A 

comprehensive understanding of future adaptations to clam aquaculture and availability 

of suitable estuary bottom is imperative for the sustainability of the industry.

While this study addresses some of the major predicted changes to the 

Chesapeake Bay with climate change (Najjar et al. 2010), changes in precipitation, 

frequency and intensity of storms, and therefore freshwater delivery are also likely to 

have a major impact on ecosystem state and hard clam production (Ingram et al. 2013); 

however the model used here was not designed to address these changes.

4.10 Utility of the Model

The utility of the Cherrystone Ecosystem Model for addressing hard clam 

production capacity, system-level impacts of clam culture, and the effects of land use 

and climate change makes it relevant for both resource management and aquaculture 

industry planning. The implementation of integrative modeling approaches, such as that 

used in this study, for developing sustainable management strategies in large-scale 

bivalve aquaculture systems has been highlighted in previous studies (Luckenback and 

Wang 2004, Ferreira et al. 2009, Marinov et al. 2007, Byron et al. 2011). The standard
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model run presented in this study gives managers and industry personnel a baseline to 

evaluate and plan for the sustainability of the hard clam aquaculture operations in 

Cherrystone Inlet. Largely due to the current water quality (Figure 4) and hydrological 

regime of Cherrystone Inlet (Figure 3), clam farmers have been able to harness the 

ability of the ecosystem to support a relatively large hard clam production. However, 

industry farmers in Cherrystone Inlet have proactively addressed reduced hard clam 

growth rates, through trial and error, by limiting the quantity of clam beds so that 

system wide production does not exceed 200 million clams (M. Pierson : personal 

comm.). This ecosystem model gives resource managers and industry personnel a 

method to quantitatively develop a sustainable aquaculture strategy in light of future 

land use and climate change.

4.11 Concluding Remarks

Currently the ecosystem function of Cherrystone Inlet enables the production 

and harvest of hard clams without large negative impacts to estuary; however the 

industry should continue to manage resources to maintain sustainability long-term 

under changing climatic conditions. Maintaining the function of coastal ecosystems in 

the face of changing land use, climate, and the increasing demand for growth in hard 

clam aquaculture was assessed with the use of a quantitative, system-level decision 

support modeling tool. The Cherrystone Ecosystem Model provides an important tool 

for the Virginia Eastern Shore and similar coastal systems, to aid in ecosystem-based 

management, support regional spatial planning, and ensure the sustainability of the 

aquaculture industry.

40



TABLES

Table 1. Box dimensions for watershed area, water-body surface area, average depth 
(mean sea level; MSL), water volume, and tidal prism volume in the Cherrystone

Ecosystem Model.

Box Dimensions

Box

Watershed 
Surface Area 

(m2)

Water 
Surface Area 

(m2)
Average 

Depth (m)
Water 

Volume (m3)
Tidal Prism 

Volume (m3)

1 13,977,837 851,958 0.62 528,214 675,160
2 2,483,365 2,240,587 1.10 2,464,646 1,775,620

3 1,551,553 1,862,973 1.55 2,887,608 1,476,369

4 1,481,263 103,171 0.52 53,649 81,761

5 819,318 87,302 0.52 45,397 69,185

6 7,414,246 264,463 0.57 150,744 209,581

7 5,361,076 219,201 0.52 113,985 173,712
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Table 2. Coefficients and values associated with benthic microalgal resuspension term  
used in the benthic microalgae sub-model.

BMA Resuspension Term
Coefficients Values

k l 1
k2 0
k3 3
k4 38.7
k5 40
k6 30
k7 0.1
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Table 3. Values, units, definitions of parameters and coefficients used in the ecosystem
model.

Parameter Definition Units Value

Phytoplankton Sub Model
Phyto C:Chl Carbon to chlorophyll ratio gC gChl1 45.12
Phyto C:N Carbon to nitrogen ratio molar ratio 6.625
Phyto C:P Carbon to phosphorous ratio molar ratio 106

Phyto C:dw Carbon to dry weight ratio gC gdw1 0.4

mBZI Slope, phytoplankton production equation n/a 
molar ratio

0.76

Phyto PQ Photosynthetic quotient (02:C02) 
molar ratio

1

Phyto RQ Respiratory quotient (C02:02) 1

wtclm RfO 0 0 intercept for wtrclm respiration d 1 0.05

wtclm RfQIO Exponent for wtrclm respiration °C1 0.71
Benthic Chlorophyll Sub Model

mg 0 2 mg'1 chla
alpha intercept Intercept for initial slope of the PI Curve h 1 (uE m'2 s'1)'1 0.0259

alpha exponent Exponent for initial slope of the PI Curve °C'1 -0.044

Gmax slope Slope of regression between Gmax and T “C1 d'1 0.0047

Gmax intercept Intercept of regression between Gmax and T d'1
molar ratio

0.2464

BMA PQ Photosynthetic quotient (02:C02) 
molar ratio

1

BMA RQ Respiratory quotient (C02:02) 1

BMA RfO 20 0 intercept for respiration d'1 0.045

BMA RfQIO Exponent for respiration “C'1 0.069
BMA Pi1 First mortality coefficient m2 gC'1 d 1 0.075
BMA p2x Second mortality coefficient d'1 0.085
BMA P31 Third mortality coefficient d'1 0.02

BMAC:Chl Carbon to chlorophyll ratio gC gChl1 45.12
BMAC:N Carbon to nitrogen ratio molar ratio 9
BMA C:P Carbon to phosphorous ratio molar ratio 144

Hard Clam Sub Model
AE Assimilation efficiency

molar ratio
0.75

Clam RQ Respiratory quotient (C02:02) 1
Clam C:N Carbon to nitrogen ratio molar ratio 6.62
Clam C:P Carbon to phosphorous ratio molar ratio 116.25

Watershed Nutrient Loading Model
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Load P:N 
Natm

Phosphorous to nitrogen ratio 
Atmospheric N deposition

molar ratio 
gN m'2 d'1

0.0625
0.0017

Sediment Sub Model

SED RfO 0 ° intercept for respiration d 1 0.5

SED RFQIO Exponent for respiration °C1 
molar ratio

0.08

SED RQ Sediment respiratory quotient (C02:02) 1

DNFO 0 ° intercept for denitrification d 1 0.005

DNFQ10 Exponent for denitrification °C1 0.04

1 BMA_mortality = (BMA_Pi * BMA_BIOMASS2) + (BMAJ32 * BMA_BIOMASS) + (BMAJ33 
* BMA_BIOMASS)
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Table 4. Modeled watershed yields of total nitrogen (TN) from the Cherrystone Inlet
watershed and other lower Delmarva watersheds.

Export TN 
Estuary (Source) (kg N ha'1 y'1)

Cherrystone (this study) 9.0
Northampton County, VA (CBP 

Phase 5.3 Watershed Model 
USEPA 2010) 16.1

14 VA Eastern Shore 
watersheds (Stanhope 2009) 0.1 -12 .9

4 VA Eastern Shore 
watersheds with land use most 

similar to Cherrystone 
(Stanhope 2009) 4 .7 -1 0 .1
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Table 5. Modeled watershed total nitrogen (TN) export (kg N ha 1 y'1), load (kg N y *) and
% load for each Cherrystone Inlet sub-watershed.

Spatial
Element

TN Export 
(kg N ha 1 y'1)

TN Load 
(kg N y'1) % Load

Box 1 8.9 12,382 41.5
Box 2 11.6 2,887 9.7
Box 3 14.1 2,194 7.3
Box 4 13.2 1,954 6.5
Box 5 11.4 937 3.1
Box 6 7.6 5,626 18.8
Box 7 7.2 3,881 13.0

System 9.0 29,915 100

46



Table 6. Number of predator exclusion nets for the total estuary and for each size class 
in each spatial element based on model scenario (using a net area of 72 m2 and hard 

clam planting density of 797 clams rrf2).

Hard
Clam

Numbers

Net Numbers 
(Estuary)

Nets Numbers 
(size class'1)

Box 2 Box 3

25M 436 83 62
50M 871 166 125
75 M 1307 248 187

100M 1761 335 252
125M 2178 414 312
150M 2514 478 360
175M 3050 579 437
200M 3485 662 500
250M 4357 828 624
300M 5228 993 749
350M 6099 1159 874
400M 6971 1324 999
450M 7842 1490 1124
500M 8713 1656 1249
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Table 7. Skill assessment of the standard run under calibration conditions (100M clams 
during 2001-2002) compared to VA DEQ water column monitoring data. Skill metrics 

are shown for mean and median absolute error (ABS Error), percent error (% Error), root 
mean square error (RMS Error), and Nash-Sutcliffe modeling efficiency comparing model 

predictions to observations on the same day and within one and two weeks of data 
collection. Output for chl-o is also shown for a simulation without clams.

Temporal
Comparison Error Type Measure

Chl-o
Standard

Run
(mg m'3)

Chi - a 
No 

Clams 
(mg rrf3)

DIN
(uM)

DIP
(uM)

DO
(mg L 1)

Same Day ABS Error Mean 3.61 3.00 2.03 0.14 1.18
ABS Error Median 2.23 1.88 0.61 0.11 1.06

1 week ABS Error Mean 2.09 1.50 0.32 0.04 0.25
ABS Error Median 2.15 1.12 0.23 0.02 0.20

2 weeks ABS Error Mean 2.18 1.67 0.35 0.05 0.39
ABS Error Median 1.99 1.39 0.28 0.03 0.34

Same Day % Error Mean 45.2 59.7 52.7 60.0 13.3
% Error Median 43.1 30.9 50.9 58.3 12.9

1 week % Error Mean 31.9 24.8 26.2 25.5 3.1
% Error Median 33.0 17.5 19.6 23.5 2.5

2 weeks % Error Mean 32.3 29.1 27.5 28.9 5.0
% Error Median 32.6 19.8 22.2 25.8 4.6

Same Day RMS Error n/a 5.65 4.72 3.54 0.20 1.41
1 week RMS Error n/a 2.46 2.03 0.40 0.05 0.34
2 weeks RMS Error n/a 2.65 2.16 0.44 0.06 0.49

Nash-
Same Day Sutcliffe n/a -0.09 0.24 0.17 -0.45 0.21

Nash-
1 week Sutcliffe n/a -0.31 0.48 0.87 0.80 0.92

Nash-
2 weeks Sutcliffe n/a -0.25 0.50 0.85 0.67 0.84
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Table 8. Slope and r2 from regressions of model output (y) vs. VA DEQ. water column 
monitoring data (x) for the standard run under calibration conditions (100M clams 

during 2001-02). Regressions compare model predictions to observations on the same 
day and within one week of data collection. Output for chl-o is also shown for a 

simulation without clams where all other parameters include clams.

Temporal
Comparison

Chl-o 
Standard Run 

(mg m'3)

Chl-o 
No 

Clams 

(mg m'3)

DIN
(uM)

DIP

(uM)
DO 

(mg L'1)

Slope 0.18 0.26 0.22 0.17 0.59
Same Day

r 0.28 0.27 0.71 0.08 0.63
Slope 0.66 1.02 0.84 0.83 0.91

1 week
r 0.62 0.66 0.88 0.82 0.94
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Table 9. Hard clam growth rates (mm y '1) per size class from 25 million to 500 million 
clams computed in the standard model simulations compared to measured growth rates 

at 100 million clams in Cherrystone Inlet (Condon 2005).

Number of Clams Size Class 1 Size Class 2 Size Class 3
Measured growth 

with 100M (Condon 
2005)

25.47 13.04 8.02

25M 25.87 8.16 6.57
50M 25.69 8.01 6.46

75M 25.45 7.94 6.43
100M 25.30 7.82 6.30
125M 25.13 7.71 6.25
150M 24.99 7.67 6.23
175M 24.76 7.54 6.13
200M 24.62 7.47 6.04

250M 24.31 7.30 5.95
300M 24.12 7.14 5.86
350M 23.88 7.01 5.76
400M 23.64 6.88 5.65
450M 23.43 6.80 5.57

500M 23.23 6.67 5.48
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Table 10. Mean and standard error of modeled benthic chlorophyll-a (mg m‘2) in the top 
3 mm of sediment in the 0 -  0.5 m depth segment for Boxes 2 and 3,compared to data 

collected at approximately 0.5 m in Cherrystone Inlet (Anderson and Murphy,
unpublished).

Benthic Chl-o Mean
Standard
Error

Box 2 Model Output 38.2 18.8
Box 3 Model Output 43.2 14.7
Observed, March 2013 39.7 20.6
Observed, July 2013 50.3 6.6
Observed, November 2013 35.0 14.3
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Table 11. Simulation results in which hard clams were placed entirely w ithin Box 1, Box 
2, or Box 3, including the percent (%) difference from the standard run with 

corresponding clam numbers.

Harvestable 
Growth Rates, Time To Biomass,

mm y 1 Harvest, days kg dry weight
100M 150M 100M 150M 100M 150M

Simulation Clams Clams Clams Clams Clams Clams
Standard
Run 13.1 13.0 767 803 29.9 40.8 4.0 3.8

BOX1 16.1 15.0 461 542 56.7 64.1 4.3 4.2

%difference 22.8 15.4 -39.9 -32.5 89.4 57.0 7.3 8.8

BOX2 13.2 12.9 757 806 30.8 41.1 4.3 4.1

%difference 0.4 -0.3 -1.3 0.4 2.9 0.8 7.8 5.9

BOX3 12.8 12.7 838 849 26.5 36.5 3.5 3.4

%difference -2.4 -2.1 9.3 5.7 -11.4 -10.5 -12.3 -11.8

Chl-o, 
mg m' 

100M 150M
Clams Clams
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Table 12. Modeled watershed total nitrogen load (kg N y_1) and export (kg N ha 1 y 
under calibration conditions (2001-2002) and for an increased load simulation (Total Ag 

Sim) in which all watershed land use was converted to agriculture.

Increased
Watershed

Watershed Nitrogen Calibration Exchange 
 Exchange_________ Conditions________ Sim

Load (kg N y-1) 29,838 53,583

Export (kg N ha'1 y'1)________ 9L0___________ 16.2
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Table 13. Computed nitrogen inputs to Cherrystone Inlet (xlO6 g N y'1) under the
standard run with 100M clams.

Cherrystone Inlet Nitrogen Budget x 106 gN y 1

Watershed Load 29.8
Direct Atmospheric Deposition 34.2

Input Across Mouth 55.1
Sediment Remineralization 11.2

Hard Clam Feces Remineralization 19.7
Hard Clam Excretion 2.0
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Table 14. Increased sea level and sa" " , values for each simulation represented in
Figures 21-22.

Simulation___________ 0_______ 1________ 2_________ 3_________ 4_________ 5

Sea-Level Change Om 0.4m 0.7m 1.0m 1.3m 1.6m

Salinity Change_______ 0______ 0 8 _______ 1A_________2________ 2J>_______ 3,2_
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FIGURES
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Figure 1. Cherrystone Inlet spatially separated into 7 boxes (labeled 1-7) w ithin the 
ecosystem model, the adjacent watershed, the area of cultured clam beds in 2012 

(Manley 2014), and Virginia Department of Environmental Quality stations.
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Figure 2. Cherrystone Ecosystem Model diagram depicting the mechanistic connections 
between key state variables (phytoplankton (PHYTO), benthic microalgae (BMA), DIN, 
DIP, 0 2 , water column and sediment organic carbon (CWc and CSEd, respectively), and 

three size classes of hard clams, as well as the influence of major forcing functions (i.e., 
river flow, total suspended solids, watershed loads of DIN and DIP, wind, temperature, 

salinity, photosynthetically active radiation (PAR), and the exchange due to tides). Flows 
that consume material (e.g. nutrient uptake, oxygen consumption, loss of biomass) are 

shown w ith solid lines. Flows which produce material (e.g. remineralization, 
photosynthetic oxygen production) are shown w ith broken lines. To reduce the 

complexity of the figure, all respiratory demands are shown as being integrated into an 
estimate of tota l water column respiration (Rwc), which draws from the oxygen pool and 
remineralizes N and P. The effect of tem perature (T) on most state variables and flows 

has likewise been excluded. All o ther terms are defined in the text.
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Figure 3. Flushing times for Cherrystone Inlet computed w ith the estuarine model via 
the tidal prism method (Monsen et al. 2002) w ith varying amounts of water that returns 
to the estuary after every ebb tide. In comparison, the simple equation (Flerman et al. 

2007) and the volume of freshwater method (Officer et al. 1980) resulted in annual 
average residence times of 2-3 days and ~7 days respectively.
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Figure 4. Model calibration plots fo r Cherrystone Inlet in Box 2 (with average DEQ survey 
data from stations C-2 & C-3) and Box 3 (with DEQ survey data from station C-l). 
Results are shown for water column chlorophyll-o (a, b), dissolved oxygen (c, d), 

dissolved inorganic nitrogen (e, f), and dissolved inorganic phosphorus (g, h).

59



50

Box 2 Size
Class

45

40

35 

|  30 

25-C+->
00
ca

—I
20

15

10

Box 3
50

40 -

35 -

E 30 
E
r  2 5 -
§  20 - 
a>-ji . cr

10

X  5*. 'it  'is  ,J> 'i t ,  'it  'i; ,  'V  ^
•% x  %  %  <> o, O, %  ^  ■», ^  ^  <R̂  (?j

Date

Figure 5. Modeled hard clam length (mm) over the two year model run for Boxes 2 and 
3. Size classes are separated by dashed lines and size class number. Clams in a given 

size class transition into the next class in the second year of the simulation; clams in size 
class 3 in the first year o f the simulation drop out o f the model in the second year, and a 

new group of clams enters the model in size class 1.

6 0



System-W id e Growth Rae (mm y-1) Box 2 ■ Box 3

15.0

14.5 (a)

> 14.0 -

E 13.5 - ♦
E 13.0
0)4-> 12.5re
O' 12.0-C

11.5
o 11.0
UJ 10.5 - 

10.0
100 200 300 400 500

1,100

900

850
♦  ♦

800

750

700
0 100 200 300 400 500

120

S —100 
E to  

.2 5  so
“  £<u -5
5  To 60 re
S 0  40
£ 3

I  20

0

(C)

100 200 300

Millions of Clams
400 500

Figure 6. Modeled hard clam growth metrics under simulations of increasing numbers of 
clams, (a) Growth rate (mm y-1) in Boxes 2 (dashed line) and 3 (solid line), averaged 
between Boxes 2 and 3 (diamonds), and measured growth rate fo r Cherrystone Inlet 

w ith 100M clams (red square, Condon 2005). (b) Days to harvest compared to a 
standard harvest tim e for Cherrystone farmers of 3 years (1095 days, solid red line), (c) 
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Figure 7. Modeled system-wide, average annual water column chlorophyll-o (mg m '3) 
under simulations w ith  increasing numbers o f clams, compared to  the annual mean 

concentration in incoming Chesapeake Bay water (CBP station 7.3E, red line).
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Figure 21. Modeled hard clam growth metrics with the scenario of increased sea level 
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