William © Mary

Sufficient conditions to be exceptional

Robert B. Reams

SUNY Coll Plattsburgh, Dept Math, 101 Broad St, Plattsburgh, NY 12901 USA;
Charles R. Johnson
Coll William \& Mary, Dept Math, POB 8795, Williamsburg, VA 23187 USA

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

Johnson, C. R., \& Reams, R. B. (2016). Sufficient conditions to be exceptional. Special Matrices, 4(1).

This Article is brought to you for free and open access by the Arts and Sciences at W\&M ScholarWorks. It has been accepted for inclusion in Arts \& Sciences Articles by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Charles R. Johnson and Robert B. Reams*

Sufficient conditions to be exceptional

DOI 10.1515/spma-2016-0007
Received April 22, 2015; accepted November 12, 2015

Abstract

A copositive matrix A is said to be exceptional if it is not the sum of a positive semidefinite matrix and a nonnegative matrix. We show that with certain assumptions on A^{-1}, especially on the diagonal entries, we can guarantee that a copositive matrix A is exceptional. We also show that the only 5 -by- 5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix (up to positive diagonal congruence and permutation similarity).

Keywords: copositive matrix; positive semidefinite; nonnegative matrix; exceptional copositive matrix; irreducible matrix

MSC: 15A18, 15A48, 15A57, 15A63

1 Introduction

All of the matrices considered will be symmetric matrices with real entries. We will say a matrix is a nonnegative matrix if all of its entries are nonnegative, and likewise for a vector. A symmetric matrix $A \in \mathbf{R}^{n \times n}$ is positive semidefinite (positive definite) if $x^{T} A x \geq 0$ for all $x \in \mathbf{R}^{n}\left(x^{T} A x>0\right.$ for all $\left.x \in \mathbf{R}^{n}, x \neq 0\right)$. A symmetric matrix $A \in \mathbf{R}^{n \times n}$ is called copositive (strictly copositive) if $x^{T} A x \geq 0$ for all $x \in \mathbf{R}^{n}, x \geq 0\left(x^{T} A x>0\right.$ for all $x \in \mathbf{R}^{n}, x \geq 0, x \neq 0$). We will let $e_{i} \in \mathbf{R}^{n}$ denote the vector with ith component one and all other components zero. A permutation matrix is an n-by-n matrix whose columns are e_{1}, \ldots, e_{n} in some order. For $n \geq 2$, an n-by- n matrix is said to irreducible [9] if under similarity by a permutation matrix, it cannot be written in the form

$$
\left(\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right),
$$

with A_{11} and A_{22} square matrices of order less than n. We call an n-by- n matrix hollow if all of its diagonal entries are zero.

2 When the inverse is nonnegative and hollow

The results in this paper grew out of a question that arose from studying symmetric, nonnegative, hollow, invertible matrices in [4]. Theorem 1, despite its short proof and the fact that we will extend it in Section 3, is the core theorem of this paper.

Theorem 1. Suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, invertible, and that A^{-1} is nonnegative and hollow. If A is of the form $A=P+N$, with P positive semidefinite and N nonnegative, then P is zero.

[^0]Proof The assumption $e_{i}^{T} A^{-1} e_{i}=0$, for all $i, 1 \leq i \leq n$, can be rewritten $e_{i}^{T} A^{-1} A A^{-1} e_{i}=0$. Then if $A=P+N$, this implies $0=e_{i}^{T} A^{-1}(P+N) A^{-1} e_{i}=e_{i}^{T} A^{-1} P A^{-1} e_{i}+e_{i}^{T} A^{-1} N A^{-1} e_{i}$, and so $0=e_{i}^{T} A^{-1} P A^{-1} e_{i}$, for all $i, 1 \leq i \leq n$. Letting $x_{i}=A^{-1} e_{i}$, we have $x_{i}^{T} P x_{i}=0$, for all $i, 1 \leq i \leq n$, but then $P x_{i}=0$, for all i, so $P=0$.

The conclusion of Theorem 1, stated as "For P nonzero, then A is not of the form $P+N$ ", is where our main interest lies. In this contrapositive form, we note that A being copositive is not an assumption of the theorem. Diananda [7] proved that for $n=3$, and $n=4$, copositivity coincides with being of the form $P+N$. So from Theorem 1 if A^{-1} is any 3-by-3 or 4-by-4 hollow, nonnegative matrix then A cannot be copositive with P nonzero when written as $P+N$. An example of a matrix meeting the hypotheses of Theorem 1 is $A=$

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \text {. If instead } A^{-1} \text { is the matrix }\left(\begin{array}{ccccc}
0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 1 \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
1 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & \frac{1}{2} & 0 & 0
\end{array}\right) \text {, then } A=\left(\begin{array}{ccccc}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 0 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 0 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right) \text {. }
$$

Here, not only is A not of the form $P+N$, it is not copositive either (note the central 3-by-3 block).
A copositive matrix, known as the Horn matrix, is

$$
H=\left(\begin{array}{ccccc}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right) \text {, for which } H^{-1}=\frac{1}{2}\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

An example suggesting we cannot improve on Theorem 1 by having $n-1$ zero diagonal entries, is $A^{-1}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$. Then $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1\end{array}\right)$, which is of the form $P+N$.

It would also appear to be not possible to improve on Theorem 1 by A^{-1} having all zero diagonal entries and not requiring A^{-1} to be nonnegative, by considering $A^{-1}=\frac{1}{2}\left(\begin{array}{ccc}0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$, for which $A=$ $\left(\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$, and this is also of the form $P+N$.

The following theorem is well-known (See [6], or Lemma 1.1 of [14]).
Theorem 2. Suppose $A \in \mathbf{R}^{n \times n}$ is invertible. Both A and A^{-1} are nonnegative if and only if A is the product of a permutation matrix and a diagonal matrix with positive diagonal entries.

Since Theorem 1 is only concerned with symmetric matrices, Theorems 1 and 2 imply that the only way an invertible matrix A of the form $A=P+N$, can have all zeroes on the diagonal of its nonnegative inverse is if $P=0, n$ is even, and A consists of blocks on the diagonal of A, in which each diagonal block is a product of a symmetric permutation matrix and a positive diagonal matrix.

A simple observation is that if P is a positive semidefinite matrix and N is nonnegative, then $A=P+N$ is a copositive matrix. It is well-known (see [7], [8], [10], [12]) that copositive matrices do not have to be of this form, an example of which is the 5-by-5 matrix H (from above) that we called the Horn matrix in [12]. In fact the Horn matrix is extreme [10], i.e. it cannot be written nontrivially as the convex sum of two copositive matrices. In [12] we called copositive matrices exceptional if they are not the trivial sum of a positive semidefinite matrix and a nonnegative matrix. Otherwise, we call them non-exceptional.

The proof of Theorem 3 will use the property proved in [11] (or see [13], [15]) that for any copositive matrix A, if $x \geq 0$ and $x^{T} A x=0$, then $A x \geq 0$. In [2], [3], Baumert studied copositive matrices that had a weak form of extremity, namely, copositive matrices that are not of the form $C+N$ (nontrivially), in which C is copositive, and N is nonnegative with all zeroes on its diagonal. Baumert gave a characterization for such matrices in
[1], which included an error, later corrected in [5]. In [5], the authors called such matrices irreducible with respect to the nonnegative cone. Obviously, if a matrix is not of the form $C+N$, then it is not of the form $P+N$. For Theorem 3 we need the assumption that $n \geq 3$, since in the proof we will write A^{-1} in block form with a specified $(1,2)$ entry, as well as another nonzero column to the right of it.

Theorem 3. For $n \geq 3$, suppose that $A \in \mathbf{R}^{n \times n}$ is symmetric, irreducible, invertible, and A^{-1} is nonnegative and hollow. If A is of the form $C+N$, in which C is copositive and N is nonnegative and hollow, then N is zero.

Proof Our method of proof will be to show, with the stated assumptions, that if $A=C+N$, we must have that N is diagonal and therefore $N=0$.

We proceed now to show that N is diagonal. Choose a permutation matrix R, so that if N has a nonzero off-diagonal entry $n_{i j}$, we have $n_{i j}$ in the $(1,2)$ position of $R^{T} N R$. In other words, we may assume $n_{12} \neq 0$. We know A is irreducible if and only if A^{-1} is irreducible. Write the nonnegative matrix $B=A^{-1}$ partitioned into block form as $A^{-1}=\left(\begin{array}{cc}B_{1} & B_{2} \\ B_{2}^{T} & B_{3}\end{array}\right)$, with B_{1} as a 2-by-2 matrix and the other blocks of conforming dimensions. Next, let Q be the permutation matrix given by $Q=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \oplus Q_{1}$, in which Q_{1} is an $(n-2)$-by- $(n-2)$ permutation matrix chosen so that

$$
Q^{T} A^{-1} Q=Q^{T}\left(\begin{array}{cc}
B_{1} & B_{2} \\
B_{2}^{T} & B_{3}
\end{array}\right) Q=\left(\begin{array}{cc}
B_{1} & B_{2} Q_{1} \\
Q_{1}^{T} B_{2}^{T} & Q_{1}^{T} B_{3} Q_{1}
\end{array}\right)
$$

has a nonzero last column in the top right 2-by- $(n-2)$ block matrix $B_{2} Q_{1}$. If it is not possible to choose Q_{1} in this way, it would imply A^{-1} was reducible. In other words, with $B=\left(b_{i j}\right), 1 \leq i, j \leq n$, we may assume $b_{1 n} \neq 0$ or $b_{2 n} \neq 0$ (or both).

Now write $Q^{T} A Q$ in block form as $Q^{T} A Q=\left(\begin{array}{cc}C_{1}+N_{1} & a \\ a^{T} & a_{n n}\end{array}\right)$, in which C_{1} and N_{1} are $(n-1)$-by- $(n-1)$ and a is $(n-1)$-by-1, with C_{1} copositive, and N_{1} a nonnegative matrix. Further, write $Q^{T} A^{-1} Q$ in block form, although in a different way than earlier, as $Q^{T} A^{-1} Q=\left(\begin{array}{cc}D & b \\ b^{T} & 0\end{array}\right)$, in which b is $(n-1)$-by-1, and D is $(n-1)$ -by- $(n-1)$.

Then

$$
\left(\begin{array}{cc}
C_{1}+N_{1} & a \\
a^{T} & a_{n n}
\end{array}\right)\left(\begin{array}{cc}
D & b \\
b^{T} & 0
\end{array}\right)=\left(\begin{array}{cc}
I_{n-1} & 0 \\
0 & 1
\end{array}\right)
$$

implies $\left(C_{1}+N_{1}\right) b=0$. It follows that $C_{1} b=-N_{1} b$, and then since N_{1} and b are nonnegative we have $b^{T} C_{1} b=-b^{T} N_{1} b \leq 0$. But this implies $b^{T} C_{1} b=0$. Then $C_{1} b \geq 0$, from the property mentioned in the paragraph before the theorem, and so $N_{1} b=0$.

However, $N_{1} b$ is the ($n-1$)-by- 1 matrix with first two components $n_{11} b_{1 n}+n_{12} b_{2 n}+\cdots=0$ and $n_{12} b_{1 n}+$ $n_{22} b_{2 n}+\cdots=0$. Since all entries of N_{1} and b are nonnegative, this forces $n_{12}=0$, which is a contradiction.

Thus, the only way a copositive matrix A can satisfy the assumptions of Theorem 3 is for A to be "irreducible with respect to the nonnegative hollow cone". Again, the Horn matrix provides an example of such a matrix.

3 Extending Theorem 1

Our next theorem (and its proof) reduces to Theorem 1 when the matrix B of Theorem 4 is the identity matrix. Theorem 4 improves on Theorem 1, since the signs of the entries, including the diagonal entries, of A^{-1} are not restricted to being nonnegative. This may be seen from the examples of exceptional matrices from [11] and [12] following the theorem.

Theorem 4. Let $A \in \mathbf{R}^{n \times n}$ be symmetric and invertible. Suppose there exists an invertible matrix $B \in \mathbf{R}^{n \times n}$ such that $A^{-1} B$ is nonnegative, and $B^{T} A^{-1} B$ is hollow. If A is of the form $A=P+N$, with P positive semidefinite and N nonnegative, then P is zero. Moreover, whether or not A is of the form $P+N$, if A is copositive then B is nonnegative.

Proof Suppose A can be written as $A=P+N$, with P positive semidefinite and N nonnegative. Then, with the assumptions on the matrix B, and letting $A^{-1} B=C$ we have for each $i, 1 \leq i \leq n, 0=e_{i}^{T} B^{T} A^{-1} B e_{i}=$ $e_{i}^{T} B^{T} A^{-1} A A^{-1} B e_{i}=e_{i}^{T} C^{T} A C e_{i}=e_{i}^{T} C^{T}(P+N) C e_{i}=e_{i}^{T} C^{T} P C e_{i}+e_{i}^{T} C^{T} N C e_{i}$. This implies for each $i, 0=$ $e_{i}^{T} C^{T} P C e_{i}$. Then $P C e_{i}=0$ for all i, so $P=0$.

For the "Moreover" part of the statement of the theorem, since for each i we have $e_{i}^{T} C^{T} A C e_{i}=0$, and A is copositive, then $A C e_{i} \geq 0$, from the property of copositive matrices stated in Section 2 . Therefore $B=A C \geq$ 0.

An example of a matrix A to illustrate Theorem 4 is the Hoffman-Pereira matrix [11], as we called it in [12], which is copositive. This exceptional A along with its inverse is

$$
A=\left(\begin{array}{ccccccc}
1 & -1 & 1 & 0 & 0 & 1 & -1 \\
-1 & 1 & -1 & 1 & 0 & 0 & 1 \\
1 & -1 & 1 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 & -1 & 1 \\
1 & 0 & 0 & 1 & -1 & 1 & -1 \\
-1 & 1 & 0 & 0 & 1 & -1 & 1
\end{array}\right), A^{-1}=\left(\begin{array}{ccccccc}
-1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & -1
\end{array}\right),
$$

and the corresponding $B, A^{-1} B$ and $B^{T} A^{-1} B$ of Theorem 4 are

$$
B=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right), \quad A^{-1} B=\left(\begin{array}{ccccccc}
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and

$$
B^{T} A^{-1} B=\left(\begin{array}{ccccccc}
0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Another illustration of the same theorem is the 7-by-7 extension of the Horn matrix given in [12], which is the exceptional matrix A, along with A^{-1} given by

$$
A=\left(\begin{array}{ccccccc}
1 & -1 & 1 & 1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & 1 & 1 & -1 & 1
\end{array}\right), A^{-1}=\frac{1}{6}\left(\begin{array}{ccccccc}
2 & -1 & -1 & 2 & 2 & -1 & -1 \\
-1 & 2 & -1 & -1 & 2 & 2 & -1 \\
-1 & -1 & 2 & -1 & -1 & 2 & 2 \\
2 & -1 & -1 & 2 & -1 & -1 & -1 \\
2 & 2 & -1 & -1 & 2 & -1 & -1 \\
-1 & 2 & 2 & -1 & -1 & 2 & -1 \\
-1 & -1 & 2 & 2 & -1 & -1 & 2
\end{array}\right),
$$

for which

$$
B=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right), \quad A^{-1} B=\frac{1}{2}\left(\begin{array}{lllllll}
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and

$$
B^{T} A^{-1} B=\frac{1}{2}\left(\begin{array}{ccccccc}
0 & 0 & 2 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 2 & 1 & 1 & 2 \\
2 & 0 & 0 & 0 & 2 & 1 & 1 \\
1 & 2 & 0 & 0 & 0 & 2 & 1 \\
1 & 1 & 2 & 0 & 0 & 0 & 2 \\
2 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 2 & 1 & 1 & 2 & 0 & 0
\end{array}\right) .
$$

Using similar reasoning to that given in Theorem 8 of [12] we also have Theorem 5.
Theorem 5. For $n \geq 3$, let $A \in \mathbf{R}^{n \times n}$ be symmetric, invertible, with A^{-1} nonnegative, and with A^{-1} having three zero diagonal entries such that all entries are positive in the rows and columns of these three zero diagonal entries. If A is of the form $C+N$, with C copositive and N nonnegative, then N is zero.

Proof Suppose $0=e_{i}^{T} A^{-1} e_{i}$, for $i=1,2,3$. Then, as in the proof of Theorem 1, we have when $i=1$ that $0=e_{1}^{T} A^{-1} N A^{-1} e_{1}$, which means that the $(n-1)$-by- $(n-1)$ block of N obtained by deleting row and column 1 is zero. Arguing in the same way for $i=2$, and $i=3$, we have that $N=0$.

4 The 5-by-5 case

In this section, we will use a theorem from [5], which we state as Theorem 6, to show that the only 5 -by-5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix, up to positive diagonal congruence and permutation similarity.

Let

$$
S=\left(\begin{array}{ccccc}
1 & -\cos \theta_{1} & \cos \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{4}+\theta_{5}\right) & -\cos \theta_{5} \\
-\cos \theta_{1} & 1 & -\cos \theta_{2} & \cos \left(\theta_{2}+\theta_{3}\right) & \cos \left(\theta_{5}+\theta_{1}\right) \\
\cos \left(\theta_{1}+\theta_{2}\right) & -\cos \theta_{2} & 1 & -\cos \theta_{3} & \cos \left(\theta_{3}+\theta_{4}\right) \\
\cos \left(\theta_{4}+\theta_{5}\right) & \cos \left(\theta_{2}+\theta_{3}\right) & -\cos \theta_{3} & 1 & -\cos \theta_{4} \\
-\cos \theta_{5} & \cos \left(\theta_{5}+\theta_{1}\right) & \cos \left(\theta_{3}+\theta_{4}\right) & -\cos \theta_{4} & 1
\end{array}\right) .
$$

Theorem 6 appears at the end of [5], where they use $\mathcal{C}^{5}, \delta_{+}^{5}$ and \mathcal{N}^{5}, respectively, to denote the copositive, positive semidefinite, and nonnegative matrices, in $\mathbf{R}^{5 \times 5}$.

Theorem 6. Let $A \in \mathcal{C}^{5}-\left(\mathcal{S}_{+}^{5}+\mathcal{N}^{5}\right)$. Then, up to permutation similarity and positive diagonal congruence, A can be written as $A=S+N$, for some hollow $N \in \mathcal{N}^{5}$, where $\theta_{i} \geq 0$, for $1 \leq i \leq 5$, and $\sum_{i=1}^{5} \theta_{i}<\pi$.

Let now A be a 5 -by-5 exceptional matrix that has a hollow nonnegative inverse. Theorem 6 implies that, up to permutation similarity and positive diagonal congruence, A can be written as $A=S+N$, where N is hollow and nonnegative. We would like to apply Theorem 3, but we need to first check that A is irreducible. If A is reducible, it is permutation similar to a matrix with irreducible diagonal blocks. We note that if A is reducible this does not necessarily imply S is reducible. If A had a 1 -by- 1 diagonal block (under permutation similarity), then its inverse could not be hollow. If A had a 2-by-2 diagonal block, then this 2 -by- 2 block, when inverted,
must be nonnegative with both diagonal entries being zero. Then the (not inverted) 2-by-2 block of A would also be nonnegative with both diagonal entries being zero, but S has all ones on the diagonal, in which case we could not have $A=S+N$ (under permutation similarity or positive diagonal congruence). Now applying Theorem 3, since A has a hollow nonnegative inverse, we know that $N=0$. We next determine the values of the θ_{i} 's, for $1 \leq i \leq 5$, that ensure S has a hollow inverse. In effect, we will show that the θ_{i} 's are all equal to zero, whereupon S becomes the Horn matrix. Let us examine the 4-by-4 principal minors of S.

A computer algebra system can used to show that the top left 4-by-4 principal minor of S, namely $\operatorname{det}(S[1,2,3,4])$, satisfies

$$
\operatorname{det}(S[1,2,3,4])=-\left[\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)+\cos \left(\theta_{4}+\theta_{5}\right)\right]^{2} \sin ^{2} \theta_{2}
$$

Suppose now that $\operatorname{det}(S[1,2,3,4])=0$. If $0=\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)+\cos \left(\theta_{4}+\theta_{5}\right)=$ $2 \cos \left(\frac{\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}}{2}\right) \cos \left(\frac{\theta_{1}+\theta_{2}+\theta_{3}-\theta_{4}-\theta_{5}}{2}\right)$, then $\cos \left(\frac{\theta_{1}+\theta_{2}+\theta_{3}-\theta_{4}-\theta_{5}}{2}\right)=0$, which implies $\theta_{1}+\theta_{2}+\theta_{3}-\theta_{4}-\theta_{5}=m \pi$, for some odd integer m. However, $-\pi<\sum_{i=1}^{5}-\theta_{i} \leq \sum_{i=1}^{5} \pm \theta_{i} \leq \sum_{i=1}^{5} \theta_{i}<\pi$, so we must have $\theta_{2}=0$.

The other 4 -by- 4 principal minors can be obtained from $\operatorname{det}(S[1,2,3,4])$ by cyclically permuting the indices appropriately. Then, after setting each of these minors equal to zero, we have $\theta_{i}=0$, for $1 \leq i \leq 5$.

References

[1] L. D. Baumert, Extreme copositive quadratic forms, Ph.D. Thesis, California Institute of Technology, Pasadena, California, 1965.
[2] L. D. Baumert, Extreme copositive quadratic forms, Pacific Journal of Mathematics 19(2) (1966) 197-204.
[3] L. D. Baumert, Extreme copositive quadratic forms II, Pacific Journal of Mathematics 20(1) (1967) 1-20.
[4] Z. B. Charles, M. Farber, C. R. Johnson, L. Kennedy-Shaffer, Nonpositive eigenvalues of hollow, symmetric, nonnegative matrices, SIAM Journal of Matrix Anal. Appl. 34(3) (2013) 1384-1400.
[5] P. J. C. Dickinson, M. Dür, L. Gijben, R. Hildebrand, Irreducible elements of the copositive cone, Linear Algebra and its Applications 439 (2013) 1605-1626.
[6] R. DeMarr, Nonnegative matrices with nonnegative inverses, Proceedings of the American Mathematical Society 35(1) (1972) 307-308.
[7] P. H. Diananda, On non-negative forms in real variables some or all of which are non-negative, Proc. Cambridge Philosoph. Soc. 58 (1962), 17-25.
[8] M. Hall, Combinatorial theory, Blaisdell/Ginn, 1967.
[9] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.
[10] M. Hall and M. Newman, Copositive and completely positive quadratic forms, Proc. Camb. Phil. Soc. 59 (1963) 329-339.
[11] A. J. Hoffman and F. Pereira, On copositive matrices with -1, 0, 1 entries, Journal of Combinatorial Theory (A) 14 (1973) 302-309.
[12] C. R. Johnson and R. Reams, Constructing copositive matrices from interior matrices, Electronic Journal of Linear Algebra 17 (2008) 9-20.
[13] C. R. Johnson and R. Reams, Spectral theory of copositive matrices, Linear Algebra and its Applications 395 (2005) 275-281.
[14] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.
[15] H. Väliaho, Criteria for copositive matrices, Linear Algebra and its Applications 81 (1986) 19-34.

[^0]: *Corresponding Author: Robert B. Reams: Department of Mathematics, SUNY Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, E-mail: robert.reams@plattsburgh.edu
 Charles R. Johnson: Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187

