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ABSTRACT

The Standard Model (SM), the fundamental theory of particle physics, very successfully de-

scribes the world around us, and with a only a few tantalizing exceptions, all the experiments

we have performed to understand the fundamental laws of nature. However, the SM accounts

for only 4-5% of the matter and energy in the universe, with approximately 25% composed

of dark matter (DM) and the remaining 70% composed of the more mysterious dark energy.

Further, the SM content of the universe is composed of an excess of matter over anti-matter

of about 1 part per billion. Despite being a small excess, it is orders of magnitude larger than

can be explained by the SM alone. These observations strongly suggest there is new physics

Beyond the Standard Model (BSM).

One of the most exciting prospects for searching for physics BSM is 0νββ. Detecting 0νββ

is one of the current top scientific priorities of The Nuclear Science Advisory Committee and

a new initiative, a ton-scale 0νββ experiment, is described in their Long Range Plan for Nu-

clear Science [1]. There are many experiments designed world wide to search for evidence

of physics BSM, however, the ton-scale search for 0νββ in large nuclei is the most promi-

nent new nuclear physics (NP) experiment. 0νββ, if allowed, is an extremely rare nuclear

decay, which violates one of the fundamental symmetries of the Standard Model (SM). There-

fore, if observed, 0νββ may provide a possible explanation for the observed abundance of

matter over anti-matter in the universe as this lepton number violation could be converted

to baryon number violation very early in the universe. 0νββ would happen in a process where

two neutrons decay simultaneously into two protons and two electrons but without the emis-

sion of any neutrinos. If the neutrinos are their own antiparticles (Majorana-like), the most

plausible case, a neutrino emitted from one of the beta-decaying neutrons can be absorbed

by the other neutron. This interaction would happen at short distance scales. Thus, a se-

ries of calculations based on Quantum ChromoDynamics (QCD), the fundamental theory

of nuclear strong interactions, will be required to interpret the results of 0νββ experiments,

along with many other NP experiments. However, the only way to perform such calculations

to the required accuracy is by using a numerical technique known as lattice QCD (LQCD).
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I am very grateful to my mentor Dr. André Walker-Loud who have always supported me
beyond his duties. His knowledge, hard work and leadership have taught me a lot and
helped me to move forward in my research, especially when research and work was not
going as I expected.
I would like to thank to the people in the CalLat group whose work has provided me
with data and code for my research. Their willingness to help and to share their
knowledge will always be appreciated. I would like to thank as well to all the people
involved in my different research projects, especially to those I closely worked with: Dr.
Nicolas Garron, Dr. David Brantley, Dr. Amy Nicholson.
I thank Dr. rer. nat. Francisco Frutos Alfaro for encouraging me to pursue a graduate
degree and supporting me since I was his student.
Finally, to those from who I learned to work hard: My parents, Dr. André Walker-Loud
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LATTICE QCD FOR NEUTRINOLESS DOUBLE BETA DECAY:

SHORT RANGE OPERATOR CONTRIBUTIONS



CHAPTER 1

Introduction

In this chapter, a review of neutrinoless double beta-decay (0νββ) including prospec-

tive short range contributions is presented along with the main theoretical tools used. This

chapter will serve as well to introduce the notation to be used in the remaining text.

1.1 Motivation

The electromagnetic, strong and weak interactions of particles are currently well de-

scribed by the SM, the fundamental theory of particle physics. While in excellent agree-

ment with almost all the experiments that have been performed, there are few tantalizing

exceptions. For example, the matter content of the early universe is slightly greater than

the antimatter content which can not be explained alone with the SM and new physics

BSM may hold the answer. Additionally, while SM neutrinos are massless, neutrino os-

cillation experiments have demonstrated they have non-zero mass, and to describe them,

extending or modifying the SM to include massive neutrinos are some of the possibilities.

2
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1.1.1 Baryon asymmetry

To the best of our knowledge, only 4-5% of the energy budget of the universe arises

from the SM, approximately 25% composed of dark matter and the remaining ≈ 70%

composed of the more mysterious dark energy. In the early universe, the amount of matter

exceeded that of anti-matter by about 1 part per billion, and due to this slight difference,

matter and antimatter did not completely annihilate and matter was allowed to combine

into the different existing elements.

Such baryonic matter asymmetry could be produced by baryonic number violating

processes or by conversion of a lepton matter excess to baryon matter excess through

sphaleron processes (where three leptons are converted into three baryons). In the second

case for example, Leptogenesis, due to Lepton Number Violation (LNV) processes arising

from CP violation from BSM physics, could give rise to the lepton matter excess. There

are several LNV processes, such as K+ → µ+µ+π−, µ− + (Z,A) → e+ + (Z − 2,A) or ν̄e

emission from the Sun and 0νββ. 0νββ is one of the most sensitive tests for new LNV

physics [3].

1.1.2 Neutrino masses

Until a few years ago, neutrinos appeared only as massless particles in the SM.

However with the discovery of neutrino oscillations and its experimental confirmation

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] we

now know they are massive. Even though oscillation experimental results demonstrated

neutrinos have mass, no further information was obtained about the nature of their masses.

Several mass models have been proposed, and two feasible options are Dirac and Majorana

neutrino masses which are briefly discussed in [29]. In the case of Majorana neutrinos,

these are not forbidden by unbroken SM gauge symmetries, and thus are considered a plau-
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sible possibility. Most importantly, understanding the generating mechanisms and type

of neutrino masses can significantly impact our view of the universe. As a consequence,

world wide efforts in search of observational evidence are underway to look for informa-

tion on the neutrino masses. At the present time, current experimental limits on 0νββ

half-lifes are given in [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], and for example are set to

T 0ν1/2 > 2.1 ·1025 yr for 76Ge [36] and T 0ν1/2 > 1.07 ·1026 yr for 136Xe [34]. Among them, several

experiments to search for 0νββ decay, such as LEGEND [40], CUORE [41], GERDA [42],

AMoRE [43], KamLAND-Zen [44], nEXO [45] and NEXT [46] represent major efforts to

better understand the nature of the neutrino masses.

1.1.3 0νββ Decay

Double β decays are second order weak processes, where a nucleus emits two electrons

and thus changes its charge in two units:

(A,Z)→ (A,Z+ 2) + 2e− (1.1)

When two neutrinos are emitted in the process, the decay is known as 2νββ whereas the

decay without neutrinos is called 0νββ. To date, only 2νββ has been observed and its

typical half-life is ≈ 1019−20 years for the nuclei where Q values (the energies released in

the reaction) are above 2 MeV [3]. On the other hand 0νββ still remains unobserved with

limits to its half-life set to several orders of magnitude higher than those of 2νββ. For

both decays, most of the energy is carried by the leptons, however an important difference

between these decays is the shape of the distribution of the emitted electron’s kinetic

energy spectrum, which in the case of 2νββ is continuous and peaked below Q/2. On

the other hand, in 0νββ decays the energy released must be distributed only among two

electrons, as a consequence the distribution is highly peaked at Q. Therefore, the peak



5

(a)

FIG. 1.1: Observed electron energy spectrum for 2νββ and 0νβ decays. The left peak corre-
sponds to 2νββ and the right peak to 0νβ. Figure obtained from [3]

separation allows one to experimentally distinguish between 2νββ and 0νββ as long as

the instrument’s energy resolution is enough to separate both peaks. These peaks are

shown in figure 1.1.

In practice, to observe a signal of such rare decays, large detectors are required to

observed signals, especially in the case of a neutrino mass inverted hierarchy for which

the half-life is expected to be higher. For example, one complication arising is the fact

that background contamination is high at energies below 3 MeV. Nevertheless, some key

features of these decays can help to overcome the difficulties. For example, the long life

time of ββ isotopes makes it possible to collect enough ββ isotopes to perform ton-scale

(1028) experiments and there are even-even nuclei where the double beta decays are allowed

but single β decay is not. These and other experimental features are detailed in [47].

From these experiments searching 0νββ, what can be determined are the correspond-

ing decay rates. Nevertheless, in the case a positive signal is observed theoretical input is
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required to interpret the results as the mechanisms responsible for 0νββ are still unknown.

For example, observed decay rates may not be compatible with a particular model and

thus lead to constrains on the possible mechanisms. Additionally, with sufficient theoreti-

cal control, it should be in principle possible to separate contributions from different LNV

sources through different isotope measurements, the angular or energy distributions of the

outgoing electrons, or looking at correlations with collider observables [48].

Then, in order to extract information from the observed decay rates, the half-life

for the different mechanisms must be considered. For example, for long range processes

mediated by a neutrino exhange, the half-life is given by:

1

Tν1/2
= Gν(Q,Z)|Mν|2〈mββ〉2 (1.2)

Where the neutrino masses are included in the mββ effective neutrino masses. The quan-

tity Gν(Q,Z) is the phase space factor which has been previously calculated for both

decays in [49, 50, 51]. |Mν|2 is the Nuclear Matrix Element (NME) which can not be

determined alone from experiment, therefore it must be determined theoretically and, due

to the nuclear many-body nature of the process, only approximate estimates have been

obtained [52]. For 0νββ mediated by a Majorana neutrino, the diagran showing the quark

level interactions mediated by W− bosons is shown in figure 1.2.

On the other hand, for the short range mechanisms addressed here, no neutrinos are

exchanged, and thus a half-life is given by:

1

Tν1/2
= Gν(Q,Z)|Mν|2|εν|

2 (1.3)

In this case, instead of being proportional to the neutrino masses, the half-life involves the

coupling constant εν which parametrizes the underlying particle physics dynamics [53].
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Moreover, it is also possible that long and short processes contributions are similar.

For example, this would be the case for models where long range contributions originate

from LNV at scales between 1 − 10 TeV [48]. In such a case, the 0νββ half life is given

by the sum of both types of contributions:

1

Tν1/2
= Gν(Q,Z)|Mν|2〈mββ〉2 +Gν(Q,Z)|Mν|2|εν|

2, (1.4)

then the long and short range contributions can not be isolated with a single measure-

ment, however improvements on the theory side might allow to separate contributions

from different LNV sources through different isotope measurements, the angular or energy

distributions of the outgoing electrons, or looking at correlations with collider observables.

It is to the determination of |Mν|2 (for the short range interactions) where Lattice QCD

can contribute. In fact, as the short range contributions arise from the non-perturbative

regime of QCD, LQCD is the only tool available to perform such task, and calculations

in this work corresponds to the first numerical determination of short range interaction

contributions to 0νββ.

Another important aspect are the nuclear transitions, which can help identify the

processes contributing the most. In particular for 0νββ, the most significant contributions

come from 0+ → 0+ while 0+ → 2+ contributions are greatly suppressed [54]. For this

reason, the experimental efforts are focused on the 0+ → 0+ transitions and only those

will be considered here.

Finally, two major reasons driving the searches for 0νββ are the demonstration of

LNV and the existence of a neutrino Majorana mass [56] . Both would significally impact

physics as it could help us to understand the neutrino mass generating mechanisms, and

to possibly explain the universe matter-antimatter asymmetry as LNV leads to Leptoge-

nesis [57, 58].
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FIG. 1.2: Diagram for 0νββ arising from a heavy majorana neutrino exhange. Figure taken
from [55]

1.2 Effective Field Theories

1.2.1 Effective Field Theory for Nuclear Physics

One of the major challenges in nuclear physics is to understand different phenomena

and nuclei directly from the fundamental theory of the strong interactions QCD. However,

there is no analytical solution for QCD, and Perturbation Theory can only be used at high

energies where the coupling decreases. On the other hand, at the low energies relevant

for nuclear physics the coupling increases and a non-perturbative solution as LQCD is

required. However, in some cases we will need to incorporate QCD effects arising at high

energies to describe low energy phenomena, this is just what Effective Field Theory (EFT)

can do. EFT was first developed by Weinberg [59] and later proposed for its application

to nuclear physics [60].

In an EFT, a description in terms of the most relevant degrees of freedom is done

while the effects of the remaining degrees of freedom, appearing in the underlying theory,

are parameterised into low-energy constants usually known as Wilson coefficients which

encapsulate the high energy physics details.

However, to distiguish between the appropriate degrees of freedom to keep and the
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non-relevant, high and low energy scales must be clearly separated, such that the energy

regimes to be described by the different sets of degrees of freedom can be identified [61]. In

such a case, the first step is to write down a Lagrangian with all the operators consistent

with the symmetries of the underlying theory, and a power counting scheme must be found

to organize the contributions from these operators by their relative size. For example, a

small parameter suppresing the different operators must be found such that contributions

can be organized by their orders in this parameter, and thus a systematic way to improve

calculations exists.

In nuclear physics, a proper and precise description of experiments in the low-energy

regime does not usually require a complete consideration of short range interactions, indi-

cating that the use of EFTs may be feasible. Moreover, clear separation of scales appear,

for example, the nucleon binding energies are of the order of a few MeV while at next

scale lies the pion with mass of mπ = 140MeV resulted in the development of what is

known as pionless EFT [62] for the study of two-nucleon systems where external momenta

is much lower that the pion mass. This has been very succesful for low-energy and the

first few nuclei. To understand larger nuclei or lager energies, and EFT with explicit pions

is needed [63]. This is becomes a very useful tool for understanding of nuclear properties

from the strong interactions, where the increasing number of nucleons further limits our

ability to predict these properties from QCD [64].

For nuclear processes where strong interactions are relevant, EFTs may provide a

framework to separately solve the underlying interactions, i.e. QCD, to then incorporate

their effects into the theory describing the nucleon interactions. This would not only

simplify the task but also remove nuclear model dependent asumptions from the QCD

solution. For example, using LQCD, matrix elements can be calculated non-perturbatively

and using EFT, the results can be matched into a particular phenomenological nuclear

model.



10

Hence EFTs provide nuclear physics with an useful tool to understand nuclear prop-

erties from strong interactions, where the increasing number of nucleons further limits our

ability to predict these properties from QCD [64]. In addition, the possibility to systemat-

ically improve the calculations represents an additional advantage over other approaches.

1.2.2 Effective Field Theory for 0νββ

In 0νββ decay lepton number conservation is violated by 2 units and thus it is not

allowed in SM. Nevertheless, as Lepton number conservation is an accidental symmetry in

the SM, it may be violated at energies higher than those of SM. Thus, if SM is considered

a low-energy effective theory, LNV effects originating at a high energy scale Λ can be

described using an EFT approach.

Due to the different energy scales involved in 0νββ, it is possible to find a sequence

of EFTs to describe LNV effects arising at high energy scales leading to 0νββ at the

low-energy scales relevant to nuclear physics. In these EFTs, high order operators and

low energy constants are used to incorporate the high energy physics into the low-energy

theory. This process is described in detail in [48] and it will be reviewed next.

The first step is to extend the SM Lagrangian with the relevant high order operators

and then this must be matched into an EFT at energies below the eletroweak symmetry

breaking scale. For ∆L = 2 processes these operators must be of odd dimensions [65] and

for this discussion dim=5,7,9 are considered. Renormalization of these operators requires

that they are suppressed by powers of Λ−1, Λ−3, Λ−5 and therefore their contributions will

depend on the models as it will be seen next for the dim-5 operator case.

Dim-5 operator contributions are naively expected to be the most significant. There

is only one dim-5 operator that can be written down in terms of SM fields: the Weinberg

operator, which violates Lepton number in 2 units. At the GUT-scaleΛ ≈ 1015 GeV, heavy
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right-handed neutrinos can be integrated out and lead to this operator contributing to the

Majorana neutrino mass [66] after electroweak symmetry breaking. This corresponds to

what is known as the type-I see-saw mechanism, and in this case the contributions would

be suppressed by powers of ν/Λ ≈ 10−13 where ν = 246 GeV is the electroweak scale.

For lower LNV scales, this dim-5 operator may be suppressed as well. For example,

loop factors or small yukawa couplings y could lead to suppresion factors y2/Λ ≈ 10−6. In

the case of operators of higher dimensions, the suppression factor may be instead propor-

tional y, y0, in such cases short range operator contributions may contribute as much as

long range ones.

Dimension-7 operators have been previously found in [67]. These operators contribute

to 0νββ by inducing dimension-5 (a neutrino Majorana mass), dimension-six, -seven, and

-nine operators after electroweak symmetry breaking [68] and lead to long and short range

contributions. On the other hand, for dim-9 operators there are only eleven operators

which contain four quarks and two electrons, these are found in [69], however, other types

of dim-9 operators could lead unsuppressed contributions.

The operators described above must then first be matched onto a low-energy EFT

(below the eletroweak symmetry breaking scale) where dim=3,6,7,9 operators are induced

and lead to different long and short range contributions. For example, dim-3 and -7 lead to

long range interactions mediated by a neutrino exchange, whereas dim-9 operators lead to

short range contributions which are not mediated by neutrinos and thus not proportional

to neutrino masses. The latter are the focus of this work.

Afterwards, to compute the contributions from the short range interactions, the cor-

responding operators must be evolved to the QCD scale, where LQCD and then χPT , the

low-energy theory of QCD, can be used to compute matrix elements arising from these

operators.

Then, in order to perform the matching of χPT to a theory at the nucleon level, parity
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and chiral symmetries are used to identify the relevant local quark-lepton operators, these

have been previously found in [3], and the long and short range interactions they induce will

be further discussed in chapter 4. Once these local quark-lepton operators are identified,

the only way to compute their contributions to 0νββ decay is to use LQCD due to the

non-perturbative nature of these contributions. Then, these results can be employed in

the two nucleon interactions relevant to 0νββ. The two nucleon interactions can then be

used to compute the nuclear matrix elements and the 0νββ decay rate can be estimated.

1.3 QCD basics

QCD is the theory of the strong interactions between quarks and gluons. These

interactions obey the principles of a relativistic Quantum Field Theory, with an additional

non-abelian gauge invariance, color SU(3), which is an exact symmetry. The strength of

QCD interactions at distances ' 1 fm leads to color confinement [70]: colored quarks and

gluons are bound inside color neutral hadrons and never observed as assymptotic states.

Conversely, the strenght of the interaction decreases at shorter distance scales, a property

known as asymptotic freedom [71, 72, 73, 74].

1.3.1 Quarks and Gluons

The strongly interacting particles are the quarks and gluons. The quarks are massive

particles, with spin 1/2 and two additional intrinsic properties: color and flavor. Hence

they can be mathematically represented by dirac spinors which also carry color and fla-

vor indices. The six flavors are up, down, strange, charm, bottom, top, and the three

colors usually identified by red, green blue or by the indices 1,2,3. Here, lower greek and

latin letters will denote Lorentz and color indices respectively. Flavor indices will be dis-

played with an f upper index, and finally x represents the space-time position. With this
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convention, a quark field will be represented as:

ψf(x)α,c α = 1, 2, 3, 4 c = 1, 2, 3 f = 1, 2, 3, 4, 5, 6 (1.5)

The gluons are spin 1 vector gauge fields which carry a lorentz index corresponding to its

direction and two color indices, hence they are represented as:

A(x)µ,cd µ = 1, 2, 3, 4 c, d = 1, 2, 3 (1.6)

Moreover, the color structure of the gluon fields is represented by traceless Hermitian

matrices (Gell-Mann matrices for example), which is a consequence of the SU(3) gauge

invariance of QCD.

1.3.2 Path Integral Formulation of QCD

The path integral formulation of QCD is a framework which uses the action principle

and path integrals to describe QCD. The action contains all the details of the interaction,

and contributions from all those interactions to a certain amplitude are computed through

the path integral. Because a numerical solution will be used, we work on a Euclidean

space and this choice will be discussed in when the LQCD foundations introduced. In

Euclidean space instead of the usual Minkowski space, this formalism presents similarities

to Statistical Mechanics. In this formulation, the expectation value of an observable O is

given by:

〈O〉 = 1

Z

∫
DAµDψDψ̄Oe−S (1.7)

where DAµ represents the measure corresponding to all the possible gauge fields Aµ. In

the case of interest, QCD, the action is given by SQCD = SG + SF, with the gluon action
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SG and the fermion SF, which can be separated and will be described next.

Finally, the partition function Z is given by:

Z =

∫
DAµDψDψ̄e−S (1.8)

Using this path integral formulation, the method of sources can be used to compute

matrix elements. The basic idea is to add an interaction term Sint = λS̃int to the action,

such that a matrix element can be obtained by applications of ∂λ to the path integral;

then by setting λ = 0 the matrix element is related to the non-interacting theory.

1.3.3 Fermion Action

The fermion action in QCD is required to be Lorentz and gauge invariant under

SU(3) (local rotations of color indices). Gauge invariance is achieved through a covariant

derivative which contains a term coupling the quarks and gluons. Showing explicitly how

the different fields are coupled, spin and color indices are kept to write the fermion action

(in Euclidean space) as follows:

S0F[ψ, ψ̄] =

Nf∑
f=1

∫
d4xψ̄f(x)α,c

(
(γµ)αβ(δcd∂µ + igA(x)µ,cd) +mδcdδαβ

)
ψf(x)β,d (1.9)

Here, γµ correspond to the Euclidean version of the γ matrices in Minkowski space.

These and the conventions used for the Dirac matrices, are available in appendix A.

From 1.9 it is easy to see that quark and gluons couple, at a given space-time point,

only in color space, hence their coupling is independent of the quark flavour. The gauge

invariance requirement for this action can be fulfilled in a similar fashion to the QED

action, that is by definition of proper covariant derivatives and gauge fields.
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To verify gauge invariance, let Ω(x) be an independent complex 3×3 unitary matrix,

i.e. a matrix in the SU(3) group. Thus, a local rotation in color space of the quark fields

corresponds to:

ψ(x)→ ψ ′(x) = Ω(x)ψ(x) ψ̄(x)→ ψ̄ ′(x) = ψ(x)Ω(x)† (1.10)

Applying this transformation to the fermion action 1.9, shows that mass term is invariant

and that the covariant derivative Dµ must transform as follows:

∂µ + iA(x)µ → Ω(x)†(∂µ + iA
′(x)µ)Ω(x) (1.11)

→ ∂µ +Ω(x)†(∂µΩ(x)) + iΩ(x)†A ′µ(x)Ω(x) (1.12)

The fermion action is then gauge invariant if the gluon fields are hermitian and traceless

matrices transforming as:

A(x)µ → A ′(x)µ = Ω(x)†Aµ(x)Ω(x) + i(∂µΩ(x))Ω(x)† (1.13)

1.3.4 Gluon Action

The gluon field in QCD appears as consequence of the gauge invariance requirement

for the free fermions. For example, if Aµ is set to zero in the fermion action, 1.12 shows

that a rotation in color space would introduce an additional term through the derivative’s

transformation.

Nevertheless, when introducing gauge fields which transform as in 1.13, the action for

these fields must also be invariant under the transformation 1.10. In a similar manner to
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QED, a proposed gluon action is:

S0G[A] =
1

4

∫
d4xFaµν(x)F

µν,a(x) (1.14)

where the Faµν = ∂µA
a
ν − ∂νA

a
µ + i[Aµ, Aν] and the sum over the index a is required to

obtain a gauge invariant SG. The replacement for Aaµ here is based on the fact that Aµ is

a hermitian traceless matrix, belongs to the Lie Algebra SU(3), and thus can be written

as:

Aµ =

8∑
a=1

AaµTa (1.15)

For Ti corresponding to a basis of hermitian 3 × 3 matrices. Then, after simplyfing the

commutator, the gluon field strength tensor can be written as:

Faµν = ∂µA
a
ν − ∂νA

a
µ + gf

abcAbµA
c
ν (1.16)

where fabc are structure constants of the Lie Algebra. It is also easy to see from 1.16 that

the a difference between QCD with QED arises from the last term which includes the self

interaction of the gluons.

Moreover, the strong coupling g between the gluons and quarks behaves differently than

its QED analog as the first one becomes smaller at higher energies. This property is known

as asymtoptic freedom [71, 72, 73, 74] and is what enables a pertubative treatment of the

strong interactions at high energies.
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1.4 QCD on a Lattice

In order to develop a useful numerical version of QCD, the standard framework to

use is the Euclidean Path Integral formalism, which will be used from here on. The

connection of which to the respective Minkowski space-time version is found by analytical

continuation, or Wick rotating the time direction. Using this formalism, the numerical

task at hand is then calculation of a path integral with a very large number of degrees of

freedom, and thus solving the integral for each degree of freedom becomes prohibitive.

However, one important feature of the Euclidean path integral is the fact that the action S

in the termDet[ /D+m]DAµe−S in 1.7, for zero chemical potential, is real and bounded from

below, whereas this is not necessarily the case on Minkowski space-time. This guarantees

that the exponential e−S is a decaying instead of a largely oscillating quantity. Therefore,

Det[ /D+m]DAµe−S can be reinterpreted as a probability and the calculation of observables

becomes analogous to Statistical Mechanics calculations. Moreover, this enables the use

Monte Carlo techniques which are very efficient for problems with a large number of

degrees of freedom. Hence, solving the path of integral in QCD can be performed with

Monte Carlo techniques, and further simpified by the separation of the fermionic and

gluonic components.

The first goal is then to find a discrete expression for 1.7. For that purpose, consider

a finite volume space-time V , and represent it on a lattice Λ:

Λ = {n = (n1, n2, n3, n4)|n1, n2, n3 = 0, 1, ...,N− 1;n4 = 0, ..,NT − 1} (1.17)

The space-time points in this lattice are separated by a distance “a”, which is called

the lattice spacing. Thus a point n in the lattice represents a physical space-time point

with value x = an. Then, a space vector will be represented as n = (n1, n2, n3) and
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a space-time vector is represented by n = (n1, n2, n3, n4), where n4 is the time. With

this convention, a quark field ψ(x) will be defined at each lattice site “n” as ψ(n). The

boundary condition commonly used in the lattice is periodic for gauge fields and anti-

periodic in time for all other fields.

1.4.1 Gauge Invariant Fermion Action on the Lattice

To discretize the fermion action, we will first look at the free fermion action (where

Aµ = 0). This is achieved by replacing the integration by a sum and then, discretizing the

partial derivatives acting on the quarks. A simple discretization of ∂µψ(x) is

∂µψ(x)→ 1

2a

(
ψ(n+ µ̂) −ψ(n− µ̂)

)
(1.18)

Upon replacement onto 1.9, the naively discretized fermion action is [75]:

S0F[ψ, ψ̄] = a
4
∑
neΛ

ψ(n)

( 4∑
µ=1

γµ
ψ(n+ µ̂) −ψ(n− µ̂)

2a
+mψ(n)

)
(1.19)

The problem with the above action is that it is not gauge invariant and Aµ can not

be used to make it gauge invariant because different space-time points are connected in

the derivative. However, this can be solved by introducing a gauge link Uµ(n) with a

directional index µ and transforming under a color rotation in the lattice as:

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)† (1.20)

where Ω(n) is a SU(3) matrix (equivalent to Ω(x) in 1.10 in the continuum). Then, the

term ψ̄(n)ψ(n+µ̂) can be replaced in the action by the gauge invariant term ψ̄(n)Uµ(n)ψ(n+
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µ̂) and thus a gauge invariant action for fermions in a external gauge U can be defined

as [76]:

S0F[ψ, ψ̄] = a
4
∑
neΛ

ψ(n)

( 4∑
µ=1

γµ
Uµ(n)ψ(n+ µ̂) −U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
(1.21)

1.4.2 Link variables and Gluon Action

The gauge fields Uµ introduced above are known as link variables, as they connect to

different lattices sites, transform in the same way the continuum gauge transporter does

and it thus possible to relate them to lattice gauge fields Aµ which satisfy:

Uµ(n) = e
iaAµ(n) (1.22)

with such connection between Uµ and Aµ, an expression for the gluon action on the Lattice

can be proposed [75]:

SG[U] = 2
∑
n∈Λ

∑
µ<ν

Retr[1−Uµν(n)] (1.23)

where Uµν(n) is know as the plaquette and is given by:

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (1.24)

The sum of all the plaquettes in the lattice is a gauge invariant and so leads to a gauge

invariant gluon action SG.
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1.4.3 Particles in the Lattice: Correlation Functions and Effec-

tive Mass

In order to provide the reader with an idea of how LQCD calculations work, I will

describe the construction of a correlation function that is used to determine the pion mass.

In the lattice, before computing any quantity, it is necessary to construct a proper

representations of the particle states. In QFT, states can be created by successive appli-

cation of creation and annihilation operators to the vacuum. This method is also used

in LQCD, where interpolating operators are used to create or annihilate desired particles

states. This interpolating fields are functionals of the lattice fields, and must have quan-

tum numbers matching the state of interest. This will be illustrated by studying the π+

and the proton correlation functions and their effective masses meff and further details

can be found in [76].

In practice, to obtain a field interpolator one would combine quark and gluons fields,

together with different gamma matrices to get the desired particle states. For example

for the π+ meson, the interpolator only needs to involve two quarks: u and d. The

possible combinations between u and d quarks can be further combined into an iso-triple

containing π+,π0,π−, with corresponding isospin components Iz = 1, 0,−1 and electric

charges e,0,−e. Furthermore they have spin J = 0 and negative parity. Therefore, the

following interpolators can be used for the iso-triplet:

Oπ+ = d̄(n)γ5u(n) (1.25)

Oπ− = ū(n)γ5d(n) (1.26)

Oπ0 =
1√
2

(
ū(n)γ5u(n) − d̄(n)γ5d(n)

)
(1.27)

To verify that these operators are parity negative, a parity transformation is applied on
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1.27. As an example, consider Oπ+ . Under parity the quark fields transform as:

ψ(n, n4)→ ψ ′(n, n4) = γ4ψ(−n, n4) (1.28)

ψ̄(n, n4)→ ψ̄ ′(n, n4) = ψ̄(−n, n4)γ4 (1.29)

Thus,

Oπ+(n, n4)→ d̄(−n, n4)γ4γ5γ4u(−n, n4) (1.30)

= −d̄(−n, n4)γ5u(−n, n4) = −Oπ+(−n, n4) (1.31)

To construct the correlator, we also need the corresponding O† operator. This is done

easily by conjugation of the interpolator O:

Oπ+ = d̄γ5u→ (
ūγ5d

)†
= −d†γ†5ū

† = −d̄γ4γ5γ4u = Oπ− (1.32)

The correlation function for π+ created at the point m and annihilated at n is then simply,

〈
Oπ+(n)O

†
π+(m)

〉
=
〈
d̄(n)γ5u(m)ū(m)γ5d(m)

〉
(1.33)

Then, after performing the appropriate Wick contractions, the correlation function be-

comes:

〈
Oπ+(n)O

†
π+(m)

〉
= −tr

(
γ5D

−1
u (n|m)γ5D

−1
d (m|n)

)
(1.34)

where the quark propagator D−1(n|m) from source position m to sink position n is defined
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as:

〈
ψ(n)αaψ̄(m)βb

〉
= D−1(n,m)αa,βb (1.35)

and corresponds to the inverse of the Dirac operator. Hence, once quark propagators are

computed on the lattice, computing the π+ correlation function just requires contracting

propagators with γ5. Moreover, in a LQCD calculation, this correlation function can be

further analyzed to extract the π+ mass.

The standard method to extract the mass and other observables is to insert the identity

operator between the operators projected at zero momentum. For the identity operator,

greek letters will be used as a reminder that the vacuum Ω is to be included in the sum,

thus from here on is defined as:

1 =
∑
α

|α〉 〈α| = |Ω〉 〈Ω| +
∑
k

|k〉 〈k| (1.36)

and sums over latin letters will correspond to sums over ground and excited states. Hence,

the correlation function can be written in analogy to Statistical Mechanics as:

C(nt) ≡
〈
Oπ+(nt)O

†
π+(0)

〉
=
∑
β

∑
x

〈β| O(x, nt)O†(0, 0) |β〉 e−EβNT (1.37)

=
∑
β

∑
x

〈β| entĤO(0, 0)e−ntĤO†(0, 0) |β〉 e−EβNT

=
∑
k

〈Ω| Oπ+ |k〉 〈k| O†π+ |Ω〉 e−Eknt + 〈k| Oπ+ |Ω〉 〈Ω| O†π+ |k〉 e−Ek(NT−nt)

=
∑
k

Ak
(
e−Eknt + e−Ek(NT−nt)

)
with the sum over x in the last equation’s first line a projection to zero momentum is

accomplished and NT is the lattice time extent. Moreover, the sum over the discrete set
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of states k appears because the operator interpolators can couple to any particle state

and thus create or annihilate towers of states with the same quantum numbers. Lastly,

as quark boundary conditions are anti-periodic in time, meson correlation functions turn

out to be periodic in the lattice. Therefore, in general mesons correlation functions time

dependence is given by 1.37.

On the other hand the proton and neutron, which correspond to the Iz = 1/2,−1/2

components of the nucleon iso-doublet, are composed of uud and ddu quarks and have

respective electric charges +e, 0. Then, for the proton the following interpolator can be

employed:

Op(n) = εabcu(n)a
(
u(n)TbCγ5d(n)c

)
(1.38)

The parity of the proton and the neutron is P = +1, and the same is required for

their respective interpolators. Hence, it is necessary to look at the parity transformation

of the above interpolator, which is:

Op(n, n4)→ εabcu(−n, n4)a
(
u(−n, n4)

T
bγ

T
4Cγ5γ4n(−n, n4)c

)
= γ4Op(−n, n4) (1.39)

Therefore, as Op does not have the appropriate parity, a parity projection is required

to obtain:

Op(n) = P+εabcu(n)a
(
u(n)TbCγ5d(n)c

)
(1.40)

and the corresponding creating operator can be obtained in the same way as in the case



24

of the pion and leads to:

Op(n) = εabc
(
ū(n)aCγ5d̄(n)

T
b

)
ū(n)cP+ (1.41)

Using the above interpolators, the two-point correlation function for the proton can

be constructed, however performing the Wick contractions is a little more involved as there

are three quarks instead of two.

The derivation of time dependence for the proton correlation function is analogous to

that of pion, with the exception that for baryons the term e−Ek(NT−nt) is dropped as for

baryons e−EkNT � e−Eknt ., and the result is:

Cp(nt) =
∑
k

Ake
−ntEk (1.42)

Finally, for both cases, the excited states are suppressed (with respect to E0) as time

increases and the ground state saturates C(nt). Thus to extract E0 from the C(nt) , an

effective mass meff is defined in general for baryons and mesons as follows:

mbaryons
eff (nt, τ) =

1

τ
ln

(
C(nt)

C(nt + τ)

)
(1.43)

mmesons
eff (nt, τ) =

1

τ
cosh−1

(
C(nt + τ) + C(nt − τ)

2C(nt)

)
(1.44)

After a sufficiently large time, a plateau should be observed in a meff plot against

time. The value at this plateau corresponds to E0 and can be determined with a fit as

shwon in 1.3.



25

FIG. 1.3: meff plots for Ω− baryon (Top) and π+ meson (bottom). The pink band corre-
sponds to the E0 value determined from a fit to 1.43 and 1.44 respectively. The proton was
fit using a 2-exponential function which included the first excited state, but only E0 is shown.
These are my previous work in [77].



CHAPTER 2

Non-perturbative Renormalization

on the Lattice: Four-quark and

Bilinear Operators

In Quantum Field Theories, the Lagrangian L encodes the information about the

phenomena and interactions between particles and fields. Therefore, one would expect

that the different parameters apearing in L could be identified with physical parameters

describing the physics involved. However, this is not necessarily the case, and usually

lagrangians are at first written in terms of ‘bare’ parameters which may be different from

physical ones in important ways.

Furthermore, in QFT theories, calculations of certain quantities lead to diverging re-

sults at first, observable quantities must be finite, therefore singularities must be removed

to render a theory with well defined observables. This is achieved by means of regular-

ization, a process to treat the singularities and obtain finite quantitiescontributions. For

example in perturbative QFT calculations, this is usually done by calculating divergent

26
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integrals in d > 4 dimensions to then analytically continue to d = 4, which is called dimen-

sional regularization. Other methods use a cut-off for the theory such that integrals and

physical quantities are both well defined. In LQCD, a cut-off is set by the lattice scale so

the theory is automatically regularized. Nevertheless, the trade off in LQCD is that well-

defined quantities now become dependent on the regularization scale. As a consequence,

to obtain regularization indepedent physical results, i.e. observables, proper limits must

be taken on the regulator.

Next, the replacing of bare parameters by their corresponding physical counterparts

is performed in a process called renormalization. In LQCD and QFTs in general, this is

a necessary step to obtain physically meaningful quantities from observables computed in

the theory. Moreover, there is not a unique renormalization procedure and instead there

are several methods and schemes available to perform pertubative and non-perturbative

renormalization which will be discussed in the next section.

This chapter will focus on the renormalization of operators relevant to 0νββ and

quark bilinear operators. In the case of 0νββ, determination of its half-life requires the

calculation of NME, which involves four-quark operators for short range contributions

computed here. The renormalization of four quark operators appearing here has not been

done before, and it is necessary to produce LQCD results that can later be incorporated

into 0νββ decay rate calculations.

On the other hand, quark bilinear operators, specifically the axial current, enters in

the determination of the nucleon axial charge gA, an input in the determination of the

neutron decay life-time. As the latter is an observable, and thus must not depend on any

scale, gA must be renormalized if physical results are desired.
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2.1 Background

Non-pertubative renormalization on the Lattice is commonly performed using either

the Schrödinger Functional Method [78] or the Regularisation Independent Moment Sub-

traction Method (RI/MOM)[79]. The first method is most convenient for studies with

dedicated small volumes while RI-MOM methods are commonly used when large volume

ensembles are reused [80]. For this work, the RI/MOM method will be adopted which

was first proposed in [79] and has been applied successfully in calculations such as meson

decay constants [81], form factors [82] and mixing amplitudes [83].

RI/MOM has the advantage that, because it is regularisation independent, it is well

suited to be used as a intermediate renormalization scheme. Therefore, conversion of

renormalized operators to a different scheme such as the Modified Minimal Subtraction

scheme (MS) is facilitated. Furthermore, as the operators considered in this work are

involved in the 0νββ matrix elements, this matching to MS is desired to provide results

to contribute to phenomonology and thus it will be performed here. In this way, the

renormalized operators can later be combined with Wilson coefficients computed in the

same scheme for a given EFT.

There are two different schemes that have been developed for the RI/MOM method.

The original scheme is usually referred to as RI/MOM and uses an exceptional kinematical

configuration where the momentum q2 inserted at the operator is 0, and thus much smaller

than the typical large scale. The second method is known as RI/SMOM [84] (where the

S stands for symmetric) and instead uses a non-exceptional configuration where q2 6= 0.

Here the RI/SMOM scheme will be used. The starting point to describe this method is

the definition of the renormalization constants. For example in the continuum, the quark

mass wave function and quark mass renormalization constants, Zq and Zm respectively,
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are fixed by the following conditions:

ψr = Z
1/2
q ψb (2.1)

mr = Zmmb (2.2)

In a similar way, for lattice operators that renormalize multiplicatively, at a given

renormalization scale µ, their relation is expressed by the following equation:

Ôr(µ) = lim
a2→0Z(µ, a)ÔLattb (a) (2.3)

where the subindices r and b, are use to label renormalized and bare operators respectively

and the limit is taken with a2 due to discretization errors starting at O(a2) for the action

employed here.

Therefore, what is first required is a relation from which the constants Z(µ, a) fixed

by 2.3 can be determined. In the RI-MOM and RI-SMOM methods, such relation is ob-

tained by imposing renormalization conditions on the quark and gluon Green functions

computed from external off-shell states with large virtualities, and for a fixed gauge (Lan-

dau gauge in this case) [79]. The condition to impose is that a renormalized amputated

vertex function, at a given momentum scale, is equal to its tree level value. Furthermore, to

guarantee that non-perturbative effects (required for matching results to MS using pertur-

bation theory) and lattice artifacts are simultaneously small, the external states momenta

µ must be chosen to satisfy:

ΛQCD << µ <<
1

a
(2.4)

which is also known as the Rome-Southampton window. Next, the kinematical configura-
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tion must be considered. In its original formulation, the RI/MOM scheme imposed kine-

matical conditions such that the momentum transfer q2 through the vertex was zero, i.e

p2in = p2out. Nevertheless, this configuration leads to problems such as the presence of pion

pole contamination from Spontaneous Symmetry Breaking in the infrared energy regime

which manifests as a 1/µ2 divergence at low momenta. In the RI/SMOM scheme [84],

a non-exceptional and symmetric momentum configuration was proposed, such that all

the incoming pin, all outgoing pout and transfer momenta are of the same magnitude,

i.e. p2in = p2out = (p1 − p2)
2 = q2. In this case, the pion pole contamination is reduced

for q2 � m2
π and, only slightly different renormalization conditions from those used in

RI/MOM are required to ensure that Ward-Takahashi Identities are satisfied by the re-

sulting renormalized quantities. Finally, as only one momentum magnitude enters in the

RI/SMOM scheme, the renormalization scale is easily identified as µ = p2in = p2out = q
2.

Now, before proceeding to the bilinear and four-quark operator specific details, the

quark Green functions to be employed for both are first considered. These can be computed

from single point sources, however momentum sources developed in [85] have shown to

improve statistical errors to around 0.1%. Thus the latter will be used here, such that

uncertainties should be dominated by systematic effects, for example O(4) breaking lattice

artifacts [86].

To generate the volume sources, incoming and outgoing momentum source propaga-

tors are obtained by solving for the propagator from a momentum source:

∑
x

D(y, x)G ′x(p) = e
ip.y (2.5)

Then, for position x with respect to the vertex, an incoming quark with momentum

p and an outgoing quark with momentum −p, Gx(p) and Ḡx(p) respectively, are defined
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as follows:

Gx(p) = G
′
x(p)e

−ip.x =
∑
y

D−1(x, y)e−ip.(x−y) (2.6)

Ḡx(p) = γ
5G†x(p)γ

5 (2.7)

Where the γ5 hermiticity of lattice propagators was used to defined the outgoing propa-

gator.

Furthermore, to perform the necessary vertex amputation, the momentum space prop-

agator, average over all momentum sources in the volume will be required, and it is given

by:

G(p) =
1

V

∑
x

Gx(p) (2.8)

2.2 Bilinear Operator Renormalization

In order to renormalize the nucleon axial charge gA, or to normalize the four-quark

operators renormalization matrix, quark bilinear renormalization constants are required.

All the bilinear current renormalization constants are determined here and will be employed

first in the renormalization of the four-quark operators and later in precise calculation of

gA presented in chapter 3.

Finally, the details of the ensembles used for the calculations in this chapter are

summarized in table 2.1.

2.2.1 Scheme Details

In general, the quark bilinear operators are defined as:

OΓ = q̄Γq (2.9)
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abbr. Ncfg volume
∼ a

[fm]
∼ mπ5

[MeV]

a09m310 10 323 × 96 0.09 310
a09m220 10 483 × 96 0.09 220
a12m350 10 243 × 64 0.12 350
a12m310 10 243 × 64 0.12 310
a12m220 10 323 × 64 0.12 220
a12m130 10 483 × 64 0.12 130
a15m350 10 163 × 48 0.15 350
a15m310 10 163 × 48 0.15 310
a15m220 10 243 × 48 0.15 220
a15m130 10 323 × 48 0.15 130

TABLE 2.1: Parameter details of the ensembles employed in the renormalization.

where Γ = {1, γ5, γµ, γ5γµ, σµν} are the scalar, pseudoscalar, vector, axial vector, and

tensor Dirac structures respectively. With the general form of the operator at hand, the

unamputated vertex function is first defined by:

VqqΓ (p2, p1) =
∑
x

Ḡ(x, p2)ΓG(x, p1). (2.10)

and the vertex kinematical configuration is showed in figure 2.1. VqqΓ must be then amp-

tated using momentum space Green functions 2.8 which leads to the following amputated

vertex:

ΠΓ(p2, p1) = G
−1(p2)V

qq
Γ (p2, p1)γ5[G−1(p1)]

†γ5 (2.11)

p1 = p2 q = p2 − p1

p1 p2

FIG. 2.1: Kinematical configuration for the bilinear renormalization vertex in RI-MOM and
RI-SMOM schemes. The momentum transfer is q2 = 0 for RI-MOM scheme while q2 = p21 =
p22 for RI-SMOM.
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Afterwards by projecting the amputated vertex, the operator bare amplitudes are

obtained ΛΓ :

ΛΓ(p2, p1) = PΓΠΓ(p2, p1) (2.12)

The projectors PΓ are not unique, and thus each choice defines a new scheme. For this

work, two schemes will be used which are denoted gamma (γ) and q-slash (/q). For bilinear

operators, Pγ projectors have an identical Dirac and color structure to the operator Γ ,

while P/q are obtained by replacing γµ → /qγµ/q
2 in Γ ’s dirac structure.

Finally, the renormalization conditions to be satisfied are that the bare amplitudes,

arising from the projected amputated vertex, are equal to its tree level value. This leads

to the following equation for the lattice renormalization constants:

ZΓ(µ, a)

Zq(µ, a)
ΛΓ(µ, a) = Λ

tree
Γ (2.13)

where the a dependence is included as these quantities are to be computed at finite lattice

spacings. With this condition, the dependence on the external momenta is exchanged for

a µ dependence. This is justified by the fact that there is only one momentum magnitude

entering the process, and thus defines the renormalization scale µ. Moreover, as the

amputation process has to be performed with the renormalized quark Green functions,

the corresponding constants Zq must be included. Finally, 2.13 is to be satisfied in the

chiral limit, i.e. mq → 0 , however ΛΓ(µ, a)’s computed in the lattice may have a non-

zero quark mass dependence. Hence, ΛΓ(µ, a,mq)’s obtained in the computation must be

extrapolated to zero quark mass.

In practice, such a extrapolation requires a combined fit in µ and mq. The reason

is that fourier modes for different ensembles, corresponding to different quark masses, in

general do not match exactly. These fits are performed here with the ansatz:
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ΛΓ(µ, a,mq) =

(
1+

∑
n=−1,1,2

bn(amq)
n

)(∑
m

cm(aµ)
m

)
+
∑
k

dk(aµ)
k (2.14)

The term in the first parenthesis on the left hand side of 2.14 gives the quark mass

dependence with mq = ml + mres and is observed to be very mild such that data is

described well enough with a n = 1 term and in the worst cases with n = −1, 1, 2. The

remaining momentum dependence in the ansatz is due to the running of the operator,

non-perturbative effects and lattice errors [87].

ensemble gbV

a09m400 1.023(01)
a09m350 1.024(02)
a09m310 1.024(01)
a09m220 1.022(02)
a12m400 1.016(01)
a12m350 1.016(01)
a12m310 1.021(02)
a12m220 1.015(02)
a12m130 1.020(08)
a15m400 0.998(01)
a15m350 0.997(01)
a15m310 1.001(02)
a15m220 1.000(04)
a15m130 0.994(35)

TABLE 2.2: gbV values determined in [2] and used here to determine grV .

2.2.2 Results

The first renormalization constant to consider is that of nucleon vector charge. Con-

servation of the vector charge requires grV = 1. However, due to lattice discretization errors
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and chiral symmetry breaking in the lattice, gbV is not exactly one and the corresponding

renormalization constant ZV must be determined from ZV = 1/gbV , and in the chiral limit,

should lead to a scale independent value for ZV . Therefore, using bare nucleon vector data,

an extrapolation to the chiral limit can be performed to obtain ZV . The data used here

for such determination is summarized in table 2.2, and in this case a very mild quark mass

dependence was observed as well as negligible residual scale dependence. Furthermore,

from the Ward identities, at small quark mass it is expected that ZA ≈ ZV , hence this

relation provides a means to check for chiral symmetry breaking contamination.

For MDWF fermions (used in this work), chiral symmetry is preserved to a good

degree and this is observed in the ratio ZA/ZV which is found to be very close to one as

figure 2.2 shows. Therefore, as ZV/ZA is determined very precisely to be one, their renor-

(a) (b)

FIG. 2.2: ZA/ZV and ZS/ZP ratios for lattice spacings a = 0.09, 0.12, 0.15 fm and
mπ = 220 MeV. a) ZA/ZV and b) ZS/ZP plots shows that both ratios are very close to
one and almost scale independent, as it should be when chiral symmetry is preserved. This is
expected because chiral symmetry is almost preserved by action employed.

malization conditions set by 2.13 can be combined to compute the quark wave function

renormalization constant Zq as follows:

Zq = ZV
ΛV +ΛA

2
(2.15)
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In a similar way, the quark mass renormalization Zm constant can be obtained. In this

case, from chiral symmetry properties for the scalar and pseudo scalar operators, ZP ≈ ZS
which is again satisfied by the data as the ratio ZS/ZP is very close to one as shown in

figure 2.2. This, together with the relations ZmZP = 1 and ZmZS = 1 [88], lead to the

following relation:

Zm =
ΛP +ΛS

ZV(ΛV +ΛA)
(2.16)

where Zq was substituted from 2.15. Finally, with the determined values for ZV , the Zq

dependence of the remaining operators ZP,ZS,ZT can be removed. Then, following the

fitting procedure previously described, the renormalization constants for the bilinears are

obtained. Sample plots for these fits are shown in figures 2.3, 2.4 and 2.5; and the values

obtained are summarized in tables 2.3 and 2.4.

(a) (b)

FIG. 2.3: Quark wave function and quark mass amputated vertices
Λq

ΛV
and Λm

ΛV
fits. a)

Λq

ΛV

and b) Λm

ΛV
fits for ensemble with a = 0.12 fm, mπ = 130, 220, 350 MeV. The result in the

chiral limit and the error bands are indicated respectively by the dashed line and color bands.
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(a) (b)

FIG. 2.4: Scalar and Pseudoscalar bilinear currents amputated vertices ΛS

ΛV
and ΛP

ΛV
fits. a)

ΛS

ΛV
and b) ΛP

ΛV
fits for ensemble with a = 0.12 fm, mπ = 130, 220, 350 MeV. The result in

the chiral limit and the error bands are indicated respectively by the dashed line and color
bands.

(a) (b)

FIG. 2.5: Scalar and Pseudoscalar bilinear currents amputated vertices ΛA

ΛV
and ΛT

ΛV
fits. a)

ΛA

ΛV
and b) ΛT

ΛV
fits for ensemble with a = 0.12 fm, mπ = 130, 220, 350 MeV. The result in

the chiral limit and the error bands are indicated respectively by the dashed line and color
bands.
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γ− scheme µ = 2GeV
ensemble Zq Zm ZS ZP ZT

a09 1.0073(21) 1.1062(23) 0.9557(20) 0.9396(20) 1.0505(22)
a12 1.0161(23) 1.0743(24) 0.9664(23) 0.9602(38) 1.0363(23)
a15 1.0384(33) 1.0439(33) 0.9630(31) 0.9473(47) 1.0146(31)

TABLE 2.3: Bilinear renormalization constants determined at the scale µ = 2GeV in the
γ-scheme.

/q− scheme µ = 2GeV
ensemble Zq Zm ZS ZP ZT

a09 1.0818(22) 1.0303(21) 1.0189(25) 1.0082(21) 1.1273(23)
a12 1.0814(24) 1.0092(23) 1.0348(39) 1.0216(41) 1.1029(25)
a15 1.1006(35) 0.9841(31) 1.0192(35) 1.0176(39) 1.0759(33)

TABLE 2.4: Bilinear renormalization constants determined at the scale µ = 2GeV in the

/q-scheme.

In general, the results for the renormalization constants show small statistical errors

in spite of the small number of configurations used. The reason for this is the used of

momentum sources, which here was previously pointed out to yield small statistical errors.

Additionally, in the case of ZV and ZA, these quantities are observed to be scale inde-

pendent as the scale is increased and their values are very close to one. This is consistent

with the fact that chiral symmetry is preserved to a good degree for the action employed.

For the infrared region of QCD, large vacuum chiral symmetry breaking can to introduce

further errors and thus these quantities are observed to start deviating from one. The

above properties of ZV are convenient for determination of the remaining renormalization

constants, this is in the sense that Zq dependences can be removed by taking ratios with

ZV which will not introduce a scale dependence.

For the two finest lattice spacings, no significant discretization errors are observed
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around the µ = 3 GeV which is the desired scale, however for the coarsest lattice a =

0.15 fm these effects start to show up before the µ = 3 GeV scale, however, this will be

addressed later in this chapter by employing the renormalization constants running.

2.3 Four-quark Operators Renormalization

In the short range interactions contributing to 0νββ, four-quark operators arise from

LO contributions coming from pion exchange processes, i.e π− → π+. In this section, the

renormalization of these operators is presented while other details are left to chapter 4

where their calculation is presented.

2.3.1 Scheme Details

The set of operators to consider is composed of five parity even operators: three color

unmixed operators and two color-mixed. The color mixed operators arise from renormal-

ization from the electroweak scale to the QCD scale. The mixing under renormalization is

specified by the chiral properties of these operators and it is discussed in [69, 89, 90]. More-

over, Using Fierz Transformations, the operator basis can be related 1 to a color diagonal

basis. Thus, for practical reasons the following color diagonal basis [89] is employed:

Q1 = [ψ̄1aγµ(1− γ5)ψ
2
a](ψ̄

1
bγ

µ(1− γ5)ψ
2
b) (2.17a)

Q2 = [ψ̄1aγµ(1− γ5)ψ
2
a](ψ̄

1
bγ

µ(1+ γ5)ψ
2
b) (2.17b)

Q3 = [ψ̄1a(1− γ5)ψ
2
a](ψ̄

1
b(1+ γ5)ψ

2
b) (2.17c)

Q4 = [ψ̄1a(1− γ5)ψ
2
a](ψ̄

1
b(1− γ5)ψ

2
b) (2.17d)

Q5 =
1

4
[ψ̄1aσµν(1− γ5)ψ

2
a](ψ̄

1
bσ

µν(1− γ5)ψ2) (2.17e)

1We summarize the transformations [91] in appendix B.
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where color indices for the contractions are shown explicitly for clarity. For these set of

four-quark operators, the kinematic configuration at the vertex is shown in figure 2.6.

p21 = p22 = q2

ψ2 −p2 p1 ψ1

ψ1
p1 −p2 ψ2

FIG. 2.6: Kinematical configuration for the four-quark renormalization vertex in RI-MOM
and RI-SMOM schemes. The momentum transfer is q2 = 0 for RI-MOM scheme while q2 =
p21 = p

2
2 for RI-SMOM.

Now, the definition of the amputated Green Functions proceeds in a similar fashion as

for the bilinear case. Hence, for each basis element Qi, an unamputated Green Function

is constructed with the following form:

V4q
Γ1Γ2

(p2, p1) =2
∑
x

〈[
Ḡ(x, p1)Γ

1G(x, p2)
]ij,αβ[ ¯G(x, p1)Γ

2G(x, p2)
]kl,γδ〉

− β↔ δ j↔ l

(2.18)

where Γ i = γµ(1−γ5), γµ(1+γ5), (1−γ5), (1+γ5), σµν(1−γ5). Amputating V4q
Γ1Γ2

(p2, p1)

leads to:

Π4qΓ (p2, p1) = G
−1(p2)G

−1(p2)V
4q

Γ1Γ2
(p2, p1)γ5[G

−1(p1)]
†γ5γ5[G

−1(p1)]
†γ5 (2.19)

after projection of the amputated Greens functions Π4qΓ (p2, p1), the bare vertex amplitudes

are obtained:

Λ ′ij = PjΠi (2.20)



41

The projector schemes used for these amplitudes corresponds to the γ-scheme. In the γ-

scheme the projector Pγi is define exactly as the Dirac and color structure of the operator

Qi. It is also possible to use the /q-scheme, with projectors P
/q

i found by replacing in Pγi

the following quantities:

γµ → /q√
q2

σµνPL → pµσµνpνPL√
p21p

2
2 − (p1 · p2)2

where PL =
1−γ5

2
. However, results in the /q-scheme have not been obtained for this work.

Finally, the amputated projected vertices are required to satisfy the following renor-

malization conditions which will fix the renormalization constant matrix:

Zik

Z2q
Λ ′bkj = Λ

tree
ij /Λ

tree
q (2.21)

For practical reasons, Λtree can be moved to left hand side and absorbed in Λb =

Λ ′b · (Λtree)−1 as:

Zik

Z2q
= (Λb)−1ik /(Λ

b)−1q (2.22)

This last equation defines a matrix Z which renormalizes the five elements of the

basis. The form and entry values of Z are determined by the allowed mixing between the

different operators according to their chiral symmetry properties. The operators that are

allowed to mixed areQ2, Q3 andQ4, Q5, therefore the Z-matrix should be block diagonal Z-

matrix. Nevertheless, chiral symmetry is not perfectly preserved and entries corresponding

to forbidden mixing are supressed but non-zero and must be taken into consideration.
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2.3.2 Four-quark Results

For the determination of the Z-matrix that renormalizes the four-quark set of opera-

tors, each entry µ and a dependence is fitted in the same manner as for the bilinears, i.e.

by employing the fit ansatz 2.14. In order to remove the Zq dependence, 2.22 is divided

by ZV . Sample fits for some Λ/Λ2V entries corresponding to chirally allowed mixing of op-

erators are showed in figure 2.7. Λ components expected to be zero from chiral symmetry

were observed to be several orders of magnitude smaller, and the error due to setting those

to zero is within the statistical errors.

In figure 2.7, sample fits are presented. The numerical Z/ZV results at 2GeV and for

the three lattice spacings used in this work are displayed in table 2.5.

γ− scheme µ = 2GeV
ensemble Z11 Z2−3 Z4−5

a09 0.92514(94)

(
0.9986(10) 0.16018(52)
0.013738(45) 0.8529(12)

) (
0.8727(13) −0.011218(44)

−0.14809(56) 1.0090(15)

)
a12 0.92463(90)

(
0.9925(11) 0.13533(90)
0.015730(59) 0.89205(78)

) (
0.90530(79) −0.01327(24)
−0.12196(29) 0.9881(12)

)
a15 0.9214(37)

(
0.9892(40) 0.13262(92)
0.01876(17) 0.9136(33)

) (
0.9264(32) −0.01643(33)

−0.11501(92) 0.9762(41)

)
TABLE 2.5: Renormalization matrix values determined at µ = 2GeV for four-quark operators

As in the case of the bilinear operators, the use of momentum sources leads to small

statistical errors. In general, as the momentum scale µ raises chiral symmetry effects

should become smaller (especially because the action used here has good chiral symmetry)

while at low energies they can become more significant due to chirally symmetry breaking

effects.

The above features are observed in general, for example as the momentum µ increases

the renormalization constants approach the value 1 corresponding to their tree level value,
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FIG. 2.7: Four-quark operators renormalization vertex matrix Λ fit samples. The plots show
the renormalized vertices (normalized by its tree level value) which are related to the renor-
malization matrix by Z = Λ−1. Only entries allowed to be non-zero by chiral symmetry
conservation are shown. The result in the chiral limit and the error bands are indicated re-
spectively by the dashed line and color bands.



44

this is shown in the plots in 2.7 corresponding to the diagonal components of the renor-

malization matrix. On the other hand, Z off-diagonal entries become closer to zero as the

momentum scale is raised.

Z off-diagonal entries which mix the different operators are supressed with respect to

the diagonal terms as these are subleading effects, and the off-diagonal entries for mixings

not allowed by chiral symmetry should be even more suppressed. These is consistent with

the results found, and in the case of entries for chirally forbidden mixings, their effects

were found to be within statistical errors compared to when they are set to 0 explicitly.

2.4 Raising The Renormalization Scale

In the description of the RI/MOM method, a condition for the validity was given by

the Rome-Southampton window. This condition is required to ensure that non-pertubative

and discretization errors are well under control. In certain cases, specially for large lattice

spacing ensembles, the high-momentum end of this window is reduced. This poses a

problem to further match the renormalized operators to the MS-scheme because some of

the constants cannot be obtained at the desired scale µ = 3GeV. To overcome this, the

running of the operator can be employed such that the renormalization scale can be raised.

The technique that will be adopted here is known as step scaling and has been pre-

viously used together with the RI-SMOM scheme [86]. The process consists in finding

the step scaling function which describe the running of the operators in the continuum

limit. This step scaling function is defined by the ratio of two renormalization constants

at different momenta:

Σ(µ1, µ2, a) = Z(µ1, a)Z
−1(µ2, a) (2.23)
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where Z is a matrix for four-quark operators and a number for bilinears. Furthermore,

this quantity is well defined in the continuum limit, and can usually be determined by a

linear fit in a2, however in some cases adding a a4 term may be necessary. The step scaling

function relation to its continuum limit is given by:

Σ(µ1, µ2, a) = Σ(µ1, µ2) + f(µ)(b2a
2 + b4a

4). (2.24)

Here, to determine Σ(µ1, µ2), three different types of fits were employed. In the

first method, at each momenta, a fit is performed to find the a dependence. A sec-

ond fit uses the combined a and µ dependence to fit the data simultaneously at all µ.

A third procedure determines the discretization errors by fitting quantities of the form

γ− scheme µ : 2GeV→ 3GeV
Σq Σm ΣS ΣP ΣT

0.98905(47) 0.92890(66) 0.9695(15) 0.9171(67) 1.0241(11)

TABLE 2.6: µ = 2GeV → 3GeV step scaling function values for bilinear operators in the
γ-scheme.

/q− scheme µ : 2GeV→ 3GeV
Σq Σm ΣS ΣP ΣT

0.95437(35) 0.96263(96) 0.9968(95) 0.9557(69) 0.94365(26)

TABLE 2.7: µ = 2GeV → 3GeV step scaling function values for bilinear operators in the

/q-scheme.

Σ(µ1, µ2, a1)−Σ(µ1, µ2, a2) and then solving for the continuum limit Σ(µ1, µ2) in 2.24. We

find consistent results with all three methods. A sample fit for the step scaling function is

shown in figure 2.8.

The values obtained for the step scaling function for bilinears and four-quark operators
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γ− scheme µ = 2GeV→ 3GeV
Σ11 Σ2−3 Σ4−5

0.9783(22)

(
1.0042(32) 0.1157(29)
0.00334(24) 0.8602(22)

) (
0.8883(23) −0.00123(67)

−0.09959(90) 1.0448(38)

)
TABLE 2.8: µ : 2GeV → 3GeV step scaling function values for four-quark operators in the
γ-scheme.

are summarized in tables 2.6, 2.7 and 2.8. Also, the renormalization constants at the scale

µ = 3GeV results are displayed in tables 2.9, 2.10, 2.11.

FIG. 2.8: Four-quark operator step scaling function Σ32 fit sample. The gray band corre-
sponds to the fit to discretization errors in 2.24 simultaneously at all µ to determine the
continuum step scaling function by subtraction. The magenta points corresponds to the fit
to 2.24 separately at each µ.
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γ− scheme µ = 3GeV
ensemble Zq Zm ZS ZP ZT

a09 0.9965(21) 1.00576(88) 0.9682(23) 1.027(12) 1.00172(13)
a12 1.0052(23) 0.98270(84) 0.9850(23) 1.056(12) 0.99413(12)
a15 1.0272(33) 0.97150(90) 0.9986(24) 1.060(12) 0.99029(13)

TABLE 2.9: Bilinear renormalization constants determined at the scale µ = 3GeV in the
γ-scheme.

/q− scheme µ = 3GeV
ensemble Zq Zm ZS ZP ZT

a09 1.05634(59) 0.9714(11) 1.0473(81) 1.0046(89) 1.03794(28)
a12 1.04952(54) 0.9573(11) 1.0701(84) 1.0240(94) 1.02160(28)
a15 1.04993(72) 0.9497(12) 1.0723(80) 1.0379(89) 1.01390(36)

TABLE 2.10: Bilinear renormalization constants determined at the scale µ = 3GeV in the

/q-scheme.

2.5 MS Matching For Mixed Basis

Before the short range contributions computed in this work can be input into nuclear

matrix element calculations, it is necessary to express them in a scheme where the matching

to the original nuclear theory can be done. This requires that the operators and the Wilson

coeficients are computed in the same renormalization scheme. A common used scheme is

MS at µ = 3GeV .

The conversion from RI− SMOM to MS is performed by means of continuum pertu-

bation theory. First, the renormalization constants for the schemes must be related. For

example, for an operator that renormalizes multiplicatively, the renormalized operators

differ only by a factor due to the different values of the renormalization constants, that is

Ori = CijOrj = CijZOb, where i denotes the renormalization scheme. Then, using pertur-

bation theory, an expression for the renormalization constants, up to a given constant can
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γ− scheme µ = 3GeV
ensemble Z11 Z2−3 Z4−5

a09 0.9453(25)

(
0.9927(35) 0.0503(27)
0.01224(26) 0.9856(26)

) (
0.9796(12) −0.01130(70)
−0.0492(11) 0.9637(40)

)
a12 0.9445(25)

(
0.9862(34) 0.0205(29)
0.01456(26) 1.0309(24)

) (
1.0162(35) −0.01363(74)

−0.02076(99) 0.9434(38)

)
a15 0.9412(44)

(
0.9824(51) 0.0150(30)
0.01807(32) 1.0558(44)

) (
1.0399(43) −0.01719(77)
−0.0119(13) 0.9317(53)

)
TABLE 2.11: Renormalization matrix values determined at µ = 3GeV for four-quark opera-
tors.

be found and replaced in the above expression. In this way, it is possible to solve for the

constants Cij necessary for the conversion from one renormalization scheme to another.

For the four quark operators used in this work, the necessary factors have been pre-

viously obtained in [83], and are thus employed here. It is also important to note that as

the operators are renormalized with a matrix Z, the required constants to match to MS

are arranged in a matrix as well.

Finally, in order to use these results to renormalize the operators calculated in chap-

ter 4, the basis must be switched to the corresponding color mixed basis. The procedure

is shown in the appendix B where Fierz Transformations are used to find:

O++
1+ = (1/4) ∗Q2 (2.25)

O++
2+ = (1/4) ∗ 2 ∗Q4 (2.26)

O++
3+ = (1/4) ∗ 2 ∗Q1 (2.27)

O ′++
1+ = −(1/4) ∗ 2 ∗Q3 (2.28)

O ′++
2+ = −(1/4) ∗ (Q4 −Q5) (2.29)

Then, the mixed basis renormalized operators in MS are given by OMS = RORI−SMOM,
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where ORI−SMOM = (O++
1 ,O ′++

1 ,O++
2 ,O ′++

2 ,O++
3 ) and R is a matrix containing the conver-

sion factors. For completeness the matrix R, obtained from A.Nicholson, E. Berkowitz, H.

Monge-Camacho, D. Brantley, N. Garron, C.C. Chang, E. Rinaldi, M.A. Clark, B. Joó, T.

Kurth, B. Tiburzi, P. Vranas, A. Walker-Loud [92] is given below:

R =



1.0009 −0.0026 0 0 0

−0.0326 1.0909 0 0 0

0 0 1.0308 0.0201 0

0 0 0.0135 1.1060 0

0 0 0 0 1.0043


(2.30)

Summary

In this chapter renormalization constants for bilinear and four-quark operators were

computed using Mobius Domain Wall Fermions at the scale µ = 2 GeV. In the case of the

bilinear operators, these quantities have been computed before but not for all the ensembles

used for the calculations presented in this work. On the other hand, renormalization

constants for four quark operators have been performed for kaon mixing, however for

π− → π+ matrix elements these are computed here for the first time.

In addition, the corresponding running of these constants was determined as well,

and thus enabled the used of three lattice spacing to determine the constants at the

renormalization scale µ = 3 GeV. Prior to this work, only two lattice spacings have

been used, and thus the results presented here should have an improved control over the

continuum extrapolation as compared to others.



CHAPTER 3

Application: Nucleon Axial Charge

The nucleon coupling to the weak axial charge plays an important role in many fun-

damental nuclear processes, such as nuclear beta decay and pion exchange. The strength

of this coupling is determined by a quantity known as the axial charge, and corresponds

to the nucleon axial form factor at the limit of zero momentum transfer and it is usually

represented by gA. Thus, the axial charge not only plays a major role in characterizing

the nucleon, but its determination from QCD is fundamental to better understand and

test nuclear physics processes from the SM.

However, as energies relevant to nuclear physics processes lie in the strong interactions

low-energy regime, determination of the axial charge poses further complications as pertur-

bation theory breaks down and a non-perturbative solution is required. Solving QCD non-

perturbatively is possible numerically with LQCD, and in fact, previous determinations of

the nucleon axial charge from LQCD have been performed in [93, 94, 95, 96, 97, 98, 99, 100].

Nevertheless, achieving precisions at the experimental level has been a major issue, and

according to the LQCD community, overcoming this problem requires a good control of

the excited state contamination and high statistical precision [101]. In this chapter, a

50
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method which provides a good control of the excited state contamination and high statis-

tical precision is used to determine, at a precision not achieved before, the nucleon axial

charge, which enters in the neutron to proton decay rate.

The calculation starting point is the matrix element of the isovector axial current

Aaµ = q̄γµγ5
τa

2
q, which is described by the axial vector and pseudo axial form factors as

given in the following equation:

〈N(p ′, s ′)| Aaµ |P, S〉 = Ū(P ′, S ′)
[
γµGA(Q

2) +
(P ′ − P)µ
2MN

GP(Q
2)

]
γ5τaU(P, S) (3.1)

At zero momentum transfer Q2 = −(P ′−P)2 = 0, the above matrix element is related

to the nucleon axial charge, and can thus be used to determine the latter with a LQCD

calculation.

3.1 Feynman-Hellman Method

The Feynman-Hellman theorem provides a relation between the variations, with re-

spect to a given parameter, of both the energy spectrum and the matrix element of the

Hamiltonian. This relation, is given by:

∂λE
n
λ = 〈n| Hλ |n〉 (3.2)

Where the Hamiltonian is given by H = H0 +Hλ.

In LQCD, computation of the energy spectrum is standard and relies on two-point

correlation function calculations. Thus, energy spectrum variations, appearing in left hand

side of 3.2, can be analysed using the same techniques. In the case of the nucleon axial

charge for example, the matrix element of interest is given by 3.1. The energy spectrum
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can be obtained from the following correlation function:

Cλ(t) = 〈λ| O(t)O†(0) |λ〉 =
1

Z

∫
DΦe−S−SλO(t)O†(0) (3.3)

Here the operators O† and O are creation and annihilation interpolating operators.

λ indicates that the quantity is computed in the presence of a source term Hλ, and the

corresponding vacuum state is denoted by |λ〉. In the limit λ → 0, and for a source

proportional to λ, the source-less vacuum state |Ω〉 is recovered and 3.3 becomes:

Cλ(t)

∣∣∣∣
λ=0

= 〈Ω| O(t)O†(0) |Ω〉 = C(t) (3.4)

We can use the method of sources, to relate ∂λC(t) to a correlation function with an

insertion between O and O†:

∂λCλ(t)

∣∣∣∣
λ=0

=
−1

Z

∫
DΦe−ST {O(t)(∂λSλ)

∣∣
λ=0
O†(0)} = 〈Ω| O(t)(∂λSλ)

∣∣
λ=0
O†(0) |Ω〉 (3.5)

As λ dependent expressions are to be evaluated at λ = 0, from here on, the evaluation

indication will be removed, for example:

Cλ(t)

∂λ

∣∣∣∣
λ=0

≡ ∂λCλ(t) Cλ(t)

∣∣∣∣
λ=0

≡ C(t)

Using the two-point function in 3.3, an effective mass can be constructed in the same

way it was done in the first chapter, which in the case of baryons is given by 1.43. The

variations in the effective mass with respect to λ for baryons, as derived in [102], are given
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by:

∂meff

∂λ

∣∣∣∣
λ=0

=
1

τ

{
∂λC(t)

C(t)
−
∂λC(t+ τ)

C(t+ τ)

}∣∣∣∣
λ=0

(3.6)

and for mesons the derivation is straighforward as well and leads to:

∂meff

∂λ

∣∣∣∣
λ=0

=
−∂λC(t+ τ) + ∂λC(t− τ) − 2cosh(meffτ)∂λC(t)

2τC(t)sinh(meffτ)
(3.7)

The last two equations show that only Cλ and ∂λCλ are necessary to determine the

effective mass variations. Therefore, in order to extract the matrix element from its relation

with ∂λmeff, an expresion for ∂λCλ which includes the matrix element is necessary. This

can be obtained by taking the partial derivative of the expression 3.3 and corresponds to:

∂Cλ(t)

∂λ

∣∣∣∣
λ=0

= −C(t)

∫
dt ′ 〈Ω| J(t ′) |Ω〉+

∫
dt ′ 〈Ω| TO(t)J(t ′)O†(0) |Ω〉 (3.8)

For currents without vacuum quantum numbers the first term in last equations right-

hand side does not contribute. However, in the case of baryons, even if that is not the

case, this term would cancel in the difference appearing in 3.6. For that reason, only the

second term will be considered here, which in the lattice corresponds to:

N(t) =

T−1∑
t ′=0

〈Ω| TO(t)J(t ′)O†(0) |Ω〉 (3.9)

Then, using the spectral decomposition on the second term, the ∂λCλ explicit time depen-
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dence can be found for baryons and mesons, in the first case the result is [102]:

N(t) =
∑
n

[
(t− 1)zngnnz

†
n + dn

]
e−Ent +

∑
n,m 6=n

e−Ent+∆nm/2

e∆mn/2 − e∆nm/2
(zngnmz

†
m + zmgmnz

†
n)

(3.10)

where:

∆mn = Em − En, gJnm ≡
Jnm√
4EnEm

(3.11)

and

dJn ≡ ZnZ†J:n + ZJ:nZ†n + ZnZ†n 〈Ω| J |Ω〉+
ZnZ

†
njJ
†
j + JjZnjZ

†
n

2Ej(eEj − 1)
(3.12)

and the overlap factors are given by:

Z†J:n = 〈n| JO† |Ω〉 ZJ:n = 〈Ω| OJ |n〉

Z†n = 〈n| O†(0,0) |Ω〉 Zp
n =
∑
x

eip·x 〈Ω| O(0,x) |n〉

and in the case of mesons a similar expression can be determined.

3.2 Lattice Calculation Details

A subset of the publicly available Highly Improved Staggered Quark (HISQ) with

dynamical light, strange and charm quarks (Nf = 2+1+1) previously generated by the

MILC Collaboration [103] was used for the calculations. They were generated with near-

physical values of the strange and charm quark masses, three values of the pion mass,

mπ ≈ 130, 220, 310 MeV and at three lattice spacings a ≈ 0.15, 0.12, 0.09 fm. Ad-
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FIG. 3.1: Feynman diagrams for computing the axial charge gA in the standard and
Feynman-Hellman methods. In the neutron β − decay into a proton a neutron d quark
converts into a proton u quark via the weak axial current. Only valence quark diagrams are
shown while the diagrams corresponding to gluons coupled to quarks and gluons to gluons,
and the dynamical quark/anti-quark pairs are excluded. In the standard method a) the axial
current is inserted a tins. For the Feynman-Hellmann method b) the weak axial current is
inserted and sum over all possible insertion times (tins).

ditional HISQ ensembles were generated at mπ ≈ 350, 400 MeV with the above lattice

spacings. The purpose of using this ensembles is to provide enough data to control the con-

tinuum limit, infinite volume and physical pion mass extrapolation. Additional important

factors to consider in this calculation are the discretization errors and chiral symmetry

breaking. For the HISQ action errors start at O(αSa
2, a4), and improved link-smearing

can further reduce these errors due to suppression of taste-changing interactions. The

tadpole-improved, one-loop Symanzik gauge action is used for gluons, with discretization

errors starting at O(α2S, a
2, a4). Valence quarks use MDWF action, which together with

gradient-flow smearing of HISQ ensemble, highly suppresses the residual chiral symmetry

breaking of the MDWF action, and discretization errors from this action begin at O(a2)

[104]. The smearing used is gradient flow smearing with a flow time fixed to tgf = 1.0

in lattice units on all gauge configurations and computed with the Wilson-flow diffusion

equation. Effects due to this smearing are studied following [105] and checked in this

work using three different flow times, tgf = 1.0, 0.6, 0.2, which showed little effects due

to smearing and smaller stochastic uncertainties at increasingly larger values of tgf were
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observed.

3.3 Correlation functions analysis

Correlations functions are created in the lattice by using interpolating fields to cre-

ate or annhilate particles. When acting on the vacuum, these interpolators do not cre-

ate/annihilate isolated states, but instead tower of states. Thus, an exact wavefunction

for the ground state nucleon cannot be obtained. As a consequence, in order to extract in-

formation from lattice calculations, the ground and excited states must be disentangled to

obtain only the contributions of interest. This requires a careful analysis of the correlation

functions, and has become one of the major challenges for past calculations of gA.

One advantage of the method used in this work, is that the correlation function can

be accessed at both earlier and later time separations between the initial and final states.

This facilitates a more complete study of excited state contributions to better separate

the ground and excited states contributions. Moreover, at earlier times, the exponentially

growing noise for nucleon observables is less severe, hence access to earlier times leads to

reduced statistical errors.

3.3.1 Fitting procedure

To extract information from the correlation functions, a simultaneous fit to the nucleon

two-point correlation function and the vector and axial-vector FH ratios 3.6 was done.

Additionally, for each of these, two different types of sink smearing for the quark fields

are used as well. The purpose of this strategy is to enhance the amount of correlated data

when determining a large subset of shared parameters. Unknown parameters are estimed

following the work on [102] and the parameter space in t is explored by first using a two-

state Bayesian constrained fit which is followed by a two-state unconstrained fit using the
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non-linear least-squares method to minimize the χ2 functional.

From the bayesian fit, a posterior distribution is found and its central value is employed

as an input guess value for the second fit. The purpose of this preconditioning of the

unconstrained fit is to explore the large parameter space while minimizing the number

of iterations required for convergence. Moreover, the input from the bayesian posterior

distribution also helps in avoiding unphysical local minima in the χ2 manifold.

To discriminate from acceptable and poor fits, the p-value and effects of excited states

contamination are considered. Only fits with a p-value greater than 0.05 are used and fits

where excited state contamination is stable with respect to time separation variations. The

fits stability analysis for this method is possible due to the Feynman-Hellmann method

implemented in this work which grants access to all possible inital and final state separation

times. Information from correlation functions data at earlier times, where excited state

contamination is greater, allows for a better understanding and control of excited states

contributions, a significant challenge for this type of calculation. A sample fit to gA with

this procedure is shown in figure 3.2.

Finally, determination of the matrix element statistical uncertainty is performed us-

ing a 5000 bootstrap sample. Also, as data at smaller time separations can be used in

this calculation, where the signal-to-noise ratio is smaller, an exponentially more precise

determination of the nucleon couplings is possible.

3.4 Chiral, Continuum and infinite volume extrapo-

lations

Turning lattice results into physical meaningful quantities usually requires continuum

limit, chiral, infinite volume extrapolations and renormalization (which was performed on
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FIG. 3.2: gA data fit example for ensemble with lattice spacing a ≈ 0.09fm and mπ ≈
220MeV . The raw numerical data (points) and its fits (bands) are displayed in gray as well
as vertical bands indicating excluded regions from the fits. The solid black and white data
corresponds to original data with contributions from excited states (determined in the fit)
subtracted. The full fit result to the ground state value of gA is shown with solid blue band.
The two data sets corresponds to different sink-source types: smeared-smeared (SS) and
point-smeared.

the previous chapter). Additionally, when quantities of interest are dimensionful, conver-

sion to physical units is necessary as well. In this calcution however, gA is a dimensionless

quantity, and conversion to physical units can be avoided by employing dimensionless ra-

tios at the time of extrapolating to the physical point. Hence, no scale setting is required

and only three quantities are necessary to parameterise the physical point extrapolations,

these are:
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ε2a =
1

4π

a2

w20
, mπL, επ =

mπ

4πFπ
, (3.13)

These quantities parameterise the continuum limit, infinite volume and physical pion mass

respectively. The gradient flow scale w0 can be determined as in [106] and Fπ ≈ 92 MeV

is the pion decay constant. An appropriate framework for the above extrapolations is EFT

which provides a rigorous prescription and more control over systematic uncertainties.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
επ = mπ/(4πFπ)

1.10

1.15

1.20

1.25

1.30

1.35

g
A

NNLO χPT

LO
NLO

NNLO

FIG. 3.3: Extrapolating fits for contributions up to NNLO to gA. The gray vertical band
indicates the physical point.

First, for the chiral extrapolation, two-flavor Heavy Baryon χPT(HBχPT) [107] is

necessary for a controlled extrapolation of the pion mass dependence. The expression for

the gA pion mass dependence is known through O(m3
π) [107, 108, 109] or next-to-next-to-
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leading order (NNLO) in the chiral expansion, and is given in terms of επ by:

gA = g0 + c2ε
2
π − ε

2
π(g0 + 2g

3
0) ln(ε2π) + g0c3ε

3
π , (3.14)

For the last expression the χPT renormalization scale was set to µ = 4πFπ and g0, c2 and

c3 are low-energy constants (LECs) to be determined in the analysis. A fit presenting the

contributions to gA, up to NNLO in the χPT expansion, is shown in figure 3.3.

0.000 0.005 0.010 0.015 0.020 0.025

e−mπL/(mπL)1/2

1.23

1.25

1.27

1.29

g
A

model average

NNLO χPT estimateNNLO χPT estimate

FIG. 3.4: Infinite volume extrapolation of gA. The data points correspond to mπL =
5.36, 4.30, 3.25 for ensembles with lattice spacing a ≈ 0.12fm and mπ ≈ 220MeV . The green
band and dashed curve (central value) correspond to the NLO finite-volume dependence pre-
dicted from the model averaged extrapolation (to all data points in the analysis)

Second, for the infinite volume extrapolation, an infrared modification of the pion

propagators [110] can be performed in order to include these corrections into the EFT.

These corrections are expected to fall off at least as fast as e−mπL in the large volume limit.



61

For gA, the leading volume corrections are found in [111] to be:

δL ≡ gA(L) − gA(∞) =
8

3
ε2π
[
g30F1(mπL) + g0F3(mπL)

]
where

F1(x) =
∑
n6=0

[
K0(x|n|) −

K1(x|n|)

x|n|

]
F3(x) = −

3

2

∑
n6=0

K1(x|n|)

x|n|
. (3.15)

g0 is the leading order(LO) contribution to gA in the chiral expansion and Kν(z) are

modified Bessel functions of the second kind. In the limit of large mπL (infinite volume)

these corrections become:

δL = 8g
3
0ε
2
π

√
2π
e−mπL√
mπL

+ O

(
e−
√
2mπL,

1

(mπL)3/2

)
. (3.16)

The finite volume effects for gA are presented in figure 3.4 where a finite volume extrapo-

lation fit is performed.

Finally, for the continuum limit, a Taylor expansion in the discretisation scale is used

with a ε2aε
2
π included. An alternative for MDWF on HISQ action is to used mixed-action

EFT (MAEFT) to describe discretisation effects, however the data used in these work does

not constrain the parameters introduced by MAEFT [2]. Then, possible discretisation

effects are given to NNLO in the Symanzik expansion [112, 113] by:

δa = a2ε
2 + b4ε

2
aε
2
π + a4ε

4
a , (3.17)

the first and second term correspond respectively to NLO and NNLO corrections, with

the second arising from a power counting in ε2π ≈ ε2a. The unknown coefficients a2,b4 and

a4 are constants obtained from the data extrapolation analysis. Additionally, corrections
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arising from residual chiral symmetry breaking due to the use of local axial and vector

currents and from generic one-loop radiative gluon corrections at finite lattice spacing are

given by the first and second term of the following equation:

δ′a = a1
√
4πεa + s2αsε

2
a , (3.18)

where a1 = O(mres) and s2 = O(1).
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FIG. 3.5: Continuum extrapolation of gA. The nucleon axial coupling lattice spacing is pa-
rameterised by using ε2a. The magenta band and dashed magenta curve (central value) indi-
cate the physical point limit. Central value curves are plotted for mπ ≈ 220MeV (dashed),
mπ ≈ 310MeV(dot-dashed), mπ ≈ 350MeV (dotted), and mπ ≈ 400MeV (dot-dot-dashed).



63

3.5 Final Result

The final value determined for the nucleon axial charge gA at the physical point in this

work is obtained from a model average. The uncertainty is computed by adding in quadra-

ture the statistical(s), chiral(χ), continuum(a), infinite volume(v), isospin breaking(I) and

model(M) contributions and the result with the uncertainties breakdown is:

gA = 1.2711(103)s(39)χ(15)a(19)v(04)I(55)M. (3.19)

The good control over finite temporal effects, and the relatively low computational

cost of the method employed were key factors to achieve these precise result and further

improvements can obtained by increasing the statistics.

This result is consistent with the experimental value, determined from neutron β

decay gPDGA = 1.2723(23) [114]. From LQCD, this is the first calculation to achieve errors

at the percent level and the second to account for all the systematics. Moreover, with

uncertainties similar to those of experiments, such calculations may help us understand

the upward trend from experimental determinations [114]. On the phenomenological side,

collider and low-energy experiments results have been used together with EFT to look for

bounds on right-handed BSM currents [115]. One way to constrain these currents is by

using results from cold neutron decay experiments, for which the above gA result was used

as input . The constraints arising from this gA result lead to the most stringent limits [2]

compared to those due to W− and Higgs boson production and pion decays.
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Short Range Contributions to 0νββ

In this chapter, leading order contributions from short range interaction processes

relevant to 0νββ are obtained, for the first time, with LQCD. These can serve as input

for the determination of 0νββ decay rates induced by the short range interactions.

Most of the recent research on 0νββ has been focused on the light majorana exchange

mechanism in a long-range interaction process. On the other hand, short-range interactions

have been considered to be relatively small compared to the above because of suppression

by the heavy mass neutrino. Nevertheless, as pointed out in [116] a helicity flip, propor-

tional to the light neutrinos mass, is required for the light majorana neutrino exchange.

Thus, if neutrino masses are generated by the seesaw mechanism, the light neutrino mass

would be supressed as well by a heavy scale corresponding to the new physics.

At the present time, the mechanisms and nature of the neutrino masses are still un-

known, and short-range contributions should not be discarded as the may be contribute

equally in certain BSM models. Therefore, the long and short-range physics relative im-

portance must be assesed (for a given particle physics model) and calculating short-range

contributions becomes necessary.

64
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For 0νββ via the above mentioned short-range mechanism, the interaction would

happen at distance scales several orders of magnitude smaller than the size of the neutron.

Despite this short distance nature, the leading contribution comes from a π− → π+e−e−

transition, and so can act at distance scales of order the size of the nucleus. The resulting

0νββ decay would not be observed in isolation, but only in the presence of a large nucleus

such as Ge-76 and Xe-136 so the interaction would be further renormalized by the many-

body nuclear interactions, also dictated by QCD. It is thus very important to understand

the effects of the underlying QCD interactions involved in 0νββ, however, as the energies

relevant to nuclear physics lie in the low-energy regime, a non-perturbative solution is

required. Fortunately, because the clear separation of scales, an appropriate framework to

study the QCD contributions is given by EFTs. Using EFT, 9 local four-quark operators

which can contribute to 0νββ at leading order have been found [117, 69], among those,

three important process arise when matching to a nuclear EFT, these are ilustrated in

figure 4.1.

From the contributions shown in figure 4.1, the focus will be on the relevant processes

for 0+ → 0+ nuclear transitions, which to LO corresponds to diagrams (a) and (d). At the

present time, there is only a theoretical estimation of these contributions [118] to 0νββ

and in this work the first LO calculations from the pion exchange interaction π− → π+ is

performed using LQCD. In addition, this work proposes a strategy to tackle the calculation

of four nucleon contact operators which are significantly more complicated.
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FIG. 4.1: Diagrams for processes contributing to 0νββ through short range interactions.
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4.1 π− → π+ Contribution

4.1.1 Four-quark Operators

To determine the matrix elements arising from diagram (a) in 4.1, the most convenient

framework is EFT as mentioned above, in which case rather than computing the full nn→
ppee transitions one can instead calculate the on-shell transition π− → π+ amplitude.

The advantages of this approach for LQCD are avoiding the signal-to-noise problem [119]

and the scattering states in a finite volume [120, 121]. From the operators relevant to this

process and found in [117], here only the parity even operators have non-zero contributions,

whereas the vector operators are suppressed by a power of the electron mass and thus are

not consider here. The set of operators to study are:

O++
1+ = (q̄Lτ

+γµqL) [q̄Rτ
+γµqR]

O++
2+ = (q̄Rτ

+qL) [q̄Rτ
+qL] + (q̄Lτ

+qR) [q̄Lτ
+qR]

O++
3+ = (q̄Lτ

+γµqL) [q̄Lτ
+γµqL] + (q̄Rτ

+γµqR) [q̄Rτ
+γµqR]

O ′++
1+ = (q̄Lτ

+γµqL] [q̄Rτ
+γµqR)

O ′++
2+ = (q̄Rτ

+qL] [q̄Rτ
+qL) + (q̄Lτ

+qR] [q̄Lτ
+qR) (4.1)

The color contractions are indicated by using () and [] to enclose the quarks following the

Takahashi notation [122]. For example (q̄q)[q̄q] = q̄aqaq̄bqb while (q̄q][q̄q) = q̄aqbq̄bqa.

Also the operators, O ′++
i+ are included because of the mixing of operators with the same

chirality due to renormalization from the weak to the QCD scale [69].

4.1.2 Numerical Method

It has been shown in [76] for general cases, that some matrix elements can be extracted

from correlation function ratios. For the matrix element to compute here, this works as
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well given that the following ratio is used:

Ri(t) ≡ C3pt
i (t, T − t)/ (Cπ(t)Cπ(T − t)) =

a4 〈π| O++
i+ |π〉

(a2Zπ0)
2

+Re.s.(t) (4.2)

In the last equation, C3pt
i corresponds to a three-point function with an operator inserted

and Cπ is the pion correlation function and Zπn =
∑

x 〈Ω| Π+ |n〉. |π〉 represents the pion

ground states while excited states contributions are given by Re.s.(t) ∝ e−(Eπn−E
π
0 )t.

In this ratio, the exponential time dependence in the numerator is canceled by the

denominator, and a fit to a constant should be sufficient to extract the matrix element

provided excited state contamination is suppresed. The three-point function to employ in

order to construct R is the following:

C3pti (ti, tf) =
∑
α

∑
x,y

e−EαT 〈α| Π+(tf,x)Oi(0,0)Π+(ti,y) |α〉 (4.3)

where Π+(tf,x) = d̄γ5u is the annihilation operator for a π+ particle at a time tf and

Π+(ti,y) = Π−†(ti) is the creation operator for a π− particle at time ti. The four-quark

operator Oi corresponds to the i operator in the basis 4.1. The two point correlation

function is given by:

Cπ(t) =
∑
x,α

〈α| Π+(t,x)Π+(0,0) |α〉 (4.4)

=
∑
n

|Zπn|
2

2Eπn

(
e−E

π
nt + e−E

π
n(T−t)

)
+ · · · (4.5)

To compute C3pt(t, T−t) on the lattice, all the Wick contractions must be performed.
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One of them, for example is:

C ′3pt(tf, ti) =

〈
d̄(z)γ5u(z) ū(0)Γ 1d(0) ū(0)Γ 2d(0) d̄(x)γ5u(x)

〉
(4.6)

= −γ5αβγ
5
κεΓ

1
δσΓ

2
γρD(0, x)ρκceD(0, z)σαbaU(z, 0)βγacU(x, 0)εδeb

in the last equation D and U represent the d and u quark propagators and the prime

is used to indicate that only one Wick contraction is included. The calculation of 4.6 is

implemented in two different ways and compared to an independent calculation.

In the first method, the following quantity is considered:

Π(0, x)ρδcb = γ
5
ρρ ′D(0, x)†ρ ′κ ′ceγ

5
κ ′κγ

5
κεU(x, 0)εδeb

this corresponds to two quarks propagators contracted to form a pion at one end, and

at the other end the quarks indices are kept uncontracted, often referred to as a meson

block. Π(0, x) can be obtained with a single propagator inversion as the D(0, x)† can be

obtained through γ5-hermiticity. The open indices will later be used to contract with the

Dirac-color structure of the operator. Replacing Π(0, x) in the expression for C ′3pt(tf, ti)

the result is:

C ′3pt(ti, tf) =
∑
z,x

Γ 1δσΓ
2
γρΠ(z, tf; 0)σγcbΠ(0;x, ti)ρδcb (4.7)

4.7 shows that it is valid to perform a momentum projection at the sink of each Π(y, x)

structure before contracting with Γ 1 and Γ 2. This results in a computational efficient

method for this case and it this thus employed for data production. In figure 4.2 the

diagram representing the calculation C3pt(ti, tf) with this implementation is illustrated.

The second method serves as a cross-check of results obtained with the previous one.
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In this case the following quantity is used:

S(z, x)βκae = U(z, 0)βγacΓ
2
γρD(0, x)ρκce (4.8)

Here S corresponds to a sequential propagator with a current inserted at a single space-time

point. Using S, the three-point function can be written as:

C ′3pt(tf, ti) = −
∑
x,y

S(tf, z; ti,x)βκaeS(ti,x; tf, z)
†
βκae (4.9)

=


−S(tf, z; ti,x)βκaeS(tf, z; ti,x)κβea for [γ5, Γ ] = 0

S(tf, z; ti,x)βκaeS(tf, z; ti,x)κβea for {γ5, Γ } = 0

Then, only a contraction of two sequential propagators is required to obtain C3pt(z, x).

For the implementation of both of these methods, the Lalibe software 1 suit was

π` π´
O

t0tf ti

FIG. 4.2: Three-point function diagram for four-quark operators contributing to π− → π+.

employed to generate the quark and sequential propagators and saved into hdf5, a format

for storing and managing data. Then, contractions for both methods were implemented

in python. The resulting error of calculating a given three-point correlation function was

found to be within rounding error. Additionally, as mentioned before, this results were

confirmed by an independent cross-check. The results obtained are shown in 4.3.

1This software will be available soon at https://github.com/callat-qcd/lalibe
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4.1.3 Chiral, continuum and infinite volume extrapolations

In order to determine observables from lattice calculations, chiral, continuum and

infinite volume extrapolations are required. The first considered here is the chiral extrap-

olation. It was mentioned above that operators O ′i have the same chiral structure as the

corresponding unmixed Oi, therefore it is only necessary to derive the χPT formulas for

the unprimed set as they differ from the primed set only in the LECs.

The chiral transformations for the operators under SU(2) are given by:

O++
1+ ∼ τ+L ⊗ τ+R

O++
2+ ∼ τ+RL ⊗ τ+RL + τ+LR ⊗ τ+LR

O++
3+ ∼ τ+L ⊗ τ+L + τ+R ⊗ τ+R (4.10)

with the spurions operators τ+L , τ
+
R , τ

+
RL transforming as:

τ+L → Lτ+L L
† τ+R → Rτ+RR

†

τ+LR → Lτ+LRR
† τ+RL → Rτ+RLL

† (4.11)

In order to compute the π− → π+ transition amplitudes, the spurious operators are

set to the raising operator

τ+ =

0 1

0 0

 (4.12)

The low-energy operators arising in χPT for the π− → π+e−e− operators can be

obtained by considering the power-counting arguments outlined in [117], and lead to the
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following chiral Lagrangian:

Lχ = ēec G
2
F

Λββ

Λ4χ0
(4π)2

F2

4

[
cW1 β1Oχ1+ − cW2

β2

2
Oχ2+ − cW3 β3Oχ3+

]
(4.13)

The constant GF is Fermi’s weak decay constant, Λββ corresponds to the ultraviolet scale at

which the new physics, lepton number violating, may arise. The chiral symmetry breaking

scale is Λχ0 = 4πF where F is the pion decay constant in the chiral limit with normalization

Fphysπ ' 92.2 MeV. The Wilson coefficients, cWi , incorporate the effects of the heavy BSM

physics integrated out to match to the local Lagrangian in terms of SM fields. Finally, the

dimensionless LECs are βi and must be determined to predict the strength of the various

π− → π+ transition operators.

The standard parameterization of the pions is done using the following ξ2, Σ fields:

ξ2 = Σ = e
√
2iφ/F (4.14)

where the φ matrix containing the pion fields is given by:

φ =

 π0√
2

π+

π− − π0√
2

 (4.15)

and

ΣµL = Σ∂
µΣ†

ΣµR = Σ
†∂µΣ (4.16)
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At the hadronic level, the operators are dimensioless and given by:

Oχ1+ = Tr
(
Σ†τ+LΣτ

+
R

)
, (4.17)

Oχ2+ = Tr
(
Σ†τ+LRΣ

†τ+LR + Στ
+
RLΣτ

+
RL

)
, (4.18)

Oχ3+ =
1

Λ2χ0
Tr (ΣLµτ

+
LΣ

µ
Lτ

+
L + ΣRµτ

+
RΣ

µ
Rτ

+
R ) , (4.19)

Then, in order to renormalize loop integrals appearing at NLO order in the chiral expan-

sion, counter terms must be constructed from higher dimensional operators. Therefore,

NLO operators will be required:

Onlo1+ =
Tr
(
∂µΣ

†τ+L ∂
µΣτ+R

)
Λ2χ0

(4.20)

Onlo2+ =
Tr
(
∂µΣ

†τ+LR∂
µΣ†τ+LR + ∂µΣτ

+
RL∂

µΣτ+RL
)

2Λ2χ0
(4.21)

Onlo3+ =
Tr
(
Σχ†+τ

+
LΣχ

†
+τ

+
L + Σ†χ+τ

+
RΣ
†χ+τ

+
R

)
Λ4χ0

(4.22)

Then, at NLO, these operators in the chiral expansion take the following form2:

O1 =
β1Λ

4
χ0

(4π)2
[
1− ε2π

(
3 ln(ε2π) + 1+ c1

)]
O2 =

β2Λ
4
χ0

(4π)2
[
1− ε2π

(
3 ln(ε2π) + 1+ c2

)]
O3

ε2π
=
β3Λ

4
χ0

(4π)2
[
1− ε2π

(
5 ln(ε2π) + 1− c3

)]
(4.23)

The parameters in the last equation are given by:

Λχ = 4πFπ , επ =
mπ

Λχ
, (4.24)

2These correspond to the corrected expressions for the expansions in [92], where a contribution from
a pion loop was mistakenly excluded.
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Fπ = Fπ(mπ) is the pion decay constant at a given pion mass, normalized such that

Fπ(π
phys) = 92.2 MeV, Λχ is the chiral symmetry breaking scale and ε2π is the small

expansion parameter for χPT.

The above equations serve to describe the pion mass dependence of the operators in the

continuum theory. Nevertheless, LQCD quantities are computed at finite lattice spacing

and finite volume, and these finite effects must be incorporated in addition to 4.23. Then,

the LQCD results can be extrapolated to the physical point. This must be incorporated

according to the action employed, here a Mixed Action. Thus following Mixed Action

EFT [123, 124, 125, 126, 127, 128, 129, 130, 131], the finite lattice spacing effects can be

incorporated.

The finite-volume effects can be incorporated into the chiral expansion by employing

a finite volume version of the tadpole integral:

I(m,mL) =
∫
d4k

(4π)4
i

k2 −m2 + iε
+
4m2

(4π)2

∑
|n| 6=0

K1(mL|n|)

mL|n|
. (4.25)

the tadpole integral in the continuum can be computated using dimensional regularization

with a modified minimal subtraction and yields:

I(m) =
m2

(4π)2
ln

(
m2

µ2

)
. (4.26)

Addionally, there is partially-quenched hairpin contribution to account for and which is

given by the following integral [128]

IPQ(m) =

∫
d4k

(4π)4
i∆2PQ

(k2 −m2 + iε)2
= ∆2PQ

∂

∂m2
I(m) (4.27)

where ∆2PQ ≡ m2
π,sea − m2

π,val. Lastly, the enhanced finite volume correction from the
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hairpin contribution can be obtained using 4.27:

I(m,mL) = 1+ ln(m2/µ2)

(4π)2
− 2
∑
|n|6=0

K0(mL|n|)

(4π)2
. (4.28)

The final expressions for the operators extrapolation formulae are:

O1 =
β1Λ

4
χ

(4π)2

[
1+ 2ε2vs

(
ln(ε2vs) + f1(mvsL)

)
− ε2π

(
ln(ε2π) + 1+ f0(mπL) − c

′
1

)
+ α1ε

2
a + α

(4)
1 ε

4
a + c

(4)
1 ε

4
π +m1ε

2
aε
2
π

]
, (4.29)

O2 =
β2Λ

4
χ

(4π)2

[
1+ 2ε2vs

(
ln(ε2vs) + f1(mvsL)

)
− ε2π

(
ln(ε2π) + 1+ f0(mπL) − c

′
2

)
− 2ε2PQ

(
ln(ε2π) + 1+ f0(mπL)

)
+ α2ε

2
a + α

(4)
2 ε

4
a + c

(4)
2 ε

4
π +m2ε

2
aε
2
π

]
,

(4.30)

O3

ε2π
=
β3Λ

4
χ

(4π)2

[
1− ε2π

(
3 ln(ε2π) + 1− c

′
3 + 2f1(mπL) + f0(mπL)

)
+ α3ε

2
a + α

(4)
3 ε

4
a + c

(4)
3 ε

4
π +m3ε

2
aε
2
π

]
,

(4.31)

where we have defined

f0(mL) =
∑
|n|6=0

K0(mL|n|) f1(mL) =
∑
|n|6=0

K1(mL|n|)

mL|n|
(4.32)

The small expansion parameters are given as defined in [105] for the mixed action

επ ≡
mπ

4πFπ
εvs ≡

mvs

4πFπ

ε2PQ ≡
a2∆I

(4πFπ)2
ε2a ≡

1

4π

a2

w20
(4.33)

where w0 ∼ 0.17 fm is a gradient-flow scale [106] and mvs is the mass of a pion made out

a valence and sea quark. The valence quark masses are tuned as in [105], and in the limit
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a→ 0, mvs → mπ

4.1.4 Extrapolation and Results

In a preliminary proceedings [132], the ratios R were presented and good signals

were observed for almost all the different ensembles, and with supressed excited states

contributions. Here, the final results are presented. The leading contamination comes from

the first excited state and it is canceled in the ratio for the pion correlation functions, and

thus this might explain the reduced contamination. Moreover, little variation is noticed

for point and smeared sources. In this way, a fit to a constant is enough to determine R

in the different ensembles. A sample plot of the results obtained for these ratios is shown

in figure 4.3.

FIG. 4.3: Fits to the ratios Ri for the different operators.

Using the results from the fitted ratios and the necessary extrapolation formulas from

last section, the extrapolations are performed by fitting the renormalized operators to the
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FIG. 4.4: Fits to the chiral extrapolation formulae for the different operators. The physical
point is indicated by the vertical gray band. On the top all the operators are displayed. In
the bottom a zoom plot for the operator O3 is shown.



78

TABLE 4.1: LEC values determined from fits
β1 c1 β′1 c′1 β2

-1.88(12) 4.0(1.3) -6.99(45) 3.8(1.3) -3.56(26)

c2 β′2 c′2 β3 c3
2.4(1.3) 1.063(80) 1.2(1.2) 1.093(63) 9.0(2.0)

formulas 4.29, 4.30, 4.31. When on-shell renormalized quantities are used the behavior of

the perturbative χPT extrapolation tends to improve [129, 133, 134].

The fits are performed using a linear least squares fit, and in order to study the MA

and finite volume effects, the corresponding terms were turned off. The results of these

extrapolations were consistent suggesting MA and finite volume effects are mild.

The fit results are shown in figures 4.4. In the top plot, the data for all the different

operators is shown and the color bands are used to display their continuum limit. Moreover,

as Λχ introduces an mπ dependence through Fπ in the chiral expansion 4.20, the operators

are normalized by Λχ for plotting. In this way, the effects of NLO contributions are easier

to observe, and are seen to be small as there is little variation as the pion mass varies.

Also, as predicted by the chiral expansion, the matrix element for O3 is suppressed with

respect to the others, however a zoom plot for this operator shows a non-zero value.

The results for the determined matrix element values are listed in table 4.2. Also the

corresponding LEC values resulting from the fits are listed in table 4.1. These results can

be compared to values obtained using flavor SU(3) in [118] and are found to agree around

the two-sigma level with O(20 − 40%) uncertainties given [118]. In the next section, a

brief look at how 0νββ decay rates are computed from the above results is presented and

their impact on BSM physics constraints from 0νββ decay.

This is the first time a LQCD determination of these matrix elements has appeared

in the literature. It is exciting that we were able to provide control over all sources of

uncertainty in this first publication.
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TABLE 4.2: Resulting matrix elements extrapolated to the physical point, renormalized in
RI/SMOM and MS, both at µ = 3 GeV.

RI/SMOM MS

Oi[GeV]4 µ = 3 GeV µ = 3 GeV
O1 −1.95(15)× 10−2 −1.93(14)× 10−2
O′1 −7.25(55)× 10−2 −7.85(59)× 10−2
O2 −3.48(30)× 10−2 −3.56(30)× 10−2
O′2 1.02(09)× 10−2 1.09(10)× 10−2
O3 1.78(08)× 10−4 1.79(08)× 10−4

4.1.5 Nuclear Potentials and nn→ ppe−e− Decay Amplitude

There are several approaches for estimating the contributions to 0νββ decay rates

from short range interactions, therefore we will look briefly at available literature.

In [135] matrix elements are estimated by means of factorization, and the contributions

from ππ and πN processes are ignored. These contributions have been previously discussed

in [69, 136] were their relevance was indicated. Therefore, when the matching is performed

to the nucleon level this method yields underestimated results [48].

On the other hand, other approaches use χPT [117, 69] to match from quark to

hadronic operators. In these ππ and πN contributions are considered. However, in par-

ticular [117] omits operators that mix flavors under renormalization when going from the

electroweak to the QCD scale.

This work computes the different ππ contributions are computed and all operators

(including operators that mix) that have not been considered in previous work, and thus

allow us the estimation of their contributions to 0νββ decay rates within an EFT frame-

work as it is shown next.

With the results of the previous section, their contributions to the nuclear decay rate

due to π− → π+ matrix elements can be computed by constructing the nn→ pp potentials

induced by the above processes. The contribution for the strong interacting part for matrix
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element Oi is given by:

Vnn→ppi (|q|) = −OiP1+P2+
∂

∂m2
π

Vπ1,2(|q|)

= −Oi
g2A
4F2π

τ+1 τ
+
2

σ1 · qσ2 · q
(|q|2 +m2

π)
2
, (4.34)

In the last equation, the long-range pion-exchange potential is denoted by Vπ1,2(|q|) =

−τ1 · τ2 σ1 · qσ2 · q/(|q|2 +m2
π) and P+1,2 project onto the isospin raising operator for each

nucleon. The electrons ēec and the prefactor
G2F
Λββ

are not included in this potential.

Furthermore, calculations for nuclear matrix elements arising from a given nucleon

potential already exist, in which the sum of the all the two nucleon potentials appears in

the form 〈0+|∑mn V
nm(q) |0+〉. Therefore from 4.34 it is easy to see that computing the

contributions to 0νββ decay rates, corresponding to a given operator Oi, only requires

multiplying the Oi matrix element and the existing nuclear matrix elements. As a con-

sequence, existing nuclear matrix element calculations [116, 137, 138] can be employed to

study the phenomenological impact of the results obtained here.

It is then convenient to employ a master formula for the calculation of the 0νββ

decay rate which is found in [48]. Basically, the formula is written as a sum of terms

corresponding to different contributions, such that each contribution can be turned on

and off according to the model to study. In the master formula, short and long range

contributions appear in the same form as they were shown in chapter 1:

1

T 0ν1/2
= Gν(Q,Z)|Mν|2


|εν|

2 Short range

〈mββ〉2 Long range

(4.35)

The last equation shows that existing limits on the decay rates can be used to impose limits

on the effective neutrino masses 〈mββ〉2 from long range contributions. On the other hand,
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in the context of EFT, the short range interactions arising from higher order operators are

suppressed by powers of ΛLNV , i.e. εν ∝ Λ−n
LNV , hence limits on 0νββ decay rates can be

used to constraint the LNV scales. Using matrix elements reported on [116], the following

LNV constraints (from 76Ge half-life limits), arising from the short range contributions

computed here for π− → π+ processes, were found:

Λ1 > 3.3 Λ2 > 5.2 (4.36)

Λ3 > 6.9 Λ4 > 5.2 Λ5 > 4.1

4.2 Four-quark Feynman-Hellman Method

The next step to determine the short-range contributions to 0νββ is the calculation

of the four nucleon contact operators. This presents several complications which do not

arise in the π− → π+ case. In the first place, computing a three point function to extract

the matrix element, as shown in section 4.1.2, is far more complicated for nucleons. For

example, in a four-quark operator insertion in between two nucleon states there are quarks

that do not couple to the operator, so there is not a meson block-like structure to facilitate

the calculation. Moreover, a momentum projection can only be done after the coupled and

uncoupled quarks are contracted, which is contrary to the π− → π+ case and would result

in a significantly more computational costly calculation.

A more convenient approach is to use the Feynman-Hellmann method, however com-

plications arise again in the implementation as a sum over operator insertions at all space-

time is required. In the case of a bilinear current, using a sequential propagator this sum

is made automatically. For a four-quark operator insertion, the operator couples to two

quarks and there is no analog that would automatically do the sum. Then, each cur-

rent insertion must be performed individually leading to a cost increased by order volume
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calculations. Typical volumes range from 163 to 643.

This cost increase would significantly limit the size of the statistics than can be used,

and thus become a problem for the four contact nucleon operator due to the signal-to-noise

ratio problem. In order to overcome the computational cost, a new approach is proposed

which allows us to make use of the Feynman-Hellman method and sequential propagators

to reduce the cost. In order to extract the matrix element of interest employing the

Feynman-Hellman theorem, the quantity that must be computed is the following:

∂λCλ(t)

∣∣∣∣
λ=0

=

∫
d4x 〈Ω| O(t)J (x)O†(0) |Ω〉 (4.37)

In the case of baryons with a bilinear current insertion, this quantity can be efficiently

computed using a sequential propagator to automatically sum over all the current inser-

tion locations. However, in the case of four-quark operators, if the current were to be

inserted in the same way, two sums, one for each quark line, would be introduced when

the two propagators are contracted to obtain 4.37. To overcome this problem, a Hubbard-

Stratonovich transformation can be used to relate the matrix elements for bilinear and

four-quark operators.

What is proposed is to perform the calculation in a theory where an additional field

mediating the quark interactions is introduced, then the Hubbard-Stratonovich transfor-

mation [139, 140] can be used to integrate out the mediating field and recover the original

theory. This is similar to the Gross-Neveu model [141] but with a generic bilinear instead

of ψ̄ψ and 4 dimensions instead of 2. In the original theory, the action is defined as

S = S0 + Sλij where:

Sλij = iλij

∫
d4x ψ̄Γ iψ ψ̄Γ jψ (4.38)
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The theory to be used for the numerical calculation, which will be called the σ theory, is

specified by the action S = S0 +
∫
d4xσ

4
+ S ′λ:

Sλ ′i = λ
′
i

∫
d4x ψ̄Γ iψ (4.39)

The field σ is a real scalar and gauge independent field, which is static. If the field σ is local

and ranges from −∞ to ∞, then the Hubbard-Stratonovich transformation can be used

to integrate out the σ field. This, for example, is analogous to four fermion interactions

mediated by a W/Z boson, in which case the heavy W/Z bosons are integrated out leaving

an effective interaction described by a four fermion contact term. For the σ theory, this

can be illustrated using the correlation function:

Cλ ′i(t) =
1

Zλ ′i

∫
DΦe−S0

∞∫
−∞

dσ ′e
∫
d4x(σ

′
2
)2+λ ′iσ

′(ψΓ iψ)O(t)O†(0) (4.40)

Now, let σ = σ ′ − iλψΓ iψ, then:

∞∫
−∞
dσe−

∫
d4x{σ

2

4
+λ ′iiσ(ψΓ

iψ)} =

∞∫
−∞
dσ ′e−

∫
d4xσ ′2

e−λ
2

i

∫
d4x(ψΓ iψ)2 = αe−λ

′2
i

∫
d4x(ψΓ iψ)2 (4.41)

where α is a constant. Substituting 4.41 into 4.40:

Cλ ′i(t) =
1

Zλ ′i

∫
DΦe−S0−λ

′2 ∫ d4xψ̄Γ iψψ̄Γ iψ (4.42)

For λii = λ ′2, after integration the original correlation function is recovered. To

find an expression for 4.37 in the σ theory partial derivatives with respect to λ ′i must be

taken. Before proceding, it is important to notice that the integrand in the 4.40 is even

with respect to the σ integral. It is this property which will serve to take care of the
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additional sum appearing when contracting two sequential propagators. Also notice that

if just one partial derivative is taken the integrand becomes odd and thus the integral

vanishes. Therefore, the following second partial derivative is considered:

∂2λiC
′
λi(t) = −

(∂2
λi
Z ′λi)C ′λi(t)
Z ′λi

−
(∂λiZ ′λi)
Z ′λi

∂λiC
′
λi(t) +

(∂λiZ ′λi)2
Z ′2λi

C ′λ(t) (4.43)

+
i(∂λiZ ′λi)
Z ′2λi

∫
DΦ

∫∞
−∞ dσ

∫
d4xe

−S ′−S ′
λiT
{
O(t)σψ̄Γ iψ O†(0)

}
(4.44)

−
1

Z ′λi

∫
DΦ

∫∞
−∞ dσ

∫
d4x

∫
d4ye

−S ′−S ′
λiT
{
O(t)σxψ̄xΓ iψx σyψ̄yΓ iψy O†(0)

}
(4.45)

As calculations in the σ theory will require an integration over σ, it is sufficient to consider

the terms which are non-zero after this integration, thus the most relevant quantity to

compute in the σ theory is:

N(t) = −
1

Z ′λi

∫
DΦ

∫∞
−∞ dσ

∫
d4x

∫
d4ye

−S ′−S ′
λiT
{
O(t)σxψ̄xΓ iψx σyψ̄yΓ iψy O†(0)

}
(4.46)

Recalling that σ is a field defined at each space-time point, then in order to obtain an

even integrand in the last equation we must have x = y, hence the integral over σ becomes

δ4(x− y), simplifying one of the sums:

N(t) = − α ′
1

Zλi

∫
DΦ

∫
d4xe

−S ′−S ′
λiT
{
O(t)ψ̄xΓ iψx ψ̄yΓ iψy O†(0)

}
(4.47)

In the lattice, one would implement the calculation appearing in 4.46. The strategy

in this case is to compute two sequential propagators with the σ field times the current

inserted. In this way, the sum over the insertion positions is performed automatically. An

illustration of the diagram corresponding to the π− → π+ three-point correlation function
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is shown in 4.5. The first thing to notice is that with this implementation, the order

π+ π−

σΓ2
∑

σΓ1
∑

t 0

FIG. 4.5: Diagram for the three-point function in the σ theory.

volume operator insertions are exchanged by a integral over σ which should significantly

reduce the computational cost and allow us to sample higher statistics. Second, four-quark

insertions are exhanged by bilinear insertions in sequential propagators, as a consequence

the sequential propagators can be reused for computing additional four-quark operators.

Both of the implementation advantages mentioned above would be significant for

the determination of the four nucleon contact operator matrix elements as they would

allow to increase the statistics necessary to overcome the signal-to-noise ratio problem. In

addition to, the advantages of the Feynman-Hellman method, such as access to variable

time separations would be available too.

In order for the method to be worthwhile, we most demonstrate that the extra noise

introduced by the σ field can be suppressed down to the gauge noise with much less

than the volume statistics needed in the method with individually inserted currents (brute

force).

A first step toward this test has been already taken and the brute force method has

been implemented. In fact, the implemented code has been used to cross-check code for

the method employed here to compute the π− → π+ matrix elements. However, as the

brute force method is very costly, a calculation on a large enough size lattice has not been
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performed yet.

The second step for the testing of the method is the implementation of the calculation

in σ theory. In order to do this, a modification to the code for computing quark propagators

will be done such the σ are correctly incorporated into the calculation. Using quarks

propagators obtained with the modified code these can be contracted to compute the

required three-points entering in the Feynman-Hellman relation.

Finally, matrix elements for π− → π+ transitions will be computed with both the

brute force method and the method proposed here. Nevertheless, the extraction of the

matrix element from the data is a little bit different than was has been presented in the first

subsection of this chapter. The difference lies in the observable used to obtain the matrix

element, basically normalization factors and excited states contamination are different, and

thus they must be carefully determined for a precise comparison of the resulting errors.

Summary

In this chapter the first LQCD calculation of the π− → π+ matrix elements contribut-

ing to 0νββ was performed. As the nature and mechanism giving the neutrino its mass are

still unknown, this calculation is relevant to understand the contributions from the short

range interactions. As it was showed, this calculation alone is not sufficient to predict the

decay rate, however it provides a mean to constraint the corresponding scales at which

these mechanism may contribute to 0νββ and thus help in the interpretation of results in

case a positive signal is observed in the 0νββ experiments.

Additionally, a new method is proposed for the calculation of the short range con-

tributions from the four nucleon contact interactions. These calculations are far more

complicated than the π− → π+ contributions for several reasons, among them high com-

putational cost and the large statistics required. The new method is expected to contribute

to overcoming these problems as it allows for a computionally cheaper implementation of
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the calculation.



CHAPTER 5

Conclusions And Future Work

This work addressed the short-range interaction contributions to 0νββ. The LO

contribution due to the process π− → π+ was presented. This contribution is the simplest

to compute using LQCD both because the ease to implement the calculation and to extract

the matrix elements.

To report physically meaninful quantities, the non-perturbative renormalization of

the operators was performed and renormalization constants are expressed both in the RI-

SMOM scheme as well as MS, both at 3GeV. In this way, it is possible to use the results

here to match into the underlying nuclear theory once the wilson coefficients has been

obtained.

A precise calculation of the nucleon axial charge gA is briefly presented here as well.

Non-pertubative renormalization of gA was performed as necessary step to produce a

percentage level precise determination. The method employed is based on the Feynman-

Hellman method, and was originally developed for baryons and here the method was

extended to meson quantities in order to explore alternatives to tackle the four-nucleon

contact interaction contributions determination. Finally a method is proposed to compute
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the four nucleon contact operator which also contributes to 0νββ. This method proposes

the combined use of the Feynman-Hellman theorem and a Hubbard-Stratonovich transfor-

mation in order to reduce the computational cost of implementing the calculation. This

would allow to use higher statistics in the calculation which can hopefully alleviate the

signal-to-noise ratio problem suffer by baryonic quantities. The very next step after this

work is the implementation of the proposed method. Afterwards, the π− → π+ can be

reexamined to assess the performance of the method before proceeding to test it with the

four-nucleon contact contributions.



APPENDIX A

Gamma Matrices

An explicit represetation of the Euclidean γ matrices is given by:

γ1 =



0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0


γ2 =



0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


γ3 =



0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0



γ4 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


γ5 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


(A.1)
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APPENDIX B

Fierz Transformations

Here the Fierz Transformations are used to convert from the mixed basis, used for the

calculation of π− → π+ matrix elements, to the unmixed basis used for the renormaliza-

tion of the four quark operators in chapter 2. The mixed basis is given by the following set

of operators:

O++
1+ = (q̄Lτ

+γµqL) [q̄Rτ
+γµqR]

O++
2+ = (q̄Rτ

+qL) [q̄Rτ
+qL] + (q̄Lτ

+qR) [q̄Lτ
+qR]

O++
3+ = (q̄Lτ

+γµqL) [q̄Lτ
+γµqL] + (q̄Rτ

+γµqR) [q̄Rτ
+γµqR]

O ′++
1+ = (q̄Lτ

+γµqL] [q̄Rτ
+γµqR)

O ′++
2+ = (q̄Lτ

+qL] [q̄Lτ
+qL) + (q̄Rτ

+qR] [q̄Rτ
+qR) (B.1)

where τ+ =

0 1

0 0

.

For the matrix elements of interested, only the parity even components of these oper-

ators contribute. Moreover, unmixed and mixed operators can be related by Fierz Identi-

ties, and in this case it is convenient to use the following basis {ΓA} = {PR, PL, PRγµ, PLγµ, σµν}
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and the Chiral Fierz Identities [91]. The orthogonality of the basis Tr[ΓAΓ
B] = 2δBA yields

the completeness relation:

Tr[ΓAΓ
A] = Tr[PRPR] + Tr[PLPL] + Tr[PRγmuPRγ

mu] + Tr[PLγmuPLγ
mu] +

1

4
Tr[σµνσµν]

(B.2)

and the Fierz Identity:

(ΓA)ii(Γ
B)jj =

1

4
Tr[ΓAΓCΓBΓD](Γ

D)ij(Γ
C)ji (B.3)

Then, the basis in B.1 can be first written in terms of the u and d quarks (with explic-

itly Dirac and color indices shown) as:

O++
1+ =

(
ūαa(γ

µPL)αβδ
abdβb

)(
ūρc(γ

µPR)ρεδ
cddεb

)
(B.4)

O++
2+ =

(
ūαa(PL)αβδ

abdβb
)(
ūρc(PL)ρεδ

cddεb
)
+
(
ūαa(PR)αβδ

abdβb
)(
ūρc(PR)ρεδ

cddεb
)

O++
3+ =

(
ūαa(γ

µPL)αβδ
abdβb

)(
ūρc(γ

µPL)ρεδ
cddεd

)
+
(
ūαa(γ

µPR)αβδ
abdβb

)(
ūρc(γ

µPR)ρεδ
cddεb

)
O ′++
1+ =

(
ūαa(γ

µPL)αβδ
bcdβb

)(
ūρc(γ

µPR)ρεδ
addεb

)
(B.5)

O ′++
2+ =

(
ūαa(PL)αβδ

bcdβb
)(
ūρc(PL)ρεδ

addεb
)
+
(
ūαa(PR)αβδ

bcdβb
)(
ūρc(PR)ρεδ

addεb
)

For the operators that do not mix different quark flavors, it is just sufficient to take the

parity even part. For the remaining operators, use of B.2 is required and the result is:

O++
1+ =

1

4

(
ūa(γ

µ(1− γ5))da
)(
ūb(γ

µ(1+ γ5))db
)
=
Q2

4
(B.6)

O++
2+ =

1

4

(
ūa(1− γ5)da

)(
ūb(1− γ5)db

)
+
1

4

(
ūa(1+ γ5)da

)(
ūb(1+ γ5)db

)
=
Q4

2

O++
3+ =

1

4

(
ūa(γ

µ(1− γ5))da
)(
ūb(γ

µ(1− γ5))db
)
+
(
ūa(γ

µ(1+ γ5))d
)(
ūb(γ

µ(1+ γ5))db
)
=
Q3

2

(B.7)
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For the mixed components of the basis, the using the Fierz Identity written above one

finds:

O ′++
1+ =

(
ūαa(γ

µPL)αβδ
bcdβb

)(
ūρc(γ

µPR)ρεδ
addεb

)
= −

Q3

2
(B.8)

O ′++
2+ =

(
ūαa(PL)αβδ

bcdβb
)(
ūρc(PL)ρεδ

addεb
)
+
(
ūαa(PR)αβδ

bcdβb
)(
ūρc(PR)ρεδ

addεb
)
= −

(
Q4 −Q5

)
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