

W&M ScholarWorks

Arts & Sciences Articles

Arts and Sciences

2016

Sufficient conditions to be exceptional

Robert B. Reams SUNY Coll Plattsburgh, Dept Math, 101 Broad St, Plattsburgh, NY 12901 USA;

Charles R. Johnson Coll William & Mary, Dept Math, POB 8795, Williamsburg, VA 23187 USA

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

Johnson, C. R., & Reams, R. B. (2016). Sufficient conditions to be exceptional. Special Matrices, 4(1).

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Research Article

Open Access

Charles R. Johnson and Robert B. Reams*

Sufficient conditions to be exceptional

DOI 10.1515/spma-2016-0007 Received April 22, 2015; accepted November 12, 2015

Abstract: A copositive matrix *A* is said to be exceptional if it is not the sum of a positive semidefinite matrix and a nonnegative matrix. We show that with certain assumptions on A^{-1} , especially on the diagonal entries, we can guarantee that a copositive matrix *A* is exceptional. We also show that the only 5-by-5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix (up to positive diagonal congruence and permutation similarity).

Keywords: copositive matrix; positive semidefinite; nonnegative matrix; exceptional copositive matrix; irreducible matrix

MSC: 15A18, 15A48, 15A57, 15A63

1 Introduction

All of the matrices considered will be symmetric matrices with real entries. We will say a matrix is a *nonnegative matrix* if all of its entries are nonnegative, and likewise for a vector. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is *positive semidefinite* (*positive definite*) if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$ ($x^T A x > 0$ for all $x \in \mathbb{R}^n$, $x \ne 0$). A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called *copositive* (*strictly copositive*) if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ ($x^T A x > 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ ($x^T A x > 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ ($x^T A x > 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ ($x^T A x > 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ ($x^T A x > 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$, $x \ge 0$ for all $x \in \mathbb{R}^n$ denote the vector with *i*th component one and all other components zero. A *permutation matrix* is an *n*-by-*n* matrix whose columns are e_1, \dots, e_n in some order. For $n \ge 2$, an *n*-by-*n* matrix is said to *irreducible* [9] if under similarity by a permutation matrix, it cannot be written in the form

$$\begin{pmatrix} A_{11} & 0\\ A_{21} & A_{22} \end{pmatrix},$$

with A_{11} and A_{22} square matrices of order less than *n*. We call an *n*-by-*n* matrix *hollow* if all of its diagonal entries are zero.

2 When the inverse is nonnegative and hollow

The results in this paper grew out of a question that arose from studying symmetric, nonnegative, hollow, invertible matrices in [4]. Theorem 1, despite its short proof and the fact that we will extend it in Section 3, is the core theorem of this paper.

Theorem 1. Suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, invertible, and that A^{-1} is nonnegative and hollow. If A is of the form A = P + N, with P positive semidefinite and N nonnegative, then P is zero.

© BY-NC-ND © 2016 Charles R. Johnson and Robert B. Reams, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 LicenseBrought to you by | College of William and Mary Authenticated Download Date | 4/23/19 11:10 PM

^{*}Corresponding Author: Robert B. Reams: Department of Mathematics, SUNY Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, E-mail: robert.reams@plattsburgh.edu

Charles R. Johnson: Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187

Proof The assumption $e_i^T A^{-1} e_i = 0$, for all i, $1 \le i \le n$, can be rewritten $e_i^T A^{-1} A A^{-1} e_i = 0$. Then if A = P + N, this implies $0 = e_i^T A^{-1} (P+N) A^{-1} e_i = e_i^T A^{-1} P A^{-1} e_i + e_i^T A^{-1} N A^{-1} e_i$, and so $0 = e_i^T A^{-1} P A^{-1} e_i$, for all i, $1 \le i \le n$. Letting $x_i = A^{-1} e_i$, we have $x_i^T P x_i = 0$, for all i, $1 \le i \le n$, but then $P x_i = 0$, for all i, so P = 0.

The conclusion of Theorem 1, stated as "For *P* nonzero, then *A* is not of the form P + N", is where our main interest lies. In this contrapositive form, we note that *A* being copositive is not an assumption of the theorem. Diananda [7] proved that for n = 3, and n = 4, copositivity coincides with being of the form P + N. So from Theorem 1 if A^{-1} is any 3-by-3 or 4-by-4 hollow, nonnegative matrix then *A* cannot be copositive with *P* nonzero when written as P + N. An example of a matrix meeting the hypotheses of Theorem 1 is A = 1.

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
. If instead A^{-1} is the matrix
$$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 1 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 \end{pmatrix}$$
, then $A = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 0 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix}$.

Here, not only is A not of the form P + N, it is not copositive either (note the central 3-by-3 block).

A copositive matrix, known as the Horn matrix, is

$$H = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix}, \text{ for which } H^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

An example suggesting we cannot improve on Theorem 1 by having n - 1 zero diagonal

entries, is
$$A^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Then $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$, which is of the form $P + N$.

It would also appear to be not possible to improve on Theorem 1 by A^{-1} having all zero diagonal entries and not requiring A^{-1} to be nonnegative, by considering $A^{-1} = \frac{1}{2} \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, for which $A = \frac{1}{2} \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, and this is also of the form P + N.

The following theorem is well-known (See [6], or Lemma 1.1 of [14]).

Theorem 2. Suppose $A \in \mathbf{R}^{n \times n}$ is invertible. Both A and A^{-1} are nonnegative if and only if A is the product of a permutation matrix and a diagonal matrix with positive diagonal entries.

Since Theorem 1 is only concerned with symmetric matrices, Theorems 1 and 2 imply that the only way an invertible matrix *A* of the form A = P + N, can have all zeroes on the diagonal of its nonnegative inverse is if P = 0, *n* is even, and *A* consists of blocks on the diagonal of *A*, in which each diagonal block is a product of a symmetric permutation matrix and a positive diagonal matrix.

A simple observation is that if *P* is a positive semidefinite matrix and *N* is nonnegative, then A = P + N is a copositive matrix. It is well-known (see [7], [8], [10], [12]) that copositive matrices do not have to be of this form, an example of which is the 5-by-5 matrix *H* (from above) that we called the Horn matrix in [12]. In fact the Horn matrix is extreme [10], i.e. it cannot be written nontrivially as the convex sum of two copositive matrices. In [12] we called copositive matrices *exceptional* if they are not the trivial sum of a positive semidefinite matrix and a nonnegative matrix. Otherwise, we call them *non-exceptional*.

The proof of Theorem 3 will use the property proved in [11] (or see [13], [15]) that for any copositive matrix A, if $x \ge 0$ and $x^T A x = 0$, then $A x \ge 0$. In [2], [3], Baumert studied copositive matrices that had a weak form of extremity, namely, copositive matrices that are not of the form C + N (nontrivially), in which C is copositive, and N is nonnegative with all zeroes on its diagonal. Baumert gave a characterization for such matrices in

[1], which included an error, later corrected in [5]. In [5], the authors called such matrices *irreducible with respect to the nonnegative cone*. Obviously, if a matrix is not of the form C + N, then it is not of the form P + N. For Theorem 3 we need the assumption that $n \ge 3$, since in the proof we will write A^{-1} in block form with a specified (1, 2) entry, as well as another nonzero column to the right of it.

Theorem 3. For $n \ge 3$, suppose that $A \in \mathbf{R}^{n \times n}$ is symmetric, irreducible, invertible, and A^{-1} is nonnegative and hollow. If A is of the form C + N, in which C is copositive and N is nonnegative and hollow, then N is zero.

Proof Our method of proof will be to show, with the stated assumptions, that if A = C + N, we must have that *N* is diagonal and therefore N = 0.

We proceed now to show that *N* is diagonal. Choose a permutation matrix *R*, so that if *N* has a nonzero off-diagonal entry n_{ij} , we have n_{ij} in the (1, 2) position of $R^T NR$. In other words, we may assume $n_{12} \neq 0$. We know *A* is irreducible if and only if A^{-1} is irreducible. Write the nonnegative matrix $B = A^{-1}$ partitioned into block form as $A^{-1} = \begin{pmatrix} B_1 & B_2 \\ B_2^T & B_3 \end{pmatrix}$, with B_1 as a 2-by-2 matrix and the other blocks of conforming dimensions.

Next, let *Q* be the permutation matrix given by $Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \oplus Q_1$, in which Q_1 is an (n - 2)-by-(n - 2) permutation matrix chosen so that

$$Q^T A^{-1} Q = Q^T \begin{pmatrix} B_1 & B_2 \\ B_2^T & B_3 \end{pmatrix} Q = \begin{pmatrix} B_1 & B_2 Q_1 \\ Q_1^T B_2^T & Q_1^T B_3 Q_1 \end{pmatrix},$$

has a nonzero last column in the top right 2-by-(n - 2) block matrix B_2Q_1 . If it is not possible to choose Q_1 in this way, it would imply A^{-1} was reducible. In other words, with $B = (b_{ij}), 1 \le i, j \le n$, we may assume $b_{1n} \ne 0$ or $b_{2n} \ne 0$ (or both).

Now write $Q^T A Q$ in block form as $Q^T A Q = \begin{pmatrix} C_1 + N_1 & a \\ a^T & a_{nn} \end{pmatrix}$, in which C_1 and N_1 are (n - 1)-by-(n - 1) and a is (n - 1)-by-1, with C_1 copositive, and N_1 a nonnegative matrix. Further, write $Q^T A^{-1} Q$ in block form, although in a different way than earlier, as $Q^T A^{-1} Q = \begin{pmatrix} D & b \\ b^T & 0 \end{pmatrix}$, in which b is (n - 1)-by-1, and D is (n - 1)-by-(n - 1).

Then

$$\begin{pmatrix} C_1 + N_1 & a \\ a^T & a_{nn} \end{pmatrix} \begin{pmatrix} D & b \\ b^T & 0 \end{pmatrix} = \begin{pmatrix} I_{n-1} & 0 \\ 0 & 1 \end{pmatrix},$$

implies $(C_1 + N_1)b = 0$. It follows that $C_1b = -N_1b$, and then since N_1 and b are nonnegative we have $b^T C_1 b = -b^T N_1 b \le 0$. But this implies $b^T C_1 b = 0$. Then $C_1 b \ge 0$, from the property mentioned in the paragraph before the theorem, and so $N_1 b = 0$.

However, $N_1 b$ is the (n-1)-by-1 matrix with first two components $n_{11}b_{1n} + n_{12}b_{2n} + \cdots = 0$ and $n_{12}b_{1n} + n_{22}b_{2n} + \cdots = 0$. Since all entries of N_1 and b are nonnegative, this forces $n_{12} = 0$, which is a contradiction. \Box

Thus, the only way a copositive matrix *A* can satisfy the assumptions of Theorem 3 is for *A* to be "irreducible with respect to the nonnegative hollow cone". Again, the Horn matrix provides an example of such a matrix.

3 Extending Theorem 1

Our next theorem (and its proof) reduces to Theorem 1 when the matrix *B* of Theorem 4 is the identity matrix. Theorem 4 improves on Theorem 1, since the signs of the entries, including the diagonal entries, of A^{-1} are not restricted to being nonnegative. This may be seen from the examples of exceptional matrices from [11] and [12] following the theorem.

Theorem 4. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and invertible. Suppose there exists an invertible matrix $B \in \mathbb{R}^{n \times n}$ such that $A^{-1}B$ is nonnegative, and $B^TA^{-1}B$ is hollow. If A is of the form A = P + N, with P positive semidefinite and N nonnegative, then P is zero. Moreover, whether or not A is of the form P + N, if A is copositive then B is nonnegative.

Proof Suppose *A* can be written as A = P + N, with *P* positive semidefinite and *N* nonnegative. Then, with the assumptions on the matrix *B*, and letting $A^{-1}B = C$ we have for each *i*, $1 \le i \le n$, $0 = e_i^T B^T A^{-1} B e_i = e_i^T B^T A^{-1} B e_i = e_i^T C^T A C e_i = e_i^T C^T (P + N) C e_i = e_i^T C^T P C e_i + e_i^T C^T N C e_i$. This implies for each *i*, $0 = e_i^T C^T P C e_i$. Then $P C e_i = 0$ for all *i*, so P = 0.

For the "Moreover" part of the statement of the theorem, since for each *i* we have $e_i^T C^T A C e_i = 0$, and *A* is copositive, then $A C e_i \ge 0$, from the property of copositive matrices stated in Section 2. Therefore $B = A C \ge 0$.

An example of a matrix *A* to illustrate Theorem 4 is the Hoffman-Pereira matrix [11], as we called it in [12], which is copositive. This exceptional *A* along with its inverse is

	(1	-1	1	0	0	1	-1		(-1	0	1	0	0	1	0)	
	-1	1	-1	1	0	0	1		0	-1	0	1	0	0	1	
	1	-1	1	-1	1	0	0		1	0	-1	0	1	0	0	
<i>A</i> =	0	1	-1	1	-1	1	0	, $A^{-1} =$	0	1	0	-1	0	1	0	,
	0	0	1	-1	1	-1	1		0	0	1	0	-1	0	1	
	1	0	0	1	-1	1	-1		1	0	0	1	0	-1	0	
	\-1	1	0	0	1	-1	1 /		0	1	0	0	1	0	-1/	

and the corresponding *B*, $A^{-1}B$ and $B^{T}A^{-1}B$ of Theorem 4 are

	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0 1	0	0	0 0	1 0	0\ 1			$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	0 0	1 0	1 1	0 1	0 0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
	1	0	1	0	0	0	0			0	0	0	0	1	1	0	
<i>B</i> =	0	1	0	1	0	0	0	,	$A^{-1}B =$	0	0	0	0	0	1	1	,
	0	0	1	0	1	0	0			1	0	0	0	0	0	1	
	0	0	0	1	0	1	0			1	1	0	0	0	0	0	
	0/	0	0	0	1	0	1)			0/	1	1	0	0	0	0)	

and

$$B^{T}A^{-1}B = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

Another illustration of the same theorem is the 7-by-7 extension of the Horn matrix given in [12], which is the exceptional matrix A, along with A^{-1} given by

	(1	-1	1	1	1	1	-1		(2	-1	-1	2	2	-1	-1
	-1	1	-1	1	1	1	1		-1	2	-1	-1	2	2	-1
	1	-1	1	-1	1	1	1	1	-1	-1	2	-1	-1	2	2
<i>A</i> =	1	1	-1	1	-1	1	1	, $A^{-1} = \frac{1}{4}$	2	-1	-1	2	-1	-1	-1
	1	1	1	-1	1	-1	1	0	2	2	-1	-1	2	-1	-1
	1	1	1	1	-1	1	-1		-1	2	2	-1	-1	2	-1
	-1	1	1	1	1	-1	1 /		-1	-1	2	2	-1	-1	2 /

for which

and

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}, \qquad A^{-1}B = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}, \qquad B^{T}A^{-1}B = \frac{1}{2} \begin{pmatrix} 0 & 0 & 2 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 & 2 \\ 2 & 0 & 0 & 0 & 2 & 1 & 1 & 2 \\ 2 & 0 & 0 & 0 & 2 & 1 & 1 & 2 \\ 2 & 0 & 0 & 0 & 2 & 1 & 1 & 2 \\ 2 & 0 & 0 & 0 & 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 & 0 & 0 & 2 \\ 2 & 1 & 1 & 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 2 & 0 & 0 \end{pmatrix}.$$

Using similar reasoning to that given in Theorem 8 of [12] we also have Theorem 5.

Theorem 5. For $n \ge 3$, let $A \in \mathbb{R}^{n \times n}$ be symmetric, invertible, with A^{-1} nonnegative, and with A^{-1} having three zero diagonal entries such that all entries are positive in the rows and columns of these three zero diagonal entries. If A is of the form C + N, with C copositive and N nonnegative, then N is zero.

Proof Suppose $0 = e_i^T A^{-1} e_i$, for i = 1, 2, 3. Then, as in the proof of Theorem 1, we have when i = 1 that $0 = e_1^T A^{-1} N A^{-1} e_1$, which means that the (n - 1)-by-(n - 1) block of N obtained by deleting row and column 1 is zero. Arguing in the same way for i = 2, and i = 3, we have that N = 0.

4 The 5-by-5 case

In this section, we will use a theorem from [5], which we state as Theorem 6, to show that the only 5-by-5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix, up to positive diagonal congruence and permutation similarity.

Let

	(1	$-\cos \theta_1$	$\cos(\theta_1 + \theta_2)$	$\cos(\theta_4 + \theta_5)$	$-\cos\theta_5$)	١
	$-\cos \theta_1$	1	$-\cos\theta_2$	$\cos\left(\theta_2 + \theta_3\right)$	$\cos(\theta_5 + \theta_1)$	
<i>S</i> =	$\cos(\theta_1 + \theta_2)$	$-\cos \theta_2$	1	$-\cos\theta_3$	$\cos(\theta_3 + \theta_4)$.
	$\cos(\theta_4 + \theta_5)$	$\cos(\theta_2 + \theta_3)$	$-\cos\theta_3$	1	$-\cos heta_4$	
	$-\cos\theta_5$	$\cos(\theta_5 + \theta_1)$	$\cos(\theta_3 + \theta_4)$	$-\cos \theta_4$	1 /	/

Theorem 6 appears at the end of [5], where they use C^5 , S^5_+ and N^5 , respectively, to denote the copositive, positive semidefinite, and nonnegative matrices, in $\mathbf{R}^{5\times 5}$.

Theorem 6. Let $A \in \mathbb{C}^5 - (\mathbb{S}^5_+ + \mathbb{N}^5)$. Then, up to permutation similarity and positive diagonal congruence, A can be written as A = S + N, for some hollow $N \in \mathbb{N}^5$, where $\theta_i \ge 0$, for $1 \le i \le 5$, and $\sum_{i=1}^5 \theta_i < \pi$.

Let now *A* be a 5-by-5 exceptional matrix that has a hollow nonnegative inverse. Theorem 6 implies that, up to permutation similarity and positive diagonal congruence, *A* can be written as A = S + N, where *N* is hollow and nonnegative. We would like to apply Theorem 3, but we need to first check that *A* is irreducible. If *A* is reducible, it is permutation similar to a matrix with irreducible diagonal blocks. We note that if *A* is reducible this does not necessarily imply *S* is reducible. If *A* had a 1-by-1 diagonal block (under permutation similarity), then its inverse could not be hollow. If *A* had a 2-by-2 diagonal block, then this 2-by-2 block, when inverted,

must be nonnegative with both diagonal entries being zero. Then the (not inverted) 2-by-2 block of *A* would also be nonnegative with both diagonal entries being zero, but *S* has all ones on the diagonal, in which case we could not have A = S + N (under permutation similarity or positive diagonal congruence). Now applying Theorem 3, since *A* has a hollow nonnegative inverse, we know that N = 0. We next determine the values of the θ_i 's, for $1 \le i \le 5$, that ensure *S* has a hollow inverse. In effect, we will show that the θ_i 's are all equal to zero, whereupon *S* becomes the Horn matrix. Let us examine the 4-by-4 principal minors of *S*.

A computer algebra system can used to show that the top left 4-by-4 principal minor of *S*, namely det(S[1, 2, 3, 4]), satisfies

$$\det(S[1,2,3,4]) = -\left[\cos(\theta_1 + \theta_2 + \theta_3) + \cos(\theta_4 + \theta_5)\right]^2 \sin^2\theta_2.$$

Suppose now that det(S[1, 2, 3, 4]) = 0. If 0 = $\cos(\theta_1 + \theta_2 + \theta_3) + \cos(\theta_4 + \theta_5) = 2\cos(\frac{\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5}{2})\cos(\frac{\theta_1 + \theta_2 + \theta_3 - \theta_4 - \theta_5}{2})$, then $\cos(\frac{\theta_1 + \theta_2 + \theta_3 - \theta_4 - \theta_5}{2}) = 0$, which implies $\theta_1 + \theta_2 + \theta_3 - \theta_4 - \theta_5 = m\pi$, for some odd integer *m*. However, $-\pi < \sum_{i=1}^5 -\theta_i \le \sum_{i=1}^5 \theta_i \le \sum_{i=1}^5 \theta_i \le \pi$, so we must have $\theta_2 = 0$.

The other 4-by-4 principal minors can be obtained from det(*S*[1, 2, 3, 4]) by cyclically permuting the indices appropriately. Then, after setting each of these minors equal to zero, we have $\theta_i = 0$, for $1 \le i \le 5$.

References

- [1] L. D. Baumert, Extreme copositive quadratic forms, Ph.D. Thesis, California Institute of Technology, Pasadena, California, 1965.
- [2] L. D. Baumert, Extreme copositive quadratic forms, *Pacific Journal of Mathematics* 19(2) (1966) 197-204.
- [3] L. D. Baumert, Extreme copositive quadratic forms II, *Pacific Journal of Mathematics* **20**(1) (1967) 1-20.
- [4] Z. B. Charles, M. Farber, C. R. Johnson, L. Kennedy-Shaffer, Nonpositive eigenvalues of hollow, symmetric, nonnegative matrices, SIAM Journal of Matrix Anal. Appl. 34(3) (2013) 1384-1400.
- [5] P. J. C. Dickinson, M. Dür, L. Gijben, R. Hildebrand, Irreducible elements of the copositive cone, *Linear Algebra and its Applications* 439 (2013) 1605-1626.
- [6] R. DeMarr, Nonnegative matrices with nonnegative inverses, *Proceedings of the American Mathematical Society* **35**(1) (1972) 307–308.
- [7] P. H. Diananda, On non-negative forms in real variables some or all of which are non-negative, *Proc. Cambridge Philosoph.* Soc. **58** (1962), 17–25.
- [8] M. Hall, Combinatorial theory, Blaisdell/Ginn, 1967.
- [9] R. A. Horn and C. R. Johnson, *Matrix analysis*, Cambridge University Press, 1985.
- [10] M. Hall and M. Newman, Copositive and completely positive quadratic forms, Proc. Camb. Phil. Soc. 59 (1963) 329–339.
- [11] A. J. Hoffman and F. Pereira, On copositive matrices with -1, 0, 1 entries, *Journal of Combinatorial Theory (A)* 14 (1973) 302–309.
- [12] C. R. Johnson and R. Reams, Constructing copositive matrices from interior matrices, *Electronic Journal of Linear Algebra* 17 (2008) 9–20.
- [13] C. R. Johnson and R. Reams, Spectral theory of copositive matrices, Linear Algebra and its Applications 395 (2005) 275–281.
- [14] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.
- [15] H. Väliaho, Criteria for copositive matrices, *Linear Algebra and its Applications* 81 (1986) 19–34.