
W&M ScholarWorks W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

2016

Input-Sensitive Performance Testing Input-Sensitive Performance Testing

Qi Luo
Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation Recommended Citation
Luo, Qi, Input-Sensitive Performance Testing (2016). Fse'16: Proceedings of the 2016 24th ACM Sigsoft
International Symposium on Foundations of Software Engineering.
10.1145/2950290.2983953

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235418444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Input-Sensitive Performance Testing

Qi Luo
Department of Computer Science

College of William and Mary
Williamsburg, VA, USA

qluo@cs.wm.edu

ABSTRACT
One goal of performance testing is to find specific test input
data for exposing performance bottlenecks and identify the
methods responsible for these performance bottlenecks. A
big and important challenges of performance testing is how
to deeply understand the performance behaviors of a non-
trivial software system in terms of test input data to prop-
erly select the specific test input values for finding the prob-
lematic methods. Thus, we propose this research program
to automatically analyze performance behaviors in software
and link these behaviors with test input data for selecting
the specific ones that can expose performance bottlenecks.
In addition, this research further examines the correspond-
ing execution traces of selected inputs for targeting the prob-
lematic methods.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Software testing and debugging;

Keywords
Performance testing, machine learning algorithms, genetic
algorithms, change impact analysis

1. INTRODUCTION
During software development and maintenance, a software

system may exhibit worsening performance behaviors, such
as longer elapsed execution time and/or lower throughput,
for specific combinations of test input data [7, 23]. Perfor-
mance testing is an important activity to target the spe-
cific combinations of test input data for detecting the per-
formance bottlenecks. In a survey of 148 enterprises, 92%
responses claim that improving software performance has a
top priority [22]. During performance testing, software engi-
neers commonly perform two actions: 1) run instrumented
software systems with some test input data to expose wors-
ening performance behaviors, and 2) analyze the execution
traces to determine the methods responsible for performance
degradation. Unfortunately, a nontrivial software system al-
ways has a large body of test input data as well as complex

logics. It is challenging for engineers to effectively link test
input data with software performance behaviors for finding
the specific ones that trigger performance bottlenecks, and
further locate the problematic methods.

A large body of research work has been dedicated to s-
tudying and improving performance testing [6, 7, 11, 18,
26]. Burnim et al. provided a testing algorithm to discover
worst-case input sizes for exposing bottlenecks [1] whereas
Coppa et al. proposed an approach to understand perfor-
mance costs in terms of input size [6]. However, these papers
only focus on the impact of input sizes on performance be-
haviors, failing to consider the potential impact of test input
values. Some recent research work utilizes control charts and
statistical analysis to target the specific test inputs trigger-
ing bottlenecks [16, 17]. However, they do not analyze the
corresponding execution traces of the selected test inputs to
locate the methods responsible for bottlenecks.

These issues make it clear that existing approaches do
not well support engineers in finding specific test inputs to
expose performance bottlenecks and locating the problem-
atic methods. Thus, we propose this research program to 1)
understand the performance behaviors in terms of selected
input combinations for exposing performance bottlenecks,
and 2) deeply analyze the traces of the selected inputs to
locate the problematic methods. Specifically, we consider
two different real-world scenarios of performance testing: 1)
single-version scenario, in which targeting the performance
bottlenecks in one released software version, and 2) two-
version scenario (for an evolving system), in which targeting
the problematic code changes responsible for performance
regressions between two versions. In the rest of this paper,
we introduce the proposed work and the experimental result-
s, and outline the expected contributions of our research.

2. RESEARCH APPROACHES
In this section, we explain our approaches and briefly dis-

cuss the experimental results. The complete results can be
found in our papers [8, 11, 12, 13, 14, 15, 23].

2.1 FOREPOST
We proposed FOREPOST and its alternative version, FO-

REPOSTRAND, which use Machine Learning algorithms (M-
L) to automatically extract rules for describing the relation-
ship between inputs and performance behaviors, and use
these rules to select specific inputs for finding bottlenecks in
single-version scenario [13, 14, 8]. Specially, FOREPOST s-
elects inputs based on rules, while FOREPOSTRAND selects
both of random inputs and the inputs chosen by rules.
Methodology. FOREPOST and FOREPOSTRAND are
built on two key components: 1) extracting descriptive rules

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983953

1085

for selecting inputs and 2) identifying bottlenecks with the
selected inputs. Initially, the system is instrumented and
run with random inputs. Collected execution trace for each
input is clustered into two groups, good and bad, based on
its execution time. The good traces require longer time to
execute, which are “good” to expose bottlenecks, while, the
bad traces need shorter time to execute, which are “bad” to
expose bottlenecks. Each trace is represented in a vector-
based format, linking test inputs with different performance
behaviors (i.e., good and bad). A ML algorithm, RIPPER
[2], is applied on these vectors to extract rules mapping in-
puts to their performance. FOREPOST selects inputs based
on rules while FOREPOSTRAND involves both random in-
puts and the inputs chosen by rules. These inputs are sent
back to the system and this feedback loop will be continued
until no new rule is generated. At this point, we perform
independent component analysis on the traces of selected in-
puts to analyze methods’ contributions to performance. The
ones having significant contributions to good traces but little
contributions to bad traces are considered as bottlenecks.
Results. The experiments were done on one commercial
system, Renter, and three web-based applications, JPet-
Store, Dell DVD Store and Agilefant. The results show that
FOREPOST is more effective in finding inputs increasing
execution time by 78.2% to 333.3% and targeting bottle-
necks as compared to random inputs. Some performance
bottlenecks of Renter have been confirmed by the software
engineers. FOREPOSTRAND is more effective in detecting
bottlenecks as compared to FOREPOST. FOREPOST has
been deployed in cloud to help engineers improve provision-
ing strategies that guide cloud to (de)allocate resources [8].

2.2 GA-Prof
Although FOREPOST is powerful in detecting perfor-

mance bottlenecks, it may miss some bottlenecks since it
only selects input data based on the learned rules, narrow-
ing down the executions to the specific paths. Inspired by
effectiveness of GAs in selecting the optimal solutions as a w-
hole in testing domain [9, 24, 25], we proposed an approach,
GA-Prof, which uses GAs to search input space for finding
the inputs that trigger more performance bottlenecks [23].
Methodology. The key idea is to map determining what
combinations of input data expose performance bottleneck-
s to a search and optimization problem. Initially, we run
the instrumented systems with random inputs, and utilize
a fitness function to evaluate the collected execution traces.
The fitness function maps inputs to their corresponding ex-
ecution times. The ones requiring longer execution times
are selected to create the input data for the next generation
via GA operators. This GA process will be continued until
pre-defined termination criteria are satisfied. At this point,
GA-Prof is able to find the specific input values with longer
execution time, likely to expose performance bottlenecks.
Results. We conducted experiments on three open-source
applications to compare GA-Prof with FOREPOST. The re-
sults show that GA-Prof is able to find the inputs with longer
execution times and capture more bottlenecks as compared
to FOREPOST across all subjects. For example, GA-Prof
captures 5.6 bottlenecks in JPetStore, while FOREPOST
only captures approximately two bottlenecks.

2.3 PerfImpact
While FOREPOST and GA-Prof are powerful in detecting

performance bottlenecks in a single-version scenario, they

are not applicable for the two-version scenario, where the
goals of performance testing are finding performance regres-
sions between two versions (software performance degrades
in the newly released version as compared to the old version
with the same input data), and targeting the code changes
responsible for the performance regressions. Thus, we pro-
posed an approach, namely PerfImpact, using GAs to search
the input data triggering performance regressions, and uti-
lizing path-based dynamic Change Impact Analysis (CIA)
[10] to target the problematic code changes [15].
Methodology. Initially, we run two software versions with
the same random inputs, and collect the execution times in
two versions for each input. A pre-defined fitness function is
used to evaluate inputs for selection. That is, the inputs with
longer execution times in new version but shorter execution
times in old version are selected as the ones likely to expose
regressions. These selected inputs are used to create new
ones for the next generation via GA operators. After GA
process is terminated, PerfImpact analyzes the correspond-
ing execution traces of selected inputs to extract execution
times in two versions for each method. The methods hav-
ing increased execution time in new version are marked as
“problematic” ones. Then, PerfImpact uses CIA to build a
impact set for each code change, which contains the meth-
ods potentially impacted by this code change. The changes
having more problematic methods in their impact sets are
considered as the ones likely responsible for regressions.
Results. The experiments were conducted on three ver-
sions of Agilefant and two versions of JPetStore. The re-
sults show that PerfImpact is significantly more effective in
finding inputs exposing performance regressions (162.4% -
288.7% time increase) and locating problematic code changes
as compared to random inputs. We further checked the per-
formance behaviors impacted by these identified problematic
code changes, and found that the performance of their im-
pact sets exhibits performance degradation in a new version.

3. CONTRIBUTIONS
The goal of our research is to support software engineers to

select specific test input data for exposing performance prob-
lems and target performance bottlenecks in two testing sce-
narios. The proposed work on FOREPOST (or FOREPOST-

RAND) and GA-Prof has already contributed to finding in-
puts for detecting performance bottlenecks in the single-
version scenario. In addition, for the two-version scenario,
we proposed PerfImpact to select inputs for exposing per-
formance regressions between two versions, and identifying
the problematic code changes likely responsible for the ex-
posed performance regressions. We are planning on conduct-
ing further empirical studies to understand characteristics of
performance bottlenecks and tailor our proposed approaches
to other granularities (e.g., feature-level [3, 4, 5, 19, 20, 21])
in addition to method-level granularity. For example, we
plan to recover traceability links between performance bot-
tlenecks with features, which would support software engi-
neers to locate problematic features and further detect more
relevant performance bottlenecks.

4. ACKNOWLEDGMENTS
I would like to thank my advisor Denys Pohsyvanyk, and

my collaborators Mark Grechanik, Kevin Moran and Aswathy
Nair for their support. This work is supported in part by the
NSF CNS-1510239 and CCF-1253837 grants. Any opinions,
findings, and conclusions expressed herein are the authors’
and do not necessarily reflect those of the sponsors.

1086

5. REFERENCES
[1] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated

test generation for worst-case complexity. In ICSE ’09,
pages 463–473, 2009.

[2] W. W. Cohen. Fast effective rule induction. In Twelfth
ICML, pages 115–123. Morgan Kaufmann, 1995.

[3] B. Dit, E. Moritz, and D. Poshyvanyk. A
tracelab-based solution for creating, conducting, and
sharing feature location experiments. In Program
Comprehension (ICPC), 2012 IEEE 20th
International Conference on, pages 203–208, 2012.

[4] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[5] B. Dit, M. Revelle, and D. Poshyvanyk. Integrating
information retrieval, execution and link analysis
algorithms to improve feature location in software.
Empirical Software Engineering, 18(2):277–309, 2013.

[6] I. F. Emilio Coppa, Camil Demetrescu. Input-sensitive
profiling. TSE, 40(12):1185–1205, 2014.

[7] M. Grechanik, C. Fu, and Q. Xie. Automatically
finding performance problems with feedback-directed
learning software testing. In ICSE’12, pages 156–166,
2012.

[8] M. Grechanik, Q. Luo, D. Poshyvanyk, and A. Porter.
Enhancing rules for cloud resource provisioning via
learned software performance models. In Proceedings
of the 7th ACM/SPEC on International Conference
on Performance Engineering, ICPE ’16, pages
209–214, 2016.

[9] M. Harman, Y. Jia, and W. B. Langdon. Strong
higher order mutation-based test data generation. In
FSE ’11, pages 212–222.

[10] J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In ICSE ’03, pages 308–318.

[11] M. Linares-Vásquez, C. Vendome, Q. Luo, and
D. Poshyvanyk. How developers detect and fix
performance bottlenecks in android apps. In Software
Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 352–361. IEEE,
2015.

[12] Q. Luo, K. Moran, and D. Poshyvanyk. A large-scale
empirical comparison of static and dynamic test case
prioritization techniques. In Proceedings of The 24th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2016.

[13] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk.
Forepost: A tool for detecting performance problems
with feedback-driven learning software testing.
Proceedings of the 38th International Conference on
Software Engineering (ICSE), pages 593–596, 2016.

[14] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk.
Forepost: Finding performance problems

automatically with feedback-directed learning software
testing. Empirical Software Engineering(EMSE),
pages 1–51, 2016.

[15] Q. Luo, D. Poshyvanyk, and M. Grechanik. Mining
performance regression inducing code changes in
evolving software. In Proceedings of the 13th
International Workshop on Mining Software
Repositories (MSR), pages 25–36. ACM, 2016.

[16] T. Nguyen, B. Adams, Z. M. Jiang, A. Hassan,
M. Nasser, and P. Flora. Automated verification of
load tests using control charts. In APSEC ’11, pages
282–289.

[17] T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora. Automated detection of
performance regressions using statistical process
control techniques. In ICPE ’12, pages 299–310.

[18] S. Park, B. M. M. Hossain, I. Hussain, C. Csallner,
M. Grechanik, K. Taneja, C. Fu, and Q. Xie. Carfast:
Achieving higher statement coverage faster. In FSE
’12, pages 35:1–35:11.

[19] D. Poshyvanyk, M. Gethers, and A. Marcus. Concept
location using formal concept analysis and information
retrieval. ACM Transactions on Software Engineering
and Methodology (TOSEM), 21(4):23, 2012.

[20] D. Poshyvanyk and A. Marcus. Combining formal
concept analysis with information retrieval for concept
location in source code. In Proceedings of 15th IEEE
International Conference on Program
Comprehension(ICPC), pages 37–48. IEEE, 2007.

[21] M. Revelle, B. Dit, and D. Poshyvanyk. Using data
fusion and web mining to support feature location in
software. In Program Comprehension (ICPC), 2010
IEEE 18th International Conference on, pages 14–23,
2010.

[22] C. Schwaber, C. Mines, and L. Hogan.
Performance-driven software development: How it
shops can more efficiently meet performance
requirements. Forrester Research, 2006.

[23] D. Shen, Q. Luo, D. Poshyvanyk, and M. Grechanik.
Automating performance bottleneck detection using
search-based application profiling. In ISSTA’15, pages
270–281.

[24] J. Wegener and M. Grochtmann. Verifying timing
constraints of real-time systems by means of
evolutionary testing. Real-Time Systems,
15(3):275–298, 1998.

[25] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In ICSE ’09, pages 364–374, 2009.

[26] X. Xiao, S. Han, D. Zhang, and T. Xie.
Context-sensitive delta inference for identifying
workload-dependent performance bottlenecks. In
ISSTA ’13, pages 90–100, 2013.

1087

	Input-Sensitive Performance Testing
	Recommended Citation

	Input-Sensitive Performance Testing

