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Hawking radiation and classical tunneling: A ray phase space approach

E. R. Tracy and D. Zhigunov
Department of Physics, William & Mary, Williamsburg, Virginia 23187-8795, USA

(Received 10 September 2015; accepted 19 November 2015; published online 4 January 2016)

Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing

equations similar to those for light waves in the immediate vicinity of a black hole event horizon.

This acoustic analogy has been used by Unruh and others as a conceptual model for “Hawking

radiation.” Here, we use variational methods, originally introduced by Brizard for the study of

linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of

background flows. The variational formulation endows the evolution equations with natural

Hermitian and symplectic structures that prove useful for later analysis. We derive a 2� 2 normal

form governing the wave evolution in the vicinity of the “event horizon.” This shows that the

acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process

weakly coupled to a unidirectional non-dispersive wave (the “incoming wave”). Given the normal

form, the Hawking “thermal spectrum” can be derived by invoking standard tunneling theory, but

only by ignoring the coupling to the incoming wave. Deriving the normal form requires a novel

extension of the modular ray-based theory used previously to study tunneling and mode conversion

in plasmas. We also discuss how ray phase space methods can be used to change representation,

which brings the problem into a form where the wave functions are less singular than in the usual

formulation, a fact that might prove useful in numerical studies. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4936918]

I. INTRODUCTION

The tilting of light cones in the curved spacetimes of the

General Theory of Relativity (GTOR) has an acoustic ana-

log: sound waves propagating in a background with flow.

Recall that an event horizon arises in spacetimes when there

are regions that are casually separated, as determined by the

behavior of light rays.1 An “event horizon” appears in the

acoustic model when the background flow speed transitions

through the local sound speed. This acoustic analogy was

first noted by Unruh,2 and later examined by Jacobson.3 (See

Ref. 5 for a more recent summary of work in this area.)

There are other analogs for Hawking radiation that have

been explored in the literature, for example, Weinfurtner

et al.4 have experimentally examined surface waves on water

flowing in a channel of varying width. In addition to the

GTOR literature on this topic (see the references in Visser’s

article), there has also been some interest in laboratory ana-

logs of Hawking radiation in the Atomic Molecular and

Optical (AMO) literature, where similar effects have been

proposed for light wave propagation within certain types of

Bose-Einstein condensates. This has led to the study of

“artificial black holes.”5

The equations for acoustic wave propagation near the

event horizon exhibit an avoided-crossing-type of behavior.

(This avoided crossing behavior was noted, for example, by

Jacobson3 in the study of black holes using quantum field

theory.) Because of the possibility of tunneling between

rays, short wavelength fluctuations in the immediate vicinity

of the event horizon can escape. While Jacobson cites some

of the plasma literature on mode conversion, his method of

approach does not pursue a ray phase space viewpoint,6

which we think helps to clarify things by highlighting those

aspects of the theory that are representation-independent,

hence of most importance.

The goal of the present paper is to examine the acoustic

analogy using ray phase space methods.7 These methods can

be used to systematically derive the normal form for the evo-

lution equations in the immediate vicinity of the event hori-

zon. The normal form is the simplest possible form for the

governing equations, as defined by having the smallest num-

ber of terms, arranged in the most symmetrical manner, and

the normal form displays those combinations of parameters

that are invariant under various transformations, hence it

reveals those combinations of parameters that are most im-

portant physically. For example, it displays that combination

of parameters that will appear in the S-matrix connecting the

incoming and outgoing wave amplitudes. See, for example,

Ref. 8.

The current problem is not of standard type. It requires

an extension of the normal form analysis presented in Ref. 8

or in Appendix F of Ref. 7 in order to identify the uncoupled

ray Hamiltonians. The normal form involves a (scalar) tun-

neling process weakly coupled to a non-dispersive uni-direc-

tional wave (the “incoming wave,” also a scalar field). Given

the normal form, the Hawking “thermal spectrum” can be

derived by invoking standard tunneling theory, but only by

ignoring the coupling to the incoming wave.

The methods presented here can be extended to higher

dimensions (for simplicity, in this paper we only discuss the

case of one spatial dimension), and to include more compli-

cated physics. For example, the variational methodology

used here was originally introduced by Brizard9 to study lin-

earized MHD waves in the presence of flows. But we post-

pone consideration of those matters because of the greater

complexity of the problem if we include magnetic fields.
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The outline of the paper is as follows: In Section II, we

present a heuristic treatment of the problem, highlighting

key points that might get overshadowed when we dive into

the technical details in Sections III–VI. In Section III, we

discuss one-dimensional acoustics using a cold fluid model.

We then show how to derive the acoustic model (including a

background flow) using a variational principle. This will

allow us to use standard methods to derive conservation laws

and will lead us to a Hamiltonian formulation of the linear-

ized wave equation. We follow Brizard9 for this part of the

paper, and note that the symplectic inner product that plays

an important role in our work is also invoked in Ref. 4, but

they do not use a ray phase space approach. In Section IV,

we examine eikonal solutions of the linearized wave equa-

tions and show that we recover the dispersion function (3)

away from the event horizon. In Section V, we construct the

local wave operator in the vicinity of the horizon using phase

space methods to find the normal form. We then solve the

local wave equation and compute the S-matrix.

Elsewhere, we will discuss the discretization of the

phase space variational principle. This provides a means to

derive numerical schemes that are symplectic and have good

stability properties.

II. HEURISTIC TREATMENT

Before diving into mathematical details, it is useful to

summarize the main result, which is really quite simple if we

allow ourselves to ignore some technical matters we will dis-

cuss later on. The treatment here is non-relativistic, so trans-

formations between frames are Galilean.

Start with the wave equation for acoustic waves in a uni-
form and stationary background. The dispersion function in

that case is the familiar

Dðk; xÞ � x2 � c2
s k2 ¼ ½x� csk�½xþ csk�: (1)

Here, x is the wave frequency, and k is the wavenumber.

The two roots of D¼ 0 are left- and right-moving nondisper-

sive waves that propagate at the sound speed 6cs.

If there is flow with fluid velocity v0, Doppler effects

must be included, and in the lab frame the dispersion func-

tion becomes

D0ðk; xÞ ¼ ðx� kv0Þ2 � c2
s k2

¼ ½x� ðv0 þ csÞk�½x� ðv0 � csÞk�
� kþðk; xÞk�ðk; xÞ: (2)

Note that if v0¼6cs, a zero-frequency root appears for D0 ¼0:
This corresponds to a standing (frozen) wave pattern.

Figure 1 shows the curves satisfying D0 ¼ kþk� ¼ 0.

These are plotted on the ðv0; kÞ-plane, rather than ray phase

space (x, k), which allows us to see the entire range of behav-

iors this system can exhibit without having to specify a flow

profile. For Figure 1, the sound speed is assumed to be con-

stant c2
s ¼ 1, implying there are “event horizons” at v0 ¼ 61.

We might guess that the local dispersion function gov-

erning sound waves in a nonuniform medium with flow is of

the form (we now drop the prime)

Dðx; k; xÞ ¼ ½x� ðv0ðxÞ þ csðxÞÞk�½x� ðv0ðxÞ � csðxÞÞk�
� kþðx; k; xÞk�ðx; k; xÞ: (3)

The notation we use here (and throughout the paper) empha-

sizes that, because the background is assumed to be time-

stationary, we can treat single-frequency waves by Fourier

analysis. In these expressions, we want to view Dðx; k; xÞ as

a function of the variables (x, k) which form a conjugate pair

on the ray phase space. The frequency x appears as a

parameter.

In WKB theory, the dispersion function Dðx; k; xÞ is the

ray Hamiltonian. In a two-dimensional ray phase space, the

zero locus of the Hamiltonian (D¼ 0) is also the set of rays.

For example, in Figure 2, we show the rays near the event

horizon v0 ¼ cs for the special case where cs¼ 1, and use a

linear velocity profile, v0ðxÞ ¼ 1þ x, hence the event hori-

zon is at x¼ 0.

The arrows on the rays in Figure 2 indicate the direction

of the ray evolution given by Hamilton’s equations7 (sub-

scripts here denote partial derivatives)

dx

dt
¼ �D�1

x Dk;
dk

dt
¼ D�1

x Dx: (4)

The smooth central branch that passes near the origin is

a right-moving wave associated with the root kþ ¼ 0. This is

the “incoming” wave. A little algebra shows that the group

velocity for this wave equals 2cs at the event horizon.

The other branch, associated with k� ¼ 0, forms an

avoided crossing, typical of tunneling. For those branches of

the dispersion surface, as x approaches zero jkj ! 1. The

Hamilton equations for these rays show that disturbances

propagate from large- to small-k, meaning that to find the

disturbances that escape from the vicinity of the event hori-

zon into the subsonic region (to the left in Figure 2) we must

specify initial data on the rays at the event horizon. In the

FIG. 1. A plot of the surface D0 ¼ 0, where D0 is defined in (2), using x¼ 1

and cs¼ 1. The plot is shown in terms of k and v0. To guide the eye, we have

also plotted the lines v0 ¼ 61 and k¼ 0 (all three of these lines are dashed).

The avoided crossings, where v2
0 ¼ c2

s ¼ 1, are clear.
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case of black holes, “Hawking radiation” corresponds to

emission of massive particles and photons from the vicinity

of the event horizon due to quantum field fluctuations, pre-

sumably at very high jkj.
The notations ½0; 1; s2; ð1þ s2Þ� in Figure 2 are the ratios

for the energy on rays undergoing tunneling from a disturb-

ance starting at large positive k, just to the right of the event

horizon. Part of the energy for this disturbance tunnels

through and “escapes” into the subsonic region. These tun-

neling connection coefficients are computed in isolation

from the incoming wave, as explained in the text near

Eq. (11), and derived in Section V.

Notice that to the left of the event horizon at x¼ 0 the

rays propagate in opposite directions (indicating the wave

equation is bi-directional in that region), while to the right of

the event horizon both rays propagate to the right.

We should also note that jkj ! 1 is usually interpreted

as the signature of a “resonance.” However, there is nothing

fundamental in a mathematical sense about this characteriza-

tion, since jkj going to infinity at a particular point in x can

be removed by a linear canonical transformation. For exam-

ple, we can use the linear symplectic transformation given in

(108), which we will discuss in Section V. A more invariant

way to characterize a resonance using normal form theory is

given in Chap. 6 of Ref. 7, and we will use that method here.

As will be shown in Section IV, the WKB-based intu-

ition reflected in the expression (3) is valid away from the

event horizon, but it breaks down in the immediate vicinity

of the horizon because WKB is invalid there. A local treat-

ment must be developed in order to compute the S-matrix

connecting incoming and outgoing WKB solutions. We sum-

marize the approach here briefly, with details given in

Sections III–VI of the paper.

The linearized equations of one-dimensional gas dy-

namics, Eqs. (23)–(25), will be derived from a variational

principle (30), and a Hamiltonian field theory is then devel-

oped using standard methods. The canonical field variables

are the particle displacement, nðx; tÞ, and the momentum

density, pðx; tÞ. Written in terms of this canonical formula-

tion, time evolution is governed by a 2� 2 Schr€odinger-

type equation (44). The associated 2� 2 Weyl symbol is

[see Eqs. (45) and (50)]

Aðx; k; xÞ � Bðx; kÞ � x1 ¼ kv0ðxÞ � x i
�ic2

s k2 kv0ðxÞ � x

� �
:

(5)

To focus on the key points of this heuristic discussion here,

we simplify by setting the density q0 equal to unity, ignoring

Moyal terms in the product kv0ðxÞ (defined in (49) below),

and using a constant sound speed cs.

Notice that the symbol matrix A is not self-adjoint, but it

becomes self-adjoint (for real x, k, and x) when we multiply

it by i times the symplectic matrix, J, defined in (40). This im-

portant fact is a general characteristic of Brizard’s theory.9

To isolate the tunneling process as much as possible, we

need to bring the symbol matrix (5) into normal form. Then,

the 2� 2 operator associated with that symbol will provide

us with the simplest local wave equation, valid in the imme-

diate vicinity of the event horizon.

To compute the normal form, we start with the eigenval-

ues and eigenvectors of the non-self-adjoint A. The eigenval-

ues are

k6 � ðv06csÞk � x: (6)

For a fixed (but arbitrary) frequency x, choose k0ðxÞ by

solving kþðx ¼ 0; k0ðxÞ; xÞ ¼ 0

kþ ¼ 0) k0 xð Þ ¼ x
2cs

: (7)

The next step in the normal form calculation is to Taylor

expand all quantities about the point in phase space where the

incoming ray intersects the event horizon, ½x ¼ 0; k ¼ k0ðxÞ�.
Writing k ¼ k0 þ j, we keep only the leading terms in j in each

of the expressions. (Higher order corrections can, of course, be

included if they are deemed necessary. See Ref. 10 for a discus-

sion.) After some lengthy algebra, summarized in detail later in

the paper, we find we can recast the 2� 2 symbol governing the

local interacting waves into the self-adjoint form

Dðx;k;xÞ�
Dþ a

a� D�

 !

�
ðv0þ csÞðk0þjÞ�x �icsj

icsj ðcs� v0Þðk0þjÞþx

 !
:

(8)

We identify Dþ and D� as the uncoupled dispersion functions

at the event horizon, and a is the coupling between them.

(Note that the eigenvalues of Aðx; k; xÞ given in (6), kþ and

k�, depend upon k, while Dþ and D� depend upon j.)

FIG. 2. A plot of the surface D¼ 0, now restricted to the region around the

resonance at v0 ¼ þcs ¼ 1, assuming a linear velocity profile of the form

v0ðxÞ ¼ csð0Þ 1þ x
L

� �
¼ 1þ xð Þ, where we have set csð0Þ ¼ 1, and L¼ 1.

Note that this plot uses x as the horizontal axis. An avoided crossing type of

behavior is present at the resonance, where k�ðx; kÞ ¼ 0, but there is an

additional branch where kþðx; kÞ ¼ 0 is present as well, so this is not tunnel-

ing of the standard type. See text for details.
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The coupling is usually evaluated at the base point of the

Taylor expansion in ray phase space [here ðx ¼ 0; k ¼ k0Þ],
setting it equal to a constant value.7 This simplification is of-

ten sufficient to get good results. But in the present case, set-

ting j¼ 0 implies zero coupling. We carry the coupling term

along to remind ourselves it is not exactly zero. Neglect of

the coupling is required to recover the Hawking result

outlined below, and in our derivation of the S-matrix in

Section V. Testing the accuracy of the neglect of the coupling

will be carried out numerically and reported in another paper.

The entry Dþ is the dispersion function for a right-

moving wave with group velocity 2cs at the event horizon,

as can easily be verified using the Hamilton equations with

Dþ as ray Hamiltonian. This is the “incoming wave.”

The entry D� is the wave undergoing tunneling when

v0ðxÞ � cs. We now consider this avoided crossing sepa-

rately, using v0ðxÞ ¼ cs 1þ x=Lð Þ, as in Eq. (95)

D� x; j; xð Þ ¼ v0 � csð Þj� x

¼ cs

L
jx� x

� cs

L
xj� g2
� �

; (9)

where g2 is defined as in Eq. (96).

The ray equations, using D� as the ray Hamiltonian, are

dx

dt
¼ �D�1

�;xD�;j ¼
cs

L
x;

dj
dt
¼ D�1

�;xD�;x ¼ �
cs

L
j: (10)

This implies that disturbances that start near x � 0 at very

small spatial scales (large jjj) propagate toward smaller jjj,
while moving away from the origin in x. We will continue to

refer to Figure 2 in later discussions of the tunneling process,

but in a slight abuse of notation the shift of the origin in

k-space to k0ðxÞ given by (7) should be understood.

In Section V, we compute the S-matrix coefficients relat-

ing the general outgoing (complex) amplitudes on opposite

sides of the horizon [see Eq. (103)] given a general incoming

disturbance. For the special case shown in Figure 2, where there

is no disturbance at large negative j, there is a jump in the

complex amplitude as we cross the event horizon of the form

a� ¼ �isaþ, where a6 are the amplitudes of the field to the

left and right of the event horizon in the x-representation, and

s � e�pg2 ¼ e�pxL=cs : (11)

The energy associated with the outgoing transmitted ray is

proportional to the absolute square of the wave amplitudes,

hence ja�j2 ¼ s2jaþj2. In Figure 2, we show the ratios of

energies assigned to the various rays for an initial disturb-

ance that starts with large positive j, i.e., a fluctuation that

starts just to the right of the event horizon, but which partly

tunnels to the subsonic region (to the left in the figure).

Because the rays have jjj ! 1 at x¼ 0, in the x-representa-

tion solutions of the local tunneling wave equation (98) have

essential singularities. This leads to problems for numerical

simulation. In Section V, will also show that the local wave

equation (97) can be transformed into the standard tunneling

form (114), a representation which should have better nu-

merical properties.

To this point, these results are entirely classical. The

connection with “Hawking radiation” from a black hole is

through the following analogy. Rewrite the exponent in

the energy transmission coefficient as [from (11), we find

s2 ¼ expð�2pg2Þ]

2pxL

cs
� �hx

kBTef f
; (12)

where �h is Planck’s constant, kB is Boltzmann’s constant,

and Teff is an “effective temperature”

Tef f �
�hcs

2pkBL
: (13)

Note that this effective temperature is inversely proportional

to the length scale. (In the famous result by Hawking,12 the

effective temperature of a black hole is inversely propor-

tional to the mass, while the Schwarzschild radius is propor-

tional to the mass. This means that the temperature and

characteristic length scale at the event horizon are in the

same inverse relation as here.)

If we consider laboratory acoustics and transitional flow,

for example, with jet nozzles, we can choose approximate

values for the transition region at the throat of the nozzle.

For example, following Unruh, we choose the length scale,

L � 10�3 m, and the sound speed, cs � 300 m=s. This gives

sðxÞ � expð�10�6xÞ; (14)

implying that we can only observe the “thermal” character of

the emission if we look in the MHz range of frequencies, and

this in an extremely turbulent environment. (Unruh2

acknowledges that this is a challenging measurement to

make, though he points out that it is easier than using a

laboratory-scale black hole!)

Our primary interest in this paper is in the theoretical

formalism, in particular, an examination of the Unruh model

from the perspective of ray phase space, with a view toward

generalization to include more spatial dimensions and mag-

netic fields. The normal form method presented here requires

a modification of earlier methods, and the symplectic inner

product (80) plays a key role, which is new. The extension

used here should be applicable to other problems where this

symplectic structure appears (e.g., all those covered by

Brizard’s theory of linearized MHD).

This completes our heuristic summary of the main

points. We now move to the technical details.

III. ONE-DIMENSIONAL HYDRODYNAMICS

The approach followed here is a special case of the gen-

eral theory presented in Ref. 9. We use a cold ideal fluid

model in one spatial dimension, x, which has as dependent

variables the density, qðx; tÞ, the velocity, v(x, t), and the

pressure p(x, t). These quantities obey the following evolu-

tion equations:

qt þ ðqvÞx ¼ 0; (15)

qðvt þ vvxÞ ¼ �px; (16)
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and

pt þ vpx ¼ �cpvx; (17)

where the subscripts denote partial derivatives, and c is the

ratio of specific heats. We recognize the first equation as the

statement of mass conservation, the second of momentum

conservation, and the third is required for the evolution fol-

lowing fluid trajectories to be adiabatic with the equation of

state p / qc.

A. Acoustic waves

It is important to note that the derivation of the acoustic

model given below is non-physical in the sense that we start

with nonlinear one-dimensional inviscid fluid flow, then lin-

earize around a given (time stationary) spatial profile in den-

sity and background flow. This means that we are ignoring

the formation of shocks, which are well-known to occur in

this system of partial differential equations (PDEs).

Now linearize Eqs. (15), (16), and (17) to find the evolu-

tion equation for small amplitude (acoustic) waves in a nonuni-

form, stationary, background with flow. Write qðx; tÞ ¼ q0ðxÞ
þ �q1ðx; tÞ; v0ðx; tÞ ¼ v0ðxÞ þ �v1ðx; tÞ, and pðx; tÞ ¼ p0ðxÞ
þ �p1ðx; tÞ. The constant � is a formal expansion parameter.

Expand in powers of � and collect terms. The zeroth order

equilibrium must satisfy

ðq0v0Þx ¼ 0; (18)

1

2
q0v

2
0 þ p0

� �
x

¼ 0; (19)

v0p0x ¼ �cp0v0x: (20)

We note that the last condition, combined with the first,

implies p0 / qc
0. Notice, further, that these equilibrium con-

ditions imply that the pressure, density, and velocity profiles

are not independent. In particular, the sound speed profile is

[see Eq. (65)]

c2
s xð Þ ¼ dp0

dq0

����
x

¼ c
p0 xð Þ
q0 xð Þ : (21)

This is not independent of the background velocity profile,

v0ðxÞ. A little algebra shows that

c2
s xð Þ

c2
s 0ð Þ ¼

v0 0ð Þ
v0 xð Þ

 !c�1

: (22)

This, of course, does not preclude these two velocities from

becoming equal one another, which is the situation of inter-

est to us.

At first order in �, we have

q1t ¼ �ðq0v1 þ q1v0Þx; (23)

q0v1t ¼ �
1

2
q1 v2

0

� �
x � q0 v0v1ð Þx � p1x; (24)

p1t ¼ �ðv0p1x þ cp1v0xÞ � ðv1p0x þ cp0v1xÞ: (25)

(N.B. The first term on the RHS of Eq. (24) is missing in

Eq. (15) of Ref. 9.) Following Brizard, we now replace the

three fields ðq1; v1; p1Þ with the first order particle displace-

ment n. The variations in the field quantities are determined

by the particle motions through the following identities:

q1 ¼ �ðq0nÞx; (26)

v1 ¼ nt þ v0nx � nv0x; (27)

p1 ¼ �np0x � cp0nx: (28)

These identities are inserted into the first-order evolution

equations to derive the evolution equation for the particle

displacement. In particular, the first-order momentum con-

servation law (24) becomes, after some straightforward but

lengthy algebra

q0ntt þ 2q0v0nxt ¼
@

@x
cp0 � q0v

2
0

� � @n
@x
;

� F̂ nð Þ:
(29)

Note that this result requires use of the zeroth order equilib-

rium conditions (18) and (19). Note also that (29) agrees

with Eq. (22) of Brizard,9 when that expression is reduced to

one spatial dimension, and zero magnetic field.

Now introduce the following variational principle (the

overall factor of 1/2 will ensure that the canonical momen-

tum is equal to the physical momentum density.)

A n½ � � 1

2

ðt1

t0

dt

ðþ1
�1

dx q0 nt þ v0nxð Þ2 � cp0n
2
x

h i( )
: (30)

A standard calculation shows that the evolution equation (29)

follows when we require stationarity with respect to the varia-

tion dnðx; tÞ, assuming the stationary background obeys (18).

From this point, unless otherwise noted, time integrals are

from t0 to t1 > t0, and all spatial integrals from �1 to þ1.

The variational principle (30) can be used to construct a

Hamiltonian formulation using the following standard algo-

rithm. First, define the Lagrangian density

L � 1

2
q0 nt þ v0nxð Þ2 þ 1

2
nĜn; (31)

where

Ĝn � F̂nþ @

@x
q0v

2
0

@n
@x
;

¼ c
@

@x
p0

@n
@x
:

(32)

The canonical momentum density is

p x; tð Þ �
@L
@nt

;

¼ q0 nt þ v0nxð Þ;
(33)

which we identify as the physical momentum density. The

Hamiltonian density is constructed using the Legendre trans-

formation (first writing nt ¼ q�1
0 p� v0nx)
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H � pntðn; pÞ � Lðn; pÞ; (34)

¼ 1

2

p2

q0

� v0pnx �
1

2
nĜn: (35)

Notice that this leads to a Hamiltonian density that is quad-

ratic in n (through its derivatives) and p, as expected. The

Hamiltonian is the functional defined by integrating the

Hamiltonian density over x and t, which we write in the form

H n; p½ � �
ð

dt
1

2
q�1

0 hpjpi � hpjv0nxi �
1

2
hnjĜni

� �
; (36)

where we have introduced the inner product notation

hvjki �
ð

dx v�ðxÞkðxÞ: (37)

A little algebra verifies that

nt �
dH

dp
¼ q�1

0 p� v0nx; (38)

pt � �
dH

dn
¼ � v0pð Þx þ Ĝn: (39)

The first of this pair of evolution equations is simply a

rewriting of the relationship between nt and p, while the sec-

ond is seen to be a recasting of (29), after using (32).

The pair of canonical evolution equations (38) and (39)

can be shown to have a Hermitian structure. This will prove

valuable in deriving the normal form. First, introduce the

2� 2 symplectic matrix

J � 0 1

�1 0

� �
: (40)

Second, define the two-component complex field w � ðn; pÞT .

Third, the complex symplectic product of wa and wb is now

introduced

xðwa;wbÞ � w†
a � J � wb (41)

¼ n�apb � p�anb: (42)

(The values of x and t are identical here, the symplectic prod-

uct concerns the two-component vector indices.) Finally,

define the (degenerate) canonical inner product on the linear

symplectic complex vector space

hwajwbican � i

ð
dxðn�apb � p�anbÞ;

¼ hwbjwai
�
can:

(43)

The evolution equations (38) and (39) are now written

in the Schr€odinger form

i
@wa

@t
� B̂a

cw
c; (44)

where we sum over repeated indices. Explicitly

i
@

@t

n
p

� �
¼ �iv0@x iq�1

0

iĜ �i@xv0

 !
n
p

� �
: (45)

Unless otherwise noted, derivatives act on all quantities to
the right.

The Weyl symbol of an operator Â is defined as7

a x; kð Þ �
ð

dse�iks
D

xþ s

2
jÂjx� s

2

E
: (46)

The Weyl symbol mapping, which is invertible, takes opera-

tors and maps them to functions on ray phase space

Â$R aðx; kÞ: (47)

This mapping is linear, and topological, meaning that it pre-

serves neighborhood relations in the two spaces. Since oper-

ators generally do not commute, this implies that the symbol

of the operator product Â1Â2 cannot be simply the product of

the related symbols a1ðx; kÞ and a2ðx; kÞ. In fact, the symbol

of the product is given by the Moyal product, denoted

Â1Â2 $
R

a1ðx; kÞ � a2ðx; kÞ; (48)

where

a1 x; kð Þ � a2 x; kð Þ �
X1
n¼0

i

2

� �n
1

n!
� a1 x; kð Þ

� @x

 
~@k � @k

 
~@x

	 
n

a2 x; kð Þ: (49)

The reader is referred to Chap. 2 of Ref. 7 for a complete dis-

cussion. Here, we simply quote results unproven.

Using (49), the Weyl symbol of B̂ is

Bðx; kÞ � v0ðxÞ � k iq�1
0 ðxÞ

iGðx; kÞ k � v0ðxÞ

 !
: (50)

From (32), we have

Gðx; kÞ � �ck � p0ðxÞ � k: (51)

Note that, although the symbol matrix B is not self-adjoint,

the symbol matrix

iJ � Bðx; kÞ ¼
ck � p0ðxÞ � k ik � v0ðxÞ
�iv0ðxÞ � k q�1

0 ðxÞ

 !
; (52)

is self-adjoint. The symbol k � p0ðxÞ � k is real, and the sym-

bol k � v0ðxÞ is the complex conjugate of the symbol

v0ðxÞ � k, for real x and k. These facts follow from the prop-

erties of the Moyal product (49).

Given an inner product (in this case the canonical inner

product), the adjoint of any operator Ô is that unique opera-

tor Ô†
defined by the property

hÔ†
wajwbican � hwajÔwbican; 8wa;wb: (53)

Therefore, a little algebra shows that the adjoint evolu-

tion equation is

�i
@w†a

@t
� w†cB̂†a

c ; (54)
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where

B̂† � i@x

 
v0 �iĜ

 

�iq�1
0 iv0@x

 

0
@

1
A: (55)

In the current case, it is possible to show that B̂ is self-

adjoint with respect to the canonical inner product h j ican

hwajB̂wbican ¼ i

ð
dx ðn�a; p�aÞ � J � B̂ �

nb

pb

 !

¼
ð

dx ½cp0n
�
axnbx þ n�aðv0pbÞx

�v0p
�
anbx þ q�1

0 p�apb�: (56)

After integration by parts, a little algebra shows that

hwajB̂wbican ¼ hB̂wajwbican; 8wa;wb; (57)

implying that B̂† ¼ B̂ with respect to h j ican as claimed.

Before discussing the WKB analysis of the evolution

equations, we note that using the concepts we now have in

hand, we can introduce the phase space variational principle

A0½w� � i

ð
dthw; ði@t � B̂Þwican;

¼
ð

dt½hwt;wican � ihw; B̂wican�:
(58)

Explicitly

A0 w½ � ¼ i

ð
dt dx

(
n�t p� p�t n
� �

�
�
cp0jnxj2 þ n� v0pð Þx � v0p

�nx þ
jpj2

q0

�)
: (59)

This variational principle will prove useful when we derive

the 2� 2 normal form. Also, it is the starting point to discre-

tize the dynamics and derive symplectic integrators, which

we will discuss in a separate paper.

It is sometimes useful to write the phase space varia-

tional principle in terms of real canonical fields ðn; pÞ, this

variational principle becomes

�A n; p½ � �
ð

dt dx
1

2
ntp� ptnð Þ� cp0

2
n2

x � pv0nx þ
p2

2q0

 !( )
:

(60)

We have integrated by parts and introduced an overall con-

stant factor of i=2 in order to cast this into a more standard

form, using the fact that overall factors in the variational

principle do not affect the resulting evolution equations. A

short calculation leads back to Hamilton’s equations (38)

and (39), as required.

IV. WKB ANALYSIS

Now we introduce a single-frequency eikonal ansatz

wðx; tÞ � aðxÞei½hðxÞ�xt� enðxÞ
epðxÞ

� �
; (61)

where the “polarization” êðxÞ � ðen; epÞT is assumed to vary

on the same length scale as the background. Use this ansatz

in (38) and (39). At leading order, assuming the derivative

acts only on the phase, we get

Aðx; k; xÞ � êðxÞ � v0kðxÞ � x iq�1
0

iGðx; kÞ v0kðxÞ � x

 !
en

ep

� �
¼ 0;

(62)

where

k xð Þ � dh
dx
; (63)

and

Gðx; kÞ � �cp0ðxÞk2ðxÞ ¼ �q0c2
s k2ðxÞ: (64)

We have introduced the sound speed (invoking the equation

of state p0 / qc
0)

c2
s ¼

dp0

dq0

¼ c
p0

q0

: (65)

For there to be non-trivial solutions of (62), for a given

x and x, at least one of the eigenvalues of A½x; k ¼ hxðxÞ; x�
must vanish. These eigenvalues are denoted

k6½x; k ¼ hxðxÞ; x� � x� ½v0ðxÞ6 csðxÞ�kðxÞ: (66)

These are a pair of Hamiltonians, one for each of the two

types of rays. Rays of each type live on the surfaces

k6ðx; k; xÞ ¼ 0.

Hamilton’s equations are (using Eq. (4), now with k6 as

ray Hamiltonians):

dx

dt

����
6

¼ v0 xð Þ6cs xð Þ; (67)

dk

dt

����
6

¼ � v0 xð Þ6cs xð Þ½ �xk: (68)

We can find the associated polarization for each ray by

assuming the relevant dispersion relation is satisfied, using it

in (62), and then solving for the associated null eigenvector.

For example, write x ¼ ðv06csÞk. The null eigenvectors

must satisfy

7csk iq�1
0

�iq0c2
s k2 7csk

� �
e1

e2

� �
6

¼ 0: (69)

The associated polarization vectors are

ê6 x; kð Þ ¼ 1

2q0cskð Þ1=2

1

7iq0csk

� �
; (70)

where q0, cs are functions of x, and k is treated as a free pa-

rameter here. These have been normalized with respect to

the symplectic inner product, as per the discussion after (80),

which simplifies later expressions. To use this result in the
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eikonal solution, we set kðxÞ ¼ dh=dx, after we have solved

for hðxÞ, as described below.

The amplitude a(x) varies in a manner governed by the

action conservation law, which we can derive as follows.

Choose one of the two polarizations, for example, the “–”

polarization. Using the polarization (70) with k(x) unspeci-

fied as yet, insert the ansatz (61) into the variational principle

(59), keeping only the leading order terms, i.e., the deriva-

tives act only hðxÞ, but not the background quantities, or a(x)

and k(x), consistent with the leading order eikonal approxi-

mation. After some algebra, this gives

�A½a; h� ¼
ð

dx ½x� ðv0 � csÞhx�a2ðxÞ: (71)

Stationarity with respect to variations in the amplitude

implies

d �A
da xð Þ ¼ 2 x� v0 � csð Þhx

� �
a xð Þ ¼ 0; (72)

which gives us the local dispersion relation

k�½x; k ¼ hx; x� ¼ 0 ) x ¼ ½v0ðxÞ � csðxÞ�hx: (73)

Solving this for hx, we can now solve for hðxÞ

h xð Þ ¼ h0 þ x
ðx

x0

dx0

v0 x0ð Þ � cs x0ð Þ
: (74)

Variation of (71) with respect to the phase gives us the

action conservation law

d �A
dh xð Þ ¼

d

dx
v0 � csð Þa2 xð Þ

h i
¼ 0: (75)

Therefore

a2 xð Þ ¼
v0 x0ð Þ � cs x0ð Þ
v0 xð Þ � cs xð Þ a2 x0ð Þ: (76)

Clearly, the eikonal approximation breaks down near the

event horizon where the denominator goes to zero.

At each x, we use the instantaneous polarization by set-

ting kðxÞ ¼ hxðxÞ in (70), as already mentioned. This, to-

gether with the results (74) and (76), gives the eikonal

solution (61).

Therefore, away from the event horizon, the heuristic

derivation of the local dispersion function discussed in the

first part of Section II is a useful guide. But, the WKB

approximation is invalid when v0 ¼ 6cs, so how to proceed?

We will follow the strategy outlined in Chap. 6 of Ref. 7 by

using the insight we have gained from the WKB analysis to

construct the normal form, which isolates the tunneling

behavior from the other “incoming” wave in the immediate

vicinity of the event horizon to the greatest extent possible.

V. THE NORMAL FORM

To deal more carefully with the region near the event

horizon, we return now to the phase space variational princi-

ple (58), which we reproduce here for ease of reference

A0½w� ¼
ð

dt½hwt;wican � ihw; B̂wican�: (77)

Recall the canonical inner product is defined in Eq. (43).

The normal form is developed about a fixed point in ray

phase space, x0 and k0. Suppose we have an event horizon

where v0ð0Þ ¼ csð0Þ. Then of course, we choose x0 ¼ 0 as

our base point.

Because the background is time-stationary, we can treat

each frequency separately. Choose a fixed, but arbitrary, fre-

quency x 6¼ 0, and introduce the constant (in x and k) polar-

ization vectors

êþ xð Þ � 1

2q0csð0Þk0 xð Þ
� �1=2

1

�iq0csð0Þk0 xð Þ

� �
; (78)

and

ê� xð Þ � 1

2q0csð0Þk0 xð Þ
� �1=2

1

iq0csð0Þk0 xð Þ

� �
: (79)

The polarization vectors are mutually orthogonal with

respect to the complex form of the symplectic inner product,

defined as

Xðu;wÞ � iu† � J � w: (80)

That is Xðeþ; e�Þ ¼ Xðe�; eþÞ ¼ 0. We have normalized

them so Xðe6; e6Þ ¼ 61.

We expand about that point where the incoming ray

crosses the event horizon at x¼ 0. That is, we choose k0ðxÞ
such that kþðx ¼ 0; k0ðxÞÞ ¼ 0 [see Eq. (6)], implying

k0 xð Þ � x

v0 0ð Þ þ cs 0ð Þ ¼
x

2cs 0ð Þ : (81)

Using k0ðxÞ in the polarizations (78) and (79), construct

a new ansatz for the wave functions, appropriate for the local

region around the event horizon

wxðx; tÞ ¼ ei½k0ðxÞx�xt�½/þðxÞêþ þ /�ðxÞê��: (82)

Note that we have the identity

�i
@wx

@x
¼ ei k0 xð Þx�xt½ � k0 xð Þ � i@xð Þ /þ xð Þêþ þ /� xð Þê�

� �
:

(83)

This is how the shift of the origin in ray phase space to x¼ 0

and k ¼ k0ðxÞ appears in terms of wave functions. Note also

that wxðx; tÞ is a two-component object, while /6ðxÞ are sca-

lars. The amplitudes /6ðxÞ are not assumed to be eikonal in

form. We have made no approximations yet. The wave func-

tion (82) simply reflects a change of dependent variable by

choosing a particular polarization basis for a single-

frequency solution.

This new form for wx is inserted into (77). Because

we have chosen a single frequency for the wave function,

we drop the integration over t, retaining only the integral

over x, which gives us the variational principle for the

amplitudes
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A0½/þ;/�� ¼
ð

dx ½/�þD̂þ/þ þ /��D̂�/�

þ/�þĝ/� þ /��ĝ
†/þ�: (84)

Here

D̂þ � �xþ iê†
þ � J � B̂ � êþ; (85)

D̂� � �xþ iê†
� � J � B̂ � ê�; (86)

and

ĝ � iê†
þ � J � B̂ � ê�; ĝ† � iê†

� � J � B̂ � êþ: (87)

By construction, the operator-valued matrix D̂ is self-

adjoint with respect to the standard inner product (37).

[Recall that B̂ is self-adjoint with respect to the canonical
inner product (43)]. Because the polarizations ê6ðxÞ are

constant in x, the operators D̂6 and ĝ are clearly just linear

combinations of the entries of B̂. Note also that in moving

from (77) to (84), no approximations have been made. The

variational principle (84) is still general. We have simply

chosen a particular polarization basis for the wave functions,

one that best isolates the incoming wave from the tunneling

process.

The calculation of the normal form for the local wave

equation is carried out using Weyl symbol methods, as out-

lined in the discussion leading to (8). For general back-

ground densities and flow profiles, the entries of D̂ are

messy because of the derivatives acting on the background

quantities q0ðxÞ; csðxÞ, and v0ðxÞ, in addition to the action

on the amplitudes /6. This obscures what is going on, so

let’s simplify things and assume that qðxÞ ¼ q0 ¼ 1, and

take cs to be constant. (We need to retain the x dependence

in v0ðxÞ to keep the resonance local.) We will also neglect

the higher order terms in the Moyal series that appear in the

symbol matrix (52), replacing v0ðxÞ � k and k � v0ðxÞ by

v0ðxÞk. This means that we are assuming the background

variation is on a long spatial scale compared to that of the

amplitudes /6ðxÞ.7 We emphasize that this is a much less

restrictive assumption than that used in WKB theory,

because we do not assume any special form for the ampli-

tudes /6ðxÞ.
The normal form transformation is summarized most com-

pactly if we construct the constant (in x and k) matrix QðxÞ by

using the polarizations (78) and (79) as the column entries

QðxÞ � ½ êþðxÞ; ê�ðxÞ �: (88)

Note that QðxÞ is not unitary, but instead satisfies

iQ†ðxÞ � J �QðxÞ ¼ 1 0

0 �1

� �
: (89)

Note also that QðxÞ is not defined when x¼ 0. The limit

x! 0 is singular, reflected in the fact that (89) remains true

for all x 6¼ 0.

The symbol for the 2� 2 wave operator associated with

the 2� 2 Schr€odinger form (44), derived using the varia-

tional principle (77), is

Aðx; k; xÞ � Bðx; kÞ � x1 ¼
kv0ðxÞ � x i

�ic2
s k2 kv0ðxÞ � x

 !
:

(90)

The next step is to use (88) to compute the new repre-

sentation of the symbol matrix, the one associated with (84),

by noting that the variational principle is a bilinear form,

hence the transformation induced by the change of polariza-

tion basis results in the congruence transformation11

Dðx; k; xÞ � iQ†ðxÞ � J � Aðx; k; xÞ �QðxÞ: (91)

This new matrix is self-adjoint by construction because

iJ � A is self-adjoint for all real x, k, and x. More details

regarding the appearance of congruence transformations in

ray phase space methods for multicomponent wave equations

can be found in Appendix C 2 of Ref. 7. Some straightfor-

ward algebra leads to the result

Dðx;j;xÞ�
Dþ a

a� D�

 !

�
ðv0þ csÞðk0þjÞ�x �icsj

icsj ðcs� v0Þðk0þjÞþx

 !
:

(92)

Here, j ¼ k � k0ðxÞ, and we have retained all terms linear in

that quantity. The normal form isolates as much as possible

the uncoupled dispersion functions, D6ðx; j; xÞ, which are

closely related to (6), but with a shift in the origin in k.

Given a matrix symbol like Dðx; j; xÞ, the related opera-

tor is given by applying the usual correspondence

j$ �i@x; (93)

entry by entry. For product terms like xj, the Weyl calculus

ensures that we end up with the symmetrized product

xj$ � i

2
x@x þ @xxð Þ: (94)

Now consider the tunneling process in isolation. Let’s

focus on the event horizon that occurs when v0ðxÞ � cs. In

that case, the dispersion function D�ðx; j; xÞ is the one asso-

ciated with the tunneling. Let’s choose our origin such that

v0ð0Þ ¼ cs, and linearize v0ðxÞ

v0 xð Þ ¼ cs 1þ x

L

� �
; (95)

where L is the length scale characteristic of the flow at the

event horizon. This implies

D� x; j; xð Þ ¼
cs

L
xj� g2
� �

; g2 � Lx
cs
: (96)

The zero locus in x and j of D�ðx; j; xÞ ¼ 0, for x 6¼ 0, has

the characteristic avoided-crossing (hyperbolic) shape for the

rays.

To find the transmission coefficient of the tunneling pro-

cess, we need to solve the wave equation for the amplitude
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function /�ðxÞ. That is, using (94) and (96), we need to

solve

i

2
x@x þ @xxð Þ þ g2 xð Þ

� �
/� x; xð Þ ¼ 0: (97)

This has the piecewise solution

/�ðxÞ ¼
aþxig2�1=2; x > 0;

a�jxjig
2�1=2; x > 0:

(
(98)

From Figure 2, we know that the initial data for the rays are

fixed in j-space, so we Fourier transform

~/� jð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ð
dx e�ijx/� xð Þ (99)

¼ 1ffiffiffiffiffiffi
2p
p

�
a�

ð0�

�1
dx e�ijxjxjig

2�1=2

þ aþ

ð1
0þ

dx e�ijxxig2�1=2

�
: (100)

The calculation is similar to the mode conversion case dis-

cussed in detail in Section 6.3 of Ref. 7. Some straightfor-

ward algebra leads to the following piecewise solution in the

j-representation:

~/� jð Þ ¼
C ig2 þ 1

2

� �
ffiffiffiffiffiffi
2p
p

j�ig2�1=2 aþe�
ip
4 e

pg2

2 þ a�e
ip
4 e�

pg2

2

h i
; j > 0;

jjj�ig2�1=2 aþe
ip
4 e�

pg2

2 þ a�e�
ip
4 e

pg2

2

h i
; j < 0:

8><
>: (101)

Writing

~/�ðjÞ ¼
bþj�ig2�1=2; j > 0;

b�jjj�ig2�1=2; j < 0;

(
(102)

we can now identify the elements of the S-matrix, connect-

ing the amplitude coefficients

bþ
b�

� �
¼

C ig2 þ 1

2

� �
ffiffiffiffiffiffi
2p
p

e�
ip
4ffiffiffi
s
p e

ip
4

ffiffiffi
s
p

e
ip
4

ffiffiffi
s
p e�ip

4ffiffiffi
s
p

0
BBBB@

1
CCCCA

aþ
a�

� �

� S�1 xð Þ aþ
a�

� �
; (103)

where

sðxÞ ¼ e�pg2ðxÞ: (104)

We choose to define (103) as the inverse of the S-matrix so

as to retain the understanding that SðxÞ is the matrix con-

necting incoming to outgoing amplitudes. The incoming field

amplitudes are b6, the outgoing amplitudes are a6, as seen

by referring to Figure 2.

Using Euler’s Reflection Formula (Eq. (5.5.3) of

Ref. 13)

C 1� zð ÞC zð Þ ¼
p

sin pzð Þ
; (105)

with z ¼ ig2 � 1, it is straightforward to show that S�1ðxÞ is

unitary, which implies S is unitary as well, S†S ¼ 1, hence

total energy is conserved

jaþj2 þ ja�j2 ¼ jbþj2 þ jb�j2: (106)

The case shown in Figure 2 corresponds to setting b�
¼ 0. This implies

a� ¼ �ie�pg2

aþ � �isaþ; (107)

as quoted in (11). Therefore, the energies on the two out-

going rays are related by ja�j2 ¼ s2jaþj2. From (106), the

energy on the incoming tunneling ray, jbþj2 ¼ 1þ s2, as

indicated in Figure 2.

The solution (98) has an essential singularity at x¼ 0,

reflected in the ray behavior in Figure 2, where the rays

connect to large j. A similar behavior can be expected

locally for the full 2� 2 problem, now compounded by the

presence of the incoming wave. This causes difficulties for

numerical studies. It would be useful to find a representa-

tion of the problem that has better numerical properties.

Here, we simply sketch the approach we are examining,

results will be reported in a separate paper as this is still

work in progress.

Staying with the tunneling problem in isolation, consider

now the following linear canonical transformation:

x ¼ 1

�2
X þ Kð Þ; j ¼ 1

�2
X � Kð Þ: (108)

This is a rotation by 45	, and it puts (96) into the tunneling

normal form (see, for example, page 243, Eq. (6.41), and

Figure 6.7 on page 244 of Ref. 7)

D0� X;K; xð Þ � cs

L

1

2
X2 � K2ð Þ � g2 xð Þ

� �
: (109)

Linear canonical transformations on ray phase space

induce related unitary transformations in the associated

Hilbert space of wave functions. This change of representa-

tion is a generalization of the Fourier transform, called the

metaplectic transform. For example, the unitary transform
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that takes wave functions in the x-representation to wave

functions in the X-representation is

w� Xð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ð
dx e�iF1 X;xð Þ/� xð Þ; (110)

where

F1 X; xð Þ � 1

2
x2 � �2xX þ X2
� �

: (111)

The inverse of (110) is simply

/� xð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ð
dx eiF1 X;xð Þw� Xð Þ: (112)

See Appendix E of Ref. 7 for details.

Because X and K form a canonical pair, if we choose the

X-representation to write our wave equation, we have the fa-

miliar association

K $ �i
@

@X
; (113)

implying that the equation governing the mode shape for fre-

quency x is

X2 � 2g2 xð Þ
� �

w Xð Þ þ @
2w
@X2
¼ 0: (114)

The solution of this equation can be written in terms of para-

bolic cylinder functions, and the S-matrix elements connect-

ing incoming and outgoing rays computed. The parabolic

cylinder functions have much nicer behavior in the tunneling

region than /�ðxÞ the original x-representation.

As already mentioned, the linear canonical transforma-

tion (108) from ðx; jÞ ! ðX;KÞ generates a unitary transfor-

mation on the Hilbert space of wave functions. Therefore, so

long as we keep track of incoming and outgoing pairings

(using the rays), the S-matrix elements are unchanged. This

allows us to compute the connection coefficients for the orig-

inal x-representation. Preliminary results suggest that this

approach is promising for numerical work, even when we

include the incoming wave.

VI. SUMMARY

In this paper, we have sketched a methodology for

studying linear acoustics in transitional regions using ray

phase space methods. The main contribution of the paper is

to show how to derive the normal form (92). This isolates

the tunneling phenomenon from the non-resonant

“incoming” wave, while also providing the leading order

coupling between the wave undergoing tunneling and the

incoming wave (while the coupling is weak, it is not zero, as

assumed in the computation of the S-matrix given here).

Isolation of the tunneling and casting it into normal

form uncovers the coupling constant for that process (g2 xð Þ,
as defined in Eq. (96)), and a standard calculation to compute

the S-matrix connecting the incoming and outgoing tunnel-

ing wave fields uncovers the Boltzmann factor in the trans-

mission coefficient, which is at the heart of the theory of

Hawking radiation.

In further work, we are pursuing the use of the phase

space variational principle (77) as a tool for deriving sym-

plectic integrators. Working in ray phase space, as opposed

to only x- or k-space, implies we have a much wider class of

transformations (the metaplectic transformations) available

to simplify the problem, and to find the best representation

for numerical work. We will report on this elsewhere.
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