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Abstract:AcopositivematrixA is said to be exceptional if it is not the sumof apositive semidefinitematrix and
a nonnegative matrix. We show that with certain assumptions on A−1, especially on the diagonal entries, we
can guarantee that a copositivematrix A is exceptional. We also show that the only 5-by-5 exceptional matrix
with a hollow nonnegative inverse is the Horn matrix (up to positive diagonal congruence and permutation
similarity).
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1 Introduction
All of the matrices considered will be symmetric matrices with real entries. We will say a matrix is a nonneg-
ative matrix if all of its entries are nonnegative, and likewise for a vector. A symmetric matrix A ∈ Rn×n is
positive semidefinite (positive definite) if xTAx ≥ 0 for all x ∈ Rn (xTAx > 0 for all x ∈ Rn , x ≠ 0). A symmetric
matrix A ∈ Rn×n is called copositive (strictly copositive) if xTAx ≥ 0 for all x ∈ Rn , x ≥ 0 (xTAx > 0 for all
x ∈ Rn , x ≥ 0, x ≠ 0). We will let ei ∈ Rn denote the vector with ith component one and all other components
zero. A permutation matrix is an n-by-n matrix whose columns are e1, ..., en in some order. For n ≥ 2, an
n-by-nmatrix is said to irreducible [9] if under similarity by a permutation matrix, it cannot be written in the
form (︃

A11 0
A21 A22

)︃
,

with A11 and A22 square matrices of order less than n. We call an n-by-n matrix hollow if all of its diagonal
entries are zero.

2 When the inverse is nonnegative and hollow
The results in this paper grew out of a question that arose from studying symmetric, nonnegative, hollow,
invertible matrices in [4]. Theorem 1, despite its short proof and the fact that we will extend it in Section 3, is
the core theorem of this paper.

Theorem 1. Suppose A ∈ Rn×n is symmetric, invertible, and that A−1 is nonnegative and hollow. If A is of the
form A = P + N, with P positive semidefinite and N nonnegative, then P is zero.
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68 | Charles R. Johnson and Robert B. Reams

Proof The assumption eTi A−1ei = 0, for all i, 1 ≤ i ≤ n, can be rewritten eTi A−1AA−1ei = 0. Then if A = P + N,
this implies 0 = eTi A−1(P+N)A−1ei = eTi A−1PA−1ei+eTi A−1NA−1ei, and so 0 = eTi A−1PA−1ei, for all i, 1 ≤ i ≤ n.
Letting xi = A−1ei, we have xTi Pxi = 0, for all i, 1 ≤ i ≤ n, but then Pxi = 0, for all i, so P = 0.

The conclusion of Theorem 1, stated as “For P nonzero, then A is not of the form P + N”, is where our
main interest lies. In this contrapositive form, we note that A being copositive is not an assumption of the
theorem. Diananda [7] proved that for n = 3, and n = 4, copositivity coincides with being of the form P + N.
So from Theorem 1 if A−1 is any 3-by-3 or 4-by-4 hollow, nonnegative matrix then A cannot be copositive
with P nonzero when written as P + N. An example of a matrix meeting the hypotheses of Theorem 1 is A =⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠ . If instead A−1 is the matrix

⎛⎜⎜⎜⎜⎜⎝
0 0 1

2 1 1
2

0 0 0 1 1
1
2 0 0 0 1

2
1 1 0 0 0
1
2 1 1

2 0 0

⎞⎟⎟⎟⎟⎟⎠, then A =

⎛⎜⎜⎜⎜⎜⎝
1 −1 1 1 −1
−1 1 −1 0 1
1 −1 1 −1 1
1 0 −1 1 −1
−1 1 1 −1 1

⎞⎟⎟⎟⎟⎟⎠.
Here, not only is A not of the form P + N, it is not copositive either (note the central 3-by-3 block).

A copositive matrix, known as the Horn matrix, is

H =

⎛⎜⎜⎜⎜⎜⎝
1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

⎞⎟⎟⎟⎟⎟⎠ , for which H−1 = 1
2

⎛⎜⎜⎜⎜⎜⎝
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎠ .

An example suggesting we cannot improve on Theorem 1 by having n − 1 zero diagonal

entries, is A−1 =

⎛⎜⎝0 1 1
1 0 0
1 0 1

⎞⎟⎠. Then A =

⎛⎜⎝0 1 0
1 1 −1
0 −1 1

⎞⎟⎠, which is of the form P + N.

It would also appear to be not possible to improve on Theorem 1 by A−1 having all zero diagonal en-

tries and not requiring A−1 to be nonnegative, by considering A−1 = 1
2

⎛⎜⎝ 0 −1 1
−1 0 1
1 1 0

⎞⎟⎠, for which A =

⎛⎜⎝ 1 −1 1
−1 1 1
1 1 1

⎞⎟⎠, and this is also of the form P + N.

The following theorem is well-known (See [6], or Lemma 1.1 of [14]).

Theorem 2. Suppose A ∈ Rn×n is invertible. Both A and A−1 are nonnegative if and only if A is the product of
a permutation matrix and a diagonal matrix with positive diagonal entries.

Since Theorem 1 is only concerned with symmetric matrices, Theorems 1 and 2 imply that the only way an
invertible matrix A of the form A = P + N, can have all zeroes on the diagonal of its nonnegative inverse is if
P = 0, n is even, and A consists of blocks on the diagonal of A, in which each diagonal block is a product of
a symmetric permutation matrix and a positive diagonal matrix.

A simple observation is that if P is a positive semidefinitematrix and N is nonnegative, then A = P+N is a
copositivematrix. It iswell-known (see [7], [8], [10], [12]) that copositivematrices donot have to be of this form,
an example of which is the 5-by-5 matrix H (from above) that we called the Horn matrix in [12]. In fact the
Hornmatrix is extreme [10], i.e. it cannot bewritten nontrivially as the convex sumof two copositivematrices.
In [12] we called copositivematrices exceptional if they are not the trivial sum of a positive semidefinitematrix
and a nonnegative matrix. Otherwise, we call them non-exceptional.

The proof of Theorem 3 will use the property proved in [11] (or see [13], [15]) that for any copositive matrix
A, if x ≥ 0 and xTAx = 0, then Ax ≥ 0. In [2], [3], Baumert studied copositive matrices that had a weak form of
extremity, namely, copositive matrices that are not of the form C + N (nontrivially), in which C is copositive,
and N is nonnegative with all zeroes on its diagonal. Baumert gave a characterization for such matrices in
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[1], which included an error, later corrected in [5]. In [5], the authors called such matrices irreducible with
respect to the nonnegative cone. Obviously, if a matrix is not of the form C +N, then it is not of the form P +N.
For Theorem 3 we need the assumption that n ≥ 3, since in the proof we will write A−1 in block form with a
specified (1, 2) entry, as well as another nonzero column to the right of it.

Theorem 3. For n ≥ 3, suppose that A ∈ Rn×n is symmetric, irreducible, invertible, and A−1 is nonnegative and
hollow. If A is of the form C + N, in which C is copositive and N is nonnegative and hollow, then N is zero.

Proof Our method of proof will be to show, with the stated assumptions, that if A = C +N, we must have that
N is diagonal and therefore N = 0.

We proceed now to show that N is diagonal. Choose a permutation matrix R, so that if N has a nonzero
off-diagonal entry nij, we have nij in the (1, 2) position of RTNR. In other words, we may assume n12 ≠ 0. We
know A is irreducible if and only if A−1 is irreducible. Write the nonnegative matrix B = A−1 partitioned into

block form as A−1 =
(︃
B1 B2
BT2 B3

)︃
, with B1 as a 2-by-2 matrix and the other blocks of conforming dimensions.

Next, let Q be the permutation matrix given by Q =
(︃
1 0
0 1

)︃
⊕ Q1, in which Q1 is an (n − 2)-by-(n − 2)

permutation matrix chosen so that

QTA−1Q = QT
(︃
B1 B2
BT2 B3

)︃
Q =

(︃
B1 B2Q1
QT1BT2 QT1B3Q1

)︃
,

has a nonzero last column in the top right 2-by-(n − 2) block matrix B2Q1. If it is not possible to choose Q1 in
this way, it would imply A−1 was reducible. In other words, with B = (bij), 1 ≤ i, j ≤ n, wemay assume b1n ≠ 0
or b2n ≠ 0 (or both).

Now write QTAQ in block form as QTAQ =
(︃
C1 + N1 a
aT ann

)︃
, in which C1 and N1 are (n − 1)-by-(n − 1)

and a is (n − 1)-by-1, with C1 copositive, and N1 a nonnegative matrix. Further, write QTA−1Q in block form,

although in a different way than earlier, as QTA−1Q =
(︃
D b
bT 0

)︃
, in which b is (n − 1)-by-1, and D is (n − 1)-

by-(n − 1).
Then (︃

C1 + N1 a
aT ann

)︃(︃
D b
bT 0

)︃
=
(︃
In−1 0
0 1

)︃
,

implies (C1 + N1)b = 0. It follows that C1b = −N1b, and then since N1 and b are nonnegative we have
bTC1b = −bTN1b ≤ 0. But this implies bTC1b = 0. Then C1b ≥ 0, from the property mentioned in the
paragraph before the theorem, and so N1b = 0.

However, N1b is the (n−1)-by-1matrix with first two components n11b1n +n12b2n + · · · = 0 and n12b1n +
n22b2n+· · · = 0. Since all entries ofN1 and b arenonnegative, this forces n12 = 0,which is a contradiction.

Thus, the only way a copositive matrix A can satisfy the assumptions of Theorem 3 is for A to be “irre-
ducible with respect to the nonnegative hollow cone”. Again, the Horn matrix provides an example of such
a matrix.

3 Extending Theorem 1
Our next theorem (and its proof) reduces to Theorem 1 when thematrix B of Theorem 4 is the identity matrix.
Theorem 4 improves on Theorem 1, since the signs of the entries, including the diagonal entries, of A−1 are
not restricted to being nonnegative. This may be seen from the examples of exceptional matrices from [11]
and [12] following the theorem.
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Theorem 4. Let A ∈ Rn×n be symmetric and invertible. Suppose there exists an invertible matrix B ∈ Rn×n

such that A−1B is nonnegative, and BTA−1B is hollow. If A is of the form A = P + N, with P positive semidefinite
and N nonnegative, then P is zero. Moreover, whether or not A is of the form P + N, if A is copositive then B is
nonnegative.

Proof Suppose A can be written as A = P + N, with P positive semidefinite and N nonnegative. Then, with
the assumptions on the matrix B, and letting A−1B = C we have for each i, 1 ≤ i ≤ n, 0 = eTi BTA−1Bei =
eTi BTA−1AA−1Bei = eTi CTACei = eTi CT(P + N)Cei = eTi CTPCei + eTi CTNCei. This implies for each i, 0 =
eTi CTPCei. Then PCei = 0 for all i, so P = 0.

For the “Moreover” part of the statement of the theorem, since for each i we have eTi CTACei = 0, and A
is copositive, then ACei ≥ 0, from the property of copositive matrices stated in Section 2. Therefore B = AC ≥
0.

An example of amatrix A to illustrate Theorem 4 is the Hoffman-Pereiramatrix [11], as we called it in [12],
which is copositive. This exceptional A along with its inverse is

A=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1
1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1
−1 1 0 0 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A−1=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 0 0 1 0
0 −1 0 1 0 0 1
1 0 −1 0 1 0 0
0 1 0 −1 0 1 0
0 0 1 0 −1 0 1
1 0 0 1 0 −1 0
0 1 0 0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the corresponding B, A−1B and BTA−1B of Theorem 4 are

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0
0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A−1B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

BTA−1B=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1 0
0 0 0 1 1 1 1
1 0 0 0 1 1 1
1 1 0 0 0 1 1
1 1 1 0 0 0 1
1 1 1 1 0 0 0
0 1 1 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Another illustration of the same theorem is the 7-by-7 extension of the Horn matrix given in [12], which
is the exceptional matrix A, along with A−1 given by

A=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 1 1 1 −1
−1 1 −1 1 1 1 1
1 −1 1 −1 1 1 1
1 1 −1 1 −1 1 1
1 1 1 −1 1 −1 1
1 1 1 1 −1 1 −1
−1 1 1 1 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A−1=16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 2 2 −1 −1
−1 2 −1 −1 2 2 −1
−1 −1 2 −1 −1 2 2
2 −1 −1 2 −1 −1 −1
2 2 −1 −1 2 −1 −1
−1 2 2 −1 −1 2 −1
−1 −1 2 2 −1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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for which

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A−1B = 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

BTA−1B = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 1 1 2 0
0 0 0 2 1 1 2
2 0 0 0 2 1 1
1 2 0 0 0 2 1
1 1 2 0 0 0 2
2 1 1 2 0 0 0
0 2 1 1 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using similar reasoning to that given in Theorem 8 of [12] we also have Theorem 5.

Theorem 5. For n ≥ 3, let A ∈ Rn×n be symmetric, invertible, with A−1 nonnegative, and with A−1 having three
zero diagonal entries such that all entries are positive in the rows and columns of these three zero diagonal
entries. If A is of the form C + N, with C copositive and N nonnegative, then N is zero.

Proof Suppose 0 = eTi A−1ei, for i = 1, 2, 3. Then, as in the proof of Theorem 1, we have when i = 1 that
0 = eT1A−1NA−1e1, which means that the (n − 1) -by-(n − 1) block of N obtained by deleting row and column
1 is zero. Arguing in the same way for i = 2, and i = 3, we have that N = 0.

4 The 5-by-5 case
In this section, we will use a theorem from [5], which we state as Theorem 6, to show that the only 5-by-5
exceptional matrix with a hollow nonnegative inverse is the Hornmatrix, up to positive diagonal congruence
and permutation similarity.

Let

S =

⎛⎜⎜⎜⎜⎜⎝
1 −cos θ1 cos(θ1 + θ2) cos(θ4 + θ5) −cos θ5

−cos θ1 1 −cos θ2 cos (θ2 + θ3) cos(θ5 + θ1)
cos(θ1 + θ2) −cos θ2 1 −cos θ3 cos(θ3 + θ4)
cos(θ4 + θ5) cos(θ2 + θ3) −cos θ3 1 −cos θ4
−cos θ5 cos(θ5 + θ1) cos(θ3 + θ4) −cos θ4 1

⎞⎟⎟⎟⎟⎟⎠ .

Theorem 6 appears at the end of [5], where they use C5, S5+ andN5, respectively, to denote the copositive,
positive semidefinite, and nonnegative matrices, in R5×5.

Theorem 6. Let A ∈ C5 − (S5+ + N5). Then, up to permutation similarity and positive diagonal congruence, A
can be written as A = S + N, for some hollow N ∈ N5, where θi ≥ 0, for 1 ≤ i ≤ 5, and

∑︀5
i=1 θi < π.

Let now A be a 5-by-5 exceptional matrix that has a hollow nonnegative inverse. Theorem 6 implies that, up
to permutation similarity and positive diagonal congruence, A can be written as A = S+N, where N is hollow
and nonnegative. We would like to apply Theorem 3, but we need to first check that A is irreducible. If A is
reducible, it is permutation similar to amatrix with irreducible diagonal blocks. We note that if A is reducible
this does not necessarily imply S is reducible. IfA had a1-by-1 diagonal block (under permutation similarity),
then its inverse could not be hollow. If A had a 2-by-2 diagonal block, then this 2-by-2 block, when inverted,
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must be nonnegative with both diagonal entries being zero. Then the (not inverted) 2-by-2 block of A would
also be nonnegative with both diagonal entries being zero, but S has all ones on the diagonal, in which case
we could not have A = S + N (under permutation similarity or positive diagonal congruence). Now applying
Theorem 3, since A has a hollow nonnegative inverse, we know that N = 0. We next determine the values of
the θi’s, for 1 ≤ i ≤ 5, that ensure S has a hollow inverse. In effect, we will show that the θi’s are all equal to
zero, whereupon S becomes the Horn matrix. Let us examine the 4-by-4 principal minors of S.

A computer algebra system can used to show that the top left 4-by-4 principal minor of S, namely
det(S[1, 2, 3, 4]), satisfies

det(S[1, 2, 3, 4]) = −
[︁
cos(θ1 + θ2 + θ3) + cos(θ4 + θ5)

]︁2
sin2θ2.

Suppose now that det(S[1, 2, 3, 4]) = 0. If 0 = cos(θ1 + θ2 + θ3) + cos(θ4 + θ5) =
2 cos( θ1+θ2+θ3+θ4+θ52 ) cos( θ1+θ2+θ3−θ4−θ52 ), then cos( θ1+θ2+θ3−θ4−θ52 ) = 0, which implies θ1+θ2+θ3−θ4−θ5 = mπ,
for some odd integer m. However, −π <

∑︀5
i=1 −θi ≤

∑︀5
i=1 ±θi ≤

∑︀5
i=1 θi < π, so we must have θ2 = 0.

The other 4-by-4 principal minors can be obtained from det(S[1, 2, 3, 4]) by cyclically permuting the
indices appropriately. Then, after setting each of these minors equal to zero, we have θi = 0, for 1 ≤ i ≤ 5.

References
[1] L. D. Baumert, Extreme copositive quadratic forms, Ph.D. Thesis, California Institute of Technology, Pasadena, California,

1965.
[2] L. D. Baumert, Extreme copositive quadratic forms, Pacific Journal of Mathematics 19(2) (1966) 197-204.
[3] L. D. Baumert, Extreme copositive quadratic forms II, Pacific Journal of Mathematics 20(1) (1967) 1-20.
[4] Z. B. Charles, M. Farber, C. R. Johnson, L. Kennedy-Shaffer, Nonpositive eigenvalues of hollow, symmetric, nonnegative

matrices, SIAM Journal of Matrix Anal. Appl. 34(3) (2013) 1384-1400.
[5] P. J. C. Dickinson, M. Dür, L. Gijben, R. Hildebrand, Irreducible elements of the copositive cone, Linear Algebra and its Ap-

plications 439 (2013) 1605-1626.
[6] R. DeMarr, Nonnegative matrices with nonnegative inverses, Proceedings of the American Mathematical Society 35(1) (1972)

307–308.
[7] P. H. Diananda, On non-negative forms in real variables some or all of which are non-negative, Proc. Cambridge Philosoph.

Soc. 58 (1962), 17–25.
[8] M. Hall, Combinatorial theory, Blaisdell/Ginn, 1967.
[9] R. A. Horn and C. R. Johnson,Matrix analysis, Cambridge University Press, 1985.
[10] M. Hall and M. Newman, Copositive and completely positive quadratic forms, Proc. Camb. Phil. Soc. 59 (1963) 329–339.
[11] A. J. Hoffman and F. Pereira, On copositive matrices with −1, 0, 1 entries, Journal of Combinatorial Theory (A) 14 (1973)

302–309.
[12] C. R. Johnson and R. Reams, Constructing copositive matrices from interior matrices, Electronic Journal of Linear Algebra 17

(2008) 9–20.
[13] C. R. Johnson and R. Reams, Spectral theory of copositive matrices, Linear Algebra and its Applications 395 (2005) 275–281.
[14] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.
[15] H. Väliaho, Criteria for copositive matrices, Linear Algebra and its Applications 81 (1986) 19–34.

Brought to you by | College of William and Mary
Authenticated

Download Date | 4/23/19 11:10 PM


	Sufficient conditions to be exceptional
	Recommended Citation

	1 Introduction
	2 When the inverse is nonnegative and hollow
	3 Extending Theorem 1
	4 The 5-by-5 case

