
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

5-2018

Clarity: An Exploration of Semantic Information Encoded in Mobile Clarity: An Exploration of Semantic Information Encoded in Mobile

Application GUIs Application GUIs

Michael J. Curcio
College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Curcio, Michael J., "Clarity: An Exploration of Semantic Information Encoded in Mobile Application GUIs"
(2018). Undergraduate Honors Theses. Paper 1267.
https://scholarworks.wm.edu/honorstheses/1267

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1267?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1267&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Clarity: An Exploration of Semantic Information Encoded in Mobile Application
GUIs

Michael J. Curcio Jr.

Williamsburg, VA

A Thesis presented to the Faculty
of the College of William and Mary in Candidacy for the Degree of

Bachelors of Science

Department of Computer Science

The College of William and Mary
May 2018

ABSTRACT

Upon installing a mobile application, human beings are able, to a great extent, to
know immediately what the subcomponents of the screen do. They know what
buttons return them to the previous screen, which ones submit their log in
information, and which brings up the menu. This is the result of a combination of
intuitive design and cross-platform design standards which allow users to draw on
previous experience. Regardless, the fact that humans are able to understand the
functionality of screen components at a glance suggests that there is semantic

information encode into a mobile application’s GUI.

In this work, we present an automated approach to exploring the nature of the
semantic information encoded into the GUI of a mobile application. We do this
using three modalities (1) a screenshot of an image, (2) text descriptions of the
functionality of GUI components sourced through Amazon’s Mechanical Turk, and
(3) parsed information from the screen hierarchy’s XML dump. The first two
modalities are aligned using a convolutional neural network, which detects objects
in the screenshot and extracts salient features, paired with a bidirectional
recurrent neural network which serves as a language model. Both of these models
maps their respective modalities to a semantic space, and then aligns the two
representations in that space. The third modality is incorporated by using a
Seq2Seq model which maps the screen’s XML dump directly to reasonable
descriptions of the functionality of the screen.

Our experiments reveal that semantic information extracted from the above
representations of the GUI of a mobile application is comprable to that of
real-world images such as those found in the MSCOCO dataset. In this work, we
compare our results to similar models trained on this dataset, and compare the
results from different screen representations against eachother.

TABLE OF CONTENTS

List of Tables iii

List of Figures iv

1 Introduction 2

2 Background & Related Work 7

2.1 Deep Learning Background . 7

2.2 Properties of Mobile Application GUIs 8

2.2.1 The Screen Hierarchy . 8

2.2.2 UIAutomator . 9

2.3 Image Classification and Object Detection 10

2.4 Deep Visual-Semantic Embeddings . 10

2.5 Recurrent Neural Network Language Models 11

2.6 Image and Region Captioning . 11

3 Approach 13

3.1 Data-Collection . 14

3.2 Image Representations . 15

3.3 Sentence Representation . 17

3.3.1 Pre-processing . 17

3.3.2 The Model . 17

3.3.3 Mapping to the Semantic Space 18

i

3.4 Aligning Modalities . 18

3.5 Hyperparameter Tuning . 19

3.6 Hierarchy Representation . 20

3.6.1 The Model . 21

3.6.2 Implementation . 22

3.6.3 Motivation Behind Seq2Seq . 23

4 Experimental Design 24

4.1 Quantitative Evaluation . 25

4.1.1 BLEU Score . 25

4.1.1.1 The N-Gram Computation 25

4.1.1.2 Implementation . 26

4.2 RQ1: Comparison to real-world semantics 26

4.3 RQ2: Comparison Between Screen Representations 26

5 Results 28

5.1 RQ1 . 28

5.2 RQ2 . 30

6 Conclusion 32

6.1 Limitations and Avenues for Improvement 32

6.2 Future Work . 33

ii

LIST OF TABLES

iii

LIST OF FIGURES

1.1 Conceptual image for ideal output of Clarity. Note that the detected

objects are described both in their locations on the screen and also

the functionality of the component found within 4

2.1 Simple example of how the screen hierarchy works. Note that compo-

nents that are subsumed by containers are under them in the tree. A

component can only be contained in one container, they cannot over-

lap across multiple containers. The only leaf level component listed

here is the ImageButton. 9

3.1 How objects are detected within the image and then represented as a

set of vectors. 16

3.2 Hyper parameter values used for final model 21

5.1 Comparison of Clarity with image-captioning frameworks for real-

world objects. MLBL-B-Conv refers to a Modality-Based Log Bilinear

Model with a convolutional network, and LBL is a baseline Log Bilin-

ear Model . 29

5.2 Example output of clarity. Note that spatial references are given. We

chose these examples to give a representative snapshot of the capabil-

ities and shortcomings of clarity. 30

5.3 Comparison of ReDraw with the Seq2Seq model which uses as input

the parsed UI XML dumps. 31

iv

Clarity: An Exploration of Semantic Information Encoded in Mobile
Application GUIs

Chapter 1

Introduction

It is quite remarkable that, from the moment someone unlocks their mobile device, they

have an instinctive understanding of how to navigate the piece of technology. They have

some inkling of what will happen if they click this button, or what setting that slider

controls. Moreover, effective mobile application design is predicated on the fact that,

given a well-design application, users will intuitively understand how to manipulate it, to

a large extent extent, immediately upon interacting with it for the first time.

No doubt, much of the above can be attributed to effectual design principles for mobile

graphical user interfaces (GUIs), as well as the standardization of design across platforms

and applications. Much work has been done to optimize how humans interact with com-

puters through graphical interfaces [35], and similar work has been done that is specific to

mobile devices [13]. The popularization of such design principles and practices has meant

that regardless of platform or application, users can draw on previous experiences to help

them learn the interface. This is partially due to the fact that a well-known approach to

designing human-computer interaction (HCI) is the cognitive approach, which seeks to take

advantage of aspects of applied psychology to build intuitive GUIs [8, 11]. Moreover, this

goal is often explicitly sought after in modern contexts, with cross-platform GUI frame-

works such as React Native and Xamarin. However, the standardization of these design

principles also means that the functionality of the application represented by the screen

2

CHAPTER 1. INTRODUCTION 3

can be reasonably inferred just by looking at it. In other words, semantic information

about the application is embedded into the screenshot of the screen. We seek to explore

the nature of this semantic information in this work.

We frame the task of extracting semantic information from the screenshot of a mobile

application as an image-region captioning problem, much like Karpathy et. al [19]. . Image

captioning is a well-studied problem, and many approaches have been proposed to faithfully

capture the nature of an image in a short natural language sentence [38, 30, 17, 14]. To

support this endeavor, a multitude of datasets have been developed to support supervised

training for deep models [23, 32]. At a superficial glance, our work may be interpreted as an

extension of these approaches to the domain of software engineering, and mobile application

user interfaces more specifically. That is, while the aforementioned work is focused on

captioning or describing images generally, we focus on using these techniques to describe

GUI functionality in natural language, taking just a screenshot as input. However, there

are unique aspects regarding our problem domain that dramatically set our work apart

and illustrate the potential future impact on research in SE.

Our problem domain departs significantly from the general image-captioning problem.

We do not seek to simply describe what is on the screen in natural language, rather, we

seek to describe, not only the screen components and their locations, but what the func-

tionality or purpose of these components are. That is, we want create a fully automated

approach for forming a deeper understanding of mobile application GUIs. The primary

goal of this work can be summarized in the question, “What is the nature of the semantic

information encoded into mobile application GUIs? ” As will be revealed below, this ne-

cessitates an entirely different approach to labelling data for supervised learning. To this

point, supervised learning approaches to the image-captioning problem focus on what is

present; we take the next step and ask: why are these things present?

The ability to automatically describe the intended functionality of screen components

in a mobile application GUI is an important first step with regards to existing problems

in software engineering. Take, for example, automated documentation production, such

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Conceptual image for ideal output of Clarity. Note that the detected ob-
jects are described both in their locations on the screen and also the functionality of the
component found within
as the automated description of Java classes found in Moreno et. al [29]. It is impossible

to produce useful documentation for GUI code without knowing the purpose of the GUI

components themselves. Demonstrating that this information is (1) encoded into mobile

application GUIs, and (2) that this semantic information can be learned, speaks to the

feasibility of learning approaches to a wide range of topics which are dependent on under-

standing the functionality of the application or piece of software in question. These topics

include but are not limited to the aforementioned documentation production, automated

summarization of app execution, and ultimately the much sought-after program synthesis.

While in this work, we use the semantic information encoded in GUIs to simply describe

them with respect to their functionality, this semantic information can also be harnessed

to make progress in the three aforementioned topics, and in a wide range of others not

mentioned.

Concretely, the contributions of this work can be summarized in the following points:

1. Dataset - We have constructed a completely new dataset from scratch consisting of

CHAPTER 1. INTRODUCTION 5

roughly 14,000 image-description pairings. This dataset was filtered by the authors of

this paper, and sourced through Amazon’s Mechanical Turk. An image-description

pair consists of a screenshot of a running mobile application (the image) and 5 natural

language descriptions of the image: one “high level description”, and four “low level

description”. This dataset will be made open to the public upon publication of this

paper.

2. Multi-Modal Model for Captioning Images - Based heavily on the neuraltalk2

tool developed by Karpathy et. al [19], we adopt this approach for our problem do-

main and produce a pipeline which takes a screenshot of a running mobile application

as input and outputs descriptions of the functionality of regions of the screenshot (i.e.

individual screen components or small groups of components). That is, the model

is the tool that we use to extract semantic information from the image representa-

tion of the GUI. We implement this approach in a framework we call Clarity. This

tool consists of a convolutional neural network with a VGGNet architecture [36] and

a bi-directional recurrent neural network [34] which serves as the language model.

Code and models trained on the dataset above will be released upon publication of

this paper.

3. Seq2Seq Model - In addition to Clarity, we present a Seq2Seq model which maps

GUI metadata directly to target sequences. The GUI metadata is obtained by

parsing the XML dump of the screen layout hierarchy, and extracting varying prop-

erties of the componets therein. In total, we have 4 different configurations for

extracting sequences from the metadata. The model is then trained on metadata-

description pairs, each consisting of the sequence extracted from the metadata using

the tool uiautomator, and the target sequences obtained from the original dataset. The

implementation and trained models are to be released on publication of this paper.

4. Comprehensive Evaluation - We perform an evaluation of Clarity and the Seq2Seq model,

and compare these results against one another to determine if different GUI representations

CHAPTER 1. INTRODUCTION 6

lead to different extracted semantics. We also briefly compare semantics extracted by Clarity

to state-of-the-art image-to-description frameworks.

Chapter 2

Related Works

In this work we investigate whether the semantic information encoded into images depicting

the GUI of a mobile application can be used to infer functional attributes of the underlying

program. To accomplish this, we leverage recent advances in the fields of machine learning

(more specifically deep learning), computer vision, and pattern recognition. Thus, in this

section we provide background on Deep Learning approaches for machine learning and

discuss relevant related approaches that aim to caption images with natural language

descriptions.

2.1 Deep Learning Background

We begin with a brief overview of deep learning and some of the techniques therein, to

give the unfamiliar reader a foothold in the material we will discuss below.

In general, there are two categories of deep learning techniques, (1) supervised learning

and (2) unsupervised learning. All techniques discussed in this paper will be examples of

the former. In a supervised learning problem, we have a set of inputs X and a set of

desired outputs (also called targets, or ground truths) Y . Often, X is seen as an m ⇥ n

matrix, with m being the number of training instances (size of the training dataset) and

n being the number of input features in each training instance. Y is often seen as an

m-dimensional vector, with Yi being the desired output corresponding to the features in

7

CHAPTER 2. BACKGROUND & RELATED WORK 8

the i

th row of the input matrix. The goal is to find a mapping f : X ! Y which maps

inputs to their desired outputs.

More concretely, during training, we must choose a loss function which measures the

difference between the desired output, yi, and the actual output f(xi), with f some map-

ping between X and Y . Denote this function L(f(xi), yi). Denote f

⇤ our “ideal” function,

the one that minimizes the expected value of the loss. Owing to the non-completeness of the

input space, analytical methods cannot work without making very strong (and unfounded)

assumptions about the dataset. However, if we assume that the dataset is independently

and identically distributed (often shortened as i.i.d) we can approximate the f⇤ as follows

f⇤ = arg min
1

n

nX

i=1

L(f(xi), yi)

The interested reader can find a more complete summarization of deep learning tech-

niques in Section 2 Andrej Karpathy’s dissertaion [18]

2.2 Properties of Mobile Application GUIs

Throughout this work, we will discuss aspects of mobile application GUIs and their struc-

ture. For the convenience of the reader, we outline some of the most important aspects

below.

2.2.1 The Screen Hierarchy

Modern GUIs for mobile applications are constructed in a tree structure, and this tree

structure we refer to as the hierarchy. In order to discuss them generally, we partition

all types of screen components (called widgets in official Android documentation) into two

classes: (1) containers and (2) leaf-level components. Containers are, as the name sug-

gests, components which serve to hold child components, and organize them on the screen

in a desired way. For instance, Android’s LinearLayout aligns its child components either

CHAPTER 2. BACKGROUND & RELATED WORK 9

Frame Layout

Linear Layout

Image Button

Linear Layout

Linear Layout

Frame Layout

Linear Layout

Linear Layout Linear Layout Image Button

Figure 2.1: Simple example of how the screen hierarchy works. Note that components
that are subsumed by containers are under them in the tree. A component can only be
contained in one container, they cannot overlap across multiple containers. The only leaf
level component listed here is the ImageButton.
vertically or horizontally, and inside the bounding box specified by the layout component.

Leaf-level components are components that cannot have any children, and that typically

are rendered in a GUI. Android components fitting this description are, for instance, Im-

ageButton, TextView, and NumberPicker.

2.2.2 UIAutomator

In order to make use of the semantic information encoded into the layout hierarchy, dis-

cussed above, we must be able to obtain it at runtime. To accomplish this, we make use

of a tool called uiautomatorviewer. This is a dynamic analysis tool that displays the run-

time hierarchy of an application. The screen hierarchy is displayed as a tree, and for each

component we are able to extract properties such as its bounding box, text, component

type, and whether it is a clickable component.

CHAPTER 2. BACKGROUND & RELATED WORK 10

2.3 Image Classification and Object Detection

Convolutional Neural Networks (CNNs) have emerged as a powerful tool both for the

classification of images and for object detection [21, 42, 36]. This supervised learning

technique is able to learn robust features on benchmark data sets such as ILSVRC [33].

Even shallower, more light-weight networks with less parameters, such as AlexNet [21],

show strong results on these datasets. Deeper networks were then developed such as

ResNet [15], GoogLeNet [40], and VGGNet [36], the last of which boasts a 23.7% top-1

error, and a 6.8% top-5 error. Moreover, Moran et. al. [28] have illustrated that CNNs

also show great promise in recognizing and classifying mobile application UI components,

achieving a top-1 accuracy of 91% with a relatively shallow network architecture.

2.4 Deep Visual-Semantic Embeddings

The approach in this work is inspired partly by Frome et. al [9], aimed at overcoming two

shortfalls of CNNs for visual recognition systems: they are limited to a discrete number

of categories for image classification, and CNNs treat each classification category as se-

mantically unrelated. In addition to achieving equivalent top-10 precision with AlexNet

[21], the visual-semantic embedding model is more likely to predict semantically similar

categories to the ground truth, and can generalize to categories outside the model’s train-

ing set, i.e. zero-shot learning. Preceding this work was Socher et. al. [37], who trained

a deep neural model (unsupervised) and a neural language model in tandem, to obtain

image representations and embedding representations for thousands of words respectively.

They then learned a linear mapping between the two spaces to link the image and word

representations. Barnard et. al. [2] also produced an eclectic study of the relationship

between images and natural language descriptions. For our work, we focus on learning the

semantics of particular regions of an image, and in this way it closely mirrors [19], to be

discussed below.

CHAPTER 2. BACKGROUND & RELATED WORK 11

2.5 Recurrent Neural Network Language Models

Recurrent Neural Networks (RNNs) have great expressive capabilities, and have been used

for tasks such as general text generation [39]. Mikolov et. al [25] showed that RNNs can be

used to learn semantically-meaningful, dense vector representations of words (i.e. words

that are semantically similar will have similar vector representations), and this learning can

be done in a reasonable amount of time on very large datasets. RNNs are able to consider

significantly more context when making predictions than feedforward models [26], which

only consider k previous words, with k being fixed [3]. Employing long short term memory

units (LSTMs) can significantly improve the ability of the RNN to utilize context from

many time-steps previous [16] at the cost of increased training time [19].

2.6 Image and Region Captioning

Describing an image with a sentence (as opposed to giving it a label) is a well known

problem, and there have been a variety of approaches taken thus far. Some have chosen

to frame it as a ranking problem, employing techniques resembling K-Nearest-Neighbors

(KNN) [38, 30, 17], where test images are given the description of the “nearest” image in

the training set. Representations for images are typically learned by a CNN in this case.

Others employ fixed templates which are meant to serve as the semantic space between

image and description [17, 14]. These sorts of solutions restrict the space of generated

descriptions and are not readily applied to captioning regions. Kiros et. al. [20] departs

from these methods by using a log bilinear model (LBL) to generate sentence descriptions.

In the case of generating sentence descriptions for images, they condition the LBL on the

feature representation of an image obtained by a forward pass through a CNN. However,

the LDL model has a fixed context size, limiting the flexibility of the language model. To

overcome this, and most closely related to our approach, Karpathy et. al. [19] replaces the

LBL model with a simple RNN language Model (RNNLM). This RNNLM is simple in that

it does not make use of LSTM units, which reduces training time. The use of an RNNL as

CHAPTER 2. BACKGROUND & RELATED WORK 12

opposed to LBL model allows variable context for each word generated, producing more

meaningful word embeddings. Our approach differs from this work in two ways: (1) We

restrict our model to the space of mobile application user interfaces, and (2) in addition to

image and description, we add a third modality, which is the XML representing the layout

hierarchy of the mobile application in question, and utilize this to examine how the nature

of extracted semantics changes as we examine different representation of a GUI.

Chapter 3

Approach Description

The task we have set out to accomplish is to explore the semantic information encoded

into various representations of the GUI of a mobile application. Namely, there are three

representations which we take as input: (1) A screenshot of the screen in question, (2) A

set of descriptions of that screenshot given in natural language, and (3) the corresponding

layout XML dump of the UI hierarchy . At a high level, to accomplish our goal, we must

harness the information encoded in these inputs and align their representations appropri-

ately to obtain the best description of screen regions. We obtain these representations by

(1) A CNN which utilizes the VGGNet architecture [36], containing about 60 million pa-

rameters, (2) A bidirectional recurrent neural network (BRNN) containing over 100 million

parameters, and (3) an RNN to map the XML code from the layout dump to reasonable

descriptions of the UI.

This chapter will proceed as follows. First, we will outline the procedures around the

collection of the dataset. Then, in sections 3.2, 3.3, and 3.4, we will describe in full detail

our adaptation of the neuraltalk2 framework. In section 3.5, we will discuss our procedure

for selecting the optimal hyperparameters. Finally, in section 3.6, we will describe our

Seq2Seq model which will be trained on the layout hierarchy, and will serve as a frame of

reference for the accuracy of Clarity.

13

CHAPTER 3. APPROACH 14

3.1 Data-Collection

There exist many datasets for training an image-to-description framework, including but

not limited to MSCOCO [23], Flickr8k, and Flickr30k [32]. We argue that these datasets

are insufficient for describing regions of mobile application screens because (1) The salient

features of images in these datasets do not correspond to features that would be extracted

from screenshots of mobile applications and (2) The vocabulary found in the annotations

of these datasets is not sufficient to describe mobile application screens. For these reasons,

we have constructed a dataset of roughly 14,000 screenshots of mobile applications and 5

corresponding annotations for each. This data collection was crowd sourced using Amazon

Mechanical Turk.

Amazon Mechanical Turk workers (Turkers) were assigned Human Intelligence Tasks

(HITs) which consisted of 1 image, a screenshot of a running mobile application. Turkers

were then asked to give 5 descriptions of the screenshot. The first descriptions was a “high

level description”, meaning that the whole screen was to be described, summarizing its

functionality, e.g. “A log in screen for Facebook”. The next four annotations were “low

level descriptions” in which the Turkers described the functionality of individual screen

components or small groups of components. In the datasets mentioned above (MSCOCO

and the Flickr datasets), annotations contained references to objects e.g. an elephant,

which were likely unique in the image. However, mobile application screens often have

multiple components of the same type (there can be many buttons on a screen, each

serving very different purposes). With this in mind, we instructed Turkers to give a spatial

reference of where on the screen the component in question is, in addition to describing

its purpose. An example of a low level description would be “In the top left corner there

is a button which returns the user to the previous screen”. Moreover, the Turkers were

provided with a handful of examples which were annotated by the author of this paper, in

order to give them a proper frame of reference.

The Turkers were paid $0.12 for every image tagged, and data was filtered manually

CHAPTER 3. APPROACH 15

by the author of this paper. Approximately 20% of received submissions were rejected

for poor quality. The criteria, in descending order of importance, of how the data was

evaluated is listed below.

1. Both the high and low level descriptions faithfully describe the screen

2. For low level descriptions, the functionality attributed to the components matches

the judgement of the reviewer

3. For low level descriptions, spatial references were given by the Turker, indicating

where on the screen the component or group of components reside.

4. Proper spelling and grammar were used by the Turker

Batches of data were collected at a rate of, on average, 2,000 image-description pairs per

week, and an average of approximately four hours was spent on each of these batches of

2,000. Turkers who did not faithfully adhere to the directions, or who gave multiple bad

submissions, were immediately banned from the task.

3.2 Image Representations

The goal outlined in this section is to map an input image into the semantic space that

is common to all three modalities. Toward this end, we borrow heavily from Karpathy

et. al. [19] in the network architecture used and the training method. To summarize,

we use the VGGNet architecture [36], loss from the alignment objective (to be discussed

below) is backpropagated through the networks for both modalities in the usual way. When

complete, images are represented by a set of 20 h-dimensional vectors, where h is the size

of the embedding space. A visual for how this set of vectors is constructed can be found

in 3.1. More details can be found in [19].

Our work, with respect to representing images, departs from Karpathy et. al in two

major ways. First, unlike their work, we train our CNN completely from scratch on

CHAPTER 3. APPROACH 16

h

Figure 3.1: How objects are detected within the image and then represented as a set of
vectors.
our own dataset. We, again, make the argument that other types of images do not share

enough features with screenshots of mobile applications to make transfer learning beneficial.

Secondly, we use vastly smaller embedding sizes, which follows from the restricted problem

domain. In particular, in the Microsoft COCO dataset, there are 91 object types to

be considered [23]. In contrast, Moran et. al [28] identified only 15 categories for leaf-

level android components to be sufficiently common for a classifier to consider. Likewise,

vocabulary used to describe mobile application GUIs is necessarily smaller than vocabulary

used to describe any given object.

In accordance with [19], we follow Girshick et. al [12] and use a Regional Convolutional

Neural Network (R-CNN) to extract “region proposals” from the image, and use selective

search to choose the 19 top regions which might represent android components, and take

the screenshot as a whole as the 20th region. The pixel values corresponding to each of

these regions is then the input for a forward-pass through the CNN, by which we obtain a

256-dimensional vector representation of the image region. The screen shot as a whole is

then represented by a 20 element set of these 256-dimensional vectors

CHAPTER 3. APPROACH 17

3.3 Sentence Representation

In the above section, we have mapped the pixels found in the input screenshot to a space

which we will henceforth refer to as the “semantic space”. We want to map the text

corresponding to each training instance to the same semantic space, and then align the

two modalities. Ideally, we want to avoid using fixed templates such as those found in

[17, 14]. Also, to utilize the most context possible, we want to avoid having fixed context

windows, as in [20]. To address these issues, we again follow in the footsteps of Karpathy

et. al [19] and use a bidirectional recurrent neural network (BRNN) [34] to embed the

text descriptions of the mobile application into the semantic space. The details of this

embedding process follow.

3.3.1 Pre-processing

For each text description of each image, we preprocess the data using the Stanford Tok-

enizer [24], and only include in the vocabulary words which appear above a certain thresh-

old. For our final implementation, we use the 15 word appearances of our threshold . For

words that appear less than the threshold, we substitute them in the word sequences with

an unknown word flag. We eliminate all punctuation, and convert all letters to lowercase.

After preprocessing, we are left with a total of 1473 words in the vocabulary.

3.3.2 The Model

Our bi-directional RNN is similar to [19], since our work is concerned with determining the

extendibility of these techniques and models to the domain of software engineering. For

convenience, we will reiterate the structure of the model, and comment on where our model

departs from Karpathy et. al, though details can also be found in the aforementioned work.

Let t with 1 t N denote the position of a word in a given sentence. Our goal is to

generate an h-dimensional vector representation of the word. The structure of the BRNN

CHAPTER 3. APPROACH 18

is as follows, and note it is identical to that found in [19]:

xt = WwIt

et = f(Wext + bc)

h

f
t = f(et +Wfh

f
t�1 + bf)

h

b
t = f(et +Wbh

b
t+1 + bb)

st = f(Wd(h
f
t + h

b
t) + bd)

st is the final vector representation of the word at position t. It is a column vector with a

single 1 at the t position, and zeroes elsewhere. The activation function f is the rectified

linear unit (RELU) function. Note the bidirectional nature of the RNN, as we compute

two hidden states: h

f
t (the forward direction), and h

b
t (the backward direction). we learn

the weights We, Wf , Wb, and Wd, and the biases be, bf , bb, and bd. We initialize the matrix

Ww using a 300-dimensional word2vec [27] weights.

3.3.3 Mapping to the Semantic Space

Let the number of words in a sequence be N , each of these words is encoded using a 1-of-k

representation. Using the BRNN, we encode each of these words into an h-dimensional

vector, where h is a hyperparameter representing the size of the word embedding. In our

experiments, we found that 256 was a reasonable embedding size given the size of our

vocabulary. The exact form and corresponding equations of the BRNN can be found in

[19].

3.4 Aligning Modalities

In the previous sections, we described how we have mapped image and textual data to the

semantic space. Now arises the problem of how we align these two representations in order

to produce the best output relative to the ground truth. As in the sections regarding the

CHAPTER 3. APPROACH 19

representations from text and images, we follow in the footsteps of Karpathy et. al [19] in

their neuraltalk2 framework.

Unlike neuraltalk2, our supervision is not necessarily or entirely at the level of entire

images and their corresponding descriptions. Recall that we instructed our data taggers

to give spatial references when describing the functionality of the screenshot of the mobile

applications. In accordance with this divergence, we frame the problem of describing

images as “pointing out” some of the most important functionality in the screenshot. When

framed in this way, we are able to stay consistent with the alignment objective used in

neuraltalk2. The important ideas of this alignment objective are discussed below, for the

details, we refer readers to the aforementioned work.

As already stated, in using the R-CNN, we detect the top 19 locations of objects in an

image, and also take the embedding of the whole image. We need to align words in the

textual descriptions with their corresponding objects in the screenshot. Following [19], we

take the inner product of the word embedding and the detected object embedding to be

a measure of similarity. More formally, let the embedding of the i

th detected object in an

image be denoted vi, and let the t

th word in a sentence be st. The measure of similarity

between the detected object and the word is given as vTi st. Then to calculate the score for

an image-sentence pair we simply add all combinations of objects and sentence fragments:

Skl =
X

t2gl

X

i2gk

max(0, vTi st)

where k and l range over all images and sentences in the dataset, respectively.

3.5 Hyperparameter Tuning

For the bimodal screenshot-to-description framework, we performed a random hyperpa-

rameter search [4] on 8 different hyperparameter types. Their names and purposes are

listed below.

CHAPTER 3. APPROACH 20

1. RNN Size - The size of the hidden layers of the bidirectional RNN

2. Input Encoding Size - The size of both the embeddings for the detected objects

in the images, as well as the size for the word embeddings.

3. LM Drop Probability - The dropout rate for training the Language Model, in

order to reduce overfitting

4. Optimization Technique - The optimization technique for training the Language

Model (e.g. stochastic gradient descent with momentum)

5. LM learning rate - The learning rate of the language model

6. LM decay start - The iteration at which the learning rate of the language model

begins to decay

7. LM decay every - This figure represents the interval at which the learning rate of

the language model decays by one half

8. CNN learn rate - the learning rate for the convolutional neural network which

produces the image embeddings

3.2 shows the final values for these hyperparameters. The random search was done on a

slightly downsampled training set, with a validation set of 1000 image-description pairs.

3.6 Hierarchy Representation

In order to examine the nature of semantic information embedded into mobile application

screens, we compare the previously described model against a seq2seq model which takes

as input the XML dump of the user interface hierarchy of the screen. This XML dump is

obtained by using the UIAutomator tool. We utilize the seq2seq [5] model with attention

to map the tokens found in the XML dump directly to natural language descriptions of

the screen, bypassing the intermediate “semantic space”.

CHAPTER 3. APPROACH 21

Hyper-Parameter Value

RNN Size 256
Input Encoding Size 256
LM Drop Probability 0.6

Optimization Technique adam
LM Learning Rate 0.0006
LM Decay Start 7000
LM Decay Every 5000
CNN Learn Rate 0.000015

Figure 3.2: Hyper parameter values used for final model
For experimental consistency, We preprocess the data for the target sequences exactly

as described in the previous section.

3.6.1 The Model

We use an encoder-decoder model, where the encoder RNN is a bidirectional RNN, to

predict the target sequence given a sequence of input tokens [5]. More formally, suppose

a set of input tokens x = (x1, x2, . . . , xm), then the encoder RNN produces a series of m

hidden states h = (h1, h2, . . . hm). Since our encoder is bidirectional, we need a way to

combine the hidden states of both the backwards and forwards RNNs. We do this via a

simple concatenation, i.e. hi = [hfi ;h
b
i], where h

f
i is the hidden state for the forwardRNN,

and h

b
i is the hidden state for the backward RNN.

The decoder model predicts a sequence of target tokens y = (y1, y2, . . . yk) based on the

hidden state for the current time step in the decoder RNN di and the attention vector ci.

The attention vector can be seen as a weighted average of the hidden states for the encoder

RNN, where the states are weighted by importance with respect to the given token. More

CHAPTER 3. APPROACH 22

precisely, the attention mechanism is structured as follows [5]:

ci =
X

j

aijhj

aij =
f(di, hj)P
j f(di, hj)

Where aij is the “attention score”, ci is the context vector at decoder time-step i, and f

is some attention function, often an inner product. Finally, the output of the decoder is a

distribution over the vocabulary of fixed size V

P (yi|y1, y2, . . . , yi�1,x) = softmax(W [di; ci] + b)

The model is trained by minimizing the negative log likelihood of the target sequence.

3.6.2 Implementation

To further our exploration of semantic information encoded into representations of the

GUI of a mobile application, from the raw XML dump of the screen hierarchy, we parse

different sets of data in order to observe the changes in predicted functionality. That is,

we do not simply feed the raw XML dump into the encoder-decoder model, and instead

refine input based on the desired parameters. There are four trials in total, enumerated

below:

1. Text - We parse only the text within the UI component, ignoring all other properties

of the widget.

2. Type - We parse only the type of the UI component, e.g. LinearLayout, Button, or

TextView

3. Text and Type - We combine the information of the component type, and the text

found in the component

CHAPTER 3. APPROACH 23

4. Text, type, and location - In addition to the type of the UI component and the text

found therein, we also parse the location of where it resides on the screen. That is,

we give the bounding box of the component given in the form (x1, x2, y1, y2)

3.6.3 Motivation Behind Seq2Seq

One research question that our work seeks to answer is to describe the semantic infor-

mation embedded into a graphical UI. In other words, we want to see to what extent it

is possible to know the intended functionality of a user interface by just looking at the

screenshot, not having any access to the source code. The XML dumps obtained through

UIAutomator serve to form a frame of reference. What we want is to examine the changes

in semantic information extracted when we consider text, component types, component

bounding boxes, etc, and how these compare with functionality discovered by Clarity.

Chapter 4

Experimental Design

As stated above, the goal of the experiments conducted is to ascertain and somehow

quantify the semantic information embedded into the screenshot of a mobile application.

To do this, we must address two major concerns:

1. We must find metrics which are suitable for describing the accuracy of the generated

functional descriptions of the screenshot, so that we may compare the output of

Clarity with the Seq2Seq approach which we have selected as the baseline.

2. Since descriptions of functionality are given in natural language, we must determine

the usefulness of the descriptions to humans who have expertise in mobile develop-

ment.

To address these questions, we turn to the benchmark BLEU score [31], which seeks

to simultaneously judge descriptions based on the accuracy of its content and by the

fluency, or human-usability, of the description. We begin by giving a concise synopsis

of the BLEU score, its meaning, and the details of its calculation. Then, in research

question 1, we outline how we plan to demonstrate that semantics can be learned from

mobile application GUIs similarly to how they are learned in image-captioning frameworks

for real-world items. Finally, in research question 2, we give a plan for determining how

24

CHAPTER 4. EXPERIMENTAL DESIGN 25

changing representations for a GUI of a mobile application can effect the quality and nature

of the semantics that can be learned.

4.1 Quantitative Evaluation

There are a miriad of metrics that are used to judge the quality of a generated iamge cap-

tion, including but not limited to BLEU [31], CIDEr [41], METEOR [1], and ROUGE [22].

For our work, we utilize the most common metric: BLEU. What follows is a description

of BLEU and the details of its calculation.

4.1.1 BLEU Score

The BLEU score is a metric which has a very straighforward motivation: the closer a

machine translation is to a professional human translation, the better it is [31]. Originally

developed to be a metric to measure the accuracy of machine translation with respect

to natural languages, BLEU has emerged as a benchmark metric for image-to-description

frameworks. This work’s closest relative, Karpathy et. al, [19], uses it as the principle

metric for measuring the accuracy of image descriptions. We follow suit, for the sake of

consistency.

4.1.1.1 The N-Gram Computation

An N-gram is a sequence of N words. To compute the the BLEU-N score for a candidate

sentence and a reference sentence, we simply count the total matches between the two

sentences of sequences of length N , and divide by the total number of N -length sequences

in the reference sentence. More formally, let c be the candidate sentence, and let r be the

reference sentence. Let A be the total number of matches, and B be the total number of

sequences of N length in the reference sentence, then:

BLEU �N(c, r) =
A

B

CHAPTER 4. EXPERIMENTAL DESIGN 26

4.1.1.2 Implementation

We compute scores for 1 N 4, and take the average of the scores as the final BLEU

score. Since we have multiple candidate sentences (between 16 and 19), we take the average

BLEU score of all candidate sentences. Since we have multiple reference sentences, we

match a candidate sentence with its best-match reference sentence.

4.2 RQ1: Comparison to real-world semantics

As discussed before, captioning of images containing real-world objects is a well-studied

problem, and promising strides have been made recently [38, 30, 17, 19]. That is, these

approaches seek to learn the semantics of objects in the real world, with descriptions like

“man riding elephant”. Our approach, instead, seeks to learn the semantics of static GUI

components, but the goal of determining the underlying semantics of what appears in the

image remains the same.

One way to form a frame of reference for the nature of semantics encoded into the GUIs

of mobile applications is to compare them against the already established work concerning

real-world objects. We compare our BLEU scores to that of recently published work

concerning image captioning of real-world objects. In particular, we compare our work to

the results of karpathy et. al [19] and Kiros et. al [20]. In RQ1, we seek to answer the

question, How well do the semantics encoded into the GUIs of mobile applications capture

functional features that can be translated to natural language descriptions?

4.3 RQ2: Comparison Between Screen Representations

One of the core goals of this work is to compare and contrast the semantic information

encoded into varying representations of the GUI of a mobile application. Particularly, we

examine the difference between the image-description framework we call Clarity, and the

4 representations of the XML dump of the layout hierarchy discussed in section 3.6. To

CHAPTER 4. EXPERIMENTAL DESIGN 27

remain consistent with the evaluation discussed in section 4.1, we use the BLEU score

as our vehicle of comparison. By comparing results from these different representations,

we hope to find insight into what sorts of information is lost or gained when viewing a

screenshot of an application, versus looking at the source code of the layout hierarchy. In

summary, the goal of RQ2 is to answer the question, What is the nature of the semantic

information encoded into representations of the GUI of a mobile application, and do dif-

ferent representations of a mobile application GUI capture different aspaects of functional

information about the underlying software?

Chapter 5

Results

In this section we seek to answer the questions outlined in section 4.2 and section 4.3. We

do this by primarily comparing (1) BLEU scores with state-of-the-art image captioning

work and (2) by comparing BLEU scores obtained from the different GUI representations

against one another to determine their quality.

5.1 RQ1

Before discussing comparisons between state-of-the-art work on image captioning and our

approach, we must address certain limitations to these comparisons. It often requires many

words to describe the full functionality of a mobile application screen, whereas the core

semantics of an image depicting real-world objects can be described in relatively fewer. In

addition, there are often many more important “low level” aspects of a mobile application

screen, which must be meticulously described to form a clear picture. For these reasons,

learning the semantics of a mobile application screen can be more challenging. On the other

hand, visual features of mobile application screens are often more discernable than objects

in the real world, owing to the restricted number of discrete categories whose features must

be learned.

Calculations for the BLEU scores were carried out on a test set of 1,000 images. We

record the best caption (meaning that the produced caption can match either the “high

28

CHAPTER 5. RESULTS 29

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Clarity 0.566 0.367 0.251 0.166
Karpathy et. al 0.579 0.383 0.245 0.160

Kiros et. al - MLBL-B-Conv 0.349 0.165 0.085 -
Kiros et. al - LBL 0.327 0.144 0.068 -

Figure 5.1: Comparison of Clarity with image-captioning frameworks for real-world ob-
jects. MLBL-B-Conv refers to a Modality-Based Log Bilinear Model with a convolutional
network, and LBL is a baseline Log Bilinear Model
level” description or any of the four “low level” descriptions. The results are given in figure

(5.1).

In figure 5.1, we compare Clarity with 3 other image-captioning frameworks which

concern themselves with real world objects. The first is the closest relative of our work,

Karpathy et al [19]. The third and fourth are the work of Kiros et al. [20]. As is

observed in the table, we achieve comparable results with Karpathy et. al, even achieving

slightly better results in longer word-grams, speaking to the fluency of the descriptions

[31]. However, when comparing these approaches, there are very important caveats which

must be kept in mind:

1. Data Set Content - Our dataset is structured fundamentally differently than the

image-captioning frameworks seeking to describe real world objects. While in their

datasets, each description should more or less agree agree with one another, in ours,

each description describes a very different aspect of the screen. Therefore, in our

case, there is no guarantee that a high BLEU score indicates a complete description

of the screen.

2. Image Categories - As previously discussed, real world datasets have a much more

diverse set of image categories than datasets oriented toward mobile application

GUIs, such as that found in Moran et. al [28]

3. Descriptions - The dataset used by Kiros et. al only had between 1 and 3 descrip-

tions, compared to 5 for both our dataset and MSCOCO [23]

Our goal for comparing against image-captioning frameworks concerned with real-world

CHAPTER 5. RESULTS 30

Figure 5.2: Example output of clarity. Note that spatial references are given. We chose
these examples to give a representative snapshot of the capabilities and shortcomings of
clarity.
objects is not to attempt an apples-to-apples comparison, or to assert the superiority of

our model over others. We hope instead, to simply demonstrate that semantic information

can be learned reasonably well from an image representation of mobile application GUIs.

After the preceeding analysis, we can answer RQ1 in a positive way: Clarity captures

the semantics of screenshots of mobile application GUIs well, with respect to

similar image-captioning tasks. Examples of output can be found in 5.2.

5.2 RQ2

Comparing Clarity to the Seq2Seq model also comes with certain limitations. First and

foremost, the Seq2Seq model has largely no way of enumerating different “low level” com-

ponents, whereas the CNN-BRNN model uses first detects objects in the image, and uses

only the pixels found therein to detect features of the image. This leads to desriptions that

are specific to the object found. While the attention mechanism in the Seq2Seq model

should alleviate a portion of this concern, especially when the sequence representation of

the XML dump contains bounding boxes, our experiments reveal that it is not enough.

Subsequently, in order to make a decent comparison, we compare each model taking only

“high level descriptions” as inputs. Clarity performs well in this experiment, whose results

can be found in figure 5.3.

CHAPTER 5. RESULTS 31

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Clarity 0.541 0.406 0.299 0.208
Seq2Seq - Text Only 0.305 0.081 0.038 0.026

Seq2Seq - Type and Text - - - -
Seq2Seq - Type, Text, and Bounding Box - - - -

Figure 5.3: Comparison of ReDraw with the Seq2Seq model which uses as input the
parsed UI XML dumps.

Chapter 6

Conclusion

In this work we have presented a deep-learning approach to describing the functionality of a

mobile application’s GUI, and explored the nature of the semantics of GUI representations

in general. We have done this by (1) creating a new dataset, specifically designed for the

task of describing functionality of screen components, (2) constructed a CNN-BRNN model

which identifies the functionality of a screen and its components by considering a GUIs

graphical representation, and (3) trained a Seq2Seq model which maps the XML dump of

the GUI’s layout hierarchy to descriptions of screen functionality. We have demonstrated

that useful semantics can be extracted from these representations, especially with respect

to similar approaches which seek to describe semantics of real-world images.

6.1 Limitations and Avenues for Improvement

While this work aims to explore the relationship between screen semantics (functionality)

and representations of the GUIs of mobile applications, there is much room for improve-

ment. Although the CNN-BRNN model achieves very good results for the image-captioning

problem, there are a host of other approaches which may work well for our specific problem

domain: describing the functionality of application components. It may, perhaps, be the

case that template-oriented designs work well for this task. Indeed, while we contend that

taking a deep learning approach is a reasonable one given its success in closely related

32

CHAPTER 6. CONCLUSION 33

problems, often simpler, more lightweight approaches can achieve similar or even superior

results [10]. We leave a more exhaustive comparison between deep learning and other

techniques to future work.

Furthermore, the Clarity dataset is, at the time of the writing of this paper, the only

dataset available for taking a learning approach to describing GUI semantics. Alternative

structures and forms of a dataset may be more conducive to providing useful descriptions.

In particular, the Clarity dataset aims to be as wide as possible. That is, we attempted

to tag as many different images as possible so that the model can generalize to a wide

range of GUIs. It is worth considering, instead, to iterate over the same screen (or screen

component) multiple times to form a consensus between tags, i.e. a more tall approach.

6.2 Future Work

Evaluations in this work were metrics-driven, utilizing the benchmark BLEU score. How-

ever, the BLEU metric has been repeatedly called into question regarding its relationship

to descriptions that are useful to humans [6]. To remedy this, to take not only a quantita-

tive approach, but also a qualitative approach. This may take the form of, for instance, a

survey to experts in mobile development, who would address questions of usefulness and

completeness of the generated descriptions of functionality.

We also plan on future work to address the model itself. For Clarity, we use randomly

initialized weights in both the CNN and BRNN, and train them in tandem, from scratch.

In contrast, Karpathy et al [19] pre-train their CNN on ImageNet [7], a large dataset of

labelled images for classification. Pretraining Clarity’s CNN on the analagous dataset for

our domain, such as that presented in Moran et. al [28], could be beneficial to performance.

Bibliography

[1] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt

evaluation with improved correlation with human judgments. In Proceedings of the

acl workshop on intrinsic and extrinsic evaluation measures for machine translation

and/or summarization, pages 65–72, 2005.

[2] Kobus Barnard, Pinar Duygulu, David Forsyth, Nando de Freitas,

David M Blei, and Michael I Jordan. Matching words and pictures. Jour-

nal of machine learning research, 3(Feb):1107–1135, 2003.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-

vin. A neural probabilistic language model. Journal of machine learning research,

3(Feb):1137–1155, 2003.

[4] James Bergstra and Yoshua Bengio. Random search for hyper-parameter op-

timization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[5] Denny Britz, Anna Goldie, Thang Luong, and Quoc Le. Massive exploration

of neural machine translation architectures. arXiv preprint arXiv:1703.03906, 2017.

[6] Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluation

the role of bleu in machine translation research. In 11th Conference of the European

Chapter of the Association for Computational Linguistics, 2006.

34

BIBLIOGRAPHY 35

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[8] Sabeen Durrani and Qaiser S Durrani. Applying cognitive psychology to user

interfaces. In Proceedings of the First International Conference on Intelligent Human

Computer Interaction, pages 156–168. Springer, 2009.

[9] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean,

Tomas Mikolov, et al. Devise: A deep visual-semantic embedding model. In

Advances in neural information processing systems, pages 2121–2129, 2013.

[10] Wei Fu and Tim Menzies. Easy over hard: a case study on deep learning. In

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

pages 49–60. ACM, 2017.

[11] Margaret M Gardiner and Bruce Christie. Applying cognitive psychology to

user-interface design. John Wiley & Sons, Inc., 1987.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich

feature hierarchies for accurate object detection and semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages

580–587, 2014.

[13] Jun Gong and Peter Tarasewich. Guidelines for handheld mobile device inter-

face design. In Proceedings of DSI 2004 Annual Meeting, pages 3751–3756, 2004.

[14] Ankush Gupta and Prashanth Mannem. From image annotation to image de-

scription. In International Conference on Neural Information Processing, pages 196–

204. Springer, 2012.

BIBLIOGRAPHY 36

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recogni-

tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

CVPR’16, pages 770–778, June 2016. ISSN:.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[17] Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image de-

scription as a ranking task: Data, models and evaluation metrics. Journal of Artificial

Intelligence Research, 47:853–899, 2013.

[18] Andrej Karpathy. Connecting Images and Natural Language. PhD thesis, Stanford

University, 2016.

[19] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating

image descriptions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 3128–3137, 2015.

[20] Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel. Multimodal neural

language models. In International Conference on Machine Learning, pages 595–603,

2014.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-

sification with Deep Convolutional Neural Networks. In Advances in Neural Infor-

mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, pages 1097–1105. Curran Associates, Inc., 2012.

[22] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. Text

Summarization Branches Out, 2004.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-

ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft

BIBLIOGRAPHY 37

coco: Common objects in context. In European conference on computer vision, pages

740–755. Springer, 2014.

[24] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,

Steven Bethard, and David McClosky. The stanford corenlp natural lan-

guage processing toolkit. In Proceedings of 52nd annual meeting of the association for

computational linguistics: system demonstrations, pages 55–60, 2014.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781,

2013.

[26] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and

Sanjeev Khudanpur. Recurrent neural network based language model. In Eleventh

Annual Conference of the International Speech Communication Association, 2010.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff

Dean. Distributed representations of words and phrases and their compositionality.

In Advances in neural information processing systems, pages 3111–3119, 2013.

[28] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshy-

vanyk. Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile

Apps. ArXiv e-prints, February 2018.

[29] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus,

Lori Pollock, and K Vijay-Shanker. Automatic generation of natural language

summaries for java classes. In Program Comprehension (ICPC), 2013 IEEE 21st

International Conference on, pages 23–32. IEEE, 2013.

[30] Vicente Ordonez, Girish Kulkarni, and Tamara L Berg. Im2text: Describ-

ing images using 1 million captioned photographs. In Advances in neural information

processing systems, pages 1143–1151, 2011.

BIBLIOGRAPHY 38

[31] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the 40th an-

nual meeting on association for computational linguistics, pages 311–318. Association

for Computational Linguistics, 2002.

[32] Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier.

Collecting image annotations using amazon’s mechanical turk. In Proceedings of the

NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s

Mechanical Turk, pages 139–147. Association for Computational Linguistics, 2010.

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large

Scale Visual Recognition Challenge. Int. J. Comput. Vision, 115(3):211–252, Decem-

ber 2015.

[34] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[35] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs,

Niklas Elmqvist, and Nicholas Diakopoulos. Designing the user interface:

strategies for effective human-computer interaction. Pearson, 2016.

[36] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. CoRR, abs/1409.1556, 2014.

[37] Richard Socher and Li Fei-Fei. Connecting modalities: Semi-supervised segmen-

tation and annotation of images using unaligned text corpora. In Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 966–973. IEEE,

2010.

BIBLIOGRAPHY 39

[38] Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning,

and Andrew Y Ng. Grounded compositional semantics for finding and describing

images with sentences. Transactions of the Association of Computational Linguistics,

2(1):207–218, 2014.

[39] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text

with recurrent neural networks. In Proceedings of the 28th International Conference

on Machine Learning (ICML-11), pages 1017–1024, 2011.

[40] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. Going Deeper with Convolutions. In Computer Vision and Pattern

Recognition (CVPR), CVPR’15, 2015.

[41] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider:

Consensus-based image description evaluation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4566–4575, 2015.

[42] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convo-

lutional Networks. In Computer Vision – ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, David Fleet, Tomas

Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, pages 818–833. Springer Inter-

national Publishing, Cham, 2014.

	Clarity: An Exploration of Semantic Information Encoded in Mobile Application GUIs
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Background & Related Work
	Deep Learning Background
	Properties of Mobile Application GUIs
	The Screen Hierarchy
	UIAutomator

	Image Classification and Object Detection
	Deep Visual-Semantic Embeddings
	Recurrent Neural Network Language Models
	Image and Region Captioning

	Approach
	Data-Collection
	Image Representations
	Sentence Representation
	Pre-processing
	The Model
	Mapping to the Semantic Space

	Aligning Modalities
	Hyperparameter Tuning
	Hierarchy Representation
	The Model
	Implementation
	Motivation Behind Seq2Seq

	Experimental Design
	Quantitative Evaluation
	BLEU Score
	The N-Gram Computation
	Implementation

	RQ1: Comparison to real-world semantics
	RQ2: Comparison Between Screen Representations

	Results
	RQ1
	RQ2

	Conclusion
	Limitations and Avenues for Improvement
	Future Work

