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ABSTRACT 
 

Alzheimer’s Disease (AD), already the most common cause of dementia, is a rapidly 
escalating worldwide health concern thanks to increasing life expectancies and aging 
populations.  This work explores the utility of using magnitude (ERSP), phase angle 
(ITPC), and cross-frequency coupling (PAC) indices derived from electroencephalogram 
(EEG) recording using spectral decomposition as unique biomarkers of AD and 
amnestic mild cognitive impairment (aMCI), respectively.  The experimental protocol 
was a visual oddball discrimination task conducted during a brief (approximately 20 
minute) recording session.  Participants were 60 older adults from an outpatient 
memory clinic diagnosed with either aMCI (n=29; M=73.0; SD=9.32) or AD (n=31; 
M=78.29; SD=8.28) according to NIA-AA criteria.  Results indicate that ITPC values 
differ significantly between AD and MCI groups.  Findings contribute to a growing body 
of literature seeking to document illness-related abnormalities in time-frequency EEG 
signatures that may serve as reliable indicators of the pathophysiological processes 
underlying the cognitive deficits observed in AD and aMCI-afflicted populations. 
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Dissociating Alzheimer’s Disease from Amnestic Mild Cognitive Impairment Using Time-

Frequency Based EEG Neurometrics 

Alzheimer’s Disease (AD) is a progressive, incurable neurodegenerative disorder 

characterized chiefly by memory impairment early in the course of the disease (Albert & 

Moss, 1999), eventually giving way to a host of behavioral and cognitive deficits which 

prevent those afflicted from autonomously performing most activities of daily living 

(ADLs; McKhann et al., 2011).  Already the most common form of dementia (Buckner, 

2004; Jiang, Yu, Tian, & Tan, 2013), the number of those suffering from AD is projected 

to reach epidemic proportions in the coming decades (Brookmeyer, Johnson, Ziegler-

Graham, & Arrighi, 2007) as the proportion of individuals aged 65 and older constituting 

the worldwide population inexorably climbs.  The development of biomarkers -  objective 

measures of a pathogenic process that can be used to gauge risk for or track the 

progression of a disease (Hampel et al., 2010) – of AD has enabled the identification of 

at-risk individuals prior to the onset of overt cognitive and behavioral symptoms in 

research settings, yet still only around one-quarter of those afflicted with AD are 

receiving a diagnosis (Prince, 2016).  No biomarker or set of biomarkers has/have yet 

been sufficiently validated for clinical application, and currently accepted biomarkers for 

research study inclusion are too costly, invasive, and/or require too much specialized 

equipment to be economically or ethically feasible on a large scale (Scally, Calderon, 

Anghinah, & Parra, 2016).  Additionally, current AD biomarker research efforts largely 

fail to investigate potential measures that may aid clinicians in distinguishing between 

mild cognitive impairment (MCI) and AD, focusing on the distinction between age 

matched control and AD-afflicted populations.  As MCI often presages the eventual 
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development of AD, objective measures to aid clinicians in distinguishing between MCI 

and AD and that could serve, post-diagnosis, as indices of the efficacy and, eventually, 

the effectiveness of treatment interventions would be an enormous medical and societal 

benefit.    

  The current study tests for concordance between established cognitive and 

physiological indicators of AD and MCI and measures of the magnitude, phase, and 

phase-amplitude coupling (PAC) of frequencies derived from electroencephalogram 

(EEG) recording using spectral decomposition.  Participants performed a visual oddball 

discrimination task (Hillyard & Kutas, 1983), in which occasional, relevant ‘target’ stimuli 

must be detected in a train of frequent, irrelevant ‘non-target’ stimuli.  Note that, despite 

advances in neuroimaging and genetic risk profiling, definitive confirmation of an AD 

diagnosis can still only be made via post-mortem neuropathological examination to 

confirm the presence of neurofibrillary tangles (NFTs) and senile plaques (Dauwels, 

Vialatte, & Cichocki, 2010; Hyman et al., 2012); however, hereafter this document will 

refer to probable but unconfirmed AD simply as AD.  Additionally, all references made to 

AD throughout this paper – unless explicitly noted – refer to late-onset (age 65 or older) 

AD.  Early-onset AD, which constitutes only around 1 - 5.5% (Sassi et al., 2014; Zhu et 

al., 2015) of the total patient population, exhibits a pattern and time course of cognitive 

impairment distinct from the far more common, late-onset AD cases (Smits et al., 2012).   

As EEG diagnostic indicators similarly show a differential pattern of abnormalities in 

early, as compared to late, onset AD (De Waal et al., 2011), generalizing findings from 

the current sample population, which does not contain any individuals diagnosed as 

early-onset, would be unwarranted.        
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The most recently suggested diagnostic criteria from the National Institute on 

Aging/Alzheimer’s Association (NIA-AA) defines three distinct stages of AD:  Preclinical 

AD, mild cognitive impairment (MCI) due to AD, and probable AD (Albert et al., 2011; 

Jack et al., 2011; McKhann et al., 2011; Sperling et al., 2011). This tripartite 

conceptualization of AD formalizes the evolving understanding of the disease as a 

gradient of progressive neural degeneration, not simply an all-or-none phenomenon.  

Preclinical AD individuals are asymptomatic, presenting only biomarker-based evidence 

of neurological disorder (Sperling et al., 2011).  Observable cognitive and behavioral 

impairments characterize the MCI phase of AD, with this stage of the disease 

representing a transitional state between normal aging and AD.  Amongst MCI patients, 

approximately 10–25% of individuals transition to AD within a given one-year period 

(Petersen, 2000; Petersen et al., 1999; Petersen et al., 2001).  Crucially, clinical 

symptoms brought on by AD pathology often do not manifest until years after the onset 

of neurodegeneration (Braak, Braak, & Bohl, 1993; Sperling et al., 2011).  By the onset 

of clinically diagnosable AD, significant and irreversible tissue damage is likely to have 

occurred, accompanied by detectable atrophy of brain mass compared to both MCI and 

healthy controls (Hua et al., 2008).  Current clinical trials of preventative drugs likely 

begin too far along in the timeline of AD, when significant and irreparable tissue damage 

is already likely to have occurred (Godyń, Jończyk, Panek, & Malawska, 2016).  As 

noted by Cummings and colleagues (2007), both treatment and preventative therapies 

aimed at altering the pathogenesis of the disease are more likely to be effective if begun 

at pre-dementia stages.  
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Given the progressive nature of AD and the temporal separation between the 

beginning of neural degeneration and the onset of overt behavioral deficits (Price & 

Morris, 1999), there is widespread agreement on the pressing need for reliable, 

sensitive, and specific biomarkers of AD and MCI, with both the International Working 

Group (IWG; Dubois et al., 2007, 2010) and the National Institute on Aging/Alzheimer’s 

Association (NIA-AA; Albert et al., 2011; Jack et al., 2011; McKhann et al., 2011; 

Sperling et al., 2011) recommending continued development and verification of such 

measures.  Current research recommendations center on using multi-modal biomarkers 

including genetic, structural neuroimaging, and functional neuroimaging (Dubois et al., 

2007; McKhann et al., 2011), while largely ignoring neurophysiological methods such as 

EEG.  Some workgroups (e.g.  Jackson & Snyder, 2008; Yener & Başar, 2013) have 

pointed out that EEG possesses many desirable features that recommend its inclusion 

in the search for optimal sets of biomarkers of AD and MCI.    As noted by Ashford, 

Rosen, Adamson, and Bayley (2011): 

In many ways EEG offers an ideal method for assessing brain function. Its 

exquisite temporal resolution can track brain activity in the millisecond time 

domain characteristic of neuronal activity in the cortical substrate. It is entirely 

noninvasive and employs no ionizing radiation. It records both excitatory and 

inhibitory signals directly rather than secondary hemodynamic processes. It also 

is inexpensive (p. 375).     

Such a feature set contrasts, in many respects, with current biomarkers commonly used 

as inclusion criteria for research studies.   
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Biomarkers of Alzheimer’s Disease 

Since Alois Alzheimer first documented their presence during autopsy of a 

patient suffering from the disease that would later bear his name, intracellular plaques 

and extracellular NFTs have become the telltale, physically defining features of AD 

(Golde, Eckman, & Younkin, 2000; Mattson, 2004; Walsh and Selkoe, 2004).  It has 

long been suggested that aggregation of amyloid beta (Aβ) is the initiating factor in the 

pathogenic chain of AD (Hardy & Selkoe, 2002), with the popular (although not 

uncontroversial; see, e.g., Herrup, 2015) amyloid cascade hypothesis positing that Aβ 

accumulation and plaque formation drives the formation of NFTs of 

hyperphosphorylated tau protein that correlate strongly with the progressive neuronal 

dysfunction observed in AD (reviewed in Holtzman, Morris, & Goate, 2011).     

Imaging the toxic Aβ peptides that comprise the extracellular plaques 

characteristic of AD using positron emission tomography (PET) has enabled the 

identification of Aβ deposits far preceding the commencement of overt cognitive decline, 

with a recent study (Rodriguez-Vieitez et al., 2016) showing fibrillar Aβ plaque 

accumulation characteristic of AD appearing as much as 17 years before the expected 

onset of overt clinical symptoms.  Aβ plaque accumulation far pre-dating the onset of 

clinical AD symptoms has become well established (e.g. Bateman et al., 2012; Mintun 

et al., 2006; Sperling et al., 2011), but the fact that non-demented elderly subjects often 

display significant Aβ plaque burden (Quigley et al., 2011) suggests that such a 

measure alone cannot provide an accurate early diagnosis that is unique to AD.  

Additionally, PET imaging is not widely available, is quite expensive, and The National 
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Research Council (NRC, 2007) reports that demand for the radionucleotides used in 

PET scans is likely to far outstrip the available supply in the coming decades.   

Measuring, via cerebrospinal fluid (CSF) draw, levels of Aβ along with levels of 

phosphorylated tau proteins (P-tau and T-tau) that form intracellular NFTs is an invasive 

procedure requiring lumbar puncture with a catheter.  Both Aβ and tau levels tend to 

remain relatively stable over time (Blennow, Mattsson, Schöll, Hansson, & Zetterberg, 

2015; Blennow et al., 2007), which is a desirable quality for gauging the efficacy of 

treatment interventions but suggests that these measures are not ideally suited to 

gauge disease progression in de novo individuals.  

For nearly two decades, multiple genes have been associated with increased AD 

risk (Karch, Cruchaga, & Goate, 2014).  Certain mutations in amyloid precursor proteins 

(APPs) presenilin-1 (PSEN 1) and presenilin-2 (PSEN 2) are known to cause early-

onset AD (reviewed in Guerreiro, Gustafson, & Hardy, 2012), and a specific isoform of 

Apolipoprotein E (APOE), APOEε4, indicates a substantially increased risk for both 

early- and late-onset AD (reviewed in Guerreiro, Gustafson, & Hardy, 2012).  However, 

as previously noted, early-onset AD comprises only a small fraction of the total AD 

population, and furthermore, only 50% of individuals with AD carry an APOEε4 allele 

(Karch, Cruchaga, & Goate, 2014).  As genetic composition is fixed throughout the 

lifetime, genomic biomarkers appear better suited to identifying at-risk individuals than 

to either detecting the actual presence or gauging the progression of AD-related 

pathology.  
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Structural magnetic resonance imaging (MRI) studies reliably find pronounced 

atrophy of the hippocampus and surrounding areas of temporal cortex in patients with 

AD (e.g., Jack, Petersen, O'Brien, & Tangalos, 1992; Killiany & Albert, 1993; reviewed 

in Jack & Petersen, 2000), as well as hippocampal shape deformation (Csernansky et 

al., 2000).  Cell loss in areas of the medial temporal cortex including the hippocampus 

likely contributes significantly to impaired memory performance in individuals with AD 

(reviewed in Albert, 1997), as the medial temporal region is important to both working 

(Ranganath, 2006) and long-term (Squire, 1992) memory.  Temporal lobe atrophy 

revealed through structural MRI also appears to be a viable diagnostic tool with which to 

gauge the progression of MCI and AD, as temporal lobe volume decreases in proportion 

to disease severity (Jack et al., 2011) and has been able to predict the conversion from 

MCI to AD (DeCarli et al., 2007).  On the downside, MRI imaging is expensive, with 

costs generally spanning from several hundred to several thousand dollars per session, 

and the technology requires substantial investment on the part of a research or medical 

facility both to purchase an MRI scanner and to properly shield surrounding areas from 

the extreme magnetic forces employed by this type of imaging.      

Despite its long history (Berger, 1929), low costs of operation, and non-invasive 

nature, EEG has to date failed to receive widespread clinical acceptance in the context 

of AD and MCI diagnosis and/or progression monitoring.  Yet, among all potential 

biomarkers of AD so far discussed, EEG alone possesses sufficient temporal resolution 

to measure synaptic activity in real-time (Cook & Leuchter, 1996).  As AD has been 

conceptualized as (among many things) primarily a disorder of synaptic plasticity (Klein, 

2006; Selkoe, 2002; Walsh et al., 2002), a measure sensitive to changes in synaptic 
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performance could provide an important, unique metric by which to gauge progression 

of the underlying pathogenic processes of AD.  Altered synaptic plasticity far preceding 

the appearance of Aβ containing plaques and brain atrophy in animal models (Hsia et 

al., 1999; Lesné et al., 2006; Rowan, Klyubin, Cullen, & Anwyl, 2003) further supports 

the notion that EEG-derived measures could be even more sensitive to early functional 

alterations occurring in AD than is volumetric assessment of temporal lobe atrophy via 

structural MRI (Olichney, Yang, Taylor, & Kutas, 2011).  However, some studies 

indicate that the accuracy with which EEG derived measures can correctly identify AD 

patients from healthy controls is both poor and highly variable (Stam et al., 1996), and 

large inter-individual variation in these readings often prevents detection of AD at the 

individual level (Yener & Başar, 2013).  Decomposing the observed EEG signal into its 

constituent frequency bands and examining stimulus responses within these individual 

bands may provide a means of improving the accuracy and specificity with which AD 

and MCI can be detected and distinguished, as these narrow band frequency responses 

may better reflect specific aspects of cognitive function (Başar, 2004).     

Time-frequency EEG measures of Brain Oscillations  

As a sweeping generalization, the rhythmically fluctuating, periodic and/or quasi-

periodic signal observed in EEG recordings can be said to reflect the summated 

dendritic post-synaptic potentials of millions to billions of – primarily – cortical pyramidal 

neurons (Buzsáki, Anastassiou, & Koch, 2012; da Silva, 2013). The observed 

magnitude of the electrical fields caused by transmembrane potentials created as 

charged ions flow into and out of neurons constitute what Buzsáki (2002) terms the 
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current generator portion of the signal.  Other mechanisms - or rhythm generators 

(Buzsáki, 2002) - give rise to the timing and frequency of the signal and are held to be 

especially important in coordinating firing patterns in neuronal networks (Singer, 1999).  

Inhibitory interneurons play a particularly prominent role in timing rhythmic activity in the 

brain (Mann & Paulsen, 2007), as their dense interconnections within local networks 

allow them to influence numerous neurons, creating cyclical fluctuations between high 

and low-probability spiking behavior (Traub et al., 2002).  Such alternation between 

increased and decreased action potential probability entrains principle neurons into 

synchronized firing patterns (Mann & Paulsen, 2007) typically described as neural 

oscillations, or – more colloquially – brain rhythms.   

Once widely regarded as mere epiphenomena, oscillations are increasingly 

viewed as playing a functionally meaningful role in cognitive processes (e.g. Fries, 

Reynolds, Rorie, & Desimone, 2001; Ward, 2003).  The timing function provided by 

oscillations, as entrained neurons alternate between periods of excitation and inhibition, 

opens windows of opportunity within which communication between neurons is 

maximally effective (Fries, 2005).  Notably, such facilitation of communication through 

temporal coordination can be achieved even in lieu of an increase in overall spiking 

behavior, by grouping spikes into compressed time windows particularly effective at 

activating downstream neurons (Azouz & Gray, 2000; Salinas & Sejnowski, 2001).  

Oscillatory activity can be subdivided into the actions of true oscillators – neurons 

capable of self-sustained rhythmic firing independent of synaptic input – versus that of 

resonators, or neurons that are preferentially induced to fire rhythmically in response to 

oscillatory synaptic input at specific frequencies (Llinas, 1988).  Neurons in different 
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brain regions can exhibit resonant frequency preference towards oscillations of multiple 

frequencies (Jacobs, Kahana, Ekstrom, & Fried, 2007) with neocortical pyramidal 

neurons, for example, displaying both low and high frequency resonance (Hutcheon & 

Yarom, 2000).  However, as distinguishing between true oscillators and resonators 

involves features detectable at the single-cell level of observation (Llinas, 1988), such a 

fine-grained distinction will not be made in the present work and all references to 

oscillations or oscillatory activity made herein may be more accurately taken to mean 

the activity of neuronal populations comprising true oscillators and/or resonators.     

Filtering continuous EEG data into its constituent sinusoidal components reveals 

the underlying frequency content of the signal, which can then be displayed as a 

distribution of signal power over discrete frequency bands (see Figure 1).  Not all 

rhythmic brain activity reveled by EEG is oscillatory in nature (Miller, Honey, Hermes, 

Rao, & Ojemann, 2014), with the croquet-hoop shaped positive deflections of mu-

rhythms (~9-11 Hz) representing one exception (Gross, 2014), as they fail to exhibit a 

clear spectral peak.  Neural oscillatory activity is, however, the most prominent feature 

of EEG (Cohen, 2017), and patterns and changes in these narrow-band signals has 

recently begun garnering significant attention in studies of cognitive dynamics in both 

healthy and clinical populations.  Oscillatory activity as fast as 600 Hz has been 

identified in human EEG (Curio, 1999; Curio et al., 1994), but the frequency bands most 

often studied are delta (>1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 20 

Hz) and gamma (20 – 80 Hz), which have been termed the natural frequencies of the 

brain (Başar, Başar-Eroglu, Karakaş, & Schürmann, 2001).  Any signal, including 

indicators of brain oscillations, can be fully described by its spectral properties, 
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consisting of the amplitude (or power, the square of the amplitude), frequency, and 

phase of the observed signal.  Broadly:  Frequency can be taken as an indicator of the 

speed, phase activity as a measure of the timing, and power as a measure of the 

strength of the underlying neuronal activity (Cohen, 2014).   Importantly, these three 

signal properties provide largely independent information, save for a reciprocal 

relationship between amplitude and frequency, with amplitude decreasing along with 

increasing signal frequency in a roughly 1/f (amplitude = 1/frequency) manner 

(Freeman, Rogers, Holmes, & Silbergeld, 2000).   

As EEG observed at the scalp represents a summed total of the activity of large 

neuronal populations (Başar, 1980; Steriade, Gloor, Llinas, da Silva, & Mesulam, 1990), 

amplitude increases can be caused by either more neurons with the same degree of 

inter-neuronal synchrony or the same number of neurons exhibiting a higher degree of 

inter-neuronal synchrony (Herrmann & Demiralp, 2005).  Thus, including phase 

information in the analysis of cognitive processing gives a more complete picture of the 

underlying temporal dynamics of the involved oscillatory processes “stripped” of the 

influence of amplitude (Cohen, 2014; Roach & Mathalon, 2008).  Oscillatory activity in 

the brain can exhibit three types of synchrony:  Inter-neuronal, inter-electrode, and/or 

inter-trial (Herrmann & Demiralp, 2005).  Event-related phase consistency across trials 

at a single electrode is especially important when studying event-related oscillations 

(EROs; Herrmann & Demiralp, 2005), and will be the only measure of phase 

synchronization discussed in this paper.  As a definitional note, inter-trial phase 

clustering (ITPC) - also variously referred to as phase-locking value, phase-locking 

factor, phase resetting, phase coherence, inter-trial phase coherence, and/or cross-trial 
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phase coherence (Cohen, 2014) - will be the term used to describe this type of neuronal 

synchronization throughout the present work.  By convention, coherence usually 

denotes phase synchronization between two separate recording sites (electrodes) 

(Andrew & Pfurtscheller, 1996), while locking describes synchronization at a single-site 

(electrode) across trials (Roach & Mathalon, 2008):  However, the use of the term ITPC 

appears to be becoming somewhat standard practice in the EEG literature of late.  The 

term synchronization itself has manifold uses in the extant literature: Synchronization 

can generally describe high amplitude, low frequency activity in the EEG (Steriade, 

Gloor, Llinas, Da Silva, & Mesulam, 1990); synchronization can be a measure of the 

relation between the temporal structure (rhythm) of signals regardless of signal 

amplitude (Varela, Lachaux, Rodriguez, & Martinerie, 2001); and event related 

synchronization (ERS) is sometimes used to denote an increase in power from baseline 

within a given frequency band (Pfurtscheller, 1992).     

EEG as a Potential Biomarker of AD 

The earliest and most numerous studies (e.g. Başar & Güntekin, 2008; Brenner 

et al., 1986; Coben, Danziger, & Berg, 1983; Duffy, Albert, & McAnulty, 1984) 

investigating potential EEG indices of AD utilized mainly resting state (spontaneous) 

EEG, in which participants sit motionless for several minutes while having brain activity 

recorded.  These studies reliably show a pronounced slowing of the EEG signal in 

individuals with AD (Czigler et al. 2008; Dauwels, Vialatte, & Cichocki, 2010; Moretti et 

al. 2009; reviewed in Jackson & Snyder, 2008), with a higher proportion of signal power 

manifesting in lower frequency bands and continued slowing that progresses along with 
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advancing cognitive impairment (Bennys, Rondouin, Vergnes, & Touchon, 2001; Jeong, 

2004; Schreiter-Gasser, Gasser, & Ziegler,1994).  While the resting state testing 

protocol has the advantage of being undemanding for participants and has 

demonstrated impressive discriminating performance in some studies, results involving 

this method are mixed.  For example:  Lehmann and colleagues (2007) reported resting 

state measures that differentiated mild AD subjects from healthy controls with 85% 

sensitivity and 78% specificity, while a meta-analysis of resting state studies (Jelic & 

Kowalski, 2009) showed that classification accuracies between AD and controls ranged 

between 2.3% and 38.5%, with diagnostic odds ratios (a ratio of the odds of the test 

being positive if an individual has a disease to the odds of the test being positive if that 

individual does not have the disease) between 7 and 219.  Such variability may be 

partially attributable to the fact that, in the context of a never silent brain, “the alleged 

‘resting state’ is ill defined and difficult to control” (Gross, 2014, p.59).   

As the testing protocol typically lacks any type of cognitive or sensory stimulation, 

resting state recordings may not be sensitive enough to produce significant group 

differences in spectral EEG metrics (Günther et al., 1993).  In contrast to recording 

spontaneous or resting state activity, event-related (ER) paradigms measure the 

electrical response of the brain to a stimulus, typically to an infrequently presented 

target stimulus nested within a sequence of similar but more frequent stimuli in an 

oddball paradigm (Başar, Başar-Eroğlu, Güntekin, & Yener, 2013).  Consequently, it 

has been suggested that ER responses can provide a more accurate evaluation of AD 

(Polich & Herbst, 2000).  Detection of oddball stimuli involves both sensory mechanisms 

and cognitive processes including attention, perception, learning, and working memory 
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(Halgren, Boujon, Clarke, Wang, & Chauvel, 2002; Klimesch et al., 2006; Rektor et al., 

2004).  This set of cognitive mechanisms is notable in that it encompasses many of the 

executive functions most affected by AD (Collette, Van der Linden, & Salmon, 1999; 

Lafleche & Albert, 1995).  Intuitively, directly probing an impaired functional process 

such as memory appears much more likely to reveal specific, rather than general, 

patterns of neural dysfunction corresponding to the cognitive deficits seen in AD and 

MCI patient populations. 

Event-related EEG experimental protocols elicit both induced and evoked 

oscillatory responses:  Induced responses – also called event-related spectral 

perturbations (ERSPs; Makeig, 1993) - follow, but are not phase-locked to, sensory 

stimuli (Engel, König, Kreiter, Schillen, & Singer, 1992), while earlier occurring evoked 

oscillatory responses consistently and precisely phase synchronize to a stimulus 

(Herrmann & Demiralp, 2005; Tallon-Baudry & Bertrand, 1999).  Evoked EEG activity 

emerges automatically in response to audio, visual, or somatosensory stimuli of 

sufficient magnitude (Herrmann, Grigutsch, & Busch, 2005) and typically occurs within 

the first 200 ms following stimulus onset (Roach & Mathalon, 2008).  Accordingly, event-

related activity revealed by spectral decomposition of the EEG signal can be further 

sub-divided into obligatory responses elicited by simple sensory stimuli (sensory-related 

oscillations; SROs) and event-related oscillations (EROs) that reflect higher cognitive 

processing (Yener & Başar, 2010).  Evoked and induced (ERSP) responses are also - 

more descriptively - referred to as phase locked and non-phase locked activity, 

respectively.  Activity that is both time and phase locked shows up in the familiar event-

related potential (ERP), while the time-domain averaging process involved in creating 



15 
 
 

ERPs cancels out all activity that is not tightly time and phase locked to stimulus onset 

(Makeig, 1993).  To obtain a picture of non-phase locked activity, the EEG signal is first 

transformed into the frequency domain, using methods such as Morlet wavelet 

convolution or bandpass filtering, prior to averaging across trials (Tallon-Baudry & 

Bertrand, 1999).  EROs enable examination of parallel processing activity in the brain 

by revealing associations between simultaneously occurring processes taking place at 

different frequencies (Lisman & Buzsáki, 2008), yielding a more detailed picture of 

event-related brain activity relative to ERPs (Roach & Mathalon, 2008).  Thus, it has 

been suggested that examining the full spectra of EEG activity generated in response to 

cognitive tasks affords the clearest and most comprehensive assessment of damaged 

cognitive networks in cases such as AD (Başar, Başar-Eroğlu, Güntekin, & Yener, 

2013), a level of detail highly desirable when attempting to make a fine-grained 

distinction such as that between the conditions of MCI and AD.  Supporting the 

enhanced diagnostic potential of time-frequency based measures, Ford and colleagues 

(2008) found both phase and power measures induced by an oddball task to be more 

sensitive to schizophrenia than the P300 component of the ERP.    

As empirical studies associating event-related oscillatory activity with cognitive 

functions accumulate, two frequency bands particularly implicated in the study of 

memory processes and psychopathological impairment of memory are theta (4-8 Hz) 

and gamma (30-80 Hz), along with – increasingly – studies of their association. 

Theta.   Of all EEG frequency bands, theta has been the most consistently found to 

relate to human memory performance (Klimesch et al., 2005), especially during the 
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active maintenance of items in working memory (WM; Sauseng, Klimesch, Schabus, & 

Doppelmayr, 2005).  While the majority of theta activity recorded at the scalp is likely to 

originate from cortical sources, as areas such as cingulate and perirhinal cortices have 

been found to be the main drivers of amplitude fluctuations in extracellular recordings 

(Buzsáki, 2002), depth electrode recordings in animals indicate that theta oscillations 

are largest in amplitude and most regular in frequency in the hippocampus (Buzsáki, 

2002).  Theta activity originating in the hippocampus is thought to help time interactions 

between prefrontal cortex and hippocampus during memory-guided action selection 

(Hasselmo, 2005), and the theta and delta frequency ranges are the primary 

constituents of the P300 ERP component (Başar-Eroglu, Başar, Demiralp, & 

Schürmann, 1992) commonly linked to functions such as memory matching, attention, 

and decision-making.  Importantly, alterations in delta and theta activity are also 

consistently found to be abnormal in studies of AD pathology utilizing the oddball 

paradigm (Caravaglios, Costanzo, Palermo, & Muscoso, 2008; Yener, Güntekin, & 

Başar, 2008).       

While consistently linked, the relationship between theta and memory 

performance appears to be highly nuanced and at least partially non-linear (Klimesch, 

1999).  Theta power is increased during memory encoding (Başar, Başar-Eroğlu, 

Karakaş, & Schürmann, 2000; Klimesch, 1999; Paré, Collins, & Pelletier, 2002) and 

increases along with the number of items concurrently maintained in working memory 

(Jensen & Tesche, 2002).  However, findings by Klimesch (1999) indicate differential 

patterns of theta activity for good versus poorly performing subjects in a cognitive task:  

Good performers tend to exhibit lower pre-stimulus baseline (tonic) theta band power 
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along with highly increased event related theta power relative to baseline, while these 

values are reversed in poor performers.  In addition to power, consistent theta band 

phase locking may contribute meaningfully to successful episodic memory encoding, as 

precise timing of neuronal spiking with respect to ongoing theta may predict successful 

encoding of memories even in the absence of a net increase in hippocampal firing rate 

(Rutishauser, Ross, Mamelak, & Schuman, 2010). Theta is also held to represent 

different aspects of episodic memory retrieval depending upon the time window in 

question, with early activity (~100-400 ms post-stimulus) reflecting either encoding of 

new information or recall of old information, and late activity (after ~500 ms) indicating 

evaluation of an episodic trace (Klimesch et al., 2005).  Significant increases in theta 

power during the encoding phase corresponds to items that are later successfully 

recalled (Klimesch, Doppelmayr, Pachinger, & Ripper, 1997; Klimesch, Doppelmayr, 

Russegger, & Pachinger, 1996), while late increases in theta reflect the increasing 

cognitive demands associated with evaluating weaker memory traces (Klimsche et al., 

2005).  The time course of theta activity has also been shown to differentiate between 

the conscious states of knowing versus remembering items (Klimesch et al., 2001).  

Klimesch and colleagues (2001), in line with behavioral results indicating that familiarity 

judgements are made more rapidly than are judgements requiring recall of specific 

episodic information (Düzel, Yonelinas, Mangun, Heinze, & Tulving, 1997), found 

familiar (known) words to elicit the largest theta increase in the early (200-375 ms) post-

stimulus period while explicitly remembering recently presented words coincided with 

the largest increases in late-period (500-625 ms) theta power.  In the oddball paradigm, 

theta activity is prolonged for target as compared to standard stimuli (Başar-Eroglu, 
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Başar, Demiralp, & Schürmann, 1992; Demiralp & Ademoglu, 2001; Yordanova & 

Kolev, 1998).  

Consistent with the differing pattern of theta power changes observed for good 

versus bad memory performers amongst healthy subjects (Klimesch, 1999), Missonnier 

and coworkers (2006) found progressive MCI cases to exhibit significantly lower event-

related theta power over all electrode sites compared to stable MCI cases.  At least two 

studies (Hogan, Swanwick, Kaiser, Rowan, & Lawlor, 2003; Karrasch et al., 2006) have 

failed to find the expected differences between AD patients and controls in the theta 

range during memory recall. Karrasch and colleagues (2006) additionally found similar 

theta power increases during encoding amongst controls and AD patients, while MCI 

patients exhibited decreased event-related theta power. Such unexpected similarities 

between controls and AD patients may indicate a non-linear relationship between theta 

power and disease progression, may have been driven by temporal blurring of the low-

frequency signal due to the parameters of the wavelets used for spectral decomposition 

(Karrasch et al., 2006), or might reflect the activation of different neuronal networks in 

the controls and the AD patients (Karrasch et al., 2006).  Another possibility is that 

Acetylcholinesterase inhibitor (AChEI) medication status – not mentioned in either study 

– could have produced theta-band profiles in medicated AD patients that resembled 

those of healthy control subjects.  Regarding this last possibility, Yenner and coworkers 

(2007) found event-related theta phase locking in AChEl treated AD patients to be two 

times higher than the values observed in untreated AD subjects, with medicated 

individuals producing theta locking in left-frontal electrodes (F3) indistinguishable from 

that of control subjects.  Theta band activity appears highly malleable via 
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pharmacological intervention, as even a single five mg administration of melatonin can 

cause a significant increase in tonic theta band power (Cajochen et al., 1996).          

  As theta activity may arise from many different brain areas (Kahana, Sekuler, 

Caplan, Kirschen, & Madsen, 1999) and the functional role played by theta may vary 

with location (Ward, 2003), investigating specific topographical areas may prove 

beneficial in elucidating the purposes of this frequency band in both normal and 

pathological cognitive functioning.  While primary sensory and motor areas are relatively 

spared by AD pathogenesis (Braak, Braak, & Bohl, 1993), hyperexcitability of motor 

(Ferreri et al., 2003) and visual sensory (Yener, Güntekin, Tülay, & Başar, 2009) cortical 

areas within the theta band have been documented.  Peak theta amplitude and phase 

locking show the largest auditory and visual event-related decreases in AD in frontal-

central regions during cognitive tasks (Yener, Güntekin, Öniz, & Başar, 2007; reviewed 

in Yener & Başar, 2013).  Importantly, frontal sites also exhibit the most pronounced 

increases in theta power during active maintenance of information in WM tasks 

(Sauseng et al., 2004; Sauseng, Klimesch, Schabus, & Doppelmayr, 2005) in healthy 

subjects.       

Some of the increased theta activity consistently found in resting state studies of 

AD is likely to be ‘slowed’ alpha activity (Klimesch, 1999; Steriade, Gloor, Llinas, da 

Silva, & Mesulam, 1990).  Such slowing is typically observed in normal, as well as 

pathological, aging (Hartikainen, Soininen, Partanen, Helkala, & Riekkinen, 1992) and 

may be related to a decreased rate of cerebral blood flow to cortical grey matter 

(Stigsby, Jóhannesson, & Ingvar, 1981).  Combined EEG and fMRI studies have shown 
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that an inverse relationship exists between the blood-oxygen-level-dependent (BOLD) 

signal and theta power (Michels et al., 2010; Scheeringa et al., 2009), and a negative 

correlation between hippocampal volume and theta power has also been noted 

(Grunwald, Hensel, Wolf, Weiss, & Gertz, 2007).  Decreases in frequency may also 

signal deteriorating functional connectivity within cognitive networks, as better-

connected feedback networks are assumed to produce higher frequency EEG readings 

(Klimesch, 1999). Lower frequency brain activity corresponds to larger neuronal areas 

contributing to the observed EEG signal, whereas higher frequencies indicate more 

spatially localized activity (Singer, 1993).  Thus, the slowing observed in AD – and, to a 

lesser extent, regular aging – may also represent a mechanism by which the brain 

achieves the well documented compensatory activation (e.g. Grady et al., 2003; 

Sperling et al., 2003) patterns seen in neuroimaging studies of these groups. 

Gamma.  First observed in mammals following odorant stimulation of the olfactory bulb 

of the hedgehog (Adrian, 1942), gamma responses are also elicited by stimuli of 

sufficient magnitude arriving via all other sensory modalities.  Following numerous early 

investigations linking gamma band activity (GBA) to sensory processes, GBA is now 

also associated with numerous higher order cognitive functions including selective 

attention, short- and long-term memory, and problem solving (Jensen, Kaiser, & 

Lachaux, 2007; reviewed in Rieder, Rahm, Williams, & Kaiser, 2011).  Specifically, 

increases in gamma power have been shown to correlate with successful memory 

encoding (Long, Burke, & Kahana, 2014) and retrieval (Burke et al., 2014) in human 

subjects.  In line with the distinction between SROs (early, phase-locked) and EROs 

(later, non-phase locked) previously mentioned, GBA can be roughly dichotomized into 



21 
 
 

sensory- and cognitive-related gamma (Başar, Başar-Eroğlu, Karakaş, & Schürmann, 

1999).  Sensory triggered GBA originates in cortical areas responsible for early stage 

processing of stimuli arriving via the corresponding sensory modality (Gruber, Trujillo-

Barreto, Giabbiconi, Valdés-Sosa, & Müller, 2006; Herrmann, Fründ, & Lenz, 2010; 

Lachaux et al., 2000; Panteve et al., 1991), while cognitive-related GBA involves 

widespread activation of both cortical and subcortical areas (Başar, Schürmann, Başar-

Eroglu, & Demiralp, 2001).  Though there is evidence for overlapping functional 

correlates (Debener, Herrmann, Kranczioch, Gembris, & Engel, 2003; Engel, Fries, & 

Singer, 2001;  Herrmann, Lenz, Junge, Busch, & Maess, 2004; Tiitinen et al., 1993) and 

neural origins (Basar, 1980; Herrmann, 2001; Pantev et al., 1991) of early and late 

GBA, the correspondence of early activity with sensory processes and later activity with 

cognitive operations generally holds (Karakaş, Başar-Eroğlu, Özesmi, Kafadar, & 

Erzengin, 2001).         

Ascertaining the non-monolithic quality of the frequency band has done much to 

clarify the “gamma puzzle” (Karakaş & Başar, 1998) concerning the precise functional 

significance of GBA.  Evidence suggests that the binding property of gamma oscillations 

facilitated by their high speed activity serves to tie together multi-modal sensory signals 

into singly experienced conscious percepts (Gray, 1994; Singer & Gray, 1995), while 

GBA simultaneously functions as a basic building block of electrical communication in 

the brain (Başar, Başar-Eroğlu, Karakaş, & Schürmann, 1999) as it performs many 

higher order cognitive functions.  Early and late GBA are not wholly independent 

entities, however.  Attention – perhaps the most often cited cognitive modulator of GBA 

(e.g. Debener, Herrmann, Kranczioch, Gembris, & Engel, 2003; Müller, Gruber, & Keil, 
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2000; Tiitinen et al., 1993) – has been shown to enhance early, sensory related GBA 

(but see Karakaş & Başar, 1998).  This “spotlighting” effect of attention (Norman, 1968; 

Posner, 1980) thus provides evidence for top-down – in addition to bottom-up – 

mechanisms of stimulus processing in the brain and suggests that both may be 

subserved by GBA.  The idea that all cognitive functions necessarily involve both 

memory and perception (Hayek, 1952; Fuster, 1997; Goldman-Rakic, 1996) further 

unites the two forms of GBA and underlies the match-and-utilization model (MUM) of 

Hermann and coworkers (2004).  The MUM holds that memory matching is the primary 

cognitive functional correlate of GBA, underpinning all other gamma related cognitive 

processes.  Furthermore, according to the MUM GBA may serve as an index of the 

strength of memory representations, as repeatedly associated objects strengthen 

synaptic connections between associated neurons leading to stronger oscillations in the 

gamma band for better remembered than for relatively novel stimuli. 

The purported centrality of GBA to multiple higher cognitive functions has led to 

numerous investigations into the role activity in this frequency band may play in 

neuropsychiatric disorders such as AD.  Given the strong evidential support for a 

correlation between GBA and cognitive functions in general and memory specifically, 

event-related testing paradigms focusing narrowly on this frequency band as an 

indicator of clinical cognitive impairment have thus far yielded somewhat 

underwhelming – and at times even contradictory – results.  Several studies utilizing the 

resting state protocol have found the expected reduction in GBA among AD patients 

(König et al., 2005; Ribary et al., 1991; Stam et al., 2002), while others have failed to 

find significant reductions (Babiloni et al., 2004), or even found increased gamma band 
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power (van Deursen et al., 2008).  Such discrepancies could be attributable to 

significant individual differences in GBA (Karakaş, Başar-Eroğlu, Özesmi, Kafadar, & 

Erzengin, 2001), methodological differences (van Deursen et al. 2008), and/or 

frequency-band specific effects of medication.  To this last point, the significant loss of 

basal forebrain cholinergic neurons seen in AD (Coyle, Price, & Delong, 1983; 

Whitehouse et al., 1982) might be expected to significantly impact GBA, as 

acetylcholine has proven important to oscillatory synchronization in the gamma band 

(Rodriguez, Kallenbach, Singer, & Munk, 2004).  Acetylcholinesterase inhibitors 

(AChEI), often prescribed for AD patients, have been shown to normalize the EEG of 

AD patients by reducing the typical slowing pattern seen in the disease in both short- 

(Adler & Brassen, 2001) and long-term (Jelic et al., 1998; Kogan et al, 2001) testing 

windows. Reduced GBA observed in normal ageing (Böttger, Herrmann, & von Cramon, 

2002) may be attributable to age-related decreases in dopamine D2 receptors 

(Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006; Li, Lindenberger, & Sikström, 

2001), while the dopamine system is relatively spared by the pathogenic processes of 

AD (Rossor & Iversen,1986).  Such results suggest that reduced GBA observed in 

normal ageing may be mediated by different neurotransmitters and neural networks 

than is the decrease wrought by AD pathogenesis.        

Theta-gamma coupling.  A fundamental feature of oscillatory activity in the brain is the 

modulation of localized, high speed activity by more widespread, low frequency rhythms 

(Bragin et al., 1995; Chrobak & Buzsáki, 1998; Lakatos et al., 2005).  Cross-frequency 

coupling (CFC) - a statistical relationship between spectral elements of different 

frequency bands - reveals complex, non-linear interactions between neuronal 
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populations and can be observed both within and between brain regions (Onslow, 

Bogacz, & Jones, 2011).  While CFC has been detected between different frequency 

band pairs and occurs in several brain regions including sensory (Lakatos et al., 2005) 

and frontal cortex (Canolty et al., 2006), the most studied example of CFC involves 

theta and gamma activity in the hippocampus (e.g. Axmacher et al., 2010; Buzsáki & 

Draguhn, 2004; Mormann et al., 2005).  Attempts at direct, 1:1 mapping of frequency 

band activity in the brain onto particular behavioral and/or cognitive states has widely 

met with failure, as evidenced by the ever-evolving notions regarding the behavioral 

significance of theta band activity (Buzsáki, 2011) and the sensory versus cognitive 

debate described as the gamma paradox (Karakaş & Başar, 1998).  As “the coupling of 

two or more oscillators could provide enhanced combinatorial opportunities for storing 

complex temporal patterns and optimizing synaptic weights” (Buzsáki & Draguhn, 2004, 

p.1929), investigations of CFC should greatly enhance the likelihood of elucidating 

behavioral and cognitive correlates of frequency band activity.  Interactions between 

frequency bands revealed through CFC may, for instance, help explain the numerous 

contradictory findings regarding changes in specific frequency band power during 

successful memory encoding (reviewed in Hanslmayr & Staudigl, 2014).   

  As reviewed briefly in previous sections, activity in both theta and gamma bands 

is modulated during memory tasks.  Activity within each frequency band is thought to 

both reflect and facilitate functional network connectivity, simultaneously allowing 

specialized neuronal assemblies to encode information independently and interact 

selectively according to situational demands (Fries, 2009; Varela, Lachaux, Rodriguez, 

& Martinerie, 2001).  However, it is now believed that interaction between – as well as 
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within – individual frequency bands is required for the complexity required for higher 

cognitive functioning (Le Van Quyen, 2011).  GBA is highly localized, yet the results of 

any local cortical computations must somehow be integrated globally (Buzsáki & 

Draguhn, 2004).  When contributions from higher association areas are required for the 

execution of cognitive processes such as manipulating items in WM or consolidating 

memories via the hippocampus, slower frequencies such as theta are needed to link 

spatially localized GBA (Başar, Başar-Eroğlu, Karakaş, & Schürmann, 2000; Klimesch, 

1999; Sirota et al., 2008).   

Any pair of spectral properties (frequency, amplitude, phase) for a given signal 

can theoretically exhibit coupling behavior (Hyafil, Giraud, Fontolan, & Gutkin, 2015), 

but the most studied manifestations of CFC are phase-frequency, phase-phase (aka 

n:m phase synchronization), phase-amplitude, and amplitude-amplitude coupling 

(Hyafil, Giraud, Fontolan, & Gutkin, 2015; Jensen, & Colgin, 2007).   Only phase-

amplitude coupling (PAC) will be discussed further here, as mounting evidence 

suggests that theta-gamma PAC is important to memory processes (Axmacher et al., 

2010; Friese et al., 2013; Fuentemilla, Penny, Cashdollar, Bunzeck, & Düzel, 2010; 

Heusser, Poeppel, Ezzyat, & Davachi, 2016; Lega, Burke, Jacobs, & Kahana, 2014).  

PAC – also called nested oscillation – represents the coupling of the phase of low 

frequency activity to the amplitude of faster activity (Heusser, Poeppel, Ezzyat, & 

Davachi, 2016), and has been proposed as a mechanism to explain phenomena such 

as working memory capacity (Lisman & Idiart, 1995) and the number of visual items that 

can be processed within a single perceptual ‘snapshot’ (VanRullen & Koch, 2003).  In 

the case of working memory capacity, Miller’s (1956) famous “magical number seven 
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plus or minus two” corresponds to the approximately seven gamma cycles that can nest 

within a single cycle of theta. 

Generally, PAC posits that individual items are represented by neural cell 

assemblies operating in high (i.e. gamma) frequency bands, and that these individual 

items – carried as gamma cycles – are ordered along the phase of an underlying slower 

rhythm (Lisman & Idiart, 1995).  PAC has been proposed as a means of encoding the 

temporal order of episodic memories (Heusser, Poeppel, Ezzyat, & Davachi, 2016) and 

as a mechanism involved in learning specific associations between items by grouping 

them together in a compressed time window (Fell & Axmacher, 2011; Jensen, Idiart, & 

Lisman, 1996).  Memory formation by grouping disparate features together via temporal 

association fits well with the temporal correlation hypothesis, which holds that the 

simultaneous firing of neurons indicates that they code features of the same object 

(Singer & Gray, 1995; Von Der Malsburg & Schneider, 1986).      

Measuring CFC is a recently developed and rapidly burgeoning method of 

indexing brain functionality that has yet to be widely investigated in the context of 

clinical memory deficits as seen in MCI and AD:  As such, no specific hypothesis is 

adopted here regarding differential theta-gamma coupling strength between these two 

populations.  In line with the bulk of previous research, event-related power in both theta 

and gamma bands is expected to exhibit less increase over baseline in AD relative to 

MCI cases, with the AD group also expected to show diminished ITPC.  Regarding 

expected power changes from baseline:  Tonic theta frequency power, as previously 

discussed, is characteristically elevated in AD, which should correspond to a small or 
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even negative event-related power change – relative to this elevated baseline – in AD 

individuals relative to MCI individuals, if cognitive functions (especially memory 

performance) indexed by the oddball paradigm are significantly reduced in the former 

population.  Despite the dearth of consistent empirical evidence demonstrating reduced 

gamma band frequency power in AD and/or MCI, more pronounced overall slowing of 

the EEG in AD combined with the generally accepted positive association between 

gamma band power and memory performance suggests that gamma band power 

should be anticipated to be lower in AD relative to MCI.  ITPC, as an index of the 

consistency of signal phase over trials within each diagnostic condition, can be taken to 

reflect the uniformity of the timing of neural activity in response to incoming stimuli 

(Sauseng & Klimesch, 2008).  As such, it is expected that individuals with AD will show 

reduced ITPC due both to attention deficits related to damaged cholinergic basal 

forebrain areas as well as to generally reduced neural network connectivity and 

functionality due to widespread synaptic loss and neuronal atrophy associated with 

advancing AD pathology.               

Method 

Participants 

 Data were obtained from 60 older adults recruited from an outpatient memory 

clinic. Participants were patients diagnosed with either aMCI (n = 29; Mage=73.0; 

SDage=9.32) or probable AD (n = 31; Mage=78.29; SDage=8.28) according to revised NIA-

AA criteria (McKhann et al., 2011) pre-screened for negative history of other 

neurological conditions (e.g. stroke, seizure disorder, traumatic brain injury). All 
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participants received financial compensation for participation. Twelve participants (nMCI = 

1, nAD = 11) were being treated with cholinesterase inhibitors (donepezil) at the time of 

participation, two participants with AD had also been prescribed the NMDA receptor 

antagonist memantine, and medication information was unavailable for 30 participants 

(nMCI = 16, nAD = 14). Four participants with incomplete data resulting from technical 

issues during data collection (n = 2) or requests to discontinue (n = 2) were excluded 

from analyses.  Assent was obtained from each participant and written informed 

consent was obtained from a surrogate present at the time of participation, in 

compliance with institutional protocols. 

Materials 

All participants performed cognitive, hearing, and vision assessments prior to 

having their EEG data recorded while performing a computerized set of tasks designed 

to activate selected neurological processes.  

Cognitive Assessment. The Montreal Cognitive Assessment (MoCA), a brief, 

comprehensive screening tool designed to be sensitive to early changes across major 

cognitive domains (Nasreddine et al., 2005), was used to assess global cognitive 

function. The MoCA is a 30-point screening tool with a clinical cutoff of 26 (scores less 

than 26 indicate possible cognitive impairment). Seven sub-scores can be calculated for 

items in visuospatial/executive, naming, attention, language/fluency, abstraction, 

delayed recall, and orientation domains. 

Vision Assessment. Visual acuity at the time of testing was calculated with a 

standard Snellen chart. 
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Hearing Assessment.  The Hearing Handicap Inventory for the Elderly-

Screening Version (HHIE-S; Ventry & Weinstein, 1982), a 40-point, 10-item 

questionnaire, was given to assess individual perception of the social and emotional 

effects of hearing loss. Scores of 0-8 denote no self-perceived handicap; Scores of 8-22 

suggest mild-moderate handicap; Scores of 24-40 indicate significant handicap. 

Neurometric Assessment.    Responses to visual oddball stimuli analyzed 

throughout this paper were collected as part of a brief neurometric battery (BNB; 

Kieffaber, Okhravi, Hershaw, & Cunningham, 2016) in which a series of non-

overlapping auditory and visual stimuli are presented over a 2600 ms interval.  This 

electrophysiological battery was programmed in MATLAB (R2012b; The Mathworks, 

Inc., Natick, MA). Task instructions were presented on-screen and reviewed verbally 

with the participant to ensure comfort with the requirements of the task.  Three practice 

rounds, each consisting of 10 trials, were provided. The first practice round consisted 

solely of target stimuli; additional visual stimuli were added in the second practice 

round; and auditory stimuli were incorporated in the final practice sequence. The battery 

contained 400 total trials with a self-timed break provided after 200 trials.  

Visual stimuli.  Visual stimuli were presented on a computer monitor against a 

gray background. In each trial, a number (‘1’ or ‘2’) and letter (‘X’ or ‘O’) were presented 

laterally with respect to a continuously-displayed central fixation, subtending a visual 

angle of 14.25°.  The design was counterbalanced such that 50% of participants were 

directed to respond to letters, and 50% were directed to respond to numbers.  

Participants were instructed to attend to either numbers or letters (e.g. “Press the left 
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control button if you see a ‘1’ and the right control button if you see a ‘2’”), with 

responses entered on a standard QWERTY keyboard. For each participant, stimuli in 

the target set were randomly assigned to be either standard or deviant (oddball). 

Oddball targets were presented on 15% of trials, enabling measurement of an oddball 

ERSP.  Visual stimuli were presented for a fixed duration of 250 ms, with variable onset 

in the interval 200-1050 ms from the start of a trial. 

Procedure 

Participants were invited to take part in the study following a scheduled visit to 

their regular outpatient memory clinic.  After participants and surrogates provided 

assent and informed consent, respectively, participants were administered the MoCA, 

hearing, and vision assessments. Following these assessments, participants were fitted 

with an EEG cap and completed the neurometric battery. From consent to completion, 

the procedure lasted approximately one hour. 

 EEG recording and analysis.  Continuous electrophysiological data were 

recorded using a high-impedance DBPA-1 Sensorium bio-amplifier (Sensorium, Inc., 

Charlotte, VT) with an analog high-pass filter of 0.01 Hz. Recordings were acquired at a 

rate of 2000 samples per second from an extended 10/20 cap system with 21 Ag-AgCl 

sintered electrodes while participants were seated facing a computer monitor in an 

unshielded, unlit room. The ground electrode was positioned on the center of the 

forehead and the reference was affixed to the right side of the nose. Impedances were 

adjusted to be within 0-20 kΩ prior to each recording session.  
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EEG data were processed offline in MATLAB R2016a (The Mathworks, Inc., 

Natick, MA) using the EEGLAB (Delorme & Makeig, 2004) toolbox. Raw data were 

resampled to 1000 Hz and an initial IIR Butterworth 0.1-100 Hz band-pass filter was 

applied (half-amplitude cutoff of 6 dB, roll-off of 12 dB/octave). Data were visually 

inspected, and channels containing extreme artifact were interpolated. A maximum of 

five channels were interpolated for any participant (M = 1.06, SD = 1.62). Ocular 

artifacts were identified and removed using the runica EEGlab toolbox function, which 

utilizes an infomax independent component analysis (ICA) algorithm (Delorme & 

Makeig, 2004; Jung et al., 2000).  After pre-processing to remove extreme artifact, each 

channel of EEG data was decomposed into the five classically defined EEG sub-bands: 

delta (0.5–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma (30–40 

Hz).  

Frequency, time-frequency, and ITPC measures.  Continuous EEG was 

decomposed using the EEGlab toolbox functions spectopo (frequency power) and 

newtimef (time-frequency power and ITPC).  Both functions measure the power and/or 

phase consistency of the underlying signal by means of complex Morlet wavelet 

transformation, which provides a good compromise between time and frequency 

resolution (Sinkkonen, Tiitinen, & Näätänen, 1995).  Analyses utilized a 200 ms pre-

stimulus baseline period along with all newtimef default wavelet parameters. 

Phase-amplitude coupling measure.  Strength of theta-gamma coupling was 

measured with the modulation index (MI; Canolty et al., 2006) as implemented in the 

freely available MATLAB code developed by Onslow and colleagues (2011).  In this 
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particular implementation, instantaneous amplitude and phase are first calculated over 

the range of frequencies contained in the signal by filtering the continuous EEG data via 

convolution with complex Morlet wavelets, with instantaneous amplitude given by the 

absolute vale of the analytic signal and instantaneous phase given by the phase angle 

of the complex-valued signal (Onslow, Bogacz, & Jones, 2011).  The MI measure 

generates a joint probability density function in the complex plane arising from the 

composite of the envelope values of the amplitude of the higher frequency signal and 

the instantaneous phase of the lower frequency signal, with non-zero MI values 

indicating that particular amplitude and phase values tend to co-occur in time (Onslow, 

Bogacz, & Jones, 2011).   

Statistical Analysis 

Participant-level characteristics (see Table 1) were tested for group differences 

with independent-samples t-tests.  ERSP, ITPC, and PAC measures at electrode 

locations Fz, Cz, Pz, and Oz were compared.  ERSP and event-related ITPC values for 

standard stimuli were first subtracted from values of oddball trials to derive a measure of 

the oddball effect for the AD and MCI groups individually (see Figures 2 & 3).  This level 

of subtraction provides a measure of the cognitive processes involved in detecting and 

selecting target stimuli removed from the sensory related spectral activity involved in 

simply viewing standard stimuli.  Group level oddball effects were then subject to 

another round of subtraction (MCI – AD; see Figures 4 & 5) in order to compare the 

differences in the spectral values associated with the cognitive processes involved in 

the oddball paradigm between the two groups at each time point in the analysis.  MI 
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values of PAC between theta (4-8 Hz) and a range of gamma frequencies spanning 

from 33-83 Hz in steps of 5 Hz were compared between the two groups.  As all ERSP, 

ITPC, and PAC analyses were performed at each electrode location across multiple 

frequency bands, with ERSP and ITPC analyses additionally performed at each time 

point, p-values (when initially significant) were adjusted for multiple comparisons using 

the false discovery rate (FDR) method of Benjamini and Hochberg (1995). 

Results 

 For ERSP and ITPC comparisons, timepoints after approximately 300 ms (taken 

to reflect cognitive, rather than sensory processing) were examined. 

 Comparing differences in oddball effect elicited ERSP between groups (see 

Figure 4) did not indicate significant differences within the gamma or theta bands of 

interest at any electrode location.  Highly similar oddball event related frequency band 

power responses are also seen at all electrode locations and all frequency bands when 

averaging activity over time (see Figure 1).   

 Comparing differences in oddball effect elicited ITPC between groups (see 

Figure 5) revealed a consistent pattern at all central electrode locations of significant 

differences within the gamma band focused around 30-40 Hz within a time range of 

300-500 ms post-stimulus.  Somewhat counterintuitively, ITPC values for AD were 

higher than those for MCI (see Discussion section). 

 Comparing differences in oddball effect elicited PAC between groups did not 

indicate significantly different theta-gamma coupling at any electrode location.  PAC 

values did not correlate strongly with either MoCA scores or hippocampal occupancy 
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measures (see Table 2) commonly used in the diagnosis of AD.  Ignoring diagnostic 

group, standard and oddball visual stimuli did not elicit significantly differing PAC MI 

values (t(59) = -1.80 – 1.76, p = 0.08 – 0.97, ns; see Discussion section).  There was 

also no interaction between diagnostic condition and stimulus type (t(1)=0.54, p=0.46, 

ns).   

Discussion 

 Overall, ERSP and PAC measures failed to show distinctive differences between 

AD and MCI groups, while ITPC exhibited significant differences within the time range of 

interest in an unexpected direction (higher in AD).  The pattern of results observed in 

this study is consistent with oft-conflicting results of EEG-derived indices of AD and/or 

MCI reported in the extant literature and, perhaps, reflective of highly variable 

underlying patterns of neural pathology presented by such clinically heterogeneous 

diseases.  

 Visual inspection of oddball effect ERSP plots (see Figure 4) shows a consistent, 

rhythmic pattern of gamma power increases in both patient groups beginning at ~100 

ms post-stimulus and continuing throughout the remainder of these epochs.  One can 

imagine a sinusoidal wave at theta frequency snaking through these clusters of high 

gamma activity, suggesting that activity in the ~30 – 50 Hz range is being modulated at 

theta frequency during oddball trials, even if this modulation does not differ to a 

statistically significant extent between diagnostic categories.  These islands of high 

gamma power occur much more regularly in MCI patients, with the clusters of gamma 
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also taking place at higher frequency and are confined to a tighter frequency range for 

MCI as compared to AD individuals (~ 45-50 Hz for MCI vs. ~30-40 Hz for AD).         

 Higher gamma ITPC values observed in AD relative to MCI cases could be 

explained by a non-linear, U-shaped pattern of disease-related change in this metric as 

individuals advance from MCI to AD.  ITPC increases at 400ms between 30-40 Hz (see 

Figure 5) seen at all three electrode locations could also be indicative of additional, 

compensatory neural activation triggered within the brains of AD patients in order to 

attend to and recognize oddball stimuli.  A third possibility is that a much higher 

proportion of AD participants were taking prescription AChEl (see Limitations section) 

and the observed higher gamma ITPC in this group could be a pure medication effect.  

As it has been observed (Başar, 2013) that medication status can drastically alter the 

electrical signals observed and thus the overall picture of cognitive functioning and how 

it relates to disease pathology in any study investigating cognitive impairment utilizing 

frequency domain analysis, results observed here must be interpreted with caution.   

While PAC values did not reliably differentiate between the AD and MCI groups 

of our sample, the fact that PAC values for standard and oddball visual stimuli did not 

differ significantly even within subjects suggests that other paradigms (or a different 

implementation of the oddball paradigm) may provide a better measure of cognitive 

event related PAC.  Also, there are many quantification methods in addition to the MI 

used to measure PAC here (Canolty et al., 2006; Onslow, Bogacz, & Jones, 2011), and 

perhaps future investigations will find that a different calculation method possesses 

more desirable statistical properties for applications such as this.    
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Conclusions 

To advance the development of treatment interventions to prevent, or at least to 

delay, the onset of the debilitating behavioral and cognitive impairments brought on by 

AD, practical and cost effective tools that can help to both identify at-risk individuals at 

the earliest possible juncture and to quantifiably assess disease progression are 

urgently needed.  Criteria for an ideal biomarker of AD developed by the Ronald and 

Nancy Reagan Research Institute of the Alzheimer's Association and the National 

Institute of Aging Working Group (Davies et al., 1998) state that such a marker should 

be:  reliable, non-invasive, simple to perform, precise, inexpensive, and able to detect a 

fundamental feature of AD neuropathology.  The ability to monitor brain activity with the 

millisecond temporal resolution required to gauge neuronal synchrony and measure the 

integrity of synaptic transmission, along with cost and ease of use advantages relative 

to other neuroimaging methods and molecular chemical assays, all recommend 

electroencephalograph (EEG) recordings as an informative and practical diagnostic tool 

in the battle against AD.      

While the idea of a rhythm disease is not new (Buzsáki, 2011; John, 1977), 

developing consensus that oscillatory activity detectable via EEG plays a functional role 

in neuronal communication has only recently led some to consider AD within this 

category (Nimmrich, Draguhn, & Axmacher, 2015).  Viewing a neurological and 

psychiatric disorder such as AD as a dysrhythmia or oscillopathy provides a fresh 

perspective that might yield new insights into the condition (Palop, Chin, & Mucke, 
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2006) at a time when the prevailing amyloid cascade hypothesis appears increasingly 

untenable (Herrup, 2015).  

This paper briefly summarized previous work in both clinical and basic research 

domains pertaining to memory related ERSP, ITPC, and CFC activity in/between the 

theta and gamma frequency bands.  Results from the visual oddball task presented 

here suggest that gamma band ITPC exhibits significant differences between AD and 

MCI groups within a time window of ~300-500 ms, indicating that this measure merits 

further investigative attention in the context of discriminating between cases of AD and 

MCI.          

Limitations 

Medication information was only available for half of our sample population, 

precluding comparisons between medicated and de novo conditions.  While effects of 

AChEI upon individual frequency band power and phase locking have been well 

documented, little is known as to how this medication may impact interactions between 

frequency bands such as CFC.  Comparing MI values of PAC for the portion of our 

sample with medication information showed a non-significant between group difference. 

This study included no dedicated control group, preventing direct comparison 

between healthy and pathological groups using the measures derived herein.  While the 

main thrust of this research was to uncover EEG derived indicators that may be useful 

in distinguishing AD from MCI, including an age-matched control group would provide a 

better picture of the overall spectrum of functional impairment changes in these 

measures may represent.         
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Some authors (e.g. Donner & Siegel, 2011; Klimesch, 1999) have recommended 

eschewing classical frequency band definitions, advocating that data-driven frequency 

grouping done at the individual participant level better capture oscillatory dynamics that 

may take place over multiple or be limited to only a portion of traditional frequency 

ranges.  In the opinion of this author, such an approach would make for highly circular 

inferences while severely limiting both the generalizability of findings and the ability to 

compare results to those of previous studies:  Thus, classic frequency bands were 

examined. 

Commonly implemented calculations of CFC, including the measure of PAC used 

herein, yield poor temporal resolution (Tort, Komorowski, Eichenbaum, & Kopell, 2010), 

negating the main advantage EEG/MEG holds over other neuroimaging methods.  

Additionally, longer trial epochs than were used in the current study would have proven 

beneficial in resolving low-frequency signal characteristics.   

Directions for Future Studies 

 Event-related PAC (ERPAC; Voytek, D’Esposito, Crone, & Knight, 2013) analysis 

would help to address the issue of poor temporal resolution and could yield important 

insights into the time course of PAC and how this metric may differ between AD and 

MCI populations.   

Source localization of all signals of interest would help to better pinpoint and 

differentiate the contributions of specific neuronal assemblies to the observed EEG 

indicators and could facilitate better targeted treatment interventions.  Additionally, 

performing source localization of theta and gamma activity separately as well as for the 
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coupled theta-gamma PAC value could indicate when and where these signals are most 

prevalent individually while performing oddball-type visual discrimination tasks as well 

as where they most strongly interact.    
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Table 1 

Participant Characteristics by Diagnostic Category 

 aMCI (n = 29) AD (n = 31)  

 M (SD) M (SD) t(df) 

Age (years) 73.00 (9.32) 78.29 (8.28)  -2.32(58)* 

Education (years) 15.24 (2.28) 13.89 (2.30)  2.22(55)* 

Gender (n female)  17 22  

MoCA (__/30) 21.34 (2.41) 16.74 (4.20)  5.16(58)** 

Vision (20/__) 30.69 (11.24) 31.00 (9.51)  -0.12(57) 

Hippocampal Volume (cm3) 6.67 (1.11) 6.08 (0.98)    1.84(41) 

Inferior Lateral Ventricle Volume (cm3) 2.79 (1.33) 3.62 (1.69)    -1.79(41) 

Lateral Ventricle Volume (cm3) 38.99 (15.90) 52.94 (30.94)    -1.90(41) 

Hippocampal Occupancy score  0.71 (0.11) 0.64 (0.11)    2.12(42)* 

    

Notes. * p < .05; **p < .01.  Hippocampal occupancy score is calculated as the ratio of 
hippocampal volume to the sum of hippocampal volume and inferior lateral ventricle 
volume.   
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Table 2 

Correlations Among Key Participant Variables and PAC Values 

 

Variables 

 

HipOc 

 

Age 

 

MoCA 

 

Educ. 

 

Vision 

 

PACfz 

 

PACcz 

 

PACoz 

HipOc.   -.49** .28  .22   .03   -.05 .02 -.11 

Age    -.31*   -.32*     .25   -.04 -.01 .20 

MoCA    .29* -.05 .12 .07 .09 

Educ.       -.02 .35** .41** .16 

Vision        -.01 -.02 .07 

PACfz       .80** .42** 

PACcz        .53** 

PACoz         

 

Notes. * p < .05; ** p < .01.  PAC values at locations Fz, Cz, and Oz were log 
transformed prior to correlation. HipOc. = hippocampal occupancy score.  Educ. = years 
of education. 
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 Figure 1. Event related frequency band power by diagnosis for oddball trials at 
hemispheric midline electrode locations, ordered (from the front of the head to the back) 
Fz, Cz, Pz, Oz.  All between-group differences statistically non-significant (p > 0.05).  
Bars indicate the standard error of the mean.  
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X axis = Time in milliseconds 
Y axis = Frequency in hertz 

Z axis = dB normalized power change from baseline 

 
Figure 2. Deriving oddball-effect (Target – Standard visual stimuli) ERSP plots for AD 
participants.  
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X axis = Time in milliseconds 
Y axis = Frequency in hertz 

Z axis = dB normalized power change from baseline 

 
Figure 3. Deriving oddball-effect (Target – Standard visual stimuli) ERSP plots for MCI 
participants.  
 

  



73 
 
 

 

X axis = Time in milliseconds 
Y axis = Frequency in hertz 

Z axis = dB normalized power change from baseline or statistical significance 

 
Figure 4. Comparing oddball-effect ERSP plots for MCI and AD participants.  Significant 

differences shown in green indicate FDR-adjusted p <.05. 
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X axis = Time in milliseconds 
Y axis = Frequency in hertz 

Z axis = Phase Locking Value (range 0-1) or statistical significance 

 
Figure 5. Comparing oddball-effect ITPC plots for MCI and AD participants.  Significant 

differences shown in green indicate FDR-adjusted p <.05. 
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