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All Your DNS Records Point to Us
Understanding the Security Threats of Dangling DNS Records

Daiping Liu*, Shuai Hao*†, and Haining Wang*

*University of Delaware †College of William and Mary
Newark, DE 19716, USA Williamsburg, VA 23187, USA
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ABSTRACT
In a dangling DNS record (Dare), the resources pointed to by the
DNS record are invalid, but the record itself has not yet been purged
from DNS. In this paper, we shed light on a largely overlooked
threat in DNS posed by dangling DNS records. Our work reveals
that Dare can be easily manipulated by adversaries for domain hi-
jacking. In particular, we identify three attack vectors that an ad-
versary can harness to exploit Dares. In a large-scale measurement
study, we uncover 467 exploitable Dares in 277 Alexa top 10,000
domains and 52 edu zones, showing that Dare is a real, preva-
lent threat. By exploiting these Dares, an adversary can take full
control of the (sub)domains and can even have them signed with a
Certificate Authority (CA). It is evident that the underlying cause
of exploitable Dares is the lack of authenticity checking for the
resources to which that DNS record points. We then propose three
defense mechanisms to effectively mitigate Dares with little human
effort.

Keywords
DNS; Dangling records; Domain hijacking

1. INTRODUCTION
As one of the most critical components of the Internet, the Do-

main Name System (DNS) provides not only vital naming services
but also fundamental trust anchors for accessing Internet services.
Therefore, it has always been an attractive target to attackers [28],
[42], [43]. In order to ensure the authenticity and integrity of DNS
systems, tremendous efforts have been devoted to protecting both
client and server mechanisms [30], [32], [52], [55]. In particular,
a suite of security mechanisms like DNSSEC [27] have been de-
ployed to secure the communication channels between DNS servers
and clients. However, little attention has been paid to authenticat-
ing the links between DNS servers and those resources to which
DNS records point.

New Threat. In this paper, we investigate a largely overlooked
threat in DNS: a dangling DNS record (Dare), which could be eas-
ily exploited for domain hijacking due to the lack of authenticity
checking of the resolved resources. A DNS record, represented in
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a tuple <name, TTL, class, type, data>, is essentially
a pointer, where the data field points to the machine that hosts the
resources for the name field. Similar to pointers in a program, a
DNS record can also become dangling. When a service accessed
by the name field discontinues, the domain owner will release the
machine to which the data field points and should also purge the
related DNS records. Unfortunately, in practice, domain owners
often forget to do the cleaning, thus resulting in dangling DNS
records. Conventional wisdom holds that Dare is by and large safe.
To better understand this threat, we conduct the first comprehensive
study on exploitable Dares (unsafe Dares) in the wild. In particular,
our work reveals that Dare is a real, prevalent threat.

We initiate our study by scrutinizing the DNS specifications, dur-
ing which four types of security-sensitive Dares are identified, in-
cluding Dare-A, Dare-CN, Dare-MX, and Dare-NS. To exploit un-
safe Dares, an adversary needs to gain control of the resources in
the data fields of DNS records. There are two types of resources
in Dares: IP addresses and domain names. We present three attack
vectors that an adversary can harness to hijack these resources. (1)
In the first attack vector, we observe that cloud platforms have be-
come a popular choice for modern websites. In clouds, physical
resources, especially the public IP address pool, are shared among
all customers. Unfortunately, in practice, many domain adminis-
trators mistakenly trust these ephemeral and publicly allocable re-
sources, potentially generating all types of Dares. In a sense, this
attack vector is probability-based since the IP allocation in clouds is
generally random. (2) Modern websites extensively use third-party
services. To integrate a third-party service into a website, a domain
owner needs to add an A or CNAME record in the authoritative DNS
(aDNS) servers and claim the ownership of the (sub)domain on the
owner’s third-party service account. Any service account that suc-
cessfully claims ownership of a (sub)domain can control the con-
tent of that (sub)domain. Surprisingly, most third-party services do
not verify such a claim, implying that an adversary can potentially
claim and control any (sub)domain that has been abandoned by its
original owner. The second attack vector is thus to hunt for the
Dares linked to abandoned third-party services. (3) Since a domain
can expire [46], the third attack vector is simply to search for the
expired domains in the data fields of DNS records.

Large-scale measurement study. Given the three attack vec-
tors, we then assess the magnitude of the unsafe Dares in the wild.
We conduct a large-scale measurement on four datasets, one con-
taining the apex domains in the Alexa top 1 million spanning seven
years and the other three containing the subdomains in the Alexa
top 10,000, 2,700 edu, and 1,700 gov zones, respectively. For
the first attack vector, we develop a simple tool called IPScouter to
automatically milk IP addresses in the clouds, especially the two
largest clouds, Amazon EC2 [2] and Microsoft Azure [17]. Due
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Figure 1: The hierarchy of DNS.

to its probabilistic nature, IPScouter cannot enumerate the whole
IP address space. We therefore assess the magnitude of potential
dares by filtering all live IP addresses. For the second attack vector,
nine of the most popular third-party services are measured. For the
third attack vector, we crosscheck the WHOIS data and the domain
registrars to identify these expired domains.

In total, 791 confirmed and 5,982 potential Dares are success-
fully found in our measurement study. Especially, Dares exist in
all four datasets, indicating a widespread threat. Even more wor-
risome, Dares can be found in 335 high-valued zones, including
those in edu, gov, and Alexa top 10,000. By exploiting these
Dares, an adversary can significantly enhance many forms of fraud
activities (e.g., spamming, spear phishing, and cookie hijacking).
With the emergence of automated and free Certificate Authorities
(CA) like Let’s Encrypt [15], adversaries can even have the
hacked subdomains signed and set up a “genuine” HTTPS website.

Mitigations. We posit that the fundamental cause of unsafe
Dares is the lack of authenticity checking of the ephemeral resources
to which DNS records point. We thus propose three mechanisms
that DNS servers and third-party services can adopt to mitigate un-
safe Dares. (1) We first design a mechanism that allows aDNS
servers to authenticate these machines to which A records point.
(2) In the case of third-party services, we propose breaking the res-
olution chain of the dangling CNAME records by adopting a safer
isolated name space for each user of a service. (3) Finally, we ad-
vocate that aDNS servers should periodically check the expiration
of domains to which DNS records point.

Roadmap. The remainder of this paper is organized as follows.
In §2, we briefly review the background of DNS. In §3, we present
the problem of Dares and three attack vectors to exploit unsafe
Dares. In §4 and §5, we detail the methodology and results of our
large-scale measurement study, respectively. In §6, we analyze the
threats posed by Dares. In §7, we propose potential mitigations. In
§8, we survey related work, and finally, we conclude in §9.

2. DNS OVERVIEW
The structure of DNS is organized as a hierarchical tree, which is

shown in Figure 1. The second- and sometimes third-level domains
are registered by enterprises or end-users for connecting their local
computing resources to the Internet. Any enterprise/user can own a
domain name if it has not yet been registered by another user. The
further levels of domains are usually called subdomains, typically
used to designate a particular host, like web and mail servers.

The conversion between a domain name and an IP address is
called DNS resolution. Figure 2 illustrates the workflow of DNS
resolution when a client visits www.foo.com for the first time.
The stub resolver on the client queries a recursive DNS (rDNS)
server that can be either local or remote, i.e., outside the local net-
work (�). In the case of a cache miss, rDNS will initiate queries

Figure 2: The workflow of DNS resolution for www.foo.com.

recursively to the root server, the .com Top Level Domain (TLD)
server, and the authoritative DNS (aDNS) server of foo.com (�
∼ �). Finally, the authoritative server of foo.com will respond
with the corresponding IP address of www.foo.com (� ∼ �).
Once the client obtains the IP address, it can connect to the website
hosting server (� ∼ �).

Figure 3 shows sample records on the .com TLD server and the
aDNS server for the example described in Figure 2. Each line of
the DNS data represents a resource record (RR), which is a five-
tuple data structure <name, TTL, class, type, data>.
The fields <name, class, type> serve as the key to data,
and TTL is the time-to-live in seconds that determines the lifetime
of cached DNS records.

;; sample portion of .com zone file.

foo.com. NS ns1.foo.com.
foo.com. NS ns2.foo.com.

ns1.foo.com. A 1.1.1.1
ns2.foo.com. A 2.2.2.2

;; sample records from ns1.foo.com

bar.exmaple.com. CNAME www.foo.com.
www.foo.com. A 3.3.3.3

Figure 3: Sample portion of a TLD zone file and DNS records on a
resolver. For brevity, the TTL and class fields are omitted.

3. DANGLING DNS RECORDS
Our work is inspired by the use-after-free vulnerabilities that ex-

ploit the dangling pointers in software. The data field of a DNS
record is essentially a pointer, as exemplified in Figure 4. In this
example, the data field, 1.2.3.4, points to the machine that hosts
the content of www.foo.com. Later, when the subdomain is no
longer needed, the domain owner will release the IP address. The
corresponding DNS record becomes dangling if the domain owner
forgets to remove it from the authoritative DNS server. In general,
we define a dangling DNS record as:

Dangling DNS Record (Dare). A DNS record r:=<name,
TTL, class, type, data> is dangling if the resource to which
the data field points is released.

Currently, there are more than 40 types of DNS RRs. After scru-
tinizing the semantics of each type of DNS RR, we identify four
security-sensitive records if they become dangling. These records
are listed in Table 1. Obviously, not all Dares are vulnerable to be
exploited. For example, given a Dare-A in Figure 4, if an adversary
cannot easily obtain the IP 1.2.3.4, this Dare-A is safe. Here we
further define unsafe Dares.

Unsafe Dare. A Dare is unsafe if the abandoned resource could
be manipulated by a third party other than the one who controls the
name field.
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www.foo.com A 1.2.3.4 1.2.3.4

Figure 4: An example of a dangling A record.

Dare RR Description
Dare-A† A Returns an IPv4 address

Dare-CN‡ CNAME Alias of a name to another
Dare-MX MX Maps to a list of message transfer agents
Dare-NS NS Delegate to an authoritative name server

Table 1: Types of security-sensitive dangling DNS records. †Our
work currently covers IPv4 only. ‡DNAME is semantically similar
to CNAME, so we do not consider DNAME separately.

In the following, we first review some key details of the DNS
records in Table 1 and then present three approaches that attackers
can harness to exploit the unsafe Dares.

3.1 Security Sensitive Dares
Dare-A. An A record maps a domain name to an IPv4 address.

All requests to the name field of an A record will be directed to
and handled by the host at the IP address. Thus, the domain name
will be compromised if the IP address could be acquired by a third
party other than the original domain name owner.

Dare-CN. A CNAME record specifies that a domain name is an
alias for another domain name, the “canonical" domain name. For
instance, www.foo.com in Figure 3 is the canonical domain name
of its alias, bar.example.com. A request to the alias will be
resolved to its canonical domain name, which is further resolved
to an A record. Note that exploiting Dare-CN has almost the same
effect as exploiting Dare-A.

Dare-MX. An MX record specifies the mail server responsible for
accepting emails on behalf of the domain. In the case of multiple
MX records, users can set a priority to each one and the server
with the lowest value (i.e., highest priority) will be used first. In
the following example, an email client will contact a.mail.com
and b.mail.com first (usually in a round-robin manner); if both
fail to respond, c.mail.com will then be contacted. Note that an
MX record is not necessary to receive emails. When no MX is used,
the A record of the domain (e.g., foo.com) will be treated as an
implicit MX [14]. If a Dare-MX could be exploited, an adversary
may be able to send and receive emails in this vulnerable domain.

foo.com. 60 MX 10 a.mail.com.
foo.com. 60 MX 10 b.mail.com.
foo.com. 60 MX 20 c.mail.com.

Dare-NS. An NS record delegates a domain to an aDNS server
for answering queries about names under that domain. There also
exists an A record to provide the IP address for the aDNS server,
which is dubbed as a glue record. Normally, there are multiple NS
records serving a single domain, and the resolvers need to choose
one aDNS server for further querying. The aDNS server selection
[57] can be (1) hitting the first server, (2) randomly selecting one,
or (3) sorting the records based on a local-defined rule like RTTs.
To force DNS resolvers to use a Dare-NS, attackers can leverage
several techniques like Denial-of-Service attacks and NS pinning
[39]. If a Dare-NS could be exploited, adversaries will set up a
malicious aDNS and direct visitors to any IP address. Due to the
transitive trust in DNS [53], the impact of Dare-NS is amplified to
all those domains that directly or indirectly depend on it.

Figure 5: Three paradigms of modern domain hosting.

3.2 IP in Cloud
Every Dare in Table 1 is finally resolved to an IP address and

thus adversaries can directly obtain the IP address to exploit unsafe
Dares. For instance, if adversaries can obtain 1.2.3.4 in Figure
4, all subsequent requests to www.foo.com will then be handled
by adversaries. Whether an IP address is obtainable highly depends
on how a domain is hosted.

Figure 5 illustrates the three typical paradigms of modern do-
main hosting. In the first case, a domain is hosted on a dedicated
machine with an IP allocated from the address blocks owned by the
domain owner. Many large organizations like universities adopt
this paradigm for most of their domains. However, the majority
cannot afford dedicated hosting, and they usually host their do-
mains using third-party services like GoDaddy [11]. In the nor-
mal configuration of these third-party services, many domains are
hosted on a single server sharing the same IP address. A user only
owns and controls the allocated storage space on the server. In both
paradigms, a Dare-A is generally safe because adversaries cannot
easily obtain the IP address to which the Dare-A points.

However, nowadays, more and more domains are migrated to
the clouds. In particular, a customer can potentially obtain any
public IP address from a shared IP address pool. Although the
IP allocation should be random, a malicious customer can obtain
the desired IP address by repeatedly allocating and releasing IP ad-
dresses. Therefore, we focus on the security threat of Dare-A in
the context of cloud environments, especially the two most popular
cloud platforms, Amazon EC2 [2] and Microsoft Azure [17].

www.foo.com CNAME ec2-{ip}.compute-1.amazonaws.com

aDNS (ns.foo.com)

ec2-{ip}.compute-1.amazonaws.com A 1.1.1.1

DNS server
of the Cloud

(a)

www.foo.com A 1.1.1.1

aDNS (ns.foo.com) (b)

Figure 6: aDNS setups for a domain hosted in the cloud.

Amazon EC2. In Amazon EC2, users can rent virtual machines
(instances) and run their own applications. By default, when an in-
stance is initiated, it will be assigned a public IP address; when the
instance is terminated, it will release the assigned IP address. EC2
also provides Elastic IP, a persistent public IP address allocated to a
user’s account. An Elastic IP is held by a user until she releases it.
Once an Elastic IP is released, it will be recycled by EC2 and be-
comes re-allocable to other users immediately. Each instance that
receives a public IP address is also given an external hostname in
the form of ec2-{ip}.compute-1.amazonaws.com. More-
over, EC2 currently provides two types of platforms: EC2-Classic
and EC2-VPC [3]. While they differ in many aspects, the major dif-
ference that matters to us is that a separate public IP address pool is
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Dares IP in Cloud Abandoned
Services

Expired
Domains

Dare-A
√ √

Dare-CN
√ √ √

Dare-MX
√ √ √

Dare-NS
√ √

Table 2: Summary of the attack vectors to which each type of Dare
is vulnerable.

used for each type of platform. According to Amazon [24], all EC2
accounts created after December 4, 2013 can only use EC2-VPC,
while EC2-Classic is merely available for accounts that have used
it before on a region-by-region basis.

Once a public IP address in the cloud is obtained, a user can
point its domain resource (e.g., a web server) to the IP address us-
ing either CNAME or A record, as illustrated in Figure 6. Once
adversaries successfully obtain the IP address of a Dare-A, they are
able to impersonate the domain resource at their will, regardless of
which EC2 platform the domain resource resides in and which kind
of DNS record it uses for pointing.

Microsoft Azure. Similar to EC2, the public IP addresses on
Azure also fall into two categories: dynamic and reserved. A dy-
namic IP is allocated and then released when its associated re-
source, such as a virtual machine, is initiated and then terminated,
respectively. To prevent its IP address from changing, a user can
explicitly reserve an IP address, i.e., a static IP address. Our mea-
surement shows that both types of public IP addresses are allo-
cated from the same IP address pool, and any one of them becomes
re-allocable immediately after being released. Furthermore, a dy-
namic IP can be converted to a reserved IP under a user’s demand.
Finally, to point a domain resource to a public IP address on Azure,
the same simple technique (i.e., using either CNAME or A record) is
applied.

3.3 Abandoned Third-party Services
Modern websites extensively use third-party services. For in-

stance, they may use Mailgun [16] for email delivery and Shopify
[22] for building online retail point-of-sale systems and stores. These
services usually provide users a subdomain where the correspond-
ing service is hosted. For example, when a user, Alice, subscribes
the service from Shopify, she will be assigned a subdomain name,
alice.myshopify.com, and thus her online store is accessible
via this subdomain. However, in most cases, people prefer to have
their stores under their own domains. To this end, each third-party
service allows users to point their (sub)domains to the resource pro-
vided by the service using A or CNAME records. In the example of
Shopify, Alice can set up her aDNS as follows:

shop.Alice.com A 23.227.38.32
(or) shop.Alice.com CNAME alice.myshopify.com

In addition, Shopify’s DNS server resolves all users’ subdomains
to a dedicated domain:

*.myshopify.com CNAME shops.shopify.com

Since all custom domains of Shopify point to the same IP address
(23.227.38.32) or the same domain (shops.shopify.com),
Alice also needs to claim ownership of shop.Alice.com on her
Shopify account. In this way, Alice’s store can be accessed through
shop.Alice.com.

Later, when Alice does not want to use Shopify anymore, she
can stop the service and purge the above DNS records. However, if
she forgets to do the cleaning, shop.Alice.com will continue
to be resolved to shops.shopify.com since most services use
a wildcard to resolve user-specific subdomains (as Shopify does).

Figure 7: Methodology overview.

Now, if an adversary, Malice, knows that shop.Alice.com points
to Shopify, he can claim ownership of it. If Shopify does not verify
the claim, which is a common practice in most services, Malice can
now control the subdomain, shop.Alice.com.

The case of email service is similar to this process. The only
difference is that a user adds MX records, instead of CNAME records,
for receiving emails.

A verification of domain ownership can prevent the above at-
tacks. However, in some cases, verification is too costly, if not
infeasible. For example, the Azure cloud service employs a user-
specified subdomain naming scheme. To achieve the domain own-
ership verification, the cloud has to remember all subdomain names
previously used by each user, and the induced cost is prohibitively
high considering the large scale of Azure’s user group.

In summary, for this attack to succeed, it requires that:

• the vulnerable domain can be resolved to a common target
(e.g., IP address or domain name) and the third-party service
does not verify the ownership of the vulnerable domain; or

• the vulnerable domain resolves to a custom target that can be
obtained by any user when it is available.

3.4 Expired Domains
The data fields of CNAME, MX, and NS records all indicate do-

mains that could expire. An adversary may re-register and abuse
the expired domains. Our attack differs from previous works [46],
[49], [50] in that they mainly exploit the residual trust of the expired
domains, while ours abuses the trust of the unexpired subdomains
pointing to the expired domains. Such stale records are pervasively
neglected by domain administrators because (1) there could be sec-
ondary records as a means of failover (e.g., multiple MX and NS
records); and (2) the services linking to the expired domains are no
longer used and no one cares about updating them.

3.5 Summary
Overall, we have shown that several types of Dares can be ex-

ploited in multiple ways. Table 2 summarizes the attack vectors to
which each type of Dare is vulnerable.

4. MEASUREMENT METHODOLOGY
To assess the magnitude of the Dares problem, we conduct a

large-scale measurement study. The overview of our measurement
methodology is shown in Figure 7. We attempt to answer the fol-
lowing two questions: (1) How prevalent is each type of Dares in
the wild? and (2) what are the security implications of Dares?

4.1 Domain Collection
In order to comprehensively detect Dares, it is ideal to collect the

DNS data for all apex domains and their subdomains. However, it is
impractical to scan all domains. Since only popular ones could pose
a serious threat, we build our dataset as listed in Table 3. We first
obtain a list of apex domains. Here we choose a snapshot of Alexa’s
top 1 million domain list for each year from 2010 to 2016. These
top domains are particularly attractive because a popular domain
provides higher value if an adversary can control it. This set of
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Dataset Data Space

D
Unexpired apex domains in Alexa top 1M

during 2010∼ 2016
St Subdomains of top 10,000 general

Se Subdomains of top 2,700 .edu

Sg Subdomains of top 1,700 .gov

Table 3: Evaluation set of domains.

domains is denoted as D. Note that our dataset D in essence is
different from the expired domains studied in [46]. In the case of
expired domains, the DNS records in all resolvers were purged,
resulting in no Dares.

It is also non-trivial to obtain the complete subdomains of an
apex domain. Since the majority of apex domains disallow a DNS
zone transfer (i.e., a DNS query of type AXFR), we decide to use
brute-force scanning to construct our subdomain list. However, it is
impractical to scan all top 1 million domains. To make this search
manageable, we constrain our search space to the first 10,000 do-
mains, 2,700 .edu domains, and 1,700 .gov domains in the top
1 million domain list. We first issue a DNS zone transfer query
to each of these domains, and we successfully collect the zone
data for 320 domains. Based on the results of zone transfers, we
then construct a word list of size 20,000 for brute-force scanning.
The zone transfer results also show that the wildcard records (e.g.,

*.foo.com) are widely used in practice. In our brute-force scan-
ning, we carefully eliminate the non-existent subdomains. In this
process, we send DNS queries to about 288 million valid subdo-
mains and about 570 thousand subdomains are successfully ob-
tained. This subdomain dataset is denoted as S = St ∪ Se ∪ Sg .

4.2 DNS Data Retrieval
Then we use the DNS tool dig to retrieve the DNS records of

every domain in D and S. We only collect the DNS records whose
types are listed in Table 1. For these types of DNS records except
A record, we recursively issue DNS queries for the hostname in the
data field until a query reaches (or fails to reach) an A record.
Therefore, for each domain d in D∪S, we obtain a DNS resolving
chain RCd = {rtype0(d, data0), . . . , rtypei(datai−1, datai)}.
This dataset is denoted as DREC =

⋃
RCd.

4.3 Searching for Dares
After the completion of DNS data collection, we then automati-

cally search for the four types of Dares using Algorithm 1. Given
the resolving chain of a domain, we recursively check the data
field of every DNS record in the chain, as shown in Lines 7, 9, 12,
15 and 19 of Algorithm 1. The Dare type is determined by the type
of the first DNS record of the chain. We next describe how we
implement these checks in detail.

4.3.1 Checking A Records (Lines 7 and 9)
Both EC2 and Azure publish their public IP ranges [4], [18].

However, we still cannot know if a given IP is allocable at a spe-
cific time. Almost all cloud platforms including EC2 and Azure
assign IP addresses randomly and disallow users to specify an IP
to allocate. It is a challenging task to obtain a desired IP. We study
this issue from the following two aspects:

• We quantify whether and how practical an attacker can over-
come the random IP assignment to obtain a desired IP by
scouting the IP pools.

• We then assess the potential magnitude of Dares in the wild.

Scouting IP Pools. We implement a simple tool, IPScouter,
to milk the IP addresses from EC2 and Azure. Since EC2 uses
two separate address pools for EC2-Classic and EC2-VPC, we set

Algorithm 1 Search for Dares.

Input: DREC, ALLOCIP
Output: Dares (DARES) and potential Dares (PDARES)

1: procedure DAREFINDER(DREC, ALLOCIP)
2: for RC ∈ DREC do
3: daretype← RC.rtype0
4: for rec ∈ RC do
5: hostname, rtype, data← unpack(rec)
6: if rtype == “A" then
7: if data ∈ ALLOCIP then
8: DARES← [daretype, rec, data]
9: else if likely_dareA(data) then
10: PDARES← [daretype, rec, data]

11: if rtype ∈ [“CN", “MX"] then
12: if domain_expired(data) then
13: DARES← [daretype, rec, data]
14: break
15: if abandoned_service(data) then
16: DARES← [daretype, rec, data]
17: break
18: if rtype == “NS" then
19: if domain_expired(data) then
20: DARES← [daretype, rec, data]
21: break

up two IPScouters, one for each address pool. The IPScouter-
VPC randomly requests the IPs from all currently available regions
[20]. The IPScouter-Classic requests the IPs from us-east-1
as our account can support EC2-Classic only in this region. In
both setups, only Elastic IPs are allocated via the boto’s [6] API
allocate_address. Also, the IPScouter-Azure requests the
IPs from the regions returned by ServiceManagementService.
list_locations() [5]. The static IP addresses are reserved by
using create_reserved_ip_address(). No virtual ma-
chine or service is launched in this process.

The obtained IP addresses are immediately released after being
logged into ALLOCIP, the input to Algorithm 1. Finally, since all
clouds throttle query API requests on a per-account basis, our IP-
Scouters employ the exponential-backoff-linear-recovery strategy
to control their request rates.

Potential Dares in the Wild. Our IPScouter is probabilistic
by nature and many factors could affect the completeness of the
milked IPs. We may not find all desired IPs in our study. For exam-
ple, a cloud platform may reserve a portion of IP ranges for some
time. Therefore, we scan all IPs in DREC to assess the potential
number of exploitable Dares in the wild. Our basic assumption is
that if an IP in a cloud is not alive, it has probably been released. In
both EC2 and Azure, an in-use IP costs nothing, but users should
pay for an unused one. Thus, we believe this assumption is valid
in general. Given a set of A records R = {r1, r2, · · · , rn}, with
ri = <namei, IPi> and i ∈ [1, n], we check if they are potential
Dares based on the following steps (Line 9 in Algorithm 1):

Step 1. If IPi is not in the cloud, remove ri.

Step 2. We remove all records that are very unlikely to be dan-
gling based on their name fields. For instance, a record may point
to a specific service built atop an existing IaaS infrastructure like
load balancing. These records are usually managed by the cloud
DNS servers. If the DNS resolution is successful, it indicates that
the IP is not released.

Step 3. We scan the remaining records using ZMap [34]. To
reduce the scanning traffic, we prioritize the ports using a set of
heuristics. For instance, the ports for HTTP and HTTPS are ranked
first by default. If the name field starts with ns, it is probably
a DNS server, and thus we scan port 53 first using both TCP and
UDP. Note that we conduct a second scanning for all non-alive IP
addresses after one month to ensure they are not transient failures.
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Figure 8: Number of confirmed Dares for each dataset.

Step 4. At this step, all remaining records are probably Dares
since they are associated with these not-in-use IP addresses. We
further check archive.org to gain more confidence on whether
an archived webpage for namei can be found (see §5.2).

4.3.2 Checking Abandoned Services (Line 15)
We first identify a list of popular third-party services. To this

end, we cluster all CNAME and MX records based on their data
fields and then manually check all email and top 200 non-email ser-
vices in terms of the cluster size. A service is selected for further
checking if it (1) satisfies one of the two requirements in §3.3 (i.e.,
the domains using the service are vulnerable to security-sensitive
Dares) and (2) provides free or free-trial accounts, which allow us
for further checking. As listed in Table 4, only one email and eight
non-email services meet the two pre-conditions and are chosen for
further checking. The majority of those non-selected services do
not provide free accounts to individuals, preventing them from be-
ing further checked. For non-email services, only several, such as
Google [12] and Aliyun [1], enforce ownership verification. By
contrast, we find only one email service that does not enforce own-
ership verification. This is probably because most email service
providers try to prevent their services from being abused in spam-
ming and phishing. A common practice of verification requires do-
main owners to include a random CNAME or TXT record into their
aDNS’s records. Since we assume that adversaries cannot control
a domain’s aDNS, such verification will be able to foil all attack
attempts.

Type Service List

CN
Azure cloud service (cloudapp.net), Shopify, Github,

Wordpress, Heroku, Tumblr, Statuspage, Unbounce
MX Mailgun

Table 4: Evaluated third-party services.

Then, to automatically find unclaimed domains, we build an au-
tomated tool by leveraging Selenium [21], a tool that automates
web browsing. Note that we can easily single out unclaimed do-
mains in Azure by simply finding these CNAME records whose
data fields fail to be resolved to A records. There is no need to
use the automated tool because the domains in the name fields of
these CNAME records should be unclaimed in the Azure cloud ser-
vice.

4.3.3 Checking Expired Domains (Lines 12 and 19)
It is straightforward to check whether a domain has expired. We

first screen out the expired domains based on the WHOIS responses.
For an expired domain, the response from WHOIS should be null.
Since WHOIS is not always reliable, we then crosscheck with the
popular Internet domain registrars such as GoDaddy to verify the
expiration of a domain if we can re-register the domain.
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Figure 9: Number of potential Dares.

4.4 Limitations
While our work is able to find exploitable Dares in the wild, we

cannot know whether and how many websites have already been
exploited. For example, an expired domain may have already been
registered by an attacker. Moreover, our study currently covers only
two cloud platforms and nine third-party services. However, the
Dare problem should be universal across many cloud platforms and
third-party services.

5. MEASUREMENT RESULTS
In this section, we demonstrate that the problem of Dares is

widespread and underplayed, even in those well managed zones
like edu and gov. We first describe the general characteristics of
Dares found in our measurement study and then analyze the mea-
surement results with respect to the three attack vectors.

5.1 Characterization of Dares
Figure 8 presents the number of Dares found in the four datasets

listed in Table 3. In this figure, we only count the IP addresses
that are successfully obtained by our IPScouters (i.e., confirmed
Dares). The remaining potential Dares are presented in Figure 9.
For dataset S, multiple Dares in the same domain zone are counted
separately. In total, we find 791 Dares and 5,982 potential Dares in
the wild. As we can see, Dares exist in all four datasets, indicating
a widespread problem.

It is evident that the total number of Dare-A and Dare-CN ac-
counts for the majority of confirmed and potential Dares in the
wild. This is because A and CNAME records are the most frequently
used in practice. For apex domains, more than 90% delegate their
aDNSes to third-party services like GoDaddy [37]. When the host-
ing resources are released after a website is closed, its aDNS is
usually still alive and all DNS records will unlikely be deleted as
the domain itself is still unexpired. The A and CNAME records for
subdomains commonly link to new resources supported by the do-
mains or external services, which often have a relatively short life-
time and can sometimes be migrated away. Due to the high churn
rate of these subdomains, it poses a tedious burden for domain
owners to manually keep their aDNS servers updated and consis-
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tent. Therefore, in practice, these stale DNS records are usually
not purged, resulting in Dares. Note that the number of Dare-CNs
in dataset D is relatively small because it is normally not recom-
mended to keep CNAME records at apex domains.

Dare-MX is mainly caused by abandoned services, and only dataset
D has instances that can be exploited by the other two vectors. Af-
ter examining these special instances, we find that domains in D
tend to use multiple MX records pointing to different domains. For
example, the DNS records of domain customizedgirl.com
include

customizedgirl.com@ns-1057.awsdns-04.org.:
customizedgirl.com. 60 MX 10 bridalpartytees.com.
customizedgirl.com. 60 MX 10 customizedgirl.com.
customizedgirl.com. 60 MX 10 shoplattitude.com.

Here three MX records point to three different domains with the
same priority. We find that the third one, shoplattitude.com,
has expired. We speculate that this is a typo, which should actu-
ally be shoplatitude.com. Since each of the three records is
used in a round-robin fashion by resolvers, it is difficult for domain
owners to quickly be aware of the failed record. By contrast, all MX
records in a better-managed domain like those in dataset S usually
point to different mail servers of the same domain.

Finally, only four instances of Dare-NS are found in our mea-
surement, all of which are in dataset D. All instances share the
same pattern of misconfiguration, with one example shown below.

bedshed.com.au@ns1.partnerconsole.net:
bedshed.com.au. 3600 NS ns2.r2design.com.au.
bedshed.com.au. 3600 NS ns1.r2design.com.au.

Using dig utility with +trace option, we find that the ac-
tual aDNS in .com.au TLD is ns1.partnerconsole.net,
but the NS records are not updated and still point to the expired
domains. The smidgen of Dare-NS in the wild is probably be-
cause the NS records are more critical, and a misconfiguration can
be easily spotted. Moreover, the majority of domains have mi-
grated aDNS to third-party services [37], which usually have well-
managed servers. Unfortunately, this migration also becomes a
common cause of Dare-A that can be exploited through the IP in
cloud (see §5.2).

Dare top 10K (St) edu (Se) gov (Sg)
Dare-A 40 1 0

Dare-CN 260 50 5
Dare-MX 5 1 1

Total 277† 52 6 335

Table 5: Statistics of distinct apex domains in S with confirmed
Dares. † Some domains overlap across the above three lines (e.g.,
a domain has both Dare-A and Dare-CN).

For dataset S, Table 5 shows the number of distinct apex domains
for each type of Dare. In total, we identify Dares for 277 distinct
domains in Alexa’s top 10,000, 52 in edu zone and 6 in gov zone.
In particular, the domains in St cover many types of websites as
shown in Figure 10. Our results demonstrate that Dares indeed exist
in almost all types of websites and thus can incur serious damages.

5.2 IP in Cloud
We now analyze the measurement results of the first attack vector

in two cloud platforms: Amazon EC-2 and Microsoft Azure.

Performance of IPScouters. Figure 11 shows the number of
distinct IP addresses obtained by IPScouters over time. IPScouter-
Classic and IPScouter-Azure last for 14 days and IPScouter-VPC
lasts for 26 days. For EC2-VPC and Azure, the number increases
linearly, with about 5,000 and 2,200 new IP addresses obtained

Entertainment, 32

Travel, 8

News, 70

Adult, 4

Business, 62

Recruiting, 7

Others, 42

Online Retail, 45

Banking, 7

Figure 10: Categories of websites that have Dares.

daily, respectively. However, the number on EC2-Classic only rapidly
increases in the first few days and then stops growing over time.
The speed of IPScouters is mainly constrained by three factors: the
request rate limit of the clouds, the randomness of IP allocation,
and the density of IP address space. For the first constraint, we find
that a five-second delay between two API calls (IP allocation or re-
lease) works fine with EC2, but at least a ten-second delay should
be used in Azure. Under this configuration, IPScouters send about
7,900 and 4,300 IP allocation requests per day to EC2 and Azure,
respectively.

Although it seems that IP allocation is not truly random, it is very
unlikely for a cloud to re-use the recently released IP addresses.
That is why on both EC2-VPC and Azure the number of daily ob-
tained new IP addresses remains about half of the number of al-
location requests sent to the clouds. This speed is fast enough to
feasibly milk a large number of IP addresses in each cloud.

The significant speed decrease on EC2-Classic is probably due
to the crowded IP address space. For instance, for all those domains
that use EC2 in our datasets, about 69% are hosted on EC2-Classic.
By contrast, both EC2-VPC and Azure have larger address space
but fewer users. Note that, although the IP address spaces of EC2
and Azure include millions of IP addresses [4], [18], we speculate
that only a portion of IP address space is available at any time.

We deploy only one IPScouter for each cloud platform, while
adversaries may deploy IPScouter farms to significantly speed up
the IP milking. Finally, the IP allocation in clouds is a complicated
issue that deserves in-deep study, and we leave this exploration as
our future work. In this work, our goal will be to demonstrate that
the Dare problem is a real and serious threat.

Confirmed and Potential Dares. In our measurement, all con-
firmed Dares are from EC2, with about 93% from EC2-Classic.
Considering that IPScouter-Classic milks IP addresses from only
one region, more potential Dares would have been confirmed if we
extended our search to other EC2 regions. Meanwhile, as shown
in Figure 9, the number of potential Dares on EC2 is significantly
larger than that on Azure. This is because Azure is a relatively
new platform and has a much smaller market share than EC2. For
instance, we find that among all domains that use clouds in our
datasets, Azure hosts just one tenth. Thus, more time is required
to milk desired IPs of Azure. However, this does not reduce the
generality of a potential attack; the problem is universal. As the
clouds become more crowded, the threat will be more serious and
widespread.

By further crosschecking with archive.org, we successfully
find snapshots for about 52.6% potential Dares. Thus, these do-
mains can be claimed as true Dares with higher confidence.

We only identify a few potential Dares in edu and gov zones.
Domains in these zones are mostly deployed using the paradigm of
Figure 5(a), where no cloud IP is used. Besides, the majority of
domains in gov zones use Rackspace [19], instead of EC2/Azure.
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Patterns of Dares. As shown in Figures 8(a) and 9, this at-
tack vector can effectively exploit both apex domains and subdo-
mains. We attempt to infer how the Dares are introduced by man-
ually searching and checking relevant information of all confirmed
Dares and 100 randomly sampled potential Dares.

While many vulnerable apex domains are toy websites with low
value, more than half of those identified belong to startups for which
we can find company information on CrunchBase [7], Twitter, and
Github. One of the examples is described in §6.1. These startups
are either closed, re-branded, or acquired by other companies. In
all cases we examined, although the domain owners have released
the hosting resources in a cloud, they continue to renew their do-
mains. Such vulnerable apex domains provide valuable and attrac-
tive properties for attackers to conduct phishing and scamming.

For those vulnerable subdomains, we uncover two main causes
of Dares. First, Dares are introduced due to website re-construction.
One such example is support.mediafire.com. Previously,
the “Get Support" on its homepage was linked to www.support.
mediafire.com/help. However, it now points to the link
of www.mediafire.com/help, and the host in the cloud for
support.mediafire.com has been released. Clearly, the do-
main owner forgot to update their DNS servers with this change. In
another example, autotrader.co.uk stopped the self-managed
aDNS (ns4.autotrader.co.uk) and delegated the aDNS res-
olution to verisigndns. After this delegation, although they
correctly updated the NS records, they forgot to delete the glue
records. The second cause is simply that certain services have been
discontinued. For instance, books.panerabread.com previ-
ously collaborated with Amazon to sell books. This service now
seems to be closed. Again, the hosting resources are released, but
its aDNS is not updated.

Cost analysis. During our study, IPScouters cost about $0.07 on
EC2 and $0.005 on Azure per day. Such a low cost makes it feasible
to conduct long-term IP milking. Once a desired IP is obtained, to
hold it with a cheapest virtual machine, it costs $0.0115 and $0.023
per hour or $100.74 and $201.48 annually on EC2 and Azure, re-
spectively. By contrast, the same expense would afford adversaries
only several minimally effective typosquatting domains.

5.3 Abandoned Third-party Services
Figure 12 presents the number of Dares found on each third-

party service, showing that Dares can be found on every service
platform. Most Dares on Mailgun are in dataset D because email
services are commonly hosted under apex domains. Instead, non-
email services usually serve as the sub-functions of an apex domain
and thus reside in the subdomains. We find that this Dare problem
is quite worrisome as Dares can even be found in famous domains
like Yahoo.net and mit.edu.

Patterns of Dares. While most Dares occur because the third-
party services are abandoned, we find an interesting pattern in one
of the services, Wordpress, as shown in the following example.

www2.opensky.com@ns-1448.awsdns-53.org.:
www2.opensky.com. CNAME blog.opensky.com.
blog.opensky.com. CNAME openskymerchants.wordpress.com.

The website of blog.opensky.com is still in use and its orig-
inal webpage can be reached. The domain owner intends to direct
www2.opensky.com to blog.opensky.com using CNAME.
Unfortunately, this configuration fails to function properly and ac-
cessing www2.opensky.com will reach an error page on Word-
press. The problem lies in the fact that only blog.opensky.com
is claimed on Wordpress, which dispatches web requests according
to the initial domain name. Since www2.opensky.com is not
claimed, Wordpress will direct all requests to the error page. An
attacker can thus claim the subdomain, and all subsequent requests
will then be redirected to the landing page under the attacker’s con-
trol, although the CNAME tries to redirect to blog.opensky.com.
While we only observe such cases on Wordpress, services like Github,
Cloudapp, Shopify, and Herokuapp may also be vulnerable to this
misconfiguration. The other three services, including Tumblr, Sta-
tuspage, and Unbounce, do not suffer this problem because a sub-
domain can be claimed if and only if it points to a specific domain
like domains.tumblr.com.

Cost analysis. All of these services provide free or free-trial
accounts. Thus, it costs adversaries virtually nothing to register
many free accounts.

5.4 Expired Domains
Patterns of Dares. As our results show, many subdomains in

even well-managed zones like edu and Alexa’s top domains point
to expired domains using CNAME. A further examination reveals
three patterns into which these expired domains fall, as listed in Ta-
ble 6. First, more than one-third of expired domains look quite sim-
ilar to their alias subdomains. For instance, module.rabobank.nl
points to rabobank-hoi.nl and rps.berkeley.edu points
to rpsberkeley.org. Second, as found in [46], [50], a signifi-
cant portion of subdomains point to expired external services. One
example is 21vcdn.com. The subdomain, js.jiayuan.com,
points to the service that has stopped working since 2010. Third,
we find several cases of typos. For instance, b.ns.trnty.edu
points to awsnds-18.net. The domain owner obviously intends
to use a CNAME record to redirect their previous aDNS to the one
provided by Amazon AWS. This attempt fails because of a typo.
The domain currently uses NS records to point to Amazon AWS
directly, but the mistyped CNAME record still exists. The remain-
ing 33% of expired domains basically comprise random characters.
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Pattern Examples %
Similar module.rabobank.nl→ rabobank-hoi.nl

39%
to alias rps.berkeley.edu→ rpsberkeley.org

Expired external js.jiayuan.com→ 21vcdn.com
21%

services shopping.segye.com→ ticketdamoa.com

Typo
b.ns.trnty.edu→ awsnds-18.net

7%
customizedgirl.com→ shoplattitude.com

Table 6: Patterns of expired domains.

Existing defense against abusive domain registration. We
have re-registered all the expired examples listed in the paper (i.e.,
eight expired domains). After about three months, our re-registered
domains are still alive and we received warning from only one do-
main owner. This indicates that the majority of expired domains are
indeed vulnerable to be abused. Domain registrars and owners may
adopt existing defense mechanisms to protect against the registra-
tion of abusive domains. First, they can disapprove those domains
in malicious domain lists. However, we find that none of our iden-
tified expired domains are included in these lists. Second, they can
disallow domain names that are very similar to well-known ones
to be arbitrarily registered. In our datasets, we identify that this
can prevent about 46% of expired domains from being exploited.
Unfortunately, still about 54% of expired domains are irrelevant to
vulnerable subdomains. It is difficult for registrars to determine
whether such an expired domain is associated with Dares, render-
ing these misconducts hard to be thwarted. Therefore, more effec-
tive defense is needed to prevent abusive domain registration.

Cost analysis. These expired domains are also quite cheap to
own. Figure 13 shows the prices to re-register these domains for
one year. It costs less than $12 for most domains. Given the signif-
icant value of these vulnerable subdomains, this cost is negligible.

5.5 Exploiting Dares
We now determine the exploitable window of Dares. For those

caused by released IP addresses in clouds and abandoned third-
party services, we estimate their occurrence time by checking with
archive.org. For expired domains, we can find their expira-
tion date. Our results show that all Dares have a large exploitable
window, ranging from three months to seven years, with over 90%
being vulnerable for more than one year.

5.6 Ethical Considerations
During the process of this study, we did not conduct any adver-

sarial activities against the scrutinized domains or the visitors to the
Dares we successfully identified. We also checked with our institu-
tion’s IRB and confirmed that we do not need to obtain its approval.
All examples presented in this paper have either been corrected or
defensively exploited by us. We have sent notifications to all af-
fected domains, and have received responses from roughly half of
them. Almost all apex domains did not reply. Although most sub-
domains have acknowledged our reports, only two thirds of them
have taken action for remedy. Our experience is similar to the ob-
servations by Li et. al. [47].

6. THREAT ANALYSIS
Domain names serve as the trusted base in many security paradigms.

For example, human users and many malicious domain detectors
tend to assume an apex domain with a clean history as trusted. A
user also trusts all subdomains of an apex domain with good rep-
utation by nature. Unfortunately, our work demonstrates that such
trust could be abused by adversaries to mount a number of much
more powerful attacks. In this section, we describe and discuss
four types of threats that could be significantly exacerbated by ex-
ploiting Dares.

6.1 Scamming, Phishing, and More
The common modus operandi that adversaries adopt in scam-

ming, phishing, and many other forms of malicious activities in-
cludes typosquatting [44], doppelganger domains [8], and homo-
graph attacks [41]. However, these approaches are limited in effec-
tiveness, and vigilant users can easily spot them. Moreover, many
automatic systems like EXPOSURE [29] and Notos [25] have been
proposed to detect these malicious domains.

Dares can significantly enhance the effectiveness of these mali-
cious attacks in two major ways. First, instead of registering new
domains, adversaries directly abuse either subdomains or apex do-
mains usually with a clean history and an excellent reputation. The
abused domains have unchanged registration information and can
even reside on the same IP addresses. Second, at an affordable cost,
adversaries can target a large number of victims in a short time by
leveraging services like Google AdWords. We next illustrate three
case studies.

Case 1: Suspended domains getting revived. GeoIQ.com
[10] is a web-based location analysis platform offering data shar-
ing, risk mitigation, and real-time analysis services. The A record
retrieved from its aDNS is shown below. We can see that this do-
main was hosted on EC2.

geoiq.com@ns-1496.awsdns-59.org.:
geoiq.com. 1800 A 23.21.108.12

In July 2012, GeoIQ.com was acquired by another company
and archive.org shows that the last snapshot of this domain
was captured on August 1, 2015. This implies that the domain
owners released the hosting resources in EC2 around August 2015,
which was later successfully obtained by our IPScouter. However,
the WHOIS data shows that the domain still gets renewed annually.

Domain Name: GEOIQ.COM
Registrar: GODADDY.COM, LLC
Updated Date: 21-sep-2015
Creation Date: 20-sep-2005
Expiration Date: 20-sep-2016

With a simple Google search, we can find their accounts on many
platforms, including Github, Twitter, and Youtube. Adversaries
could impersonate the domain and launch social engineering at-
tacks more effectively.

Case 2: Inherited trust from apex domains. mediafire.com,
ranked 169 in Alexa at the time of our study, is a file hosting, file
synchronization and cloud storage service provider. One of their
subdomains, support.mediafire.com, was hosted on EC2
but later was no longer used. The hosting service on EC2 was re-
leased and then successfully obtained by our IPScouters.

support.mediafire.com@ns-1179.awsdns-19.org.:
support.mediafire.com. 86400 A 23.21.94.181

The subdomain support is a common practice used by many
domains to provide supporting services to users. There are also
many other similar cases like jobs, payment, or shop. If an
adversary hosted malicious contents or carried out spear phishing
under such subdomains, even the most vigilant users would fall
victim to the attacks.

Case 3: Harvesting through Google Adwords. Travelocity
.com, ranked 1,810 in Alexa at the time of our study, is one of the
largest online travel agencies. We find that one of its subdomains
points to an expired domain using CNAME record.

can.travelocity.com@pdns1.ultradns.net.:
can.travelocity.com. CNAME travelocitycancontest.com.

To demonstrate how fast an adversary can spread the attacks and
at what cost, we register this expired domain and direct visitors to
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our subdomain using Google AdWords. To minimize the inconve-
nience that our study might have caused, we redirect all visitors to
the homepage of Travelocity after recording the MD5 of source IP
addresses. Since our interaction with the users is limited to logging
the hashed IP addresses, we believe there are no ethical implica-
tions in this experiment. We run the campaign for two days, and
141 distinct IP addresses are recorded at the cost of $1.38. Adver-
saries could set up a fake login page or steal cookies directly. In
either case, thousands of accounts could be compromised.

6.2 Active Cookie Stealing
Adversaries have multiple ways to steal and hijack cookies. One

simple approach requires the traffic between users and websites to
be unencrypted and adversaries to be able to monitor the traffic.
This strong requirement limits the scale and feasibility of this ap-
proach for cookie stealing. For instance, almost all top websites
have adopted at least partial HTTPS [54] and sensitive cookies are
usually transmitted in HTTPS only (using the Secure flag). Al-
ternatively, if HTTP cookies do not have the HttpOnly flag set,
adversaries can obtain them through other means like XSS attacks.
As this flag is being deployed on more websites, XSS attacks will
become ineffective in cookie hijacking. By exploiting Dares, how-
ever, adversaries can actively steal cookies from world-wide users,
regardless of the HttpOnly and Secure flags. This likely results
in not only privacy leakage but also fully compromised accounts.

Implications. Whenever possible, cookies with sensitive ac-
count information should be scoped to trusted subdomains only.
It is also unsafe to rely on the Secure flag to prevent cookie steal-
ing. The Secure flag is known to lack integrity [58], but it was
generally assumed to be secure against stealing. However, this as-
sumption will be challenged by Dares.

6.3 Email Fraud
Email is still one of the favorite attack vectors in online fraud.

The malicious emails are usually sent with authentic addresses that
are not under the adversaries’ control. Since adversaries cannot
receive and further confirm reply emails from victims, the email
attacks are open-looped. However, by exploiting a Dare, an adver-
sary will instead be able to not only send but also receive emails. In
particular, some popular existing anti-spam mechanisms including
Sender Policy Framework (SPF) and DomainKeys Identified Mail
(DKIM) can be bypassed. Enhanced with these capabilities, adver-
saries could conduct many forms of online fraud more effectively
and efficiently, from spamming, spear phishing to even abusing ex-
clusive online membership such as Amazon Prime membership.

6.4 Forged SSL Certificate
Modern websites commonly provide critical online services over

mandatory HTTPS connections, and they allow sensitive cookies to
be transmitted only over encrypted connections using the Secure
flag. For example, the following is a cookie with Secure flag set
by travelocity.com:

Set-Cookie: JSESSION=d1b8eb43-xxx; Domain=.
travelocity.com; Path=/; Secure; HttpOnly

To steal these secure cookies, an adversary has to set up an HTTPS
website on the vulnerable subdomain and get it signed by a Certifi-
cate Authority (CA). To ensure the authenticity of a certificate, CA
usually requires subscribers to prove the ownership of a (sub)domain.
This typically involves verification via specific email addresses un-
der the apex domain or those in the WHOIS database. Adversaries
in our threat model can hardly complete this verification.

However, the emerging new Certificate Authority, such as Let’s
Encrypt [15], tends to leverage the automated and free validation

Figure 14: Authenticating Ephemeral IPs.

to simplify the process of issuing certificates. Let’s Encrypt
provides two ways for subscribers to prove the control of a domain,
one of which involves provisioning an HTTP resource under the do-
main being signed. Unfortunately, when adversaries exploit a Dare
through a cloud IP or an expired domain, they have the full access
to the hosting resource of the domain and thus can pass the chal-
lenge of Let’s Encrypt. Using this principle, we successfully
have a subdomain can.travelocity.com [23] authentically
signed.1

Implications. It is insufficient to use merely one single chal-
lenge for ownership verification. Considering that both aDNS (in
the case of Dare-NS) and domain hosting resources could be com-
promised, it would seem more reliable to seek confirmation from
specific emails, e.g., those in the WHOIS database.

7. MITIGATIONS
Almost all previous efforts, such as the Domain Name System

Security Extensions (DNSSEC), attempt to protect the integrity
and authenticity of DNS records returned to clients. Little atten-
tion has been paid to authenticating the resources to which DNS
records point. Domain owners are commonly assumed to keep their
aDNS servers updated and consistent. Unfortunately, our work has
demonstrated that this assumption rarely holds in practice, and the
resulted problem, Dare, is a serious and widespread threat. In this
section, we propose and discuss the mechanisms that can mitigate
Dares with minor manual efforts. In particular, we focus on the
DNS data fields exploited by our three attack vectors. The key
principle of these mechanisms is that all resources should be con-
sidered ephemeral.

Authenticating Ephemeral IP addresses. We propose a mech-
anism that allows aDNS servers to automatically authenticate IP ad-
dresses whenever an A record is added or updated. Figure 14 shows
the workflow of the mechanism. Both aDNS and the corresponding
server whose IP address is added/updated have one daemon. When
the A record is added or updated, the aDNS communicates with
the server and issues a key to it. Then, aDNS periodically checks
the validation of the key. While the architecture is simple, a set of
problems need to be resolved in practice, e.g., how to protect the
key on the server and how much overhead is induced on aDNS. We
leave the implementation and evaluation of this mechanism as our
future work.

Breaking resolution chain through the aDNS of third-party
services. In the case of data fields pointing to external services,
we recommend that services like Shopify should deprecate A records
and adopt an isolated name space in CNAME for each user. In our
observations, all the external services except Shopify and Tumblr
have deprecated A records. To protect the stale CNAME records,
we define an isolated name space for each user. Since every user
already has a unique account number, the services can generate

1
The site can.travelocity.com is associated with a dangling DNS

record and is not currently being used by the domain owner. We temporarily
signed the subdomain and directed it to www.travelocity.com, and
thus there is no break caused by our experiment.

1423



CNAME records using the format of {user-specified-name}.
useraccount.service.com. Multiple domains managed un-
der the same account are assigned unique names like:

@aDNS of Shopify
store-1.alice.myshopify.com CNAME shops.shopify.com
store-2.alice.myshopify.com CNAME shops.shopify.com

Once the domain of store-1 becomes unclaimed, the record of
store-1.alice.myshopify.com should be deleted from the
aDNS of Shopify, and thus the dangling domain cannot be resolved.

Checking for expired domains. In existing DNS systems, only
the records with expired domains in name fields will be purged
from DNS servers, and those with expired domains in data fields
(e.g., pointed to by a CNAME) are generally neglected. We have
shown that these stale records could be exploited as a major source
of Dares. We advocate that aDNS servers should periodically check
the expiration of domains in data fields. Since this checking is
triggered only when the expiration date is approaching, its fre-
quency is very low and the overall overhead is trivial. Comple-
mentary to periodic checking, Alembic [46] can be used to locate
potential changes in domain ownership. We are also considering to
extend Alembic using the patterns listed in Table 6.

8. RELATED WORK
In past decades, significant research efforts have been devoted

to studying the security of DNS. In the following, we provide an
overview of previous works that are closely related to ours.

Cache Poisoning Attacks. Adversaries could exploit the flaws
in a DNS server to inject incorrect entries, which will direct users
to a different server controlled by adversaries. Since Bellovin [28]
revealed this vulnerability in the 1990s, several mitigations [27],
[31], [32], [52], [55] have been proposed. Adversaries can also
tamper with DNS resolvers using spoofed DNS responses (i.e., off-
path DNS poisoning [38], [39], [40], [43]). Instead of injecting en-
tries to benign DNS servers or resolvers, more malicious resolution
authorities have recently been deployed by adversaries [33], [45].
While having the same negative impact, our work is different from
cache poisoning because we neither tamper with DNS resolutions
nor set up malicious DNS services.

DNS Inconsistency and Misconfiguration. DNS is organized
in a hierarchical tree structure, and it does not require strong consis-
tency among nodes. Therefore, data changes in upper-level servers
cannot override the cached copies in recursive resolvers. The out-
dated data will continue to serve users before reaching its TTL
limit. The weak cache consistency could yield vulnerabilities like
ghost domain names [42], i.e., the domains that have been deleted
from TLD servers but still resolvable. Some approaches have been
proposed to address this problem. For example, DNScup [30] proac-
tively pushes changes in authoritative servers to recursive resolvers.
However, in our study we reveal that inconsistency between DNS
records and the connected resources is also prevalent and could
pose serious security threats.

Pappas et al. [51] diagnosed three types of misconfigurations
and found that these misconfigurations are widespread and degrade
the reliability and performance of DNS. By contrast, our work un-
covers a new type of DNS misconfiguration and studies its po-
tential security threats. Although the issue of Dares has received
some attention in two non-academic blogs [9], [13], our work is
the first large-scale systematic study on this problem, in terms of
DNS record types and the magnitude of Dares in high-value do-
mains. We also identify two more vulnerable third-party services,
one of which (i.e., Azure Cloud Service) cannot even be protected
using domain ownership verification.

Malicious Domains. Finally, many works have focused on un-
derstanding and identifying malicious domain names. Jiang et al.
[42] found that a malicious domain name could remain resolvable
even long after it has been deleted from the upper level DNS servers
or after its TTL has expired. Hao et al. [36] studied the domain
registration behavior of spammers and found that spammers com-
monly re-register expired domains. Furthermore, Lever et al. [46]
characterized the malicious re-registration of expired domains and
demonstrated that the residual trust abuse is the root cause of many
security issues. The Dares we studied in this paper can also be cat-
egorized as the residual trust abuse. The most salient difference is
that Dares could be caused by not only the expired domains, but
also a large number of subdomains, including those of the most
well-known websites.

Recent works have also proposed approaches to distinguish be-
nign and malicious domains. These approaches extract features
from lexical representations, registration information, and the prop-
erties of name servers [25], [29], [35], [48]. Yadav et al. [56] and
Antonakakis et al. [26] proposed methods to identify dynamically
generated domains that are used by advanced botnets for command
and control. The security threats presented in our work could sig-
nificantly decrease the performance of these detectors.

9. CONCLUSION
This paper studies the problem of dangling DNS records (Dares),

which has been largely overlooked, and demonstrates that Dare is
a serious and widespread security threat. In order to exploit these
unsafe Dares, we have presented three attack vectors, IP in cloud,
abandoned third-party services, and expired domains, for domain
hijacking. Then we have conducted a large-scale measurement
on four datasets containing representative domains to quantify the
magnitude of the unsafe Dares in the wild. We have found hundreds
of unsafe Dares on even those well-managed zones like edu and
Alexa top 10,000 websites. This is very worrisome because Dares
can notably enhance many forms of online fraud activities, such as
spamming and cookie stealing. The underlying cause of Dares is
the lack of authenticity checking for resources pointed to by DNS
records. To this end, we have proposed three defense mechanisms
that can effectively mitigate Dares with minor human effort.
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