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Abstract

This paper examines developing machine learning and statistic models
to build forecast models for equity returns in an emergent market, with
an emphasis on computing. Distributed systems were pared with random
search and Bayesian optimization to find good hyperparameters for
neural networks. No significant results were found.
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1 Introduction

1.1 Introduction

This paper examines developing machine learning and statistical models
to build forecast models for equity returns in an emerging market. In
quantitative investment, a major goal is to identify the collection of equities
whose returns are stronger than the market return (i.e., maximize the so-
called excessive return). Extensive works have been done in this area by both
financial professional and academics1. There are three major approaches to
identify the “winning stocks”:

(i) using fundamental data2 by examining the performance of a company
(e.g., whether it had satisfying revenue in the past quarter), we choose
the financially robust and growing companies,

(ii) using technical data3: by examining the price-volume behaviors of a
stock, we interpret how the market “view” the stock in short term and
leverage such information to trade,

(iii) using macro data4: by examining the “macro economics condition”, we
determine the sectors that are growing. For example, when a trade
deal on oil is made between USA and China, the investors will feel
oil-related companies are promising and thus invest on these stocks
heavily.

This work examines using technical data to build forecast models. We
specifically examine how we may apply recent advances in machine learning
and statistical models to extract signal from technical data. Our solution

1B. G. Malkiel, “The Efficient Market Hypothesis and Its Critics,” Journal of Economic
Perspectives, 2003, ISSN: 0895-3309. DOI: 10.1257/089533003321164958, G. G. Tian, G. H.
Wan, and M. Guo, “Market Efficiency and the Returns to Simple Technical Trading Rules: New
Evidence from U.S. Equity Market and Chinese Equity Markets,” Asia-Pacific Financial Markets,
vol. 9, no. 3, pp. 241–258, 2002, ISSN: 1573-6946. DOI: 10.1023/A:1024181515265. [Online].
Available: https://doi.org/10.1023/A:1024181515265, T. Z. Tan, C Quek, and G. S. Ng,
“Brain-inspired Genetic Complementary Learning for Stock Market Prediction,”

2N. T. Laopodis, “Equity prices and macroeconomic fundamentals: International evidence,”
Journal of International Financial Markets, Institutions and Money, vol. 21, no. 2, pp. 247–
276, 2011, ISSN: 10424431. DOI: 10.1016/j.intfin.2010.10.006. [Online]. Available:
http://dx.doi.org/10.1016/j.intfin.2010.10.006.

3S. Ghoshal and S. J. Roberts, “Thresholded ConvNet Ensembles: Neural Networks for
Technical Forecasting,” 2018. arXiv: 1807.03192, G. E. Pinches, “The Random Walk Hypothesis
and Technical Analysis,” Financial Analysts Journal, vol. 26, no. 2, pp. 104–110, 1970, ISSN:
0015198X. [Online]. Available: http://www.jstor.org/stable/4470663.

4Y. F. Wang, “Predicting stock price using fuzzy grey prediction system,” Expert Systems
with Applications, vol. 22, no. 1, pp. 33–38, 2002, ISSN: 09574174. DOI: 10.1016/S0957-
4174(01)00047-1, K. J. Oh and K. J. Kim, “Analyzing stock market tick data using piecewise
nonlinear model,” Expert Systems with Applications, vol. 22, no. 3, pp. 249–255, 2002, ISSN:
09574174. DOI: 10.1016/S0957-4174(01)00058-6.
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aims to address the cross-cutting constraints between system and statistical
models. Modern statistical model requires astonishingly heavy compute
resources. Usually large systems do not automatically result in better mod-
els), but since stock forecasting has a competitive component to it, larger,
more costly systems are likely to result in more profitable forecasts (see the
section on Fama and his Efficient Market Hypothesis). So a key challenge we
tackle is co-optimize model performance and system scalability. Our research
project consists of the following key components:

1. Data processing and objective: how we pre-processed the data and set
up objectives of our forecasting model.

2. Determination of models

3. Compute demand and massive compute infrastructure

4. Hyperparameter optimization

1.2 Motivation: Financial Markets

1.2.1 Day trading and the efficient market hypothesis

It is easy to imagine profiting from being able to forecast tomorrow’s stock
prices. When a stock is going to increase in value in the future, a trader
who anticipates this change would be able to buy it in the present and profit
by selling it when its market price has increased. Strategies like these fall
under active investment

The performance of active trading strategies are usually gauged against
buy-and-hold strategies, which involve simply buying a selection of stocks
whose aggregate performance represent how well the market is doing and
hold them as they grow in value. The latter strategy involves less work, less
risk, and avoids the potentially overwhelming trading costs associated with
the former.

While there has been a constant stream of research on price patterns
that could be used to beat buy-and-hold strategies, the idea receives a
constant stream of critique. Critics tend to gather around Eugene Fama
and the Efficient Market Hypothesis (EMH) which he worked extensively
on56. The hypothesis asserts that, under certain conditions, all available
information has already been incorporated into the market price, and hence
no statistically significant profit can be gained over buy-and-hold by using
public information to forecast and trade on these forecasts. Since since

5E. F. Fama, “The Behavior of Stock-Market Prices,” The Journal of Business, vol. 38, no. 1,
pp. 34–105, 1965, ISSN: 00219398, 15375374. [Online]. Available: http://www.jstor.org/
stable/2350752.

6B. G. Malkiel, “The Efficient Market Hypothesis and Its Critics,” Journal of Economic
Perspectives, 2003, ISSN: 0895-3309. DOI: 10.1257/089533003321164958.
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active trading has high transaction costs and management costs, critics like
Sharpe go as far as to argue that such practices have no place in the market7.

One way to understand Fama’s claims is to say that any pattern that
would allow us to forecast future prices is probably already traded upon,
and is hence rendered unprofitable. For example, under the efficient-market
hypothesis, if other traders can forecast a price rise of 5% tomorrow in AAPL,
they would not sell at any price lower than the anticipated future price,
moving the price rise up in time and preventing anyone from collecting a
profit off the forecast.

However, the works Fama did on the efficiency of stock markets was
based upon a set of assumptions that were not exactly true in real markets.
For example, he explains8 that sufficient conditions for market efficiency
include " (i) there are no transactions costs in trading securities, (ii) all
available information is costlessly available to all market participants, and
(iii) all agree on the implications of current information for the current price
and distributions of future prices of each security".

Indeed, Fama acknowledges9 that on the daily level, the EMH may not be
entirely accurate. While he maintains that the market price does incorporate
all available information eventually, he finds that the day to day returns of a
stock are correlated over time. This means that a model as simple as linear
regression of future returns over past daily returns may be able to produce
forecasts that can be used to build profitable trading strategies.

In defence of the EMH, Fama stated that the correlations are but marginal,
and any strategy based upon these correlations would only show marginal
profits in on-paper trading strategies. In the real market, these profits are
easily wiped out by varous costs such as transaction costs (exchange fees),
cost-of-risk, and the opportunity costs. In essence, the reason why these
patterns exist is because there are costs that prevent traders from using
them.

1.2.2 Real markets don’t follow Fama’s conditions

Given this, one can’t help wonder if there are patterns out there that breaks
one of Fama’s other conditions to yield actually profitable trading schemes.
For example, on the lines of the linear-model example, there might be other
models that have forecasting efficacy because transaction costs prevent
traders from exploiting the patterns they detect; models that exist because
real markets don’t adhere to Fama’s condition (i).

7W. F. Sharpe, “The Arithmetic of Active Management,” Financial Analysts Journal, vol. 47,
no. 1, pp. 7–9, 1991. DOI: 10.2469/faj.v47.n1.7. [Online]. Available: https://doi.org/10.
2469/faj.v47.n1.7.

8E. F. Fama, “American Finance Association Efficient Capital Markets: A Review of Theory
and Empirical Work,” Tech. Rep. 2, pp. 383–417.

9E. F. Fama, “American Finance Association Efficient Capital Markets: A Review of Theory
and Empirical Work,” Tech. Rep. 2, pp. 383–417.
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Or there might be forecasting practices that work because they require
information not available to the public (in the case of insider trading, which
is illegal) or information available at a cost (for example, a neural network
may need to be trained extensively on historical data, whose gathering and
processing entailes a substantial cost). These models may work because real
markets don’t adhere to condition (ii).

Or perhaps with the same information some traders are able to reach bet-
ter conclusions than others. For example, there might be machine learning
models that perform better as more computing power is spent to train them.
These models violate Fama’s condition (iii).

Indeed, in real markets, profitable active investment strategies have been
found. A study10 used probabilistic neural networks to out-perform buy-and-
hold in the Taiwanese market, and models such as support vector machines
achieved a degree of success11.

1.2.3 Contribution

This project seeks to find profitable trading strategies where Fama’s EMH
doesn’t hold perfectly; in other words, where there are barriers to entry for
the forecasting market.

Our dataset is drawn from an emergent market, where data availability
is low and regulations are tough. This helps deviate from conditions (i)
and (ii). We choose neural networks as our models, since neural networks
are logistically troublesome12 and computationally intensive to train13, thus
deviating from condition (iii). In this barriered forecasting market, we
attempt to establish a competitive advantage by gleaning computer power
from idle departmental computers to search massive hyperparameter spaces.

10A. S. Chen, M. T. Leung, and H. Daouk, “Application of neural networks to an emerging
financial market: Forecasting and trading the Taiwan Stock Index,” Computers and Operations
Research, vol. 30, no. 6, pp. 901–923, 2003, ISSN: 03050548. DOI: 10.1016/S0305-0548(02)
00037-0.

11H. Ince and T. B. Trafalis, “Short term forecasting with support vector machines and
application to stock price prediction,” International Journal of General Systems, vol. 37, no. 6,
pp. 677–687, 2008. DOI: 10.1080/03081070601068595. [Online]. Available: https://doi.org/
10.1080/03081070601068595.

12J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A Python Library for Optimizing the
Hyperparameters of Machine Learning Algorithms,” Proceedings of the 12th Python in Science
Conference, no. Scipy, pp. 13–20, 2013. [Online]. Available: http://www.youtube.com/watch?
v=Mp1xnPfE4PY.

13J. V. Tu, “Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes,” Journal of Clinical Epidemiology, vol. 49, no. 11,
pp. 1225–1231, 1996, ISSN: 08954356. DOI: 10.1016/S0895-4356(96)00002-9.
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2 Data

2.1 Feature Engineering

2.1.1 Data Source

Our data is drawn from an emerging equity market between 2009 and late
2018. The raw data exists as a shape ‘(stock, time)‘ matrix, where the stocks
are drawn from an index basket, and the time-points are drawn daily at
market open.

2.1.2 Feature types

Over the course of the project, several different feature configurations were
tested. We began with forecasting 1-day returns based on 1-day returns
gathered over the past 30 days. We then tested a scheme that added 5-day
volatility gathered daily over the past 30 days as a feature.

We also tested forecast 5-day future returns, using 1-day returns gathered
over the past 100 days.

2.1.3 Weighting

We also tested weighted schemes, where each example (indexed by stock
id and time) is weighted according to the trading volume (price of each
transaction times number of each stocks in the trade). This weighting has
dual purpose.

First, the price of a highly traded stock tends to be more information-rich,
since the price is agreed upon by more parties. The price of a "big" or highly
traded stock should mean more than the price of a "small" or seldom traded
stock.

Second, it is more important to be able to forecast high-volume stocks
correctly, since forecasts are easier to turn into profit in these stocks. Ac-
cording to a well-known model for market impact, market impact cost due to

buying or selling stocks is proportionate to
√

Q
V , where Q is the number of

stocks traded, and V is the trading volume of that stock14.
Here’s an example to illustrate why volume matters and how market

impact works: suppose that my model forecasts that tomorrow AAPL is going
to decrease in value. I then proceed to short 1000 shares.

Now if AAPL is small, then perhaps by the time I’ve sold the first 100
shares, the price has already gone down since by selling I’ve increased
supply of AAPL in the market, and exhausted some of the higher bids in the
market. This results in my remaining shares selling at (progressively) lower

14J. P. Bouchaud, “Price Impact,” 2009. arXiv: 0903.2428. [Online]. Available: http://arxiv.
org/abs/0903.2428.

7



prices. And tomorrow, when I buy the shares back, each share bought would
increase the price at which I will have to buy the remaining shares, since
I’m increasing demand this time and exhausting the lower ask orders in the
market. In a large market for AAPL, the impact would be less, and I will be
able to profit more off this movement.

Since the market impact model gives a market impact cost proportional
to the square root of past trading volume, I decided to use trading volume to
weight the costs.

2.1.4 Data "Cuts"

To ensure the generalizability of our models and the validity of our results, we
split our data into "cuts" so that we could cross-validate model parameters,
cross-validate hyperparameters, and prevent badly performing models from
appearing significant by abusing information leaked from the future.

We split our data into 7 cuts. Each cut consists of a testing set and a train-
ing set. The last three cuts are "validation cuts" to validate hyperparamaters
on, and the first five cuts are used as "hyperparameter selection cuts".

The cuts are constructed as follows. Each testing set is one year in length
and defines the cut. Together the testing set covers each year in [2012,
2018] without overlapping. The training set covers the three years before
the beginning of the testing set, possibly with a stretch of data deleted
towards the end.

Thus cut 0 would have a training set that contains data from the years
2009, 2010, 2011; its training set would be the year 2012. The final cut,
cut 6, would have training set covering the years 2015, 2016, 2017, and its
testing set would consist of data from 2018.

3 Metrics

For the initial evaluation of each model, we used Pearson’s correlation (r)
instead of the standard L2 loss used by most other studies, since pearson r
is a metric independent of the scaling of the data and allows us to compare
closeness of fit over datasets with different standard deviations. Pearson’s
correlation measures only strength of association (goodness of fit) and does
not depend on the sample size. In case of weighted models, we also computed
pearson’s r based on While it is a good basis to make claims, we also need a
certainty metric for the claims we make.

To test our hypothesis that our models were good predictors of future
stock returns, we hypothesize that actual stock returns can be modeled as
y = βŷ where ŷ is a vector of forecasts, y is the true returns, and β is a
constant scalar. Our null hypothesis is thus β = 0. Fitting a linear model

8



‘truey = b * predy‘ conveniently gives us a T-statistic and a p-value for our
experimental results under the null hypothesis.

A proprietary, experimental investment simulator was used to simulate
investment results based on forecasts. It produces investment metrics such
as the Sharpe ratio15 (average returns divided by standard deviation of
returns) and total investment return (from algorithmically investing based
on forecasts. The simulator also produces market-adjusted versions of said
metrices, and cost-adjusted versions which accounted for the transaction
cost associated with buying and shorting stocks.

4 Model

This section describes neural network models used to forecast future returns.

4.1 Neural Networks

We use dense neural networks with with optional convolution-max-pooling
layers to forecast stock returns. The model is composed of sub-nets for
each feature. A sub-neural-network is created for each feature (two features
tested include historical returns and volatility), and the last layer of each
subnet is concatenated and then fed through another subnet to produce the
final forecast.

Each sub-net consists of a number of convolutional layers (optional)
followed by a number of dense layers. Each convolutional layer may be
preceded by a max-pool layer (pool-size & kernel size are both hyperparame-
ters). While the size (dense units / convolution filter numbers) and number
of layers are specifiable by hyperparameters, for simplicity’s sake we fixed
the layer size for each type of layer in each sub-net. Regularization (l2, l1, or
otherwise) applied to the weights is specifiable via hyperparameters, and so
are various other aspects of the model, such as training algorithm.

The entire network is trained with back-propagation. The back-propagation
algorithm (SGD, momentum-SGD, SGD with learn-rate annealing, SGD with
adaptive learn rate, etc.) is specifiable via hyperparameters.

The section below shows an example of a model, described by a JSon
specification of hyperparameters.

4.1.1 Model Specification: an example

Below we have an example hyperparameter specification for a model, and in
figure 2 a graph of the model generated from these hyperparameters. The
JSon representation is fed through a Python/Tensorflow script to flesh out a

15W. F. Sharpe, “The Sharpe Ratio,” The Journal of Portfolio Management, vol. 21, no. 1,
pp. 49–58, 2009, ISSN: 0095-4918. DOI: 10.3905/jpm.1994.409501.
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model, train it, and test it to produce metrics. This approach makes it easy
to describe candidate models, store specifications of successful models, and
search high-dimensional hyperparameter spaces. It enables distributed hy-
perparameter searching, and allows us to easily view results in aggregation.

1 {
2 "batch_size": 46.0,
3 "butcher_id": "2019-02-08-csi800",
4 "conv_count": 0,
5 "conv_filters": 0,
6 "conv_kernel_size": 0,
7 "dense_count": 0,
8 "dense_units": 0,
9 "epochs": 7,

10 "exp_key": "example_2019_04_12",
11 "features": {
12 "returns": {
13 "conv_count": 2.0,
14 "conv_filters": 46.0,
15 "conv_kernel_size": 5.0,
16 "dense_count": 1,
17 "dense_units": 68.0,
18 "l2reg": 0.3951370426172572,
19 "pool_size": 2.0,
20 "shape": [
21 100
22 ]
23 },
24 "volatility": {
25 "conv_count": 1.0,
26 "conv_filters": 33.0,
27 "conv_kernel_size": 3.0,
28 "dense_count": 3,
29 "dense_units": 54.0,
30 "l2reg": 0.0,
31 "pool_size": 1.0,
32 "shape": [
33 100
34 ]
35 }
36 },
37 "l2reg": 0.5,
38 "optimizer": {
39 "class_name": "rmsprop",

10



40 "config": {
41 "lr": 7.991736568151144e-05
42 }
43 }
44 }

Notice there’s just a single dense layer condensing the output of the
subnets into one. That is because in the top-level object we specified

The outermost object contains specifications for feature input (in line 3,
"butcher_id" specifies which directory to pull features from), the way the
model is trained (line 2 specifies the batch size, and line 38 through 43
specifies details about the optimizer used to train).

It also includes the specification for the outer subnet that processes the
combined output of the inner subnets.

The inner objects under key "features" specify details about each subnet.
Each key corresponds to a feature stored in the data directory ("returns" and
"volatility"), and the inner objects conntains details on the subnet.

5 Validation

This section explains why each cut has a training and testing dataset, and
how we determine whether a neural network model has been trained to have
good weights.

Cross validation was done with extreme rigor in this project. This means
that for each model we test (a "model" is defined by a set of hyperparameters),
we always split our data into training and testing sets, and train our model
exclusively on the training set to ensure that our models generate well to
previously-unseen data. Otherwise, we may produce models that look like
they have low variance (and thus high accuracy) but biased towards the
training set instead of the true population16.

Because our ultimate goal is to produce a model that could be used to
trade profitably, we had to pay extra attention in order to prevent future
data from being used to build our models; models that require future in-
formation are only useful for traders with time-machines, and traders with
time-machines require no models.

We never train models in the future and test them in the past. This is done
to prevent us from producing models that only work when trained on future
data. For example, in the case where we were forecast 5-day future returns
using the past 100 daily returns, a model that is tested for forecast accuracy
between January 1 2015 and December 31 2015 would only take training

16R Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model
selection,” Proceedings of the 14th international joint conference on Artificial intelligence -
Volume 2, vol. 2, no. 0, pp. 1137–1143, 1995.
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data gathered before July 2014. Note that we did not use features between
July and December 2014 because they would overlap with the features of the
testing set.

Similarly, we never use information from testing data when de-meaining,
scaling, windsorizing, or otherwise transforming our data. Not only does
this prevent us from leaking information into the training set, within the
testing set it also prevents us from creating artificial patterns that would
have been unavailable to a real-market trader. For example, it is common
practice in machine learning to scale data such that the standard deviation is
1. However, since it is impossible to know beforhand the standard deviation
of a stock’s returns over a year (volatility), we avoid scaling the testing set.
While this prevents us from reaching false conclusions, these almost-paranoid
precautions also prevent us from putting our testing data at mean=0 and
variance=1. This presents a slight inconvenience for using the standard
metrics for regression, but is easily dealt with.

5.1 Data Cuts

The two following subsections detail the necessity of our scheme of cuts
shown in 1

5.2 Parameter Validation

5.2.1 Hyperparameter Validation

Similar to how model parameters may adapt to their training set and not
be generalizable to the general returns dataset, the hyperparameters that
determine how these parameters are chosen may also adapt to the wrong
set of datapoints. Hence we exercise the same precaution when selecting
our hyperparameters.

A hyperparameter combination is evaluated based on the performance of
the modes they determine. To evaluate a hyperparameter combo, we train a
model for each selection cut (cut0 through cut3), and forecast on the testing
set of that selection cut. The forecasts are then glued together to produce
a large forecast stretching between 2012 and 2015, and the correlation
between this forecast and the actual returns in the given time period is used
to evaluate the hyperparameter selection. The hyperparameter combination
is then selected or adjusted based on the selection-correlation, until we have
a satisfactory set of hyperparameter combinations.

We then bring in the validation cuts to test these hyperparameter combi-
nations on. No more tweaking is done, and the correlation over the validation
set have final say over whether the experiment is successful or not.
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6 Hyperparameter Search

This subsection explains how hyperparameter combinations are chosen.

6.0.1 Grid search

A couple of approaches were attempted during this project. I began with grid
search, specifying a few choices for each parameter. With the large amount
of hyperparameters, it soon turned out to be computationally unfeasible
even with methods detailed in Section 7. With many hyperparameters of
unknown relative importance, I manually tuned the search, fixing values of
hyperparameters that tend not to significantly affect outcomes.

6.0.2 Random Search

A more principled way to deal with this problem was found in a paper by
Bergstra17. Adapting my grid-search approach by randomizing the search
order and stopping midway, comparable results were achieved at much lower
computational cost.

6.0.3 Bayesian Optimization

Towards the end of the research project, Hyperopt18 was used to choose
hyperparameters and run experiments. A Python library for Baysian machine
learning on hyperparameters, Hyperopt combined revisiting well-performing
hyperparameter values and exploring unvisited portions of hyperparameter-
space in search of optimal hyperparameter combinations.

17J. Bergstra and Y. Bengio, “Bergstra12a.Dvi,” vol. 13, pp. 1–25, 2012. [Online]. Available:
papers3://publication/uuid/1190E1AB-0319-40C5-81CD-7207784965DE.

18J. Bergstra, D. L. K. Yamins, and D Cox, “Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures,” Proceedings of the 30th
International Conference on Machine Learning, pp. 115–123, 2013. [Online]. Available: http:
//jmlr.org/proceedings/papers/v28/bergstra13.html.
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7 Computing

7.1 Computational Need

Hyperparameter tuning is important to the performance of neural networks19.
While on some datasets NN models are robust to hyperparameters, training-
related hyperparameter such as the loss function are critical to robust
performance in the face of outliers20.

For hyperparameters to which neural networks are typically considered
robust, the structure of our data still makes tuning important. An 2008 study
concluded that as long as layer sizes are within a certain range, neural net-
works generalize well to unseen data. However, the study assumed Gaussian
noise, an assumption that does not hold with stock market data, where kur-
tosis can be as high as 6.965339838511829 (the Gaussian distribution has
kurtosis 3) and the distribution produces a distinctly non-gaussian histogram,
as seen in Figure 3, where all 5-day returns between 2009 and 2018 are
plotted.

Counting features for different subnets, depending on the setup we end
up with somewhere between 10 and 50 hyperparameters. Allowing only 10
minutes to train and test each hyperparameter combination (as is typical on
2x Nvidia 1080 TI GPUS), a mere thousand hyperparameter combinations
takes a week to test. Even with random search and Bayesian optimization,
the wait is unreasonably long, not to mention frequent interruptions due to
code errors, computer breakdowns, and other researchers competing for the
same computing resources.

7.2 Distributed Computing

Fortunately, the nature of our three approaches for hyperparameter search-
ing all lend themselves to easy parallelization. Parallelization is implemented
with a job queue and a database to store results (both using MongoDB). An
architecture diagram is shown in figure 4.

19J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A Python Library for Optimizing the
Hyperparameters of Machine Learning Algorithms,” Proceedings of the 12th Python in Science
Conference, no. Scipy, pp. 13–20, 2013. [Online]. Available: http://www.youtube.com/watch?
v=Mp1xnPfE4PY, J. Snoek, O. Rippel, K. Swersky, et al., “Scalable Bayesian Optimization Using
Deep Neural Networks,” 2015. arXiv: 1502.05700. [Online]. Available: http://arxiv.org/
abs/1502.05700, A. Daerle and R. V. Zicari, Neural Networks: Tricks of the Trade Second
Edition. 2010, ISBN: 9783642160912, G. Diaz, A. Fokoue, G. Nannicini, et al., “An effective
algorithm for hyperparameter optimization of neural networks,” vol. 61, no. 4, pp. 1–20, 2017.
arXiv: 1705.08520. [Online]. Available: http://arxiv.org/abs/1705.08520.

20K Liano, “Robust error measure for supervised neural network learning with outliers,” IEEE
Transactions on Neural Networks, vol. 7, no. 1, pp. 246–250, 1996, ISSN: 1045-9227. DOI:
10.1109/72.478411.
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7.3 Idle Computing Resources

Implementing this scheme still requires computing resources.
I first wrote Python scripts to implement the system, and made a list of

the required pip packages for the compute nodes.
Trying to gather all student lab computer IPs in McGlothling 121, I

wrote a BASH script to quickly attempt to ssh into all computers in the CS
departmental IP range. Successful IPs were recorded in a file.

Not only did this script allow me to collect the IP addresses I wanted, it
also revealed to me the BG1~9 servers, where massive amounts of memory,
storage, and processing power was available.

An interesting but not very useful find was that the computers in the
Professors’ offices were also open to ssh connections and allowed login
through my student account. They were useless to me because they tend to
have different software suits set up, some even running MacOS.

I then wrote another script that performed the following actions in se-
quence after ssh tunneling into an IP address supplied as a command-line
argument

1. install Miniconda on /tmp,

2. install all required pip packages,

3. mount the datadrive via sshfs,

4. set up ssh port-forwarding tunnel to the Job and Result servers,

5. launch a worker thread.

With this script I was able to search around 1200 hyperparameter com-
binations overnight. Since the lab computers tend to have multi-core CPUs
and students tend not to run core-intensive applications, I was able to get
away with it without limiting workers to idle workstations. Sadly, when
the summer ended, students started using the lab computers and started
complaining about the network congestion caused by feeding large amounts
of data from the data store to the compute nodes. IT started terminating
my processes, and I was reduced to using just the BG servers (whose large
disks allowed me to cache my dataset) plus a limited number of student lab
computers.

8 Results

8.1 A False Positive

In November 2018 I was able to produce seemingly significant results. I
was running random search on the search space described in Figure ??, and
ensembling the top 50 models in hope to produce better results.
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1 {
2 "use_volatility": [true],
3 "volatility_shape": [30],
4 "dense_count": [1,2],
5 "dense_units": [50,100,150],
6 "conv_count": [0],
7 "returns": {
8 "dense_count": [0],
9 "conv_count": [0]

10 },
11 "volatility": {
12 "dense_count": [0],
13 "conv_count": [0]
14 },
15 "optimizer": {
16 "optimizer_name": ["FelixOptimizer"],
17 "learning_rate": [3e-06,1e-06,3e-07],
18 "momentum": [0.3,0.7],
19 "m_gamma": [0.0001],
20 "m_power": [0.75]
21 },
22 "l2reg": [1.0,10.0,100.0],
23 "train_steps": [50000],
24 "save_checkpoints_steps": [5000],
25 "keep_checkpoint_max": [1000],
26 "host": ["gpubox1"],
27 "normalization": ["Felix"],
28 "output_dir": ["/home/xren/nn-output/roast_2018-11-12/"]

,
29 "weighted": [true]
30 }

The forecast-true market correlations are listed as follows:

Listing 1: Out-of-sample Correlations

1 # Unweighted Pearson R (hyperparameter selection)
2 cut: 1
3 0.046622112436332484
4 cut: 2
5 0.04884132100551082
6 cut: 3
7 0.03123235950611614
8 cut: 4
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9 0.048024457544869815
10 cut: 5
11 0.0591479510054449
12 # Weighted Pearson R (hyperparameter selection)
13 cut: 1
14 0.06040253565540615
15 cut: 2
16 0.06123432600994524
17 cut: 3
18 0.03367733007635976
19 cut: 4
20 0.05056667387602864
21 cut: 5
22 0.06412042280079279

The simulator was able to multiply the initial capital given by 1.8 times
over the 3 years from 2015 - 2017, and produced a log-pnl curve as follows.

However, when our industry collaborators updated the data (to include
more data from 2018) and the simulator (no reason was given, but the old
investment simulator was made unavailable), attempts to replicate these
results have failed.

Then, in late December, the simulator went down and never came back
up.

8.2 Other things I tried

On the new data, I switched to using Hyperopt to perform hyperparameter
search. Despite continuous efforts to tune and around 10 thousand models
trained over the course of 13 experiments, no significant results were pro-
duced. Different sets of stocks were used (all data available, large index-fund
basket, small index-fund basket, combination of the two). Different feature
processing schemes were tested (windsorization, rank of data transformed
into gaussian, etc.).

One of the experiments came up with a positive correlation of 0.03
over the three validation sets, so I decided to compute the T statistic as a
certainty metric. A naiive approach gave me T = 6.48, but a more careful
examination revealed that the standard error for β was underestimated
because of correlated residuals, and using the Newey-West estimator for the
covariance matrix to correct the T value yielded a paltry T = 1.40 and an
insignificant p-value.
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8.3 Takeaways

8.3.1 Replicability

The November Results were difficult to replicate, since they relied on old
versions of the simulator and data-preprocessor. In the future I should be
more careful to maintain working copies of old code and perform regression
testing with every change.

8.3.2 Independent Replicability

I relied on the remote, proprietary simulator to evaluate my models. I should
have taken the time to write the code myself, so that I wouldn’t have to
rely on a not-quite-reliable remote server working correctly to evaluate my
results.

8.3.3 Pipelining

I used a substantial amount of my time to write code that processed data,
searched for good hyperparameters, outputted forecasts, and generated
reports with metrics. This was time well spent, as I had to reuse the code
many times.

Looking back I wish I had invested even more in scripts that automated
the logistics of running experiments. For example, sometimes due to a bug
in my code an experiment would stall and I wouldn’t be alerted until I check
its progress. I could have written a script that sent me an e-mail notification
when my experiments terminated.

8.3.4 Not re-writing Code

During the course of the project I did a substantial amount of unnecessary
work. I changed my code to accomodate extra features, but forgot to do
regression testing to make sure that the code was backwards compatible,
and had to search through my Git repository to temporarily roll back the
changes whenever I need to revisit earlier experimental results. For grid
search and random search, I wrote custom scripts when there are existing
Python modules available that would have met all my needs. When old scripts
became messy, I attempted to rewrite them, but only to end up with the same
mess, and spent a lot of time solving problems that were already solved in
the old code.
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Figure 1: Data Cuts
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Figure 3: Returns do not have Gaussian distribution
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Figure 4: Data flow in distributed training
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Figure 5: Log PNL over 3 years
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