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ABSTRACT

Fast moving hurricanes and stationary nor’easters have resulted in significant flood 
damage in Chesapeake tidewater communities. The Chesapeake Bay region is one of 
A m erica’s most vulnerable regions with respect to sea-level rise, which will only increase 
storm surge impacts over upcoming decades. While the general trends are well 
documented, there is limited information relevant to specific com munities’ relative flood 
risk and response. The dearth o f data is especially troublesome given the lengthy period 
o f time generally needed for communities to plan and implement adaptive action. This 
study contributes to the regional understanding o f flood and sea-level rise vulnerability 
by applying physical, social, and combined vulnerability indices to tidally influenced 
localities along the Chesapeake Bay. Unlike other combinations o f physical and 
socioeconomic data, the physical vulnerability index for this study is calculated at a scale 
that can directly link into social vulnerability index information at local and regional 
levels. The research also considers the distribution o f coastal natural capital (in the form 
o f marshes and forests) alongside these indices at comparable scales.

By calculating the indices for conditions o f the early 2000s, this study also tested their 
predictive value against Hurricane Isabel, a landmark 2003 storm that flooded areas 
across the region. Systematic verification “hindcasts” o f past events are relatively rare for 
vulnerability index evaluation. By attempting to establish connections between real 
flooding data, socioeconomic activity, and vulnerability indices, this study questions 
whether theoretical vulnerability indices work as true proxies for real world conditions. 
The results question the true utility o f these indices by showing limited relationships 
between vulnerability and changes in community socio-economic activity. The research 
also emphasizes the need for more data collection and consideration in order to better 
comprehensively understand coastal flood impacts and their management implications.
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INTRODUCTION

Fast moving hurricanes and stationary nor’easters have resulted in significant flood 

damage in Chesapeake Bay tidewater communities. The area is one o f Am erica’s most 

vulnerable regions with respect to sea-level rise, which will only increase storm surge 

impacts over upcoming decades. While the general sea-level rise trends are clear, 

information relevant to specific com m unities’ flood risk and ability to respond is quite 

limited. The lack o f data is especially troublesome given the lengthy period o f time 

communities need to plan and implement adaptive action. This research aims to aid 

coastal hazard response planning efforts by applying flood vulnerability indices to the 

Chesapeake Bay region. The analysis’s objective is to determine how well measures o f 

natural and socioeconomic characteristics describe and predict specific community 

vulnerability to storm-driven flooding. By better understanding the accuracy and 

reliability o f community vulnerability determinants, coastal managers should be able to 

more effectively enhance their com m unities’ ability to recover from coastal flood events.

The location and physical geology o f the Chesapeake tidewater region largely 

explain why the area is so vulnerable to the impacts o f storm surge and sea-level rise. 

Significant areas o f low elevation along the Bay’s shores have been experiencing rising 

water levels due to subsidence and ocean circulation patterns in addition to global 

changes (e.g. Eggleston and Pope 2013; Ezer and Corlett 2012). Physical characteristics 

are only part o f the picture however. Differences in individual com munities’ human 

elements and natural capital characteristics are likely critical determinants of
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vulnerability to coastal flood events. Consequently, it is essential to consider both natural 

and social aspects when analyzing coastal flood event impacts.

Over the past decade, analyses o f com m unities’ ability to weather and recover 

from natural disasters increasingly have considered social factors (e.g income or age) 

alongside their physical characteristics (W isner et al. 2003). A number o f vulnerability 

indices incorporate both physical and social features o f areas (e.g. Wu et al. 2002; 

Kleinosky et al. 2006; Martinich et al. 2011). As described by Eriksen and Kelly (2007), 

most o f these indices are essentially snapshots o f particular places at particular moments; 

they have not been subjected to critical analysis or verification through application to 

multiple flood events over time.

Communities in the Chesapeake tidewater region could benefit a great deal if 

flood vulnerability indices prove to be effective tools for enhancing resilience to storm- 

driven flooding. The region also offers a good place to test how well vulnerability indices 

predict flood events’ impacts on specific communities. One o f the problems with 

undertaking this kind o f analysis is that the physical characteristics o f the region relevant 

to flood vulnerability are described in ways that seldom correspond to the political units -  

e.g., counties and zip codes -  for which socioeconomic data is compiled. In addition to 

applying established social vulnerability methods to the Bay area, this study develops a 

new physical vulnerability index at scales that better match socioeconomic data 

resolution. The research tests the indices’ predictive power by hindcasting the impacts o f 

Hurricane Isabel, the storm that devastated parts o f the Chesapeake Tidewater region in 

2003. Though it passed through the area more than a decade ago, Hurricane Isabel 

remains the best available test scenario for the region, having generated some o f the
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worst widespread flooding in over 70 years. Isabel’s timing also is generally ideal 

because it occurred relatively soon after a decennial US Census.

In summary, this study attempts to combine multiple sources o f socioeconomic 

and physical data with information regarding storm surge impacts to evaluate how well 

vulnerability indices predict community resilience to flood events. The analysis 

specifically studies vulnerability in the Chesapeake Bay region and tests the predictive 

ability o f flood vulnerability indices with respect to the impact o f Hurricane Isabel on 

Tidewater communities. This thesis details two major components:

• Chapter 1 describes the process o f characterizing vulnerability across the 

coastal tidewater region o f Maryland and Virginia by analyzing regional 

vulnerability distribution in terms o f physical, socioeconomic, and 

relevant natural ecosystem factors.

• Chapter 2 investigates the impacts o f coastal flooding across the area 

associated with Hurricane Isabel, describing the relationships between 

vulnerability indices, relative flooding, and changes in community 

socioeconomic activity.

The results demonstrate how assessed vulnerability differs across tidewater 

communities and identify several relative hot spots o f combined vulnerability. Despite 

vulnerability indices’ value as visualization tools, a case study o f their performance 

suggests that their real world application falls short o f predicting societal impacts of 

flooding. Barring analysis against different, more refined datasets, this evaluation 

questions the true value o f their application.
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BACKGROUND

Severe flooding in the coastal Chesapeake Tidewater region occurs due to a combination 

o f tidal, storm surge, and precipitation events. Community “vulnerability,” or “the 

degree to which a system, subsystem, or system component is likely to experience harm 

due to exposure to a hazard, either a perturbation or stress/stressor” (Turner et al. 2003), 

can be characterized in a number o f different ways. In addition to the risks o f coastal 

living, the community vulnerability concept applies to a number o f natural hazards, 

including earthquakes and tornadoes. Natural hazards impact communities differently 

due to unequal levels o f exposure as well as the disparities in physical characteristics that 

shape vulnerability. At the same time demographic diversity can influence disaster 

impacts; two communities with the same elevation and storm surge orientation might 

respond in very different manners to physical damage. Natural capital -  the presence of 

coastal ecosystems and services such as shoreline protection -a lso  may play a role in 

disaster response. Coastal vulnerability assessments considering all three elements -  

physical vulnerability, social vulnerability, and natural capital -  have become more 

commonly appreciated as managers plan for current and future risks.

In order to frame the study o f vulnerability in this region, the following discussion 

provides an overview o f several key elements under consideration when coastal decision

makers tackle the threats o f coastal flood hazards and rising sea levels. This background 

begins with a discussion o f the evolution o f vulnerability indices as a tool for predicting
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community resilience to natural disasters. The section concludes by tying vulnerability to 

two key related concepts, natural capital, and resilience.

Vulnerability Indices

There are a number o f ways to compare coastal hazard risks across an area. Though 

options range from general coastal atlases to large-scale hydrodynamic models, 

vulnerability indices have become especially popular tools during the last two decades 

(North Carolina Coastal Atlas, 2014; Bush et al. 1999). In addition to providing a useful 

summary o f intraregional risk distribution, indices can inform next steps for analyzing 

coastal community resilience by predicting relative vulnerability. Indices allow for a 

consistent analysis across a region and permit comparison o f a variety o f factors using 

consistent, quantitative measures. Researchers have attempted to create a number o f 

hazard-related indices, including several focusing on coastal issues (Table 1).

For many years, analyses o f coastal risk were specific to their study sites and 

lacked methods to compare relative risk. By creating indices that combine important 

factors contributing to physical risk, researchers began to quantify risk relationships 

rather than relying solely on qualitative descriptions and comparisons. As Balica and 

Wright (2010) point out, indices deliver information in a “relatively straight-forward 

way” despite multiple contributing components. Increased computing power and spatial 

analysis software such as GIS have contributed significantly to the rise o f data-intensive 

vulnerability index approaches. However the utility o f these indices remains limited 

where basic information is not readily available. Frihy et al. (2013) identified these 

constraints when developing a qualitative assessment o f Egyptian coastal risk. They
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concluded that even when using the best available data, a quantitative comparative risk

approach could improve the assessm ent’s overall value.

Literature Principal Physical 
V ulnerability Indicators

Elevation 

Tidal Range 

Coastal slope

Fetch/W ave E nergy/C haracteristics

Geology 

Geomorphology 

Storm Freq/Probability 

SLOSH flood model 

Distance from Shore 

Relative SLR/Subsidence 

Shoreline erosion/accretion 

Storm Surge

Rivers Present/Discharge 

Stonn Intensity 

FIRM Map Flood Exposure 

W etland Presence 

Coastline Length

Developed Land____________________

Table 1 -  Factors analyzed in various physical vulnerability indices from the literature. Factors used 
in this study’s physical vulnerability index are bolded.

The number o f online sea-level rise and flood viewers depicting the potential for future 

flood damage has significantly grown in recent years (e.g. NOAA Digital Coast 2014, 

Climate Central 2014). While these viewers often analyze risk purely based on elevation, 

new approaches to consideration o f coastal hazard risk have increasingly gone beyond 

this singular element. In the early 1990s, Gomitz et al. (1994) and others began to refine 

the concepts o f relative risk across wider regions through more objective consideration o f 

factors relevant to fo o d  risk and their spatial variation factors. These factors include 

geology, erosion rates, elevation, subsidence, storm probability, and tide range. The
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variables are usually tailored to the particular coastal risk question at hand, such as the 

risk o f an average storm versus that o f long-term sea-level rise. Some o f these risks may 

be more correctly characterized as longer-term influences, while other factors, such as 

elevation, apply to both short and long-term inundation. For the Southeast Atlantic and 

G ulf coasts, Gomitz et al. (1994) considered coastlines with low elevation, sediment 

prone to erosion, subsidence, high waves and tides, and high probability o f being hit by 

storms as those most vulnerable to short and long-term rises in sea-level. They identified 

these areas by using a number o f physical datasets, and proceeded to classify individual 

variables by binning the data and classifying the factors at risk levels ranging from 1 

(Very low) up to 5 (Very high risk). The authors considered 13 variables, but categorized 

them into three groupings in order to better weight their relative importance when 

calculating their final index values.

While some researchers, e.g. Clark et al. (1998), have used secondary physical 

aspects such as the federal Flood Rate Insurance Maps (FIRM) o f flood exposure to 

denote physical vulnerability aspects, most efforts have followed the Gomitz et al. (1994) 

approach o f integrating the physical factors more directly into their analyses. The US 

Geological Survey considered the same ranking approach for use in rating east coast 

vulnerability to reduce the number o f variables considered (Thieler and Hammar-Klose 

1999). Balica and Wright (2010) state that limiting indicators makes sense in this context 

where they are intended to represent different systems rather than to identify every single 

individual variable in play.

In recent years, a number o f studies switched away from considering individual or 

combined physical index factors to utilizing the National Oceanic and Atmospheric



Adm inistration’s Sea, Lake, and Overland Surges from Hurricanes (SLOSH) (NOAA 

NHC 2014) model to characterize the potential for damaging inundation (e.g. Frazier et 

al. 2010, Kleinosky et al. 2006, Wu et al. 2002). This modeling has the advantage o f 

allowing the user to consider diverse range o f flood risk that might be associated with 

different hurricane strengths. The use o f these models results in several limitations, 

however, including the need for specific current climatic inputs that may not be widely 

available. These models also point more to damage from certain individual storms, rather 

than considering the vulnerability to the average coastal fo o d  event. Despite advances in 

physical factor characterization and relation to risk, even the first Coastal Vulnerability 

Index developers acknowledged the limitations o f including only the physical world in 

their model and noted the potential for demographic and economic factors to contribute 

to proper risk measures (Gomitz et al. 1994).

The concept o f social vulnerability suggests that two communities with similar 

physical characteristics but diverse demographics may react very differently when 

exposed to the same disaster event. Recently, there has been increasing interest in 

examining variables that may alter or predict a disaster’s impact on different population 

groups based factors including income, age, race/ethnicity, and housing tenure (Table 2). 

Socioeconomic factors may impact everything from the ability to evacuate to individuals’ 

access to recovery funds. These different vulnerabilities can paint very different pictures 

o f disaster risks across an area. Federal, state and local managers may consider this type 

o f information when deciding how to allocate disaster resources and prioritize efforts to 

sustain communities before, during, and after the critical storm events.
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Literature Principal Social 

V ulnerability  Indicators

Age 
Poverty 
Race 
Income 
Immigrants 
Families/Structure 
Housing Stock and Tenancy 
Gender 
Land Use
Employees in Area/Occupations 
Unemployment/Labor force
participation
Development density
Rural/urban dichotomy

Infrastructure Dependence
Disabilities
Property Value
Education
Population decline
Ethnicity

Transience
Single Sector Economic Dependence

Critical Facilities
Conservation Designation
Roads/Railways
Cultural Heritage
Transportation
Telephones
Non-English speakers_________

111

Table 2 -  Matrix of variables considered in varying social vulnerability analyses from 
the literature.

Increasing appreciation for the importance o f human factors inspired a number o f 

different attempts to build vulnerability indices that combine information regarding 

physical and social risk. This is actually the case for several o f the studies that consider 

multiple aspects o f a com m unity’s risks and resources (Wu et al. 2002; Kleinosky et al.
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2006; Martinich et al. 2013). Unfortunately, few o f these indices are particularly 

transferab le from one region to another. Though McLaughlin and Cooper (2010) and 

Balica et al. (2012) offer an interesting approach to the problem by only using scalable 

variables, many vulnerability indices are not comparable when the scale o f events differs 

significantly.

Short o f tremendous sources o f “Big Data” collected in consistent ways across 

large areas, most index application necessarily focuses on vulnerability measures related 

specifically to the region o f study. A number o f studies have targeted vulnerability 

indices o f entire nations (e.g. Brooks et al. 2005), while others continue to focus on a 

particular town or community (e.g. Clark et al. 1998). International comparisons may 

support worldwide rankings but do little to provide actionable information for coastal 

managers. Conversely, small scale assessments may help individual communities, but 

may have limited lessons that can translate to other people. Different vulnerability 

ranking systems even produce a variety o f rankings for the same area depending on the 

methodology employed (Eriksen and Kelly 2007). Eriksen and Kelly (2007) suggest that 

the problem o f comparability is not simply the result o f data availability differences; in 

their view, differences regarding the concept o f vulnerability suggest that vulnerability is 

never directly measureable in a truly objective manner.

Although its results also may depend on the region studied, the Social 

Vulnerability Index (SoVI) by Cutter et al. (2003) has become an often used common 

strategy for assessing socioeconomic based vulnerability within the United States using 

Census data and boundaries. The widespread application likely comes in part from the 

systematic methodology behind the index, allowing it to be easily applied to different
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areas. The original index focused mostly on county-level decadal Census data, reducing 

42 variables to 11 indicators serving as proxies for social vulnerability. Cutter et al. 

(2003) utilized the U.S. Census data to define inequalities affecting the groups’ response 

to harm. The additive model has strengths o f applying common values across the region 

o f study.

One o f the first characteristics noticeable about several indices (especially early 

efforts) is that they utilize ranked data rather than continuous data for certain types o f 

variables, such as binning coastal slope angles into different categories (e.g. Gomitz et al. 

1994, M cLaughlin and Cooper 2010, Wu et al. 2002). These rankings should be flagged, 

because they may affect analyses by creating artificial thresholds within the data 

distribution. Balica et al. (2012) provide one solution to this by normalizing the factors 

between 0 and 1 relative to their own data ranges. This approach treats them as 

dimensionless units to allow combination with other factors yet maintains the data 

continuity.

Another data difference existing among some o f the social vulnerability indices is 

that researchers make different decisions about whether to use raw numbers or 

percentages for population related vulnerability factors. Rygel et al. (2006) point out that 

Cutter’s efforts with SoVI used absolute numbers, citing the rationale that more people 

increases vulnerability. This reasoning is potentially problematic because it can distort 

values based on varying population sizes -  when geographic units are not perfectly 

standardized by population an urban community might come off as much more 

vulnerable than a small rural community, no matter what the relative conditions o f the 

people within each area. Stating that both composition and raw numbers are important,
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Rygel et al. (2006) therefore proceed to use both percentages and density measures. 

Despite the use o f both percentages and densities they found no differences in using 

either approach for their work, suggesting that either transformation may work to move 

beyond individual numbers.

There have been several concerns raised about these additive component indices. 

Adger et al. (2004) state their concern that aggregating this kind o f information into 

single values reduces visualization o f the reasons behind vulnerability or glosses over 

pockets o f vulnerability, especially when indices have relatively larger sub-units. 

Kleinosky et al. (2006) reinforce this concern that the single score creation for overall 

vulnerability noting that a particularly high score in one area could be obscured by low 

scores in others. They attempt to tease out this effect by employing Pareto rankings, i.e., 

grouping classes o f vulnerability to some extent. The Kleinosky et al. (2006) approach 

also attempts to minimize issues around weighting, given that even rating indicators as 

equal in importance is technically still giving them a weight (Rygel et al. 2006). Pareto 

ranking therefore provides a possibly less biased approach to vulnerability assessment, 

though its application does demand evidence o f clear separations within data.

There has been a fairly broad application o f vulnerability indices to natural 

hazards, and a number o f these studies target coastal elements. A focus on flooding has 

especially intensified as sea level rises, which will only increase the likelihood o f future 

severe fo o d  events. Forecasts o f increasing coastal populations and either more severe or 

more frequent storms only reinforce this danger.
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Natural Capital

While physical and socioeconomic conditions likely explain a great deal about a 

com m unity’s vulnerability to coastal risk, other key features ranging from grey/green 

infrastructure to prior storm experience may play a role as well. More researchers are 

now considering the important role a com munity’s associated coastal ecosystems, or 

natural capital, may play during coastal storms and flooding due to their influence on 

hydrological processes and physical protection during these events. Coastal ecosystems 

are naturally adapted to the shifting environment that marks the w orld’s shorelines. They 

likely have some potential to act as “bioshields” that reduce the magnitude o f coastal 

hazard impacts, though some question the true extent o f this potential (Feagin et al.

2009). The continued development o f coastal areas and the costs o f associated hardened 

protection structures has led to an increased desire to understand how society can take 

advantage o f the benefits provided by these natural shorelines.

While environment elements such as bathymetry and fetch determine much of 

wave exposure conditions, research by the U.S. Army Corps o f Engineers (USACE) 

(2013) and others has pointed to the ability o f marshes, maritime forests, and other 

features to reduce damage to the communities around them by limiting wave action and 

other processes (Costanza et al. 2008, UMD IAN 2013). The USACE North Atlantic 

Coast Comprehensive Study (NACCS) Coastal Storm Risk Management Framework 

includes a focus on vulnerability, and the exposure assessment includes a population 

density and critical infrastructure exposure index, a social vulnerability index, and an 

environmental vulnerability index (USACE 2015).
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Wamsley et al. (2010) examine modeled and observed data to support this notion 

o f coastal protection by wetlands, though they suggest that the surrounding landscape and 

the size, speed, and direction o f storms also impact this capacity. Waves may first be 

dampened as soon as they hit the shore, so timing o f storm events may be critical to 

influencing the habitat a storm impacts first -  e.g., whether waves first encounter seagrass 

or trees (Koch et al. 2009). This dampening capacity relates to the ability o f vegetation to 

generate friction for incoming storm surges, thereby disrupting and dispersing incoming 

wave energy; without significant wave-setup, storm-surge can be significantly reduced 

(Dean and Bender 2006). Wave damage impacts may therefore connect to water levels 

and relative marsh size. During times when marsh vegetation stands within the entire 

water column, it dampens wave-energy more than periods o f time when the water column 

extends above the vegetation’s maximum height (Augustin et al. 2009). Gedan et al.

(2011) state that this wave-dampening potential exists for narrow wetlands as well as for 

areas with extensive marsh cover (e.g. Louisiana delta coast or the Maryland Blackwater 

area).

Coastal forests are another natural shoreline feature that may reduce flood 

damage. Though some researchers question the relative importance o f other factors, one 

o f the most famous examples o f forest ecosystem flood damage reduction is the coastal 

protection offered by mangrove forests during the 2004 Indian Ocean Tsunami (Gedan et 

al. 2011). Mangrove trees both dissipated wave energy and likely blocked debris. 

(Cochard et al. 2008; Tanaka et al. 2007). Mangroves may not be a Chesapeake Bay 

feature, but forests within flood zones might have the potential to play similar roles in 

storm damage mitigation.
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In addition to their direct flood protection potential, these coastal ecosystems may 

offer other indirect benefits for a coastal community. The presence o f natural coastal 

vegetation alters the sediment below it over time, reducing erodability (Feagin et al.

2009; Gedan et al. 2011;USACE 2013). This soil stabilization may limit the potential for 

catastrophic shoreline retreat during both storms and longer-term periods.

Dietrich et al. (2009) suggest that marsh friction can have a significant effect on 

water flow during flood recession as well. Friction could therefore provide potential for 

reducing impacts to surrounding water quality by limiting the immediate pulse o f 

contaminants, nutrients, or other particles that occurs after major storm events. Unlike 

hardened structures, natural coastal protection also might provide adequate shielding in 

certain locations without detracting from coastal habitat and other ecosystem services. 

The concept o f socio-ecological resilience must be better understood in connection with 

coastal disasters and human development in order to sustain these benefits (Adger et al. 

2005).

Resiliency

The 2012 National Research Council study, “Disaster Resilience: A National 

Imperative,” stressed the importance o f understanding and reducing vulnerability as 

critical to increasing community resiliency (NRC 2012). The definition o f resilience 

varies across a number o f disciplines. While the original material science definition o f 

resilience describes an object’s “elasticity” (Gordon 1978), in the ecological context the 

term describes a system ’s ability to “absorb disturbance and reorganize while undergoing 

change so as to still retain essentially the same function, structure, identity, and
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feedbacks” (W alker et al 2004). Currently, the term often refers to the impacts to the 

system, individual, ecosystem, social group or even community, and its ability to recover 

(Norris et al. 2008). For some, the concepts o f vulnerability and resilience are opposites, 

(e.g. Sherrieb et al. 2010), in that a vulnerable community is not a resilient community 

and vice versa. In the context o f the Norris et al. (2008) definition above, however, 

resiliency may well have a strong relationship to vulnerability, but the two concepts are 

by no means perfect opposites. Resilient communities may have vulnerabilities, but they 

develop means to withstand or quickly recover from negative impacts. A resilient 

community therefore must be vulnerable in some sense. Otherwise, it might have no 

stressors to serve as an impetus to develop or exercise resilience. These forces therefore 

tie together to impact a com m unity’s sustainability through times o f stress, such as 

increased coastal flooding associated with sea-level rise.

For many coastal communities resilience may be defined as the ability o f a system 

and its social units to anticipate hazards, accommodate the effects o f hazards in a timely 

and efficient manner, and carry out recovery activities in ways that minimize social 

disruption and mitigate the effects o f future flooding through preservation, restoration or 

improvement o f its essential basic structure and functions (modified, Bruneau 2003;

1PCC 2012). While defining resilience can be complicated, measuring resilience is even 

more challenging. The ability to systematically measure resilience to coastal storm 

events and associated factors such as flooding remains in its relative infancy. 

Measurement o f resilience involves data-intensive collection o f statistics pertaining to 

people with respect to specific locations and events. Cutter et al. (2008) set out their 

concept o f a Disaster Resilience o f Place (DROP) model, which exemplifies some o f the
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factors or methods that might be considered for measuring disaster resilience and sets a 

platform for refining their concepts o f how factors contributing to inherent resilience play 

out during and after hazards. Their framework reflects a concept that vulnerability and 

resilience show extensive overlap. Cutter et al. (2008) also set out a number o f potential 

variables as candidate indicators that may serve as proxies for social and ecological 

dimensions o f resilience. It is important to note that these are “candidate variables” that 

may be collected at different scales and still must be tested in real-world applications.

More recently, some o f the leading research on resilience has come from the G ulf 

Coast, following a suite o f intensive storms in that region. One particularly innovative 

study by Burton et al. (2011) set out to measure recovery in real time through the use o f 

repeat photography in Mississippi following Hurricane Katrina. The study found that 

measured recovery rates varied geographically, showing initial high correlation with the 

extent o f damage from storm surge before weakening over time. Van Zandt et al. (2012) 

focus on recovery through housing data, particularly that o f building activity following 

the event. They measure damage and recovery from Hurricane Ike in Galveston through 

intensive collection o f damage assessments and house surveys directly along with 

building permit applications following the storm. Despite local success, these kinds of 

examples have not been widely replicable across different areas or time scales.

Another study focusing on Hurricane Ike conducted intensive surveys o f 

businesses and added more remote data, such as the value o f damaged property, before 

attempting to explain differences in these responses to Ike (Kim et al. 2014). Taken as a 

whole, their data also supported the notion o f a drop in median housing price as a result 

o f the storm. These studies have provided important views on specific areas. Kim et al.
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(2014) demonstrate some initial ability to extend data out to county and regional levels. 

Overall, plenty o f room remains to approach resilience measures from a larger, more 

regional level across state boundaries.

Given experience from multiple resilience tracking approaches, verification o f 

vulnerability indices in the Chesapeake Bay region could go a long way towards 

understanding and planning for different resilience levels across the region. If strong 

relationships can be identified from the indices, then researchers and coastal managers 

will be better able to identify how elements such as past experience, infrastructure, or 

culture can shape flood resilience. As decision-makers consider some o f these 

vulnerability assessments in their planning, the distinctions among them may lead to 

significant differences in interpretation when they focus in on a state or local level. These 

real world issues create adequate incentive to further explore the application o f the 

indices to the Chesapeake Bay area, including identifying patterns in their overall score 

distribution and performance.
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CHAPTER 1 -  Chesapeake Bay Vulnerability Characterization

OVERVIEW

This study marks one o f the first efforts to consider physical and social vulnerability at 

equivalent scales across the entire coastal Chesapeake Bay region (Figure 1.1). The 

development o f tools to assist local, state, and regional management o f resources before, 

during, and following coastal flood events is critical to enhancing community resilience. 

Unfortunately, risk and vulnerability tools have generally been unevenly applied across 

the country (NRC 2012). Several larger scale vulnerability analyses include the 

Chesapeake Bay region but are not sufficiently applicable at more local levels because 

they may minimize differences in local conditions by placing them in a more national 

context. Other recent vulnerability analyses within coastal Maryland and Virginia 

include targeted assessments but fail to view the Chesapeake Bay at a more holistic level 

(e.g. Kleinosky et al 2006). Unless a study is specifically designed for application at 

multi-scalar units, it is unlikely that it will be very useful for both local and large-scale 

applications due to the inability to translate particular data from one level to the next.

Work by the University o f South Carolina Hazards and Vulnerability Research 

Institute (H VRI) offers one platform for developing the necessary kinds o f analyses to 

test vulnerability index performance in the Chesapeake Bay region. The South Carolina 

researchers have continued developing the Cutter et al. (2003) approach to study social 

vulnerability. They break down the index scores for the states o f Maryland and Virginia
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relative to the whole nation, as well as to the states themselves. Several flood relevant 

viewers have included H VRI’s methodology, such as Climate Central’s Surging Seas tool 

(2014) and N O A A ’s SLR and Coastal Flood Viewer (2014). Some index calculations 

place coastal Chesapeake communities in the context o f all o f Virginia or Maryland 

(including landlocked localities) while other applications set them in the national 

coastwide context. Understanding the basis for the index is therefore critical to informed 

use o f the analysis.

Much o f the existing index verification work has remained at the theoretical level 

or has only been applied elsewhere, such as the work o f Van Zandt et al. (2012) and 

Burton et al. (2011) on G ulf Coast impacts o f Hurricane Ike and Hurricane Katrina. Their 

methods have shed specific light on vulnerability within their areas, but have required 

intensive data collection following the storms as well as specific datasets not consistently 

available in the Chesapeake region. These exercises are necessary to validate index 

approaches and therefore should be kept in mind for vulnerability assessment designs. 

Given that the most recent landmark storm crossing the Chesapeake Bay was Hurricane 

Isabel in 2003, these methods are not applicable to this region in the same manner due to 

the lack o f adequate post-storm data collection.

To comprehensively understand coastal vulnerability, indices must analyze the 

social and physical dimensions at the same resolution. The development o f a human scale 

physical vulnerability index by the Coastal Resource Management Clinic within the 

Center for Coastal Resources Management (CCRM) at the Virginia Institute o f Marine 

Science (VIMS) has supported these efforts. The inclusion o f physical vulnerability 

elements in the analysis allows comparison o f the human aspects alongside it as well as
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testing potential relative contribution to flood impacts. The physical vulnerability index 

is specifically designed to be calculated at multiple geopolitical boundary scales. The

index therefore can be applied to the level at which matching socioeconomic data is 

available.
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For the social vulnerability index considerations, this study uses locality 

vulnerability scores calculated by the HVRI Social Vulnerability Index (SoVI) for the 

year 2000. The SoVI approach was also applied to the coastal Chesapeake zip codes in 

order to relate vulnerability scores to the verification work o f Chapter 2. CCRM ’s own 

simplified social vulnerability index offers additional comparison. This study also 

analyzes the distribution o f coastal wetlands and forests within geopolitical boundaries to 

identify whether natural capital distribution can enhance the prediction o f flood impacts 

at these scales. As detailed in the Background section, coastal forests and wetlands may 

be able to reduce physical flood impacts.

The establishment o f regional physical and social vulnerability indices and 

associated aspects allows for a comprehensive evaluation o f flood vulnerability across the 

Chesapeake Bay region in the early 2000s. In addition to providing a platform to verify 

prediction o f coastal flood impacts, constructing a physical vulnerability index at human 

geographic scale may help managers find better ways o f incorporating wide arrays o f 

complex information into decision-making processes. By applying a deconstructable 

combined vulnerability index, managers can explore what drives vulnerability across 

areas, focusing o f either physical or socioeconomic adaptation as needed. The parallel 

analysis o f vulnerability at two different scales reinforces isolation o f significant spatial 

trends and supports decision-making at various levels o f management. Overall, the 

process identifies communities that may be particularly impacted by coastal hazards that 

other approaches may fail to fully recognize in the relative context o f tidewater Maryland 

and Virginia.
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METHODS

The following section explains the methodologies employed in the research regarding 

geography and data selection, vulnerability index application and construction, and 

evaluation o f natural capital distribution. The majority o f these approaches have been 

developed in collaboration with the Coastal Resource Management Clinic in the Center 

for Coastal Resources Management (CCRM) at the Virginia Institute o f Marine Science 

(VIMS).

Geography and Data Selection

Studying vulnerability in the context o f the Chesapeake Bay region first requires defining 

o f the exact area that constitutes the region as well as its sub-boundary levels. These 

decisions not only affect the context o f the findings, but also impact what types o f 

information can be analyzed.

For this study the Chesapeake Bay region is identified as the communities within 

Maryland and Virginia localities (counties and cities) that border the Bay or any tidally 

influenced portions o f its tributaries (Figure 1.1). Though not all portions o f each locality 

are floodable, this area selection allows examination o f the issues at different geopolitical 

scales. This approach makes basic sense for considering socioeconomic factors, as 

developing the same area breakdowns for physical vulnerability is key to tying the two 

together.

Development o f vulnerability indices principally considered information at the 

U.S. Census tract level. This approach is a natural tie to the decadal collection o f data, 

and in recent years, more frequent surveys conducted as part o f the U.S. Census Bureau’s
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American Community Survey. Census tracts are shaped ideally to contain populations of 

4000 people, (though they may range from 1200 to 8000 in population) and thereby allow 

reasonable comparisons o f populations. In order to further extend this analysis this 

research developed the equivalent vulnerability score assignments at the locality 

boundary level and 2000 Zip Code Tabulation Areas (ZCTAs). The locality scale allows 

connection o f a number o f state and local datasets to a census delineation o f data across 

Maryland and Virginia. ZCTAs are physical representations o f the zip codes served by 

the United States Postal Service; these areas are technically collections o f postal routes 

(US Census 2015). While this translation o f zip codes to ZCTAs may introduce some 

possible level o f translation error, it is a necessary compromise that is critical to utilizing 

Census data at a spatial community level commonly referenced by other more frequently 

updated datasets.

Social Vulnerability Index Construction

This study takes several approaches to quantify the social vulnerability o f coastal 

Virginia and Maryland localities. The principal approach utilizes data and information 

from the Cutter (2003) Social Vulnerability Index (SoVI) methodology created at the 

University o f South Carolina’s Hazards and Vulnerability Research Institute (HVRI). 

Over time the approach has evolved to respond to changing research philosophies and 

changing Census information (HVRI 2011). SoVI had not been widely applied at the zip 

code level for the year 2000 (personal communication, C. Emrich Jul 13 2015). Given the 

lack o f preexisting application and the variability o f SoVI indices depending on the
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region and geographic scale utilized, this study applied the HVRI SoVI methodology 

(2011) with only minor modifications pertaining to available data.

Data were compiled directly from the Census as well as Social Explorer, a 

software product facilitating the downloading o f specific demographic datasets. Twenty- 

seven variables were pulled or calculated to match the set that corresponds to the 

American Community Survey data the updated SoVI uses (Table A T I). As with the 

updated official SoVI methodology, the number o f hospitals and percent o f population 

without health insurance were not available at this sub-county level. Once downloaded, 

the data was cleaned by removing all ZCTAs that had populations o f less than 100 or 

significant data gaps. Following the official SoVI methodology (HVRI 2011), the data

X ~ Mwas standardized to z-scores for each variable, Z =  ------. A principal components
a

analysis (PCA) was performed using JMP software, using the Kaiser criterion for 

selecting the components with Eigenvalues over 1; varimax rotation identified 7 factors. 

The factor loadings were multiplied by the variable z-scores and summed to calculate the 

factors. Analyzing the factor loadings for the variables for absolute values o f greater than 

0.500 identified the critical factors that decided whether the factor positively or 

negatively contributes vulnerability. The final SoVI scores then were calculated by 

simple summation o f the seven factors.

A different process was employed at the locality scale given the existence o f 

official SoVI county social vulnerability scores relative to hazards at the national level 

for the two states. The data was provided by Dr. Christopher Emrich o f the University o f 

South Carolina. The scores were calculated using the 32-variable data method for all 

counties in the United States. The calculations are from the same general methodology
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used to calculate the zip code SoVI, though a few o f the 32 variables used differ due to 

methodology evolution. Maryland and Virginia locality values were standardized to the 

region prior to analysis.

Beyond the utilization o f the official SoVI scores to represent social vulnerability 

in the region, the CCRM Coastal Resource Management Clinic also considered a more 

basic social vulnerability index for comparison sake. The narrowing o f social 

vulnerability factors allows for comparison o f a simplified more easily applied index 

against that o f the kitchen-sink method presented by South Carolina’s HVRI. An index 

based on equally weighted, constant factors also permits cleaner deconstruction to see 

which social factors most contribute to overall vulnerability. This method was applied to 

the zip code and locality level with slight modifications. The index focuses on creating 

four factors pulled using GeoLytics, a demographic program analyzing US Census data 

over time. Each factor was standardized to a value o f 1 in order to weight every 

component equally, with higher values contributing more to overall vulnerability. These 

factors were then added together and standardized to produce values between 0 and 1. 

Initial analysis o f a wider set o f Virginia variables for current distribution and past 

changes did not identify a clear statistical rationale for grouping variables. The clinic 

therefore proceeded with several core factors that appear in multiple approaches reported 

in the literature (e.g. Heinz Center 2002, Kleinosky et al. 2006). A number o f these 

approaches are summarized in Table 2.
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The factors consisted of:

•  Income -  Census average household income divided by the maximum average 

household income among zip codes or localities analyzed. The values then were 

subtracted from 1 in order to invert them, so that a higher value merited less income and 

therefore more vulnerability due to less resources available to respond to disaster with.

•  Poverty Rate -  the percentage o f people below the poverty line in an area were 

divided by the maximum value for this characteristic across the region. The more people 

below the poverty line, the more people less likely to be able to fully support themselves 

during stable conditions let alone around a disaster.

•  Age -  the percentages o f people over 65 and under 18 were added together for 

each area. These values were then divided by the maximum value in the region.

Literature has suggested older and younger people may be less able to easily evacuate in 

addition to other factors.

•  Race/Ethnicity -  the percentage o f non-Caucasian people in an area was summed 

up and then divided by the maximum value. This indicator combined the likelihood o f 

minorities to have less political access to government recovery funds and other resources. 

Greater numbers o f people who do not speak English among Latino and other minority 

communities may also impact access to information regarding preparation, evacuation, or 

recovery efforts.

Physical Vulnerability Index Construction

Delineating the basic geographic boundaries in terms o f community social datasets 

supports developing an equivalent physical index to capture multiple angles o f 

vulnerability context. The physical vulnerability index focuses on elevation, land use,
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wave exposure, and tide range, and developed land (Table 1). While the other factors are 

common in the literature, incorporating the developed land further focuses the study on 

the application at human community scales. Vulnerability calculations that did not 

naturally have a maximum for 1 were standardized against the highest value in the area.

Given past Chesapeake Bay storm surge experience, with greater flood potential 

with any stronger storm as well as future sea-level rise, the geospatial analyses targeted 

the vulnerabilities o f those areas with elevations less than 3.05 meters (10 ft) above mean 

sea level as a consistent bay-wide measure o f the most floodable localities or zip codes.

To further systematically subdivide risk among the lower elevation areas, volume to 

surface area ratios were also calculated for areas o f the communities below 3.05 meters. 

The calculation o f this factor served somewhat as an equivalent to coastal slope, 

characterizing how relatively floodable the sub-3.05 m area is. Those areas with lower 

ratios are areas that might be at highest risk with respect to where flood waters might 

fully inundate. Data from the USGS National Elevation Dataset (NED) were used to 

generate a digital elevation model (DEM) for Virginia and Maryland. Different 

geoprocessing tools in ArcGIS vlO.O were applied to create a DEM for the study area 

corresponding to elevations between 0 and 3.05 m above sea level. Algorithms written 

for the ArcGIS Model Builder iterated and calculated the volume and area between those 

elevations in each o f the corresponding zip codes/localities.

Elevation vulnerability = ratio o f  area under  3.05 m

Lowland vulnerability = 1 —(
vo lum e  o f  g e o g r a p h i c  a rea  be low  3.05 m

a re a  o f  g e o g r a p h i c  a r ea  be low  3.05 m

3.05 m
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In order to analyze land cover across the region, Coastal Change Analysis 

Program (C-CAP) data were downloaded from the National Oceanic and Atmospheric 

Administration (NOAA) Coastal Services Center. For this study, 2001 C-CAP data for 

Virginia and Maryland sub-3.05 m elevation areas were converted and processed in 

ArcGIS vlO.O. C-CAP land cover classifications were reclassified into 4 different land 

cover types: Agriculture, Developed Areas, Natural Nontidal Areas, and Wetlands. An 

ArcGIS spatial model was built to calculate percentage o f each land use category per 

geographic area.

sub — 3.05 m  area developed land cover
Development vulnerability = -----------   ;---------:—;----——---------------

Total area below 3.05 m

The wave exposure component was generated with the Wave Exposure M odel1 

(W EMo) created by Fonseca and Malhotra (2007). The updated Version 4 estimates 

wave energy based on shorelines, bathymetry and wind data. Using linear wave theory 

and tracing o f rays along fetch in along different compass directions, WEMo calculates 

Representative Wave Energy (RWE) in J/m, or the wave energy in one wavelength per 

unit wave crest width.

The model was run along the 0.5-meter contour line along the Chesapeake Bay’s 

shorelines, with points spaced approximately every 2000 meters. The 0.5-meter contour 

line was selected to ensure smooth functionality given data quality in shallower water and 

the model performance limits. The model ran in RWE mode with the water level raised 1 

meter to simulate wave conditions under storm surge scenarios. Wind data were 

combined for a five-year period ranging from 2 0 1 0 -2 0 1 4 , with WEMo analysis

1 Available at http://products.coastalscience.noaa.gov/wemo/
2ESRI ArcGIS Resource Center (2012)
J These numbers are referenced to only the places with non-zero physical vulnerability. When all zip codes
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selecting for the top 5% o f winds from each wind directions. The wind data placed the 

values in a realistic context under a mix o f annual conditions, including wind fields from 

two substantial tropical cyclones passing through (Hurricane Irene and Hurricane Sandy) 

as well as the 2013 nor’easter. Three National Ocean Service buoy sites were utilized for 

wind data for the Bay, including wind data from York River East Rear Range Light for 

the lower Bay latitudes (from southern Virginia just past the state line along the western 

shore above the Little Wicomico River or 36°43'51.233" to 37°53'55"N), Cove Point 

LNG Pier for the Mid-Bay latitudes (Little Wicomico River up to the mouth o f the 

Choptank River or 38°39'20"N, and Tolchester Beach for the Upper Bay latitudes (the 

Choptank mouth up through the Susquehanna or 39°36'32"N).

WEMo points were assigned to zip code/locality shorelines and the mean value 

was calculated for each area’s shoreline. For purposes o f this study, any Atlantic facing 

counties were assigned the maximum mean value among Chesapeake coastal counties. 

Zip codes with both open ocean and Bay shorelines were given the average o f the 

maximum and the RWE value calculated for the bay shore. Lor any zip codes with 

shorter shorelines skipped by the 2000-meter point distance, values were assigned by the 

nearest point/nearest similar neighbor.

Wave Exposure vulnerability = area mean Representative Wave Energy

Local tidal range also affects coastal communities risk relationship with the water, 

as people build structures around the regular variations in water levels. Communities 

with smaller tidal ranges were considered more vulnerable to coastal Hooding. That 

assumption concurs with other assessments in the literature such as McLaughlin and
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Cooper (2010) but contrasts with Kumar et al. (2010) and others who consider higher 

tides representative o f more coastal energy. This study argues that since tide levels are 

just as likely to be low as high during a flood event that much o f the extra volume o f 

water added by storm surge and other events in areas with higher tide ranges is relatively 

will fall within the tide range or closer to the typical high water mark. In areas with lower 

tide ranges the extra water volume is more likely to raise water levels above normal 

conditions, exposing more o f coastal development to water and waves.

The mean tidal range per locality/zip code was incorporated in this index. The 

output o f the hydrodynamic model SCHISM (Zhang and Baptista 2008) fed the tidal 

range calculations. This model calculates the tidal range along the Chesapeake Bay, using 

the 2D depth-averaged configuration calibrated against all tidal gauges inside and outside 

the Bay. The model grid consists o f 1.8 million triangles (i.e. unstructured grid) and 

covers the entire US east coast with focus on the Chesapeake Bay. It has a variable 

resolution in space: -25  km in the open ocean, -1 .5  km along the open coast, 500 m 

along the main channel o f the Bay, 150-300 m along channels o f tributaries, -5 0  m near 

the shoreline, and -100m  on dry land. In a few select areas where the model does not 

continue all the way up certain tributaries to their tidal extent, values were extended from 

the furthest extent alongside any available water level data.

Great diurnal tide ranqe
Tide vuln  — 1 ---------------------------------------------

Greatest tide range in region

The above physical data provide important basic characteristics defining a coastal 

area’s physical nature relevant to coastal flooding. While other variables, such as the 

region’s geology, largely explain why the Chesapeake Bay is one o f the most physically
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vulnerable areas to coastal flooding and future sea-level rise, this work focused on other 

physical characteristics to identify vulnerabilities among communities within the coastal 

plain. Much o f the analysis was designed to focus on shorelines within the Chesapeake 

Bay, rather than the more dynamic nature o f the open Atlantic coast, where high wave 

energy, beaches, and barrier islands lead to much more variable shoreline conditions; 

therefore assigned values may be more conservative there.

The indices’ score distributions were analyzed for sensitivity to the different 

individual factors as well, including population density, state, and side o f the Chesapeake 

Bay. Beyond mapping the indices, their spatial distribution was explored using a Hot 

Spot Analysis in ArcGIS. The analysis calculates a Getis-Ord Gi* statistic based on the 

clustering o f the vulnerability scores, designating areas as “Hot Spots” when a vulnerable 

zip code is surrounded by other higher values as well and the sum o f their local values is 

significantly different than what is expected under assumptions o f normal distribution. 

Hot spots are identified at the 90, 95, and 99% confidence levels.

w h e n *  i j  is the  a tt r ib u t e  v a lu e  t o r  f ea tu re  j .  is t h e  s p a t i a l  w e i g h t  b e t w e e n  fea tu re  / ami  . /. »  is 

e q u a l  to  th e  to tal  n u m b e r  o f  f e a t u r e s  ami

Ti le < s t a t is t ic  is a - ;-seuiv s o  n o  fu r th e r  c a l c u l a t i o n s  a re  l eq u i r e i l

ESRI ArcGIS Resource Center (2012)
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Coastal Natural Capital

The quantification o f coastal ecosystems, referred to as coastal “natural capital” given the 

potential to provide services, also utilizes 2001 land-cover data from Coastal Change 

Analysis Program (C-CAP) data from N O A A ’s Coastal Services Center for Virginia and 

Maryland. Forests in the area under 3.05 meters were reclassified as “Deciduous,” 

“Evergreen,” and “Mixed Forest” as “Forest” while subclasses o f “Estuarine” and 

“Palustrine” wetland land cover were consolidated into “W etland” for analysis. An 

ArcGIS spatial model was built to calculate percentage o f each land use category per sub- 

3.05 m area within each geographic area. Forest and wetlands were analyzed individually 

and then summed to create a single natural capital factor within zip codes and localities.

RESULTS

This section provides a synopsis o f the distribution o f physical, social, and combined 

vulnerability across the Chesapeake Bay region at zip code and locality scales. The 

results consider the overall trends associated with different population densities and sub- 

regions as well as the natural capital present.

Physical Vulnerability -  Zip Code Scale

Figure 1.2 shows that the zip codes that were most vulnerable in the early 2000s include 

Ocean City and Chincoteague, Dorchester County, MD, and Poquoson, VA (the latter 

two areas including the two most vulnerable zip codes inside the mouth o f the 

Chesapeake Bay). As expected, zip codes separated from the coastline and major 

tributaries show little to no vulnerability. A hot spot analysis o f the score distribution 

illustrates that the highest o f these scores appear as larger clusters o f vulnerability that
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'  - • Physical 
Vulnerability 
Scores 2000 
Zip Codes

0.00  -  0.20 

0.21 -  0.40 

0.41 -  0.60 

0.61 -  0.80 

0 . 8 1 - 1.00

Figure 1.2 -  Physical vulnerability index calculated at the scale of Zip Code Tabulated Area 
(ZCTA). Calculations based off o f area below 10 feet, volume of that area, development in that area, 
tidal range, and wave exposure. Assateague Island (grey) not analyzed in boundaries as a zip code, 
being a zip code with no addresses.
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Figure 1.3 -  Hot spot analysis o f physical vulnerability index scores at zip code scale. Getis-Ord Gi* 
statistic based on the clustering of the vulnerability scores. Areas are designated as “Hot Spots” when a 
vulnerable zip code is surrounded by other higher values as well and the sum of their local values is 
significantly different than what is expected under assumptions of normal distribution. O f note, Assateague 
(grey) was not included in analysis as it was not a formal zip code with addresses.
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significantly differ from the overall population, especially the Peninsula’s Poquoson and 

Hampton, Dorchester County, Virginia Beach and the developed Atlantic barrier island 

communities (Figure 1.2).

The final physical vulnerability scores are fairly normally distributed when the 

zero scores are removed (which mainly are landlocked). A sensitivity analysis suggests 

that removing the volume/area factor from the index has the greatest effect on the index, 

shifting values by an average o f 25.6% when excluded (Table A 1.2). Meanwhile, the 

index was least sensitive to the percentage o f developed land under 3.05 m, which shifts 

values by an average o f -5.4% when removed.

Social Vulnerability -  Zip Code Scale

The official SoVI methodology identifies several areas o f higher vulnerability scores in 

sectors o f the northern Virginia Eastern Shore and the Washington, D.C. suburbs, as well 

as areas just west o f  the Chickahominy River, the tip o f the Northern Neck, Norfolk, and 

Baltimore (Figure 1.4). The lower vulnerability scores appear scattered around the Bay 

with the exception o f the southern Eastern shore. Hot spot analyses support these 

findings, identifying these same areas as statistically different from the overall 

distribution o f vulnerability across the region (Figure 1.5).

The SoVI scores for the region were calculated by reducing the full complement 

o f input variables down to seven factors made up o f the different groupings o f variables 

illustrated in Table A 1.3. A sensitivity analysis o f the final SoVI scores based on the 

factors suggests that Factor 6, which is the factor associated most with the percentage o f 

women in the population, drives the score distribution. Interestingly, this was not the
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factor with one o f the higher eigenvalues from the Principal Component Analysis. This 

SoVI iteration was least sensitive to the factor aligned with the percent o f the population 

who speak English as a second language, and who identify as Latinos, and who identify 

as Asians.

The simplified Chesapeake vulnerability index developed at CCRM shows 

relatively more communities are identified with higher vulnerability scores (Figure B l.l) .  

A one-to-one analysis o f this index version against the official SoVI methodology 

produces a statistically significant linear regression with an adjusted R2 value o f 0.44 and 

the SoVI scores being just under two-thirds the value o f CCRM -calculated social 

vulnerability for the region (Figure B F2). Hot spot analysis identifies communities such 

as Norfolk, Virginia Eastern Shore communities, Richmond, Baltimore, and Maryland 

suburbs o f D.C. as regions o f significant vulnerability at 90% confidence levels or higher 

(Figure B1.3). A sensitivity analysis suggests that the simplified index factors are 

somewhat similar at this level in importance, being most driven by the income indicator, 

which drops values an average o f 20.9%, with the age indicator dropping values by 

15.5%.
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•  :

Chesapeake SoVI 
Score - 2000

Figure 1.4 -  Standardized values for the official SoVI index calculated for the tidal 
Chesapeake Bay region of Maryland and Virginia. Method employed from HVRI (2011) 
using data from the 2000 US Census. Only official zip codes were included (i.e. no areas with 
no addresses such as Assateague Island).
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HotSpot Analysis 
SoVI ZCTA 2000 
Gi_Bin

|  Cold Spot - 99% Confidence

H  I  Cold Spot - 95% Confidence

Cold Spot - 90% Confidence

Not Significant

Hot Spot - 90% Confidence

|  Hot Spot - 95% Confidence

■  Hot Spot - 99% Confidence

Figure 1.5 -  Hot spot analysis o f standardized SoVI scores at zip code scale for 2000.
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Combined 
Vulnerability 
Scores 2000 
Zip Codes
■ I  0.04 > 0.20  

0.21 - 0.40  
0.41 - 0.60  

0.61 -0 .8 0  

0.81 -1 .0 0

Figure 1.6 -  Combined Vulnerability index at the zip code scale, weighting physical and 
social vulnerability equally for the year 2000. Note, Assateague (grey) is not a formal zip 
code and therefore was not included.
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Hot Spot Analysis 
Combined Zip Code 
Vulnerability
Gi_Bin
H I  Cold Spot - 99% Confidence 

|  Cold Spot - 95% Confidence 
Cold Spot - 90% Confidence 
Not Significant 
Hot Spot - 90% Confidence 

H I  Hot Spot - 95% Confidence 
|  Hot Spot - 99% Confidence

Figure 1.7 -  Hot spot analysis o f combined vulnerability index (physical and social equally 
weighted) at the zip code scale for the year 2000.
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Combined Vulnerability - Zip Code Scale

When the physical and social indices are considered together as equal contributors to 

vulnerability, the mean score o f areas with any score o f physical vulnerability above zero 

increases to 0.56, greater than both the relative physical (0.48) and SoVI (0.41) scores. 

The sensitivity analysis suggests that without the physical index contribution these scores 

drop by 23.9% while they only drop by 16.3% when the social index component is 

removed.3 Figure 1.6 shows the distribution o f vulnerability across the region; the higher 

two vulnerability categories do spread to additional areas such as more high vulnerability 

scores in V irginia’s Northern Neck and around the York R iver’s sources, however 

otherwise continue to cover many o f the areas that are physically at risk. When this 

spatial score distribution is analyzed for significance above 90% confidence levels, 

significant clusters o f highly vulnerable communities include a number o f Eastern Shore 

communities from Dorchester County, MD southward, as well as Norfolk, Poquoson, and 

Hampton (Figure 1.7).

Locality Level Physical Vulnerability

Similar to the zip code scale, locality physical vulnerability once again concentrates 

towards the south and east, with the city o f Baltimore as the lone Maryland locality north 

or west o f Dorchester County in the upper two vulnerability categories for the early 

2000s (Figures 1.8 and 1.9). Surry County is a location that does appear more vulnerable 

on the map than at the zip code scale, though this is an example where map visualization

’ These numbers are referenced to only the places with non-zero physical vulnerability. When all zip codes 
are considered, the SoVI element obviously outweighs the physical as all zip codes have people and hence 
some likely measure of social vulnerability while many zip codes lack any measure of physical 
vulnerability by being at higher elevations. At that level dropping the social index, drops scores by an 
average of 46.4% while excluding the physical index actually brings values up by 4.8%.
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may exaggerate the shift across the categories. In this case Surry is in the second highest 

category by a relative score value less than 0.01.

The physical vulnerability index sensitivity at the locality level is similar to the 

zip code scale -  less sensitive to percentage o f the sub-3.05 m area that was developed, 

with an average percent drop by 1.9% (Table A1.5). Unlike at the zip code scale 

however, the greatest sensitivity is to the percent area below 3.05 m with the score 

increasing by an average o f 23.7% rather than the volume/area o f  this sub-3.05 m region. 

The volume/area factor was not far below that, dropping values on average by 19.1%.

Locality Level Social Vulnerability

At the locality level, the nationwide county social vulnerability index scores from the 

2000 SoVI method indicate that only W illiamsburg and Petersburg, VA identify as being 

most vulnerable relative to the region (Figure 1.10). The two cities also identify as the 

only two hot spots, though hot spot analyses likely may be somewhat less effective given 

the low number o f counties (61), which is only double the minimum suggested value o f 

30. A hot spot analysis confirms the significance o f the lower vulnerability “Cold Spots” 

o f Arlington and Fairfax (Figure B1.4). Data sources did not provide the breakdown o f 

the sub-score factors, thus preventing sensitivity analysis o f the score distribution drivers.

The comparative simplified social vulnerability index maintains Petersburg, at the 

top o f social vulnerability while pushing the cities o f Baltimore, Richmond, Norfolk, 

Portsmouth, and the southern three Eastern Shore counties into the top tier of 

vulnerability (Figure B1.5). It produces a vulnerability distribution where no localities
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Physical Vulnerability 
Index Score

0 . 1 0 - 0.20

0.21 -  0.40

0.41 •  0.60

Figure 1.8 -  Locality physical vulnerability index for the coastal Chesapeake Bay region 
based on elevation, wave energy, tidal range and development.
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Gi_Bin

|  Cold Spot - 99% Confidence 
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Cold Spot - 90% Confidence 

Not Significant 

Hot Spot - 90% Confidence 

|  Hot Spot - 95% Confidence 

I  Hot Spot - 99% Confidence

Figure 1.9 -  Hot spot analysis o f locality physical vulnerability index for the coastal 
Chesapeake Bay region.
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National SoVI Score 
(32 Variables) 

Relative to Coastal 
Chesapeake Bay Area

Figure 1.10 -  Official national 2000 SoVI scores standardized to 0 to 1 for the Chesapeake 
Bay region.
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appear in the lower two tiers o f relative vulnerability. The simplified vulnerability index 

is most driven by the relative number o f people over 65 or under 18 (an average drop in 

social vulnerability score o f 19.4% without this age variable) and least affected by 

income, which drops the score by 2.9% (Table A1.6). The two different views o f social 

vulnerability at this level are exceptionally similar (Figure B1.7), with a linear regression

o f the two sets o f scores producing a line approaching an average 1:1 ratio and an

2 .
adjusted R value o f 0.60. This value (similar to the zip code scale value o f 0.64) hints at

why the four factors used in the simplified version are the most commonly included 

among differing views o f social vulnerability calculations.

Combined Locality Level Vulnerability

When the physical vulnerability and 2000 relative SoVI scores are combined with equal 

weighting, the top tier o f vulnerability concentrates primarily on the main stem o f the 

Bay, identifying Baltimore as the only locality north o f Dorchester to fall into this top tier 

o f vulnerability (Figures 1.11 and 1.12). Spotsylvania and Fairfax counties appear as the 

least vulnerable overall. The combined index is relatively similarly sensitive to the 

physical and social vulnerability elements, dropping an average o f 26.2% and 23.1% with 

the respective exclusion o f either.
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County Combined 
Vulnerability Scores

0.20 - 0.40 
0.41 - 0.60 
0.61 -0 .80  
0.81 -1 .00

Figure 1.11 -  Locality scale combined vulnerability index for 2000 for the 
Chesapeake Bay region.
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County Combined 
Vulnerability Scores 
Hot Spot Analysis 
Gi_Bin
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Cold Spot - 90% Confidence 
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Hot Spot - 90% Confidence 

H  Hot Spot - 95% Confidence 
|  Hot Spot - 99% Confidence

Figure 1.12 -  Hot spot analysis o f locality scale combined vulnerability index for the year 
2000 .
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Index Trends and Relative Distribution

The above analysis identifies specific areas o f significant vulnerability. The work also 

establishes that physical indices at both scales are least driven by the percent of 

developed land below 3.05 meters. The comparison o f various renditions o f Chesapeake 

Bay region coastal vulnerability indices for the early 2000s allows for recognition of 

broader regional patterns. These patterns are especially isolatable for the zip code scale 

indices, where the higher number o f geographies allows for more statistical power than 

the lower number o f areas at the locality level allows when sub-divided. Only non-zero 

vulnerability areas were included in this analysis in order to keep the analysis within the 

context o f those areas actually faced with coastal flooding. The locality SoVI scores 

were not specifically developed for the region and thus are not the perfect equivalent o f 

the zip code vulnerability calculations. This element translates to combined vulnerability 

analysis as well.

Scores on the Eastern Shore repeatedly appear high relative to the rest o f the 

region.4 An ANOVA o f the Eastern shore Zip codes suggests a significant difference at 

the 0.05 confidence level between those and zip codes west o f the Chesapeake Bay for 

both social and physical vulnerability index scores. Figures 1.13 and 1.14 illustrate the 

differences in different score distributions across different breakdowns o f the region. This 

bay shore vulnerability distribution applies to the comparative CCRM basic social 

vulnerability index as well (0.55 vs. 0.51, p<0.001).

4 The Eastern Shore being defined as the areas on the Delmarva peninsula below the Delaware-Chesapeake 
Canal (one ZCTA does span both sides, but is principally on the southern side). At the county level, Cecil 
County, MD spans both sides of the canal and therefore not included as the Eastern side of the Chesapeake 
Bay definition.
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Pop Density State Bayside

Figure 1.13 -  Distributions of relative SoVI 2000 scores at zip code scale. Rural, Suburban, and Urban zip 
codes as defined by breaks at 1000 and 100 persons per square mile. Significant differences amongst mean 
vulnerability values of 0.44, 0.38 and 0.40. Differences in state significant at p<0.001, mean value of 0.38 
and 0.43.East vs West shores of the Bay significant at p< 0.001, mean value of 0.50 vs 0.39.

Pop Density State Chesapeake Bay Side

Figure 1.14 -  Distributions of non-zero physical vulnerability at the zip code level between population 
density, states and side of the Chesapeake. Side o f Bay means East -  0.53, West -0.46 with ANOVA 
p<0.001. States not sign different (p> 0.445). Population density levels not significantly different (p> 
0.528).
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Rural Suburban Urban MO VA East West

Population Density State Chesapeake Bay Side

Figure 1.15 -  Distributions of combined vulnerability at the zip code level between population density, 
states and side o f the Chesapeake. Eastern shore mean value of 0.62 significantly higher than Western 
shore 0.54 (p< 0.001). Mean Virginia score of 0.58 higher than Maryland score o f 0.54 at significant level 
(p<0.004). For population density, urban and rural were both significantly higher than suburban areas
(p<0.02).
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Population Density State Chesapeake Bay Side

Figure 1.16 -  Locality level 2000 SoVI relative score distribution. Eastern shore localities’ median value 
o f 0.69 significantly higher than Western shore median of 0.64 (p=0.033). MD and VA not significantly 
different. Suburban locality median score of 0.38 significantly different from rural 0.57 and urban 0.66 
(p=0.002 and 0.013)
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Population Density State Chesapeake Bay Side

Figure 1.17 -  Distribution o f physical vulnerability at the locality level. As a whole all comparisons show 
no overall significantly different distribution. Rural localities show higher values than suburban localities, 
which were shared an average score to urban localities. Suburban median of 0.45 was significantly different 
than rural localities median value of 0.51.

Rural Suburban Urban

Population Density State Chesapeake Bay Side

Figure 1.18 -  Locality combined vulnerability trends by population density, state, and bay side. The 
Eastern Shore median value of 0.82 is significantly higher than the Western shore value of 0.6 (p=0.014). 
Suburban median score o f 0.44 proved significantly lower than rural (0.52) and urban (0.55) (p=0.013 and 
0.072).
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The significant difference was greatest for combined vulnerability scores, with the mean 

Eastern Shore vulnerability falling 0.08 above that o f  the average Western shore score 

(Figure 1.15). At the locality level, Eastern Shore mean and median scores also tallied 

above those o f the Western shore in each case (including the CCRM social vulnerability 

version), though this difference only appeared significant at the 0.05 level for the 

combined vulnerability score (Figures 1 .1 6 -  1.18). Note that only 10 o f the 61 counties 

analyzed are on the Eastern shore, and therefore provide a somewhat less than ideal 

comparative sample sizes.

Between the two states, the vulnerable coastal regions o f Maryland and Virginia 

do not show any significant difference in physical vulnerability at either the zip code or 

locality scales (Figures 1.14 and 1.17). Once social vulnerability is incorporated at the zip 

code level, Virginia does show up as significantly more vulnerable overall than 

Maryland. Incorporating social vulnerability also differentiates the two populations in 

the combined zip code vulnerability sets. The differences in mean vulnerability values 

are 0.05 and 0.04 respectively, with the disparities driven by V irginia’s mean higher 

social vulnerability (Figures 1.13 and 1.15). At the locality scale, social vulnerability did 

not differ significantly between the two and therefore did not lead to significance at the 

combined vulnerability difference either (Figures 1.16 & 1.18).

When considered for equal application across different levels o f population 

density, the zip level SoVI showed a statistically significant higher vulnerability than 

both the urban and suburban zip codes (Figure 1.13). This difference was not seen in the 

physical vulnerable context, but the difference between rural and suburban zip codes 

remains for combined vulnerability, with rural areas having the highest mean scores and
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suburban areas with the lowest (though urban and rural communities no longer show up 

as unique from each other) (Figure 1.14 and 1.15).

At the locality level, rural, suburban, and urban communities all differ 

significantly from each other in terms o f social vulnerability with suburban areas once 

more showing the lowest mean vulnerability and urban areas slightly edging out rural 

ones for the highest. This distribution may be influenced by the 2000 SoVI version 

calculations used for locality scores that include certain population density levels 

themselves as factors leading to vulnerability calculations (Figure 1.16). Physical 

vulnerability calculation once again suggests a lack o f significant difference when 

comparing all three populations (Figure 1.17). When adding physical and social 

vulnerability together, suburban communities have statistically significantly lower 

vulnerability values than either urban or rural communities (Figure 1.18).

Overall, the various indices provide a systematic approach to considering 

vulnerability across the Chesapeake region. The Eastern Shore consistently appears as 

more vulnerable across different index versions while the sociodemographic 

characteristics o f  suburban zip codes consistently place them in the lower end of 

vulnerability when considered alongside physical vulnerability elements. Other than the 

Eastern Shore, the physical vulnerability index appears rather consistent across different 

geographic subdivisions and scales.

Natural Capital

While no statistical hot spots exist when forests and wetlands are considered together as 

natural capital, there generally is a high distribution o f these ecosystems across much of
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the region’s sub-3.05 m areas (Figure 1.19). Many o f these areas appear up the tributaries 

rather than along the main stem o f the Bay. As expected, key urban areas such as 

Hampton Roads, which appears as highly vulnerable across the different indices, have 

little relative natural capital.

When forests and wetlands are considered individually the distribution changes 

somewhat allowing for identification o f significant hot spots (Figures B1.8 and B1.9).

For wetlands alone, hot spots appear at the headwaters o f the Patuxent River, the York 

River, south side o f the James River, and the Eastern Shore (Figure B1.10). For forests, 

the hot spot areas are slightly more scattered, but generally appear slightly further up the 

tributaries (Figure Bl . l  1). Whereas the distribution o f highest values for wetland 

distribution includes highly vulnerable areas o f the Eastern Shore, much o f the 

distribution o f relatively high percentage forest areas falls further up the Bay’s tributaries 

in less physically vulnerable areas.

When considered as pure raw area numbers (rather than percentages), western 

Dorchester County and the mid-Eastem shore, Gloucester County, Mathews, the Dismal 

Swamp area, and west o f the Chickahominy river, and the Aberdeen Proving Grounds 

area are the main hot spots o f natural capital on the Bay (Figure B 1.12). These areas than 

include several larger zip codes and have greater areas below 3.05 m. Variability in 

absolute size should also be kept in mind when interpreting natural capital distribution in 

percentage terms.

At the locality level, results are similar, with combined natural capital percent 

land also peaking further up the tributaries rather than on the main stem o f the Bay. A hot 

spot analysis o f that distribution identifies no significant hot spots, only showing
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significant cold spots in the central Hampton Roads area, Baltimore, and Arlington and 

Alexandria. The raw area numbers do recognize Dorchester, Somerset, Accomack 

counties, and Virginia Beach as hot spots once again.

Natural Capital

o.oo • 0.20

0.21 -  0.40 

0.41 -  0.60 

0.61 -  0.80 

0.81 - 1.00

Figure 1.19 -  Standardized natural Capital consisting of land cover percentages of both 
marsh/wetlands and forests within sub-3.05 meter zone based on 2001 C-CAP data. 
Assateague island (grey) was not included due to not being a formal zip code.
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DISCUSSION

This study successfully calculates vulnerability for the Chesapeake Bay region in the 

early 2000s from different angles at both the zip code and locality scales. While 

analyzing one version o f vulnerability index alone provides value, considering them 

together provides additional insights about their consistency and allows for targeting o f 

potential problem areas. The development o f the physical vulnerability index at human 

community scales is critical to this effort. The physical index keeps coastal policy and 

management in mind by providing actionable information that can target vulnerable areas 

at scales that match community boundaries.

Consistent Physical Vulnerability

From the physical perspective (Figures 1.3 and 1.8), the fact that similar areas fall into 

the top two vulnerability categories at both zip code and locality scales strengthens the 

message that these locations might be areas o f concern irrespective o f their demographics 

-  especially for the significant hot spots o f Poquoson, Hampton, Virginia Beach and 

Ocean City. This physical vulnerability index’s consistency at different demographic 

boundary levels supports the potential for establishing physical indices at human scales. 

The development should reduce the number o f mismatch issues that arise when 

vulnerability issues are addressed using social and physical data from different 

resolutions.

There are some discrepancies in regional score distribution between scales, but 

these are only to be expected when aggregate data use likely blurs differences and 

extremes within sub-regions, as flagged by Fekete (2012). The main area where the
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difference does merit concern is a selection o f Eastern Shore small coastal communities. 

Cross’s (2014) work warns about the risk that small communities face following natural 

disasters. Potential population loss may be particularly likely there as residents choose 

between waiting significant amounts o f time for home repair following a disaster, or 

simply getting a different home in a new community. Although the physical index does 

calculate the Eastern Shore region as more highly vulnerable at both scales, managers 

should be wary o f the likelihood o f larger scale assessments o f coastal risk to 

underrepresent physical vulnerability in small communities. These types o f  issues 

underscore the need to connect physical vulnerability to social vulnerability at the same 

scale.

From a management perspective, the physical index development process 

produces a product that may be easily communicated within vulnerability discussions. 

The index approach by no means replaces technical high detail index approaches 

equivalent to Gomitz and White (1992) or models o f street-level flooding by specific 

hurricanes or other events (e.g. Wang et al. 2014). Just as street signs and addresses made 

it easier for people to find places, assignment o f physical vulnerability at zip code or 

locality scales creates a better starting point for vulnerability discussions. This index 

allows this broad application while still permitting drilling down when smaller-scale local 

discussions are required.

Social Vulnerability Variability

In contrast to the physical vulnerability index utilized here, the various versions o f the 

social vulnerability index are harder to compare. The different methodologies behind 

them make them less compatible -  one, applying the widely accepted Hazards and
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Vulnerability Institute (HVRI) SoVI recipe (2011) to the coastal Chesapeake region, one 

built for comparison using four top social vulnerability factors, and one at the locality 

scale using values utilized by Cutter (2003) and HVRI at the national scale for 2000. The 

fact that the SoVI scores and simplistic Chesapeake social vulnerability method 

moderately correlate (adj. R2 = 0.44 for zip code scale and 0.6 for the locality scale) 

suggest a reasonable level o f statistical similarity even if  the maps do not perfectly 

visually line up. The designation o f only two localities into the highest vulnerability 

class and as hot spots does raise some concerns about the utility o f using national scale 

scores for standardized regional analysis in the Chesapeake Bay region.

Even though the zip code and locality SoVI scores were derived using different 

geographic contexts, both score distributions identify the Eastern Shore as more socially 

vulnerable. This result is consistent with the pattern produced by the physical 

vulnerability indices. Though application o f these Cutter-based SoVI scores face several 

criticisms (See Background), in this instance the alternative CCRM basic social 

vulnerability index supports these distributions. The agreement by the indices strengthens 

the case for paying special attention to the flood threat to the Eastern Shore.

The application o f the SoVI index also addresses concerns regarding its equal 

application to different community densities (Kleinosky et al. 2006). The initial inclusion 

o f census factors such as percent urban population in the original SoVI 2000 application 

makes this analysis especially relevant (HVRI 2013). Though mean values are similar, 

one could claim to see this effect at the locality scale SoVI (calculated with the initial 

approach), where urban values make up the top tier o f the vulnerability score distribution 

(the only 2 localities above 0.8 are two city localities). This study cannot say whether this
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difference is due to the scale difference or updated SoVI methodology. The issue appears 

to have been reduced for the 2000 SoVI developed specifically for the coastal 

Chesapeake Bay zip codes, where rural areas come across as most socially vulnerable. In 

both applications, the suburban zip codes score as less vulnerable areas, meeting the 

Cutter et al. (2003) intent that these areas with populations that are typically more 

homogenous, wealthy, and better educated, and therefore are better suited to handle 

natural hazards.

The index application shows that clusters o f social vulnerability do theoretically 

exist in vulnerable coastal areas where it may interact with flooding. This distribution 

supports the need for coastal managers to be aware that systemic vulnerability threatens 

particular local areas. Given the fact that social vulnerability remains an element that can 

only be measured in proxies (Tate 2012), this application merely represents an 

approximate potential understanding o f the world.

Combined Vulnerability Reinforcement

Given the distribution o f scores within the physical vulnerability index and the SoVI 

scores for the area last decade, it is not surprising that the combined index highlights 

parts o f the Eastern Shore and Hampton Roads as particularly vulnerable. While equally 

weighting the physical and social factors is technically a form o f subjective weighting, 

this construction creates a structure which is more easily broken apart when needed. 

Martinich et al. (2013) state the need to separate social and climate vulnerability in order 

to study which leads to which down the road. Deconstruction may allow analysis o f how 

social and physical factors might interact over longer periods o f time with increased 

future risks posed by sea-level rise.
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The combined index results counter arguments that depict the region’s city 

centers as the only areas o f extreme coastal flood risk. This kind o f analysis targets a 

much wider array o f vulnerable communities for policy-makers and managers to address 

with preparation, recovery, and adaptation plans. Once more, the suburban areas stand 

out as communities that are likely to be better o ff when faced by flood events. At the zip 

code scale, one may claim that Virginia tidewater communities are possibly more 

vulnerable on average than M aryland’s communities given the slightly (though 

statistically significant) higher distribution in overall scores.

Potential Natural Capital Distribution Impact

The fact that the physical vulnerability index considers developed land as increasing 

vulnerability generally means that the distribution o f marsh and forest as a percentage o f 

the sub-3.05 meter zone appears in areas with lower physical vulnerability scores. While 

shrub, agriculture, and other land covers may play a role here, this relationship means 

that the physical vulnerability index may already capture the benefits o f natural capital -  

by considering the development factor as natural capital’s inverse value. From a regional 

standpoint this distribution illustrates that simple preservation o f existing natural capital 

may not be extremely effective towards lowering coastal vulnerability in the areas that 

physically need it the most. Instead, this spatial reality may promote a stance for more 

aggressive rehabilitation and expansion o f natural capital (such as installing living 

shorelines and other green infrastructure) along many o f the more vulnerable areas in 

order to establish benefits o f natural capital in these areas.

While attempts at restoring and expanding natural resources might not upgrade 

ecosystem protection benefits to the level o f those provided by larger natural capital
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zones such as the Blackwater Marsh area in Dorchester County, MD or Gloucester 

County’s marshes, they still may have selected positive effects. Gedan et al. (2011) 

claim wave-dampening potential for even narrow marshes. Bilkovic and Roggero (2008) 

point to the ability o f living shorelines and alternative approaches to enhance local 

conditions and contribute to cumulative coastal ecological benefits. Given potential cost 

savings over typical shoreline management alongside these natural capital benefits 

(Manis et al. 2015), living shorelines and equivalent efforts may further support strategic 

handling o f flood vulnerability at present and future levels.

Besides a few large natural areas along the main stem o f the Bay on the central 

Eastern Shore, many o f the hot spots o f sub-3.05 floodable areas with high percentage 

forest or marsh resources appear further up the Bay’s tributaries. This distribution 

suggests that many o f the areas with high percentage natural capital land cover are up 

small tributaries. They likely do not provide the same suite o f services as coastal 

ecosystems further downstream due to the lack o f larger waves forming there. While 

other ecosystem benefits to these upstream communities and the Chesapeake at large no 

doubt still fully function, the lack o f specific protection benefits such as wave dampening 

may change their valuation with regard to coastal flooding. Future efforts taking natural 

capital into account for flood vulnerability therefore might consider noting appropriate 

zones where natural capital could have the most leverage.

Further Management Implications

The parallel windows on coastal vulnerability in Maryland and Virginia build a platform 

to consider multiple complex angles o f coastal management. The general index 

transferability between different scales not only allows flexibility, but also facilitates

64



exploration o f policy and management issues from both top down and bottom up 

directions. Beyond the insights provided by the co-application o f these scales, the 

question remains o f how these indices directly tie to manageable, actionable information. 

From the physical index perspective, the individual aspects o f elevation or wave exposure 

are not necessarily easily changeable in themselves, but they can still be addressed. By 

breaking the index factors out, a local coastal manager might consider pushing for 

rezoning certain floodable areas against investing in wave reduction strategies.

Though simplistic, the combination o f the physical and social vulnerability 

indices (along with the natural capital consideration at the same level) allows analysis 

about whether strategizing adaptation around physical risk reduction or your 

com munity’s demographics is likely going to deliver more results. This information may 

support a number o f different management options. For example, a community or locality 

having recently enrolled in a program such as FEM A’s Community Rating System might 

decide what category should be prioritized to see the most actual risk reduction in 

addition to discounting residents’ flood insurance rates. By identifying vulnerable 

communities, the index may also support requests for more detailed sub-community 

vulnerability analyses, thereby serving as the equivalent o f the first level o f the tiered 

approach to coastal resilience quantification considered by the U.S. Army Corps of 

Engineers (Rosati et al. 2015).

Social vulnerability likely is more politically difficult to manage than physical 

vulnerability. The HVRI SoVI does not make it easy to backtrack from index scores to 

specific manageable factors. For those managers who are able to obtain all the 

information necessary to deconstruct the principle component analysis (PCA), the end
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result o f vulnerability proxies still limits action (Tate 2012). Many paths forward may 

remain unclear short o f eliminating poverty, better educating all residents, or other 

significant goals beyond a coastal m anager’s control.

Social vulnerability information also can be interpreted both ways, limiting our 

ability to identify a factor’s vulnerability as positive or negative. In the case o f people’s 

past flood experience, some individuals may act more wisely the next time, while others 

consider the past impacts as the damage ceiling for the present as well (Fekete 2012).

The fact that the official SoVI has been designed without any specific hazard in mind 

does not facilitate this management task. A simplistic version such as the CCRM 

comparative model certainly can provide some measure o f similar vulnerability 

calculations. Even then, the constraints o f available data highlighted by King (2001) 

continually challenge analysis o f social vulnerability constructs.

These types o f studies allow for evaluating the concepts behind social 

vulnerability. The same approach to the physical index at zip code, U.S. Census tract, or 

other levels can also be combined with socioeconomic information that targets flood 

issues. For example, CCRM has combined physical vulnerability with the percentages o f 

people with disabilities, poverty status, age dependencies, and people with no cars to 

target flood evacuation issues in Hampton Roads (unpublished). Managers there could 

consider what policy options can help eliminate the identified evacuation problem hot 

spots. By approaching these types o f case studies from the same systemic approach and 

enhancing efforts to verify them, vulnerability indices can potentially transition from 

academic exercises to practical coastal community applications.
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CONCLUSIONS

As one o f the first efforts to consider physical and social vulnerability at equivalent scales 

across the entire coastal Chesapeake Bay region, this study establishes a framework for 

the development o f resource management tools pertaining to coastal flood risk. In 

addition to applying known social vulnerability indices, this work offers one o f the few 

developments o f a physical vulnerability index specifically designed to directly connect 

to socioeconomic information. The general approach o f parallel scales supports equal 

consideration o f different variables on the same map within the same geographic and 

community contexts. The analytical tool developed for this project can study a wide 

array o f implications involved with management o f differing aspects o f coastal 

vulnerability, from evacuation schemes to forecasting where future flood-related 

problems might be likely to occur.

Short o f further validation work, however, these vulnerability indices remain 

rather theoretical. Therefore, successful index application must provide a strong platform 

for testing their performance against real world events at a regional scale. The use of 

physical vulnerability and natural capital at the zip code and locality boundaries ensures 

that vulnerability considering both aspects can be understood together before tying the 

analysis to socioeconomic information available at these scales. Comprehensive 

community connections should advance the science o f vulnerability and resilience by 

supporting evaluation o f index performance against different flood scenarios.
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CHAPTER 2 -  Coastal Flood Impact Detection

OVERVIEW

Sea-level rise will increase the risks for coastal communities, but these threats from rising 

seas are by no means new. Atlantic tropical cyclone damage measures in the billions o f 

dollars over the past century (Pielke et al. 2008). While general damage records suggest 

an increasing trend in the magnitude storm impacts, Pielke et al.’s (2008) normalization 

o f damages by population and coastal development clearly illustrates that there is a 

significant human element to the severity o f these disasters (Figure 2.1). While high 

wind speeds cause critical damage during events, storm surge and coastal flooding often 

bring the greatest devastation (NOAA NHC 2014b). In addition to physical vulnerability 

to flood damage, social vulnerability has become increasingly accepted as an important 

aspect o f immediate and long-term impacts o f coastal flooding (W isner et al. 2003).

Despite recognition o f the importance o f physical and social storm vulnerability 

assessment, few real world validation efforts have been made. Consequently, we still 

know relatively little about the robustness o f vulnerability indices (Tate 2012). In order 

to understand what factors most contribute to a com m unity’s vulnerability to coastal 

flooding, it is possible to test the performance and accuracy o f vulnerability indices by 

applying them to past coastal flood events. In the Chesapeake Bay region, Hurricane 

Isabel’s widespread flooding provides a good platform for a natural regional experiment.
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Figure 2.1 -  From  Pielke et al. (2008) a) total losses from  A tlantic tropical cyclones in 2005 
dollars 1 b) norm alizing the data for base-year econom ic dam age w ith inflation, w ealth and 
population.
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Though not specifically described as “social vulnerability” factors at the time, officials 

did identify related concerns in some areas, such as the difficulty o f communicating 

information to various ethnic communities regarding storm preparation and recovery 

(USAGE and FEMA 2005). This communication issue illustrates the need for the kind o f 

data that might support community adaptation to coastal hazards. This study seeks this 

kind o f information by approaching the task from a new angle. The analysis compares 

vulnerability conditions prior to the storm to changes in coastal community well-being 

after the storm.

Analysis o f local socioeconomic data allows for the exploration o f how different 

Chesapeake communities respond to severe flood events. The natural assumption that 

more extensive flooding (and associated damage) leads to greater disruption in the local 

economy should show up in the socioeconomic record in various forms, such as the 

unemployment rate increase seen in areas affected by the 1993 Midwest floods (Xiao and 

Feser 2014). This study on Chesapeake Bay flood impacts compares changes in factors 

ranging from business patterns to changes in average income observed during the 

Hurricane Isabel period. This research assesses whether the signals can be observed 

consistently across Chesapeake Bay urban, suburban, and rural areas rather than focusing 

only on specific sub-regions such as Kleinosky et al. (2007).

Flood impact signals are identified by tying the actual flood statistics to common 

measures o f socioeconomic performance at the community level. This process differs 

from a number o f existing attempts to verify indices (e.g. Burton et al. 2011; Kim et al. 

2014) because it evaluates the performance o f the indices with existing socioeconomic 

data rather than actively surveying recovery. In doing so, this research attempts to
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develop an exportable approach that could be applied even when available resources limit 

immediate detailed study o f an area following a flood event. Evaluation at a regional 

level matches state and local boundary lines that may be more relevant to distribution o f 

resources and aid. This examination then considers the specific flood impacts against 

vulnerability indices (social, physical, and combined) and relative natural capital to 

explore the rationale behind any patterns in coastal flood impacts on community 

economies.

METHODS

Identification o f  Flood Impacted Communities

To study flood impacts across the entire Chesapeake region, the ideal study requires a 

major storm that caused flooding across the whole region rather than isolated pockets.

For the Chesapeake Bay region, this storm exists in the form o f Hurricane Isabel. At the 

regional scale, the storm marked the highest water levels since the Chesapeake-Potomac 

Hurricane o f 1933 (Figure 2.2). In the southern bay (around Hampton roads), storm 

surges o f over 5-6 feet occurred, while water rose 3-5 feet in the central Chesapeake Bay, 

and 6-8 feet in the upper Bay (Annapolis and north) (Beven and Cobb 2004). Once it 

made landfall as a Category 2 storm near Drum Inlet, North Carolina, Hurricane Isabel 

then weakened to a tropical storm over the Chesapeake region (Beven and Cobb 2004).

As o f 2011, Hurricane Isabel’s damage estimate was updated to $5,370 billion for the 

total storm with estimates o f insured property damage in Virginia and Maryland at $925 

and $410 million respectively, illustrating the widespread impact (Beven and Cobb 

2004).
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Figure 2.2 -  From NOAA Tides & Currents (2014). Extreme water levels at Annapolis and Norfolk 
(Sewells Point). Note the 2003 spike of Hurricane Isabel’s storm surge relative to the past decade and 
time series as a whole. Referenced to Mean Higher High Water.

Teasing out damage caused specifically by flooding can be complicated for 

multiple reasons, including incomplete datasets, privacy issues, and the difficulty o f 

differentiating wind from water damage. Even for substantial efforts such as the Spatial 

Hazard Events and Losses Database for the United States (SHELDUS), data falls short 

for certain counties and events (HVRI 2015). Given poor flood damage detail for 

Hurricane Isabel, this study treated a com m unity’s maximum flood extent as an 

approximation for potential flood induced damage. This approach allows for a 

comparable standard indicator o f potential damage that can be extended across the region 

despite the lack o f true damage data; the method is not altogether different than a 

verification attempt by Finch et al. (2010) using flood depth in New Orleans (where most 

areas were flooded at this city scale). While this analysis likely involves certain
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limitations, it generates less area size bias than simply using raw flood area numbers, 

with the relative percent o f an area that flooded generally matching the equivalent trend 

in raw area flooded (Figures 2.3 & B2.1).

Calculating the flood percentage o f New Jersey zip codes during Hurricane 

Sandy, a storm with higher quality impact data and accessibility, offers a useful 

comparison. Zip code boundaries were taken from 2012 US Census data, the state 

coastline from the New Jersey Department o f Environmental Protection (2009), and flood 

data was obtained from the FEMA Modeling Task Force on Hurricane Sandy Impact 

Analysis (2013). Comparison o f the data with total FEMA inspected damage from 

Housing Assistance information reveals a positive relationship between flood percent and 

damage, especially when binned (Figures 2.4 and B2.2)E

Although tidal gauge records and other datasets show various elements o f past 

flooding, exact mapping o f the Hurricane Isabel’s flood area is not possible from 

observation. After initial efforts to document exact flood extent via communications with 

the Federal Emergency Management Agency (FEMA) and associated contractors using 

U.S. Geological Survey (USGS) high water marks, modeling the flooding remained a 

better option to best standardize flood impacts across Maryland and Virginia. The study 

incorporates a hindcast o f Hurricane Isabel by Zhang and Baptista’s (2008) finite-element 

SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) for cross

scale ocean circulation. Compared to reports in various Virginia regional hazard 

mitigation plans and other sources, the model appears to consistently highlight affected 

regions, particularly within the Virginia area.

5 OpenFEMA Housing Assistance dataset at http://www.fem a.gov/openfem a-dataset-housing-assistance- 
da ta-ow ners-v l targeting disaster 4086
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Figure 2.3 -  Zip code flood area in terms o f binned flood percent (x-axis marked by lower partition of 
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Figure 2.4 -  Hurricane Sandy zip code FEMA inspection damage by binned percent zip code flooded.
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The SCHISM model output the data as an .XML file which was converted in 

ArcGIS to a TIN file which then could be translated into raster file and projected in the 

proper coverage layer. A series o f processes was run via an ArcGIS model to calculate 

the raw amount o f land flooded within each geographic area as well as the percentage of 

flood area within each area. These calculations were performed for each locality and zip 

code tabulation area (ZCTA) level.

Socioeconomic Flood Impact Data Collection

In order to compare change in socioeconomic conditions, the analysis considered a 

variety o f different approaches to measure change in coastal communities affected by 

storm surge events. Ultimately, the evaluation involved initial compilation o f datasets 

that were available in the majority o f communities across Virginia and Maryland. While a 

wide range o f data showed promise, several datasets had significant gaps across the 

Chesapeake Bay region or were not consistently available. For example, the Zillow Home 

Value Index (ZHVI) provides an excellent record o f housing values over time back 

through 1996 at a variety o f geographical boundary levels, yet fails to include these for 

significant areas o f Virginia such as the Eastern Shore and Northern Neck (Zillow 2015). 

In other cases, data were not always available on an every year basis, but still provided 

reasonable time windows around Hurricane Isabel. The final data selection includes 

groups o f variables that provide better resolution at the spatial level due to their 

availability at the zip code level while others provide better temporal resolution but only 

are available at the locality level.
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All datasets were transformed to the equivalent o f a per capita or mean value from 

their aggregate values in order to minimize potential effects o f different community area 

and population size on the analysis. The following datasets showed initial potential for 

consideration as vulnerability indicators:

• Zip Code Data

o Internal Revenue Service individual income tax data6 (2001 & 2004)

■ Mean household annual adjusted gross taxable income (AGI)

■ Mean household annual taxable salaries & wages

o Business pattern data7 (available annually 1994 - present)

■ Mean annual payroll per establishment (2002, 2003, 2004) -  all 

forms o f compensation, such as wages, salaries, commissions and 

bonuses before taxes are removed. Establishment defined 

according to the North American Classification System as a 

physical site where service or industry operations take place

■ Mean first quarter payroll per establishment (2003, 2004) -  payroll 

for the January -  March period

6 http://www.irs.gov/uac/SOI-Tax-Stats-Individual-Income-Tax-Statistics-ZIP-Code-Data
7 http://www.census.gov/econ/census/data/geo.html & 
https://www.census.gov/econ/cbp/download/04_data/
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• Locality Level

o Monthly taxable sales (2000 through 2006) -  the revenue sales tax is 

collected from, obtained from personal communications with the Virginia 

Department o f Taxation and the Comptroller o f Maryland (2014) 

o Annual average unemployment data (2002, 2004) -  collected from the

o

Bureau o f Labor statistics 

o New private residential building permits (calculated per square kilometer 

for each locality) (2002 & 2004) -  US Census9 

o School district enrollment data (2002 and 2004) -  from Maryland and 

Virginia State Departments o f Education archive data 

o Virginia Composite Index10 (2000-2002 and 2002-2004) - Estimate o f 

school district ability to pay for their operation based on value o f real 

property, real sales and taxable sales, population and school average daily 

membership; computed every 2-year period

Once collected, these socioeconomic datasets were matched to coastal localities 

and zip code tabulated areas. Those geographies with populations below 100 or missing 

data were removed from further analysis.

Community Flood Impact Detection

Each socioeconomic dataset was tied to flood percent values for their corresponding zip 

codes or localities in order to inform better estimates o f potential thresholds within the

8 http://www.bls.gov/lau/#cntyaa
9 http://censtats.census.gov/bldg/bldgprmt.shtml
10 http://www.doe.virginia.gov/schooUfinance/budget/compositeindexUocal_abilitypay/
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flood data. After initial data exploration, common thresholds were set across data at flood 

percentage breaks o f 5, 10, and 25 for zip code levels, creating four bins. These were 

chosen as standard levels that provided relatively even zip code counts for maintaining 

relatively equal counts. The standard set o f flood groupings allowed analysis across

several subsets o f the data (subsets including “only western shore VA zip codes”, “only

?sub-30 km“ zip codes”, “only flooded zip codes”). At the locality level, break values o f 1, 

3, and 10 percent were first applied to flood impact detection.

The standard process was followed with more specific threshold detection 

accomplished by exploring the data with “Partition M odels” in JMP software, which 

recursively splits the flood percent data according to possible groupings or splits evident 

within the socioeconomic data. For zip codes this method was only applied to the 

geographies that at least had some flooding to avoid complicating analysis with the large 

number o f landlocked non-floodable areas. Two top thresholds were kept from the 

partition analysis at the zip code level. Additional breaks within the same 10% bracket 

(i.e. 0-10, 10-20, . . .) were ignored to prevent significant skewing o f data distribution and 

variance. At the locality level, only the top partition (as long as it was not within 5 data 

points o f the top or bottom flood percentage) was used to create two flood bin groups for 

each variable. Once calculated, the top splits were used to inform larger groupings o f the 

impact data for the next tier o f analysis. By running the analysis on each grouping, 

different potential thresholds were identified for each variable.

Transforming data to natural log values improved parametric statistical testing 

and ensured that the differences being analyzed between these values were relative to the 

values themselves, minimizing the effect o f differently populated or sized communities.
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A Before-After-Control-Impact (BACI) type test was applied to the majority o f variables. 

The analysis was conducted in JMP with a “Matched Pairs” analysis in order to analyze 

the mean difference before and after Hurricane Isabel flooding; the Across Groups tests 

F-test is equivalent to the results o f a repeated measures analysis that may also be 

calculated via a multivariate analysis o f variance model.

Beyond the standard BACI design, the timing o f monthly taxable sales data also 

allowed for time-series analysis o f each locality. M onthly taxable sales were analyzed for 

a period from January 2001 through December 2006 with M initab’s software, using their 

time series decomposition analysis to account for both overall trend and monthly 

seasonality. These years generally marked a period o f economic growth. The end product 

o f this was the production o f a fit model for the overall period, generating residuals for 

the model. The decomposition smooths data using a moving average, generating median 

values for the seven years to create seasonal indices to adjust the data to the trend line 

with least squares regression. Generating this kind o f model rather than a more complex 

autoregressive integrated moving average model (ARIMA) produces corresponding 

residuals in a consistently repeatable manner.

The impact o f Hurricane Isabel flooding was assumed to be greatest where the 

actual taxable sales most differed from the fit model in the months following the storm. 

The final analyses tested for differences in average residuals 6 months before and after 

the storm, 3 months before and after, and the individual month following the storm 

(October). Figure 2.5 illustrates the creation o f the modeled time series against the actual 

values for Gloucester County, VA. The Gloucester County analysis also provides an
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example where the deviation o f the model from the actual data (i.e. the residual) was at 

its greatest value for the entire time series for the October immediately following 

Hurricane Isabel. Calculating the same residual ranking for all localities suggested that 

some form o f residual analysis across the region showed some potential when considered 

against flooding by Hurricane Isabel (Figure B2.3).

$400,000

to $350,000 ju 
ro 
to
a  $300,000 

-Q 
ru x
™ $250,000
V-
QJ

gj $200,000 

_o
°  $150,000

$100,000 
Month

^  #

Figure 2.5 -  Time series analysis o f taxable sales in Gloucester County, VA. Arrow points out first full 
month following Hurricane Isabel.

Vulnerability Index Verification

Those socioeconomic datasets that showed significant difference in response across 

Hurricane Isabel flood groupings were selected as the datasets to test various 

vulnerability indices against. Repeated measures MANOVA calculated whether there 

were any statistically significant interactions between the percent flooding o f zip codes 

(or localities) and their vulnerability index rankings in the context o f socioeconomic 

change. Flooding percent was maintained at the bin levels from the Hurricane Isabel

Gloucester Taxable Sales 
Time Series Model
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impact detection, while physical vulnerability and social vulnerability index values were 

reduced to categories based on breaks at 0.2, 0.4, 0.6, and 0.8 (i.e. creating ordinal 

vulnerability categories o f 1-5). The indices were assessed separately before being tested 

in their combined index format. Potential natural capital correlations (in the form o f the 

relative percent forest and marsh within the zip code) were analyzed as well. The overall 

approach also identifies any interactions between vulnerability values and time exclusive 

o f flooding impacts.

RESULTS

The approach successfully hindcasted the flooding from Hurricane Isabel and connected 

the flooding to socioeconomic changes. However, vulnerability index scores showed 

limited ability to predict the impacts o f flooding extent on changes in coastal community 

socioeconomic activity.

Hurricane Isabel Flood Distribution

Small zip code tabulated areas (ZCTAs) in Gloucester and Mathews counties were home 

to the highest percent flooded zip code areas during Hurricane Isabel. The overall flood 

map generally matches the storm surge areas described by Beven and Cobb 2004, 

although it does not perfectly match corresponding concepts o f conditions in the upper 

Bay (Figures 2.6 and 2.7). The relative area below 3.05 meters is lower towards the top o f 

the Bay, suggesting that equivalent storm surge may not flood the upper Bay areas as 

much as it impacts areas further down the main stem. Hot spot analysis identifies the 

southern portion o f the Maryland Eastern Shore, the ocean side o f the Virginia Eastern
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shore, the Virginia Peninsula area, and Mobjack Bay as hot spot region clusters at 90% 

confidence interval levels (Figure B2.4). At the locality level the higher flooding 

mirrored the clusters o f zip code flood percent values (Figure B2.5), with hot spot 

analysis pointing out Hampton, Poquoson, and Northampton as the three centers of 

significant flooding above the 95% confidence interval (Figure B2.6).
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Figure 2.6 -  Maximum flood extent of Hurricane Isabel (September 2003) as modeled by 
SCHISM/SELFE
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Percent ZCTA 
Flooded

Figure 2.7 -  Percent o f zip code tabulated area (ZCTA) flooded by Hurricane Isabel. Note Assateague 
Island (grey) not included as it was not an actual zip code boundary due to no addresses.
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Hurricane Isabel Flood Impact Detection -  Zip Code Level

Detecting the impacts o f Hurricane Isabel within a variety o f data variables produced a 

mixed outcome. As illustrated by Tables A2.3 - A2.5, several variables did reflect 

significant disparities in change before and after Hurricane Isabel based on how much 

they flooded. The relationships were especially significant for the datasets that used 

variable-specific thresholds for grouping zip codes by relative amount o f flooding. The 

significance was especially evident when extreme outliers11 were included (e.g. Figure 

B2.7), though mostly remained true for cases even when they were removed.

The anticipated results assumed that the least flooded zip codes would see the 

greatest increase in socioeconomic activity while the most flooded zip codes would see 

the least increase in socioeconomic activity, with mid-level flooded areas falling 

somewhere in between (e.g. Figure B2.8a). Alternatively, one might have predicted that 

only the most flooded zip codes should show a difference in variable change before and 

after the flooding, based on the idea that there may be a certain threshold o f flooding 

required to affect the economy negatively at a community-wide scale (e.g. Figure B2.8b). 

Despite the statistical significance o f relationships between flooding and changes in 

socioeconomic activity (Figures 2.8, 2.9, & B2.9 -  B2.12), the relationships did not 

match the expected overall trends and distributions.

11 Besides those already removed for sub-100 person populations and other data inconsistencies
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Figure 2.8 -  Change in zip code mean household salary between 2001 and 2004 by grouped 
household salary-specific flood percentage bins (determined by partition analysis) among flooded 
Chesapeake zip codes with 2 extreme outliers removed. Standard error bars. Significantly different 
overall in ANOVA, at p=0.006.
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Figure 2.9 -  Change in zip code mean establishment first quarter payroll between March 2002 and 
March 2004 by grouped payroll-specific flood percentage bins (determined by partition analysis) among 
flooded Chesapeake zip codes with 2 extreme outliers removed. Standard error bars. Significantly 
different overall with ANOVA, p=0.020.
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First quarter payroll is the variable at the zip code level that provides the 

narrowest window around the flooding from Hurricane Isabel (six months on either side), 

which possibly explains why it is the variable that meets expectations most closely.

While the most flooded zip codes did see the least increase in first quarter payroll and 

annual payroll (Figures B2.9 and B2.10), the middle flood groupings in both cases saw 

more growth than the least flooded zip codes. Even with the analysis o f adjusted gross 

income (AGI), the middle flood group deviated from the least flooded groups by an even 

greater extent than the most flooded zip codes (Figure B 2 .11).

While these distributions with unexpected changes in mid-level flooded zip codes 

do not support a consistent trend, the variation may well support some aspects o f 

differences in vulnerability and/or economic response among those areas impacted by the 

flooding. In addition to differing rates o f  change in variables in relation to Hurricane 

Isabel flooding, some o f the areas that flooded the most also have generally lower values 

even before Hurricane Isabel passed through. As seen in Figure B2.13, in a number o f 

cases these differences were not just partial-trends (such as Figure B2.14), but 

statistically significantly different as well. The BACI analysis already accounts for any 

distortion o f results by these different starting values by transforming them through their 

natural logs before analyzing differences through time. The analyzed socioeconomic 

variables that showed significant differences among flood groups therefore still provide 

adequate platforms for testing vulnerability indices against.
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Vulnerability Index Verification -  Zip Code Scale

As Figure 2.10 illustrates, ideal vulnerability verification results would isolate 

statistically significant interactions between the indices, flooding, and change in 

socioeconomic activity. In this idealized scenario, vulnerability scores would negatively 

correlate with socioeconomic change in the most flooded zip codes while showing less 

strong or zero correlation with socioeconomic change in the least flooded zip-codes. The 

example would match the idea that a threshold o f flooding is necessary to observe diverse 

socioeconomic impacts based on differing vulnerability. Otherwise, if  the socioeconomic 

calibration variables were fine enough to show any small difference in response even in 

the case o f minor floods, vulnerability indices might predict significantly different 

responses at any level o f flooding. Given the temporal and spatial limitations and coarse 

nature o f the aggregate data, the latter is unlikely. Failure o f the various indices to 

correlate with changes in the socioeconomic test variables does apply here as well.

Figure 2.10 -  Idealized 
theoretical results of 
vulnerability index 
verification, significant 
interactions between 
the indices, flooding 
and change in 
socioeconomic activity. 
The most flooded zip 
codes show decreasing 
increase in
socioeconomic activity 
around a severe flood 
event, decreasing with 
vulnerability. The least 
flooded zip codes see 
higher growth, with 
little or no pattern 
among differently 
vulnerable areas.
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Vulnerability
Index

Significant
Variable

Dataset Index
Performance Data Relationships/Trends

Theoretical

Any Any Any Strong
Strong negative correlation between vulnerability 
and socioeconomic change for most flooded zip 
codes. Trend signal decreases with less flooding.

Zip Code Scale

Social 1st Quarter 
Payroll

Flooded 
Zip Codes Weak

Limited score distribution amongst most flooded 
zip codes, but positive correlation; no trend for 
mid-level flooding; slight partial negative trend at 
low level flooding.

Social

Physical

Household
Salary

Household 
Adj. Gross 

Income (AGI)

Flooded 
Zip Codes

Flooded 
Zip Codes

Weak

Weak

Limited score distribution amongst most flooded 
with limited separation of means. Mid-level flood 
shows somewhat positive trend. Low-level flood 
shows little to slight negative trend.
No clear trend for most flooded zip codes. Slight 
positive trend for mid-level. Limited for low 
flooded.

Physical Annual
Payroll

Small Zip
codes Weak/Moderate

No clear trend for the most flooded zip codes. 
Negative trend for second most flooded. Limited 
trends for least flooded.

Physical

Combined

Household
Salary

1st Quarter 
Payroll

Flooded 
Zip Codes

Flooded 
Zip Codes

Moderate/Strong

Weak

Clear separation amongst means in negative 
correlation for most flooded; slight neg. trend for 
mid-level flooded; no clear trend for least 
flooded. Most flooded still rather high in growth. 
Limited/slight positive trend for most flooded. No 
significant trends at lower flood levels.

Combined Household
AGI

Flooded 
Zip Codes Weak

Through most flooded, most vulnerable is close to 
the lowest growth, no trend for most flooded or 
the least flooded. Slight positive trend for the 
mid-level o f flooding.

Combined Household
AGI

Small Zip
Codes

Weak/Moderate

The most vulnerable of the most flooded areas 
reflects the least growth across the spectrum, 
giving some potential for a negative trend or 
threshold. Upper-mid level shows limited to 
slightly positive trend. Lower mid-level partially 
negative trend. Low flooding shows general lack 
o f trend.

Combined Annual
Payroll

Small Zip
Codes Weak

The most flooded areas see increase in growth 
with vulnerability, flagging this operation despite 
negative correlations for mid-level flood areas 
and no trend for the least flooded.

Locality Scale

Social
1 -month 

Taxable Sales 
Residual

All
Localities Weak/Moderate

Less flooded localities show limited trend 
towards less difference from expected values 
following storm. More flooded localities lack full 
vulnerability score distribution but have possible 
trend towards less similar to expected following 
flood.

Table 2.1 -  Summary of vulnerability index verification interpretation for results with statistically 
significant interactions among flooding, vulnerability, and relative change in socioeconomic activity. 
Index performance is marked on a scale of very weak to very strong.
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Despite the fact that statistical analysis identified a number o f significant 

interactions between flooding, vulnerability index scores, and changes in socioeconomic 

activity, these interactions did not necessarily support solid performance o f the 

vulnerability indices to predict response to flood impacts. Data visualization provides 

insight on the relevance o f the interaction’s statistical significance through the following 

interpretations. Table 2.1 summarizes the analyses o f index performance explained in 

more detail in the following sections. As the table shows, index performance can 

generally be described as weak.

Social Vulnerability

The social vulnerability index application showed limited ability to predict 

socioeconomic activity reflecting Hurricane Isabel’s flood impacts. O f the five cases 

demonstrating significant relationships between flooding and socioeconomic change 

before and after Isabel, only differences in mean household salary and first quarter 

payroll significantly interacted with zip code flooding and relative social vulnerability 

(Table A2.8). These two sets o f results showed no clear separation or mostly trended in 

the wrong direction relative to expectations (Figures 2 .11 and B2.15). Performance 

analysis may be somewhat limited, as under 4 %  o f the zip codes that were flooded had 

social vulnerability scores in the two highest categories. This score distribution constraint 

is likely due to relative socioeconomic status o f coastal Chesapeake communities and the 

application o f the official Social Vulnerability Index (SoVI) to the region. SoVI 

application calculates relatively few zip codes as the highest scores when transformed to 

a relative scale, creating some flags that Fekete (2010) warns of. Overall there seems to
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Figure 2.11 -  Significant interaction between social vulnerability score (binned into 5 score 
categories corresponding to 0 - 0.2, 0.2-0.4 . .  .), flooding and change in mean first quarter payroll 
between 2003 and 2004 by grouped salary-specific flood percentage bins among flooded Chesapeake 
zip codes, p=0.005. Top x-axis labels are lower partitions of groupings. Standard error bars. 2 
extreme outliers removed. Expected trends overlaid as dashed lines.
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Figure 2.12 -  Significant interaction (p=0.04) between physical vulnerability score (binned into 5 
score categories corresponding to 0 - 0.2, 0.2-0.4 . .  .), flooding, and change in mean household 
salary between 2001 and 2004 by grouped salary-specific flood percentage bins (axis labels are 
lower partitions o f groupings) among flooded Chesapeake zip codes with 2 extreme outliers 
removed. Standard error bars. Expected trends overlaid as dashed lines.
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be no support for any strong relationship between social vulnerability and socioeconomic 

performance in these zip codes.

Physical Vulnerability

O f the five datasets showing a significant relationship between Hurricane Isabel flood 

levels and socioeconomic variables, the physical vulnerability index significantly 

interacted with the relative flood levels for three o f them: mean household taxable salary, 

household adjusted gross income (AGI) and annual payroll (Table A2.7). AGI generally 

failed to support isolation o f projected trends in socioeconomic response (Figures B2.16). 

Change in mean annual payroll for smaller zip codes shows a hint o f the expected results, 

with those zip codes flooding between 10% and 25% illustrating a non-significant trend 

towards less growth among higher physically vulnerable areas (Figure B2.17). This trend 

remains somewhat limited and within the standard error, however, and would require 

further explanation o f why the relationship does not extend to the most flooded zip codes.

Only the interaction between taxable household salary (Figure 2.12) generally 

supports the expected hypothesis o f the interactions between vulnerability and 

socioeconomic impact, illustrating a clear separation in differences before and after Isabel 

between those zip codes with vulnerabilities o f 3, 4, and 5 in those zip codes that flooded 

by 34.4% or more. There appears to be a less strong (and not significant) trend in those 

zip codes flooding between 8.9% and 34.4% as well. Those areas with vulnerability 

scores o f 0.8 or above (i.e. score category 5) especially see mean values below the overall 

average change in household taxable salary across this period. Despite a split o f 2001 to 

2004 around Hurricane Isabel, mean household salary therefore does suggest that the
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physical vulnerability index has the potential to predict some flooding impacts at a zip 

code scale. The fact that the variable did not capture differences across all data-subsets 

does raise some questions though.

Combined Vulnerability

The combined vulnerability index (weighting physical and social vulnerability equally) 

also showed limited potential for predicting socioeconomic change in zip codes affected 

by Hurricane Isabel. The change in AGI in the most vulnerable o f the most flooded small 

zip codes does show some separation in growth from the rest o f zip codes. However, the 

limited number o f points trending in that direction, as well as an opposite trend in the 

second most flooded areas, suggests that the support is not very strong (Figure 2.13). 

Overall, the indices generally fail to support hypothesized results when analyzing the 

significance for first quarter payroll, household AGI, and mean annual payroll (Figures 

2.13, B2.18 -  B2.20). The point should be made that sub-datasets containing only flooded 

zip codes excluded all areas labeled as category 1 combined vulnerability (i.e., score less 

than 0.2 on 0-1 scale), because none o f those areas were flooded. While different 

weighting o f various combinations o f physical and social vulnerability could be explored 

in the future, overall results do not appear consistent enough to provide significant 

support for the application o f the basic combined vulnerability index.
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Figure 2.13 -  Significant interaction between combined vulnerability score (binned into 5 score 
categories corresponding to 0 - 0.2, 0.2-0.4 . . .), flooding, and change in mean household adjusted 
gross income (AGI) between 2001 and 2004 by common flood percentage bins among small sub-30 
km2 Chesapeake zip codes, p=0.011. Top x-axis labels are lower partitions of groupings. Standard 
error bars. 11 extreme outliers removed. Expected trends overlaid as dashed lines.
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Figure 2 .1 4 - Significant interaction between relative natural capital binned into 5 score categories 
corresponding to 0 - 0.2, 0.2-0.4 . . .), flooding, and change in mean annual payroll by common 
grouped flood percentage bins among small sub-30 sq.km Chesapeake zip codes, p=0.016. Standard 
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Natural Capital

The amount o f relative natural capital (in terms o f forest and marsh) within the floodable 

area o f a zip code did show some significant interaction with Hurricane Isabel flooding 

when considered alone l2(Table A2.8). Among the smaller zip code data subset, evidence 

generally points towards greater growth in annual payroll for areas with higher percent 

natural capital (Figure 2.14). The relationship between natural capital and annual payroll 

change outside the context o f flooding does seem to show some trend (though not 

significant). The existence o f this trend raises a question o f how intensely the flooding is 

key to the interaction (Figure B 2.21). These same trends do not carry over to household 

AGI and household taxable salary in quite the same way (Figures B2.22 and B2.23). 

Though not fully integrated into an index at this point, the relationships may suggest 

some different behavior based on the land cover o f floodable areas during this period in 

time.

Hurricane Isabel Flood Impact Detection — Locality Level 

Flood impact analysis at the locality level generally matched expectations o f the 

individual variables. For example, more flooded localities experienced greater 

construction costs, less o f a drop in unemployment, and in Virginia, less ability to pay for 

residents’ public education after Hurricane Isabel relative to before (Figures 2.15, B2.24 

and B2.25). Seven o f sixteen datasets -  nearly half o f those tested -  showed significance, 

with four o f seven doing so when using a variable-specific flood group partition (Table 

A 2 .1 0 -A 2 .l l ) .

12 Natural capital was originally intended to be combined with the combined vulnerability index to improve 
indices, but given the limited performance this analysis was not conducted

94



Beyond the other variables considered at individual points before and after the 

storm, time-series mean absolute residuals suggest that there was more atypical economic 

activity following Isabel relative to the months before the storm. These locality-scale 

findings consistently show the same story that greater flood damage may show greater 

differences in economic activity relative to normal (Figure 2.16). In addition to the flood 

impact detection results, analysis showed that those localities that flooded were 

somewhat less w ell-off socioeconomically even before the storm passed through, though 

not in at a statistically significant level (Figure B2.28). These trends were not always as 

marked as they were in the zip code analysis, but should be noted.
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Figure 2.15 -  Change in unemployment rate before and after Hurricane Isabel by taxable sales- 
specific flood percentage bins among coastal Chesapeake localities. 1 extreme outlier removed. 
Significant ANOVA, p=0.007. Standard error bars.
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Figure 2.16 -  Change in 1-month mean absolute residuals o f taxable sales time series model before 
and after Hurricane Isabel by taxable sales-specific flood percentage bins among coastal Chesapeake 
localities. 5 extreme outliers removed. Significant ANOVA, p=0.016. Standard error bars.
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Figure 2.17 -  Significant interaction between social vulnerability and change in I-month mean 
absolute residuals o f taxable sales time series model before and after Hurricane Isabel among taxable 
sales-specific flood bins, p=0.048. Top x-axis labels are lower partitions of groupings. Standard error 
bars. 8 extreme outliers removed. Expected trends overlaid as dashed lines.
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Vulnerability Index Verification -  Locality Scale

Despite a number o f potential signals for Hurricane Isabel flood impacts, only the social 

vulnerability index significantly interacted with fo o d  levels and socioeconomic activity 

change before and after Hurricane Isabel (Table A2.12). Among less flooded localities, 

more vulnerable areas met sales expectations more closely in the month following 

Hurricane Isabel than the month before (Figure 2.17). For more flooded localities, the 

three social vulnerability score ranges represented showed as significantly different, but 

did not produce a clear trend. While the least socially vulnerable localities met expected 

taxable sales more closely after the flooding, the mid-vulnerable areas departed more 

from expected than the more socially vulnerable localities following flooding. These 

differences in trends between the two flood-levels may identify some potential difference 

in post-storm recovery associated with social vulnerability above a threshold. At the same 

time the combination o f a lack o f a clear trend and the narrow social vulnerability score 

distribution among the more flooded zip codes limits any strong conclusions.

Beyond the interaction with flood level, the physical and social vulnerability 

indices appeared to correlate directly with differences in unemployment rates and 

expected 3-month taxable sales before and after Hurricane Isabel. Visualizing the 

interaction between taxable sales model residuals and physical vulnerability appears to 

show no meaningful trend (Figure B2.29). While the zip codes with mid-level social 

vulnerability scores are all equal to each other in terms o f unemployment rate change, 

both ends o f the relative social vulnerability index scores (categories 1 and 5) do 

significantly differ (Figure B2.30).
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Overall, locality level factors did not appear to reveal great potential for 

vulnerability index effectiveness despite significant differences at the flood level and 

value changes alone.

DISCUSSION

This study shows that several applications o f vulnerability indices to the Chesapeake Bay 

region do not strongly predict socioeconomic responses o f coastal communities to 

flooding. In addition to their own limitations, the performance o f the indices may have 

been impacted by the strength o f Hurricane Isabel, the insulation o f the regional 

economy, and the silver linings o f disaster relief. Ultimately, the available indicators of 

changes in socioeconomic activity may also not be fully compatible with representing 

true impacts o f coastal flooding.

Lack o f  Strong Support

Overall, this research illustrates that most observations do not support isolation of 

relationships among factors and significant interactions with flooding; they do not 

translate into strong support o f a positive relationship between physical, social, or 

combined index values and socioeconomic change. The existence o f only one potential 

relationship between the vulnerability indices and impacts o f the region’s greatest storm- 

surge event in 70 years raises questions about the applicability o f current indices to real 

world coastal flood events.

The strongest verification variable, the household taxable salary o f flooded zip 

codes, shows that there is some potential for the predictive use o f the physical
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vulnerability, but there are several caveats. Taxable salary did not show significant 

relationships with flooding and vulnerability across other subsets o f zip-codes (e.g. soley 

west-shore VA or small zip codes). An ideal verification would perform across multiple 

subsets o f the data.

The social vulnerability index application essentially falls short across all factors. 

Cutter’s SoVI approach (HVRI 2013) does not demonstrate any meaningful significant 

interactions with flooding across the board, even though it has been incorporated into a 

number o f areas and products, including N O A A ’s Sea Level Rise Viewer (2014) and 

Climate Central’s Surging Sea’s module (2015). Despite the notion that people who have 

experienced one disaster are better adapted to respond to other disasters (Newman et al.

2014), the application o f a social vulnerability index targeted to all disasters might not 

have been tailored enough to the specific impacts associated with flooding in the 

Chesapeake region. Tate (2012) highlights the issue that social vulnerability cannot be 

directly observed. Therefore researchers are only left with various proxies to construct 

and measure them, which are more likely impacted by subjectivity and biases in world

view.

This research suggests that the ability o f current vulnerability indices to predict 

real world impacts o f  storm events is limited. The following sections explore reasons for 

short-comings o f index application in the context o f Hurricane Isabel in order to highlight 

options to improve vulnerability assessment for future applications to coastal 

management.
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Storm Impact Levels

Although Hurricane Isabel was unparalleled in terms o f recent Chesapeake Bay area- 

wide flooding, the damage it caused may not have be widespread enough to allow the 

indices to predict different community impacts accurately. There simply may be too 

many other factors at work for widespread application o f current vulnerability indices 

below calamity level.

It is possible that only the highest flooded areas may have been truly impacted 

economically at a level that could be systematically detected. Given their limited number, 

these especially affected areas may have appeared as outliers that were unable to drive 

overall trends. The fact that only the most flooded zip codes clearly saw taxable salary 

change significantly differently relative to physical vulnerability (Figure 2.12) could 

suggest that a certain threshold o f flooding or damage must be crossed for the indices to 

apply. Hurricane Isabel may not have flooded enough areas sufficiently to see the 

patterns across the board within different socioeconomic activity measures. If so, deeper 

investigation o f flood impacts in these outlier communities across several different 

storms may be necessary to statistically support the potential for vulnerability indices to 

predict socioeconomic impacts.

On the other hand, the Virginia Department o f Emergency M anagement totals 

state damages (non-economic) at $1.9 billion seem to suggest otherwise, with 1,400 

businesses damaged (77 destroyed), 9,027 homes damaged (1,124 destroyed), and 100 

localities declared major disaster areas (VDEM 2015). Though data from the Spatial 

Hazard Events and Losses Database for the United States (SHELDUS) does not 

adequately drill down to individual localities or zip codes, some regional assessments do
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so. For example, the Hampton Roads area claims that nearly 6% o f Hampton Roads real 

property was damaged as a result o f Isabel (HRPDC 2006). The housing damage value 

may not necessarily have translated into real economic processes. Social vulnerability 

verification limits here may be representative o f the differing levels o f success in other 

similar efforts to evaluate vulnerability index performance (Tate 2012).

In some cases, social vulnerability differences appear greatest between the areas 

that flooded least and those that flooded moderately during Hurricane Isabel (e.g. Figure 

B2.12), rather than those that flooded the most. In these examples, the mid-range o f 

percent flooded zip codes actually grew at greater rates than the least flooded areas. 

While the variables involved in these trends were included under the assumption that 

differing vulnerability could explain the unexpected results, the limited amount o f 

significant correlation and interaction may suggest that these differences were actually 

due to noise or other factors not readily identifiable. These trends may merit more 

extensive examination in future studies to confirm their true drivers.

Though saturated soils and other conditions could have altered patterns o f wind 

damage and power loss, the inland track o f Hurricane Isabel’s center does not likely 

predict different damage patterns. Some o f the greatest wind gusts likely occurred 

towards the mouth o f the Bay where flooding was widespread as well (Figure B 2.31). 

The record wet summer leading up to Hurricane Isabel that resulted in a record high- 

water table and saturated soil across the region (e.g. Figure 2.18; USGS 2003) meant that 

sub-tropical winds could knock out trees and power more easily than the average storm, 

affecting more areas than expected. Damage therefore may have deviated from a 

distribution o f flood-
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dominated distribution to such an extent it eliminated flooding’s role as the usual worst 

offender for storm damage.

Isabel
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Figure 2.18 -  Water table levels in Baltimore County for the 5 years leading into Hurricane Isabel. 
Figure from Source USGS (2003). Record high water table levels follow a year of drought.

Insulated Regional Economy

Though some dataset iterations excluded a number o f zip codes around Washington, DC 

(such as analyzing only flooded zip codes, thereby eliminating a number o f non-shoreline 

urban and suburban zip codes) the federal government, its dependent industries, and the 

spread o f their workers and their salaries across the region could possibly dampen the 

impact o f flooding in the region. A report by Quirante (2009) highlights how the 

Washington, DC Metro area consistently weathers recessions better than other regions
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due to the federal government’s presence. This kind o f stability could easily influence the 

stability o f socioeconomic activity across natural disasters as well. While most federal 

employees may be concentrated in the Potomac River region, the number o f military 

personnel in the Hampton Roads area and other coastal zones may also complicate 

interpretations o f changes in socioeconomic variables over this time.

Disaster Silver Lining

Baade et al. (2007) and others have suggested that some disruption in the form o f a 

hurricane could actually be good for communities in an economic context. While 

Hallegatte and Dumas (2009) admit the potential for poverty traps in areas o f intense 

and/or repetitive hazards, overall they see disasters as inconsequential in longer-term 

periods. Though disasters may affect physical capital, they may in turn support 

investment in labor and human capital and accelerate acceptance o f new community 

improvements (Skidmore and Toya 2007). The locality taxable sales data utilized in this 

study may have shown the potential for this kind o f impact in a few areas, but this 

interaction could have varied among different types o f localities, thereby conflating 

results.

Albala (1993) identifies that construction sectors tend to increase following 

disasters, however, the economy o f this type o f investment might not be evenly 

distributed across the coastal Chesapeake region. For example, while Gloucester County, 

VA has a Home Depot and a Lowes that might experience increased sales prior to and 

following a flood event, neighboring counties that lack similar levels o f equivalent 

commerce, such as Mathews or Middlesex, may see citizens spending most money across 

county lines. Consequently, the latter two counties might not show similar effects even if
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they were significantly impacted. An analysis o f hurricane impacts on the Hampton 

Roads region also claims that models such as FEM A’s HAZUS model may underestimate 

the recovery economy following such storm events, perhaps because o f a desire to avoid 

overestimating potential benefits when discussing costs (HRPDC 2006).

Disaster Relief

Disaster relief provided to Chesapeake tidewater communities (along with flood 

insurance benefits) may have been fairly effective in minimizing Hurricane Isabel’s flood 

impacts over the longer term. Economic relief serves as a source o f newly injected 

money and may allow affected communities to recoup losses. Virginia records show that 

housing assistance, other needs assistance, small business loans, and mitigation provided 

more that $149 million in state recovery assistance between September 18, 2003 and 

April 30, 2004 (VDEM 2015). Another $270 million went into the state economy for 

state agencies, local government, utilities, and transportation during this period.

Even in communities where a number o f individuals were severely impacted 

and/or lacked flood insurance, people could have ended up as outliers who slipped 

through the cracks while the local economy as a whole moved along. Consequently, their 

losses might not show at the aggregate level. Finch et al. (2010) stated that likely due to 

the greater resources o f the less vulnerable and public support provided to more 

vulnerable people, mid-level socially vulnerable groups actually saw slower recovery 

following Katrina in New Orleans. These kinds o f patterns may further complicate 

identification o f interactions across the much wider region addressed in this study.
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Factor Compatibility

Though coastal scientists often lament the lack o f updates to physical and biological 

datasets (e.g. physical vulnerability indices such as Gomitz et al. 1994), rapid rates o f 

societal change now make conventional socioeconomic data the coarser element. In their 

own review o f resilience information Knight and Link (2015) call out data input as the 

most critical challenge for these types o f assessments. Much o f the socioeconomic data 

available at a wide spread level surrounding Hurricane Isabel may fall short for this 

analysis due to temporal or spatial limitations associated with aggregate measures. At the 

locality level, taxable sales provide a great measure o f local economic activity, but this 

data may not work where only certain sub-locality areas area severely impacted. On the 

other hand, the smaller spatial scale afforded by the zip code data may be nullified by the 

fact that impacts may not last more than several months.

The aggregate nature o f the datasets also prevents identification o f how well 

various wealthier or poorer areas handle flooding, with average values failing to represent 

reality (Fekete 2012). The composition o f  permanent residents o f an area may also widely 

differ in terms o f income and other characteristics prior and following an event.

Deruygina et al. (2014) illustrate just how powerful U.S. Treasury access to 

unconventional sub-aggregate information can be by showing how returnees to disaster 

areas differed from permanent disaster refugees. Adequate detection may require finer 

resolution at both scales.

In spite o f efforts to use data from “outside the box,” the variables utilized for 

Hurricane Isabel impact detection and index verification may still have led into the trap 

and constraints associated with the data available to data mining studies (Fekete 2012;
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King 2001). Though all considered factors can tie to community socioeconomic 

performance in some manner, some may be too indirect o f a relationship to reflect the 

true impacts o f floods or other disasters. This relationship may be especially true for 

social vulnerability, where the indices themselves are indirect substitutions for reality 

(Fekete 2009). Overall, government collected data may provide too course a view o f 

community health that still remains separated from actual human activity. Given people’s 

ability to call upon savings or credit when faced with covering unexpected damages, 

private financial institutions may well hold the right type and scale o f personal 

information needed to assess flood impacts and true index performance. It is no surprise 

that the National Research Council report, “Disaster Resilience: A National Imperative,” 

strongly recommends creating a national disaster impact database (NRC 2012).

Targeted surveys have even related credit scores to personal behavior such as the 

likelihood o f relationship longevity and divorce (Dokko and Hayes 2015), and therefore 

might show potential for application to money spent following disaster hardship. Though 

background research explored the basic availability o f bank account and credit or debt 

information with several companies, barriers regarding privacy and data 

compilation/storage prevented access (e.g. personal communications Solof Dec 2014; 

Sheehan Dec 2014). This thesis research experience suggests that various public/private 

research agreements must be ironed out prior to analyzing events such as Hurricane 

Isabel occurring in order to apply these at systematic scales.

Natural Capital Influence

Given the limited success in identifying meaningful predictive ability in the various 

vulnerability indices, this study did not consider natural capital’s combined contribution
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to their ability to predict flood impacts. The natural analyses that were conducted 

suggested that areas with higher natural capital (in the form o f percent o f sub-3.05 m area 

covered by marsh and forest) showed some correlation towards higher growth in mean 

annual payroll across this period. At first glance this could suggest some benefits to 

having highly vegetated flood plains. One could be tempted to conclude that having a 

higher-percent o f your sub-3.05 area as natural capital was better than having lesser 

amounts during this time period.

While this study does not dig deeply enough to assign cause, the existence o f the 

trend regardless o f flood amount possibly suggests something to do with economic 

activity in this floodable land rather than Hurricane Isabel itself. Future studies could 

attempt to isolate a factor at more local levels to see what did happen in these specific 

locations. In Virginia, the General Assem bly’s passage o f a Freedom o f Engineering Bill 

in 1999 shifted septic permitting, which led to development o f more structures in 

previously prohibited areas along the states’ coastlines; in turn this development could 

have led to more economic growth over this period, creating a broad, but false, signal of 

Hurricane Isabel interaction (Saunders 2011; personal communication with L.Lawrence

2015). This study cannot tie these two events together, but merely acknowledges the 

potential for other large forces at work during this time period. External influences like 

this last one illustrate the need for caution. No matter what the combination o f factors in 

index creation or evaluation, no system can guarantee capturing all influences (Fekete 

2012).
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CONCLUSIONS

This thesis aimed to move beyond the range o f many extant post-disaster recovery studies 

by analyzing flood impacts at the same regional scale that vulnerability indices are 

applied at in order to test their effectiveness. By attempting to verify the applicability o f 

vulnerability indices in coastal Chesapeake Bay communities, this approach ideally 

allows for the development o f solutions that can be directly incorporated into the 

management o f flooding impacts associated with storm surge events and future sea-level 

rise. The importance o f better understanding community vulnerability to natural hazards 

continues to grow as more people recognize the costs o f not enhancing resilience to these 

types o f events (NRC 2012). This type o f study is therefore critical to contributing to our 

knowledge base and national well-being. Unfortunately, this research does not defend 

the use o f vulnerability index information to predict the impact o f coastal flood events on 

different types o f communities.

While coastal researchers worry about how fast the physical and natural world is 

changing, human patterns operate at an entirely different dynamic level. Social 

vulnerability has become increasingly identified as a key element o f comprehending 

natural hazard risk (W isner et al. 2003), yet only recently has society began to expand our 

access to the information necessary to assess social vulnerability accurately. To identify 

wide-reaching patterns, research requires widely available data that relates to specific 

geographical borders. The U.S. Census data can provide the geographically specific 

snapshot in time needed to create social vulnerability indices (e.g. SoVI from Cutter et al. 

2003), but these data appear less able to illustrate the impacts o f specific storm events 

needed to analyze how human behavior assumptions play out in real world situations.
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Interesting individual case studies o f coastal disaster recovery processes exist (e.g. 

Burton et al. 2011), but more effective vulnerability index assessment demands better 

access to data that can more systematically illustrate the status o f people before and after 

events across the region, especially at the socioeconomic level. More out o f the box 

application o f new data streams may provide new methods to understanding the 

complexity o f human-natural systems. Coastal flood management especially requires 

better information reflecting conditions that can be actively managed. Without expansion 

o f potential data sources, our ability to systematically analyze real-world natural disasters 

to provide predictions useful in mitigating the impacts o f future storm events will remain 

limited.

Although this research effort did detect some limited potential for physical index 

performance, overall it generally failed to identify meaningful trends in relationships 

between vulnerability indices and flood impacts, especially the much-applied social 

vulnerability indices. The social vulnerability index shortcoming remained even when 

social characteristics were combined with community physical conditions. While 

limitations can be explained away by data inconsistencies and inadequacies, as a whole 

these findings question the ability o f these indices to predict and support planning for 

disaster impacts. As long as studies like this one show weak index predictive 

performance for landmark storm events, regional and local managers in the Chesapeake 

Bay region may want to think twice before throwing out other evaluation tools in favor o f 

these vulnerability indices.
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APPENDIX A -  ADDITIONAL TABLES

VARIABLE DESCRIPTION
QASIAN Percent Asian

Q.BLACK Percent Black

QHISP Percent Hispanic

QNATAM Percent Native American

QAGEDEPt Percent o f Population Under 5 Years o r 65 and Over
Q.FAMt Percent o f Children Living in M arried Couple Families

MEDAGE Median Age

QSSBEN Percent o f Households Receiving Social Security

QPOVTY Percent Poverty

Q.RICH200K Percent o f Households Earning G reater Than $200,000 Annually

PERCAP Per Capita Income

QESLt Percent Speaking English as a Second Language w ith  Limited English Proficiency

Q.FEMALE Percent Female

Q.FHH Percent Female Headed Households

QNRRES Percent o f Population Living in Nursing and Skilled-Nursing Facilities

HOSPTPC Hospitals Per Capita (County Level ONLY)
QNOHLTHt Percent o f Population W ithou t Health Insurance (County Level ONLY)

Q.ED12LES Percent w ith  Less Than 12 ' n Grade Education

QCVLUN Percent Civilian Unem ploym ent

PPUNIT People Per Unit

QRENTER Percent Renters

MDHSEVALt Median House Value
MDGRENTt Median Gross Rent

Q.MOHO Percent M obile  Homes

Q.EXTRCT Percent Em ploym ent in Extractive Industries

Q.SERV Percent Em ploym ent in Service Industry

QFEMLBR Percent Female Partic ipation in Labor Force
QNOAUTOt Percent o f Housing Units w ith  No Car

Q.UNOCCHU Percent Unoccupied Housing Units

Table A l.l -  Official SoVI variables from the Hazards and Vulnerability Research Institute at the 
University of South Carolina (H VR1 2011).

Factor Removed No Tide 
Range

No
Representative 
Wave Energy

No
Developed

Area

No Area 
Below 3.05 

Feet

No
Volume/Area

Mean Value Change (%) -22.3 4.4 -5.4 20.2 -25.6

Table A1.2 -  Sensitivity analysis of physical vulnerability at zip code scale, illustrating percent change in 
final index value when individual subcomponents are removed.
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Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

qblack qagedep qrich qasian qedl21es qfemale qnrrespc

qfam (-) medage percap qhisp qextrct

qpovty qssben med_hsva qesl qnoauto

qfhh ppunitO - mdgrent

qcvlun qfemlbr (-)

qunnocchu
Contribution

to
Vulnerability

+ + - + + + +

Table A1.3 -  SoVI factor groupings. Abbreviations explained in Table Al .1. Plus and minus signs describe 
sign of contribution to vulnerability (or the sign of relationship to the factor).

Factor Removed Age Income Poverty Race

Mean Value Change (%) -15.5 -20.9 18.0 18.4

Table A1.4 - Sensitivity of CCRM comparative social vulnerability index calculated at the zip code scale.

Factor
Removed

Area
sub-3.05

m
Volume/Area Pet sub-10 area 

Developed Tide Range Wave
Energy

Mean Value 
Change (%) 23.7 -19.1 -1.9 -12.9 10.2

Table A1.5 -  Sensitivity of locality physical vulnerability index showing percent change in value when 
factor omitted.

Factor Removed Age Race Income Poverty

Mean Value Change (%) -19.4 11.5 -2.9 7.4

Error! N ot a valid link.

Table A1.6 -  Sensitivity of locality scale CCRM comparative social vulnerability index.
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Variable
Flood 

Percent 
Partition 1

Flood 
Percent 

Partition 2
Household AGI ‘01-‘04 15.6 0.7

Household salary ‘01 -‘04 8.9 34.4

Mean 1st Qtr Payroll ’03-‘04 33.8 7.1

Mean Annual Payroll ‘02-’03 9.3 11.6

Mean Annual Payroll ‘02-’04 7.1 11.6

Table A2.1 -  Partitions in flood percent specific to variables used for analysis at zip code scale.

Variable -  
All Zip Codes

Significance of Mean 
Difference, p>F

Without
Extreme
Outliers

With
Outliers

Household AGI ‘01-‘04 0.119 0.318

Household salary ‘01-‘04 0.283 0.02

Mean 1st Qtr Payroll 0.108 0.254

Mean Annual Payroll ‘02-’03 0.486 0.362

Mean Annual Payroll ‘02-’04 0.067 0.024

Table A2.2 -  All Zip Codes with common flood bin partitions. Values were transformed using their 
natural log before analysis. P-values of mean difference significance calculated via matched pairs analysis 
for before and after Hurricane Isabel with and without extreme outliers. Bolded signifies significant at 0.05 
confidence level.

Variable -  
Flooded Only Zips

Significance of Mean 
Difference, p>F

Without
Extreme
Outliers

With
Outliers

Household AGI ‘01-‘04 0.078 0.571

Household salary ‘01-‘04 0.275 0.052

Mean 1st Qtr Payroll 0.140 0.265

Mean Annual Payroll ‘02-’03 0.544 0.344

Mean Annual Payroll ‘02-’04 0.341 0.106

Table A2.3 -  Flooded Only zip codes with common flood bins. Values were transformed using their 
natural log before analysis. P-values of mean difference significance calculated via matched pairs analysis 
for before and after Hurricane Isabel with and without extreme outliers. Bolded signifies significant at 0.05 
confidence level.
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Variable -  
Just Small Zip Codes Set

Significance of Mean 
Difference, p>F

Without
Extreme
Outliers

With
Outliers

Household AGI ‘01-‘04 0.039 0.374

Household salary ‘01-‘04 0.482 0.065

Mean 1st Qtr Payroll 0.077 0.308

Mean Annual Payroll ‘02-’03 0.209 0.116

Mean Annual Payroll ‘02-’04 0.010 0.019

Table A2.4 -  Just Small Zip codes (common flood splits). Values were transformed using their natural log 
before analysis. P-values of mean difference significance calculated via matched pairs analysis for before 
and after Hurricane Isabel with and without extreme outliers. Bolded signifies significant at 0.05 
confidence level.

Variable -  
West shore VA Zips

Significance of Mean 
Difference, p>F

Without
Extreme
Outliers

With
Outliers

Household AGI ‘01-‘04 0.679 0.792

Household salary ‘01-‘04 0.633 0.806

Mean 1st Qtr Payroll 0.202 0.202

Mean Annual Payroll ‘02-’03 0.099 0.438

Mean Annual Payroll ‘02-’04 0.087 0.141

Table A2.5 -  Just western shore of Virginia zip codes (common food  bins). Values were transformed 
using their natural log before analysis. P-values of mean difference significance calculated via matched 
pairs analysis for before and after Hurricane Isabel with and without extreme outliers. Bolded signifies 
significant at 0.05 confidence level.

Variable -  
Flooded Only with variable- 

specific flood bins

Significance of Mean 
Difference, p>F

Without
Extreme
Outliers

With
Outliers

Ln household AGI ‘01-‘04 0.006 <0.001
Ln household salary ‘01-‘04 0.006 <0.001

Ln Mean L' Qtr Payroll 0.020 0.038
Ln Mean Annual Payroll ‘02-’03 0.159 0.001
Ln Mean Annual Payroll ‘02-’04 0.341 0.012

Table A2.6 -  P-values of mean difference significance calculated via matched pairs analysis for before and 
after Hurricane Isabel with and without extreme outliers. Values were transformed using their natural log 
before analysis. Bolded text highlights significance at 0.05 confidence level.
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Index Physical Vuln Social Vuln Combined Vuln Relative Natural 
Capital

Common Flood Bins Interaction Significance (p>F)

Dataset Variable
Time
*Flood
*Phys

Time*
Phys

Time*
Flood
*Soc

Time*
Soc

Time*
Flood*
Comb

Time*
Comb

Time*
Flood*
NatCap

Time*
NatCap

Small
Zip
Codes

Mean Annual 
Payroll ‘02- 
’04

0.011 0.169 0.124 0.836 0.021 0.862 0.016 0.110

Small
Zip
Codes

Household 
AGI ‘01-‘04 0.110 0.129 0.474 0.627 0.011 0.223 0.188 0.750

Table A2.7 -  Significance of interactions using common flood groupings for zip codes with no large 
outliers. Values were transformed using their natural log before analysis. Interaction significance calculated 
using repeated measures manova. Bolded text highlights significance at 0.05 confidence level.

Index Physical Vuln Social Vuln Combined Vuln Relative Natural 
Capital

Specific 
Flood Bins Interaction Significance (p>F)

Variable Time
*Flood
*Phys

Time*
Phys

Time* 
Flood *Soc

Time*
Soc

Time*
Flood*
Comb

Time*
Comb

Time*
Flood*
NatCap

Time*
NatCap

Household 
AGI ‘01-‘04 0.003 0.065 0.685 0.1 <0.001 0.517 0.048 0.552

Household 
salary ‘01-‘04 0.040 0.625 <0.001 0.183 0.517 0.686 0.012 0.950

Mean 1st Qtr 
Payroll 0.091 0.351 0.005 0.291 0.0111 0.742 0.101 0.429

Table A2.8 -  Significance of interactions o f vulnerability indices using variable specific food  bins 
excluding extreme outliers. Values were transformed using their natural log before analysis. Excluding any 
zip codes that were not flooded at all. Interaction significance calculated using repeated measures manova. 
Bolded text highlights significance at 0.05 confidence level.

Variable Variable-Specific 
Flood Percent Split

Partition R2 
Value

Unemployment Rate ’02-‘04 3.7 0.07
Taxable Sales Abs. Residuals -  6 months pre/post 1.5 0.03
Taxable Sales Abs. Residuals -  3 months pre/post 9.3 0.18
Taxable Sales Abs. Residuals -  1 month pre/post 7.2 0.05
VA Composite Index ’02-‘04 1.8 0.11
School Enrollment ’02-‘04 1.4 0.03
Building Permit ’02-‘04 7.1 0.05
Construction Cost ’02-‘04 0.8 0.06

Table A2.9 - Partitions in flood percent specific to variables used for analysis at locality scale. Bolded text 
highlights significance at 0.05 confidence level.
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Variable -  
Common Flood Bins Dataset

Significance of Mean 
Difference, p>F

Without
Extreme
Outliers

With
Outliers

Unemployment Rate ’02-‘04 0.167 0.575
Taxable Sales Abs. Residuals -  6 months pre/post 0.369 0.386
Taxable Sales Abs. Residuals -  3 months pre/post 0.046 0.039
Taxable Sales Abs. Residuals -  1 month pre/post 0.220 0.066
VA Composite Index ’02-‘04 0.011 0.269
School Enrollment ’02-‘04 0.617 0.985
Building Permit ’02-‘04 0.229 0.166
Construction Cost ’02-‘04 0.029 0.1 10

Table A2.10 -  Locality scale flood impact detection, common flood percent partitions for analysis using 
natural log transformed values. P-values of mean difference significance calculated via matched pairs 
analysis for before and after Hurricane Isabel with and without extreme outliers. Bolded signifies 
significant at 0.05 confidence level.

Variable -  
Variable-specific flood bin partitions

Significance of 
Mean Difference, p>F

Without
Extreme
Outliers

With
Outliers

Unemployment Rate ’02-‘04 0.007 0.064
Taxable Sales Abs. Residuals -  6 months pre/post 0.540 0.065
Taxable Sales Abs. Residuals -  3 months pre/post 0.005 0.005
Taxable Sales Abs. Residuals -  1 month pre/post 0.016 0.024
VA Composite Index ’02-‘04 0.005 0.030
School Enrollment ’02-^04 0.962 0.202
Building Permit ’02-‘04 0.1 1 1 0.319
Construction Cost ’02-‘04 0.646 0.168

Table A 2.ll -  Locality scale flood impact detection, variable-specific flood percent partitions for analysis 
after transformation into natural log values. P-values of mean difference significance calculated via 
matched pairs analysis for before and after Hurricane Isabel with and without extreme outliers. Bolded 
signifies significant at 0.05 confidence level.
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Index Physical Vuln. Social Vuln. Combined 
Vuln.

Rel. Natural 
Capital

Interactions and Significance (p>F)

Flood
Bins

Impact
Variable

Time*
Flood*
Phys

Time*
Phys

Time*
Flood
*Soc

Time*
Soc

Time*
Flood*
Comb

Time*
Comb

Time*
Flood*
NatCa
P

Time*
Nat
Cap

Common Construction 
Cost '02- ‘04 0.833 0.806 0.435 0.522 0.483 0.696 0.670 0.644

Common Taxable 
Sales Abs. 
Residuals -  3 
months 
pre/post

0.053 0.005 0.828 0.691 0.687 0.876 0.502 0.631

Variable
-Specific

Taxable 
Sales Abs. 
Residuals -  3 
months 
pre/post

0.253 0.052 0.067 0.327 0.127 0.813 0.698 0.155

Variable
-Specific

Taxable 
Sales Abs. 
Residuals -  I 
month 
pre/post

0.426 0.911 0.048 0.444 0.592 0.543 0.415 0.188

Variable
-Specific

Unemployme 
nt Rate '02- 
‘04

0.778 0.868 0.845 0.003 0.973 0.547 0.436 0.415

Variable
-Specific

VA
Composite 
Index '02- 
‘04

0.930 0.202 0.906 0.837 0.371 0.948 0.466 0.418

Common VA
Composite 
Index '02- 
‘04

0.686 0.355 0.931 0.749 0.413 0.869 0.552 0.460

Table A2.12 - County scale detection of significant interactions between flood percent and vulnerability 
factors using variable specific flood partitions and natural log transformation of values.
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APPENDIX B -  ADDITIONAL FIGURES

ri Delorme GEBCO 
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Figure B l.l  -  Simplified CCRM comparative Chesapeake social vulnerability index for 2000 
based off o f income, race, age, and poverty.
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Figure B1.2 -  Linear Regression of simplified four-factor Chesapeake social vulnerability 
index against application of official SoVI scores relative to the region. Adjusted R squared 
value of 0.44 with an equation of SOVI01 = 0.07 + 0.64*CCRMSocVuln.
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