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Abstract

Around two years ago, Roman’kov introduced a new type of attack called the non-

linear decomposition attack on groups with solvable membership search problem. To

analyze the precise efficiency of the algorithm, we implemented the algorithm on

two protocols: semidirect product protocol and Ko-Lee protocol. Because polycyclic

groups were suggested as possible platform groups in the semidirect product protocol

and polycyclic groups have a solvable membership search problem, we used poly-

cyclic groups as the platform group to test the attack. While the complexity could

vary regarding many different factors within the group, there was always at least one

exponential factor in the complexity analysis of the algorithm.
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Chapter 1

Public-key Cryptography

1.1 Key Exchange Protocol

Key exchange protocol is a way to share a secret key between two entities, namely

Alice and Bob. Since the key is only known to Alice and Bob, they can now encrypt

and decrypt messages with the key to make it hard for any adversary trying to obtain

the secret message. For a simple example, given that the shared key K is encoded

as a binary string of length n, Alice can compute mi ⊕K = ei for each substring of

m of length n (|mi| = n). Then Bob, after receiving the encrypted ciphertext e, can

compute ei⊕K = (mi⊕K)⊕K = mi⊕ (K⊕K) = mi for each i to obtain the secret

plaintext m.

Note that obtaining the value of the secret key K would imply that the adversary

can perform the same operation to obtain the plaintext m. Thus, obtaining the key is

equivalent to having an efficient way to break the cryptosystem. Even though there

could be many different methods on how to make use of the shared key, we will focus

on establishing the secret key assuming there is an effective use of the key to encrypt

or decrypt messages.
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1.2 Diffie-Hellman Key Establishment Protocol

The following description of Diffie-Hellman protocol is from the book Group Based

Cryptography by Myasnikov, Shpilrain, and Ushakov [12], where more details can be

found. From now on, we name the two sides of the key exchange protocol Alice and

Bob, respectively.

1. Alice and Bob agree on a finite cyclic group G and a generating element g ∈ G.

2. Alice picks a random number a ∈ N and sends ga = g · g · · · g︸ ︷︷ ︸
a times

to Bob.

3. Bob picks a random number b ∈ N and sends gb = g · g · · · g︸ ︷︷ ︸
b times

to Alice.

4. Alice computes Kab = (gb)a = gba = gab

5. Bob computes Kba = (ga)b = gab

Thus we have the shared key K = Kab = Kba = gab. This protocol depends on the

hardness of the Diffie-Hellman Problem, which is finding gab from ga and gb. Note

that G and g have to be chosen carefully to avoid the adversary Eve from obtaining

the shared key efficiently. The kind of problem that recovers a from ga and g is called

the discrete logarithm problem, and using brute force to search for the shared key

requires time complexity of O(|g|), where |g| is the order of g.

1.3 Ko-Lee Protocol

The Ko-Lee protocol was first proposed by Ko, Lee, Cheon, Han, Kang, and Park

[9] on braid groups to apply the Diffie-Hellman key exchange on non-commutative

groups. Moreover, K.J. Gryak and D. Kahrobaei in [6] proposed that it could be a

plausible scheme with a polycyclic group as its platform group (the group where the

key exchange is performed), and the general procedure of the key exchange protocol

they proposed is below.
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1. A group G, an element g ∈ G, and subgroups A,B ⊆ G such that ab = ba for

all a ∈ A and b ∈ B are made public.

2. Alice chooses an element a ∈ A and then publishes ga.

3. Bob chooses an element b ∈ B and then publishes gb.

4. Since A and B commute element-wise, Alice and Bob have the shared key

gab = gba.

The conjugacy search problem is the following:

given a subgroup A = 〈a1, . . . , aq〉 in G, an element g ∈ G, and an element ga where

a ∈ A, find an expression of a in terms of a1, . . . , aq.

If an adversary can solve the conjugacy search problem, then he can break the system.

Thus the secrecy of the above scheme depends on the hardness of the conjugacy search

problem of the platform group.

1.4 ElGamal Cryptosystem

As in [?], the commonly used ElGamal encryption scheme (or the ElGamal Cryp-

tosystem) is an encryption protocol based on the Diffie-Hellman key establishment

protocol. The method goes as following:

1. Alice and Bob agree on a finite cyclic group G, and a generating element g ∈ G.

2. Alice, the receiver, picks a random natural number a as a private key.

3. Alice then publishes ga == g · g · · · g︸ ︷︷ ︸
a times

as her public key.

4. Bob, who wants to send Alice a shared secret m, picks a random natural number

b and computes m · (ga)b.
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5. Bob sends Alice two elements gb and m · (ga)b.

6. Alice recovers m by calculating (m · (ga)b)) · ((gb)a)−1 = m.

Using the common ElGamal cryptosystem that mainly depends on the discrete loga-

rithm problem for its security, we can modify the exponents (the secret keys) of Alice

and Bob to be the elements of the group. Kahrobaei and Khan [8] proposed a way to

adapt the ElGamal key encryption algorithm for cryptosystems in non-commutative

groups. The description of the scheme below is from the article by K.J. Gryak and

D. Kahrobaei [6]. For this cryptosystem, we assume there is a group G and finitely

generated subgroups A,B ⊆ G such that A and B commute element-wise, meaning

ab = ba for all a ∈ A and b ∈ B.

1. Bob chooses a random element g ∈ G. Then he picks his private key b ∈ B,

and publishes g and c = gb = b−1gb.

2. To establish a shared secret x ∈ G, Alice chooses x and her secret key a ∈ A

then publishes ga = a−1ga and y = xc
a
.

3. To recover the shared secret x, Bob computes (ga)b. Since the elements in A

and B commute, we get

(ga)b = b−1a−1gab = a−1b−1gba = (gb)a = ca (1.1)

Then Bob can retrieve the shared secret x by computing x = y(c
a)−1

. Note that the

security of this protocol depends on the hardness of the conjugacy search problem of

the platform group G.
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1.5 Semidirect Product Protocol

The key exchange using semidirect product was proposed by Kahrobaei, Koupparis,

and Shpilrain in [7]. Even though the general protocol seemed vulnerable to the linear

decomposition attack [10], it was suggested that the dimension might grow too large

for the attack to be efficient. Therefore, we discuss how the nonlinear decomposition

attack could work against this protocol. The outline of the protocol is described below.

Alice and Bob are going to work with following elements φ ∈ Aut(G), (φl, g) where

l ∈ N and g ∈ G. The former element is multiplied as: (φp, g)(φq, g) = (φp+q, φq(g)·g).

1. Alice picks a private integer m then computes (φ, g)m

= (φm, φm−1(g) . . . φ(g) · g). Then she sends gm = φm−1(g) . . . φ(g) · g to Bob.

2. Bob picks a private integer n then computes (φ, g)n = (φn, φn−1(g) . . . φ(g) · g).

Then she sends gn = φn−1(g) . . . φ(g) · g to Alice.

3. Alice computes (x, gn) · (φm, gm) = (x · φm, φm(gn) · gm). Then Alice’s key is

now KA = φn(gn) · gm. Note that since Alice does not know n, so she does not

know φn(:= x). Hence she does not calculate x · φm where x = φn, as she does

not need it to calculate KA.

4. Bob computes (x, gm) · (φn, gn) = (y · φn, φn(gm) · gn). Then Bob’s key is now

KB = φm(gm) · gn. Note that since Bob does not know m, so he does not know

φm(:= y). Hence he does not calculate y ·φn, as he does not need it to calculate

KB.

5. Alice and Bob now have the shared secret key

(φn, gn) · (φm, gm) = (φm, gm) · (φn, gn) = (φ, g)m+n = (φm+n, gm+n).
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Chapter 2

Polycyclic Groups

The security of the above protocols (except the semidirect product based protocol)

depend on the hardness of the conjugacy problem of the group. As polycyclic groups

have no known efficient solutions to the conjugacy decision and search problems, it

was suggested to fit as the platform group for those protocols. However, Roman’kov

claimed in [14] that the groups in which the membership search problem is efficiently

solvable can be vulnerable to the nonlinear decomposition attack. Since polycyclic

groups have efficient solutions to the membership search problem, we used them as

the platform groups to test the efficiency of the nonlinear decomposition attack. The-

orems and definitions in this chapter are from the book “Computation with Finitely

Presented Goups” by C.C. Sims [15]. More detailed proofs and background informa-

tion can be found in the book as well.

2.1 Polycyclic Groups

All kinds of groups can be a possible candidate to be a platform group. However,

finitely generated groups are most generally adopted, and finite groups are in practical

use. In the case of polycyclic groups, it was shown in [15] that all polycyclic groups

are finitely generated. Polycyclic groups can be infinite, but we mainly focused on
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finite polycyclic groups to limit the computation time in the implementation and

analysis stages.

2.1.1 Solvable and Nilpotent Groups

Before we discuss the properties of polycyclic groups, we need some background on

solvable and nilpotent groups as the basis. The background information on solvable

and nilpotent groups is in the appendix.

Definition 2.1.1. Define [G,H] = 〈g−1h−1gh|g ∈ G, h ∈ H〉. Then the derived

subgroup of G is G′ = G(1) = [G,G], and we recursively define G(i) = [G(i−1), G(i−1)].

The derived series of G is the sequence G(0) ⊇ G(1) ⊇ · · ·

Definition 2.1.2. Let γ1(G) = G, and we also recursively define γi+1(G) = [γi(G), G].

Then the lower central series of G is the sequence γ1 ⊇ γ2 ⊇ · · ·

Definition 2.1.3. A solvable group is a group where G(n) is trivial for some n, and

a nilpotent group is a group where γm is trivial for some m.

The smallest i (if it exists) such that G(i) = 1 is called the derived length of G.

The smallest j (if it exists) such that γj(G) = 1 is called the nilpotency class (or

just simply class) of G.

Proposition 2.1.4. Subgroups and quotient groups of solvable/nilpotent groups are

solvable/nilpotent.

Proposition 2.1.5. If G is a group, then the group G/G(i) is solvable with derived

length less than or equal to i. The group G/γj(G) is nilpotent of class at most j − 1.

Proposition 2.1.6. If N is normal in G and both N and G/N are solvable, then G

is solvable.

Proposition 2.1.7. Nilpotent groups are solvable.
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Proof. Suppose γi(G) = 1. By Corollary A.1.11, we have j such that G(j) = 1 where

2j ≥ i.

Proposition 2.1.8. If G/G′ is generated by x1, . . . , xn, then γ2(G)/γ3(G) is gener-

ated by the images of [xj, xi] with 1 ≤ i < j ≤ n, under the natural homomorphism

f : G→ G/γ3(G).

Proposition 2.1.9. Suppose G/G′ is generated by a set X and Y ⊆ γi(G) where

i ≥ 2 such that the image of Y under the natural homomorphism to γi(G)/γi+1(G)

generates that group. Then γi+1(G)/γi+2(G) is generated by the image of

Z = {[y, x]|y ∈ Y, x ∈ X}.

Corollary 2.1.10. If G is generated by n elements and i ≥ 2, then γi(G)/γi+1(G) is

generated by (n− 1)i−1/2 elements.

Proposition 2.1.11. If N ≤ Z(G) and G/N is nilpotent, then G is nilpotent.

2.1.2 Polycyclic Groups

Definition 2.1.12. A polycyclic series of length n of a group G is a sequence

G = G1 . G2 . G3 . · · · . Gn−1 . Gn . Gn+1 = 1

where each group Gi/Gi+1, 1 ≤ i ≤ n, is cyclic. Any group with a polycyclic series is

called a polycyclic group, and the group G above is said to have a polycyclic length

of n.

Note that a group’s polycyclic series can have different lengths since one can

take different quotients for each i. However, the number of infinite quotients (where

Gi/Gi+1 is infinite) is the same for all polycyclic series. We call the number of infinite

quotients the Hirsch number of the group G.
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Proposition 2.1.13. Polycyclic groups are solvable.

Proposition 2.1.14. Finitely generated abelian groups are polycyclic.

Proposition 2.1.15. If N is normal in G and both N and G/N are polycyclic, then

G is polycyclic.

Proposition 2.1.16. If G has a polycyclic series of length n, then G can be generated

by n elements.

Proof. Suppose we have a polycyclic series G = G1 ⊇ G2 ⊇ · · · ⊇ Gn+1 = 1. Then let

ai (1 ≤ i ≤ n) be an element in Gi such that aiGi+1 generates Gi/Gi+1. Then every

coset of Gi+1 in Gi contains a power of ai. Then if g ∈ G, g = aα1
1 g2, where g2 ∈ G2,

and similarly g2 = aα2
2 g3, where g3 ∈ G3. So g = aα1

1 a
α2
2 g3. Proceeding inductively,

we get g = aα1
1 a

α2
2 . . . aαn

n gn+1 where gn+1 = 1. Therefore g = aα1
1 a

α2
2 . . . aαn

n , and thus

G is generated by a1, a2, . . . , an.

Remark 2.1.17. Note that by the above theorem, any element in G can be represented

as aα1
1 a

α2
2 . . . aαn

n (αi ∈ Z).

Proposition 2.1.18. Quotient groups of polycyclic groups are polycyclic.

Proposition 2.1.19. Subgroups of polycyclic groups are polycyclic.

Corollary 2.1.20. If G has a polycyclic series of length n, then every subgroup of

G can be generated by n or fewer elements.

2.2 Polycyclic Presentations

Definition 2.2.1. Suppose we have a group G and a polycyclic series G = G1 ⊇

G2 ⊇ G3 ⊇ · · · ⊇ Gn−1 ⊇ Gn ⊇ Gn+1 = 1. Then let ai be an element of Gi whose

image in Gi/Gi+1 generates the group. Then the sequence a1, . . . , an is called the

polycyclic generating sequence of the group G.

13



Definition 2.2.2. If G = 〈ai, . . . , an〉 as in Proposition 2.1.16, any element can be

written in a form aα1
1 . . . aαn

n where the αj are integers. Let I = I(a1, . . . , an) denote

the set of subscripts i such that Gi/Gi+1 is finite, and mi = |Gi : Gi+1|, the order of ai

relative to Gi+1, if i is in I. Assuming no generating element is redundant (meaning

no ai is in Gi+1), we have mi > 1 for each i ∈ I. Then an element g ∈ G is in a

collected word if g = aα1
1 a

α2
2 . . . aαn

n and each 0 ≤ αj < mj for all j, 1 ≤ j ≤ n.

Then by the definition above, we can get relations

ajai = aia
αij,i+1

i+1 · · · aαij,n
n ; j > i,

a−1j ai = aia
βij,i+1

i+1 · · · aβij,nn , j > i ; j /∈ I,

aja
−1
i = a−1i a

γij,i+1

i+1 · · · aγij,nn , j > i ; i /∈ I,

a−1j a−1i = a−1i a
δij,i+1

i+1 · · · aδij,nn , j > i ; i, j /∈ I,

ami
i = a

µi,i+1

i+1 · · · a
µi,n
n , i ∈ I,

a−1i = ami−1
i a

νi,i+1

i+1 · · · a
νi,n
n , i ∈ I,

where the right sides are collected words in G. The above relations are called the

standard polycyclic presentation relative to a1, . . . , an. If i ∈ I, since a−1i only

appears once in the set of relations above, we can remove the relation by adding

aia
−1
i = 1 on the relation when i /∈ I and by cancelling the left side by multiplying

ai on both sides when i ∈ I. Then the presentation after the operations is called the

standard monoid polycyclic presentation . Rewriting an element with respect

to a standard polycyclic rewriting system is called collection . Moreover, since the

collected forms are unique, the rewriting system is said to be confluent .

Proposition 2.2.3. Suppose G is defined by a polycyclic presentation with genera-

tors a1, . . . , an. Then G is polycyclic and a1, . . . , an is a polycyclic generating sequence

for G.
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2.3 Membership Search Problem

The membership search problem is the following: Given a subgroup H = 〈h1, . . . , ht〉

in G and an element h ∈ H, find an expression for h in terms of h1, . . . , ht.

Definition 2.3.1. Suppose G = 〈a1, . . . , an〉. Then, in a generating sequence U =

(g1, . . . , gs) of a subgroup H of G, let the collected form of gi be a
αi1
1 . . . a

αin
n

The s-by-n matrix A of the elements αij in ith row and jth column is called the

associated exponent matrix of U . Also, we have the following elementary operations

on exponent matrices:

1. Interchange gi and gj, where i 6= j.

2. Replace gi with g−1i .

3. Replace gi with gig
α
j where α is an integer and i 6= j.

4. Add a new row gs+1 any element of 〈g1, . . . , gs〉

5. Remove gk if gk = 1

Note that none of the operations changes the subgroup 〈g1, . . . , gs〉, and we say the

sequences U and V are equivalent under elementary operations if one can be trans-

formed into another with a sequence of above operations.

Example 2.3.2. Given a sequence A = (g1g
4
2g3, g1g3, g

6
2), we can construct the cor-

responding exponent matrix U associated with A

U =


1 4 1

1 0 1

0 6 0


Definition 2.3.3. A sequence of elements U = (g1, . . . , gn) of G is said to be in

standard form if the associated exponent matrix A satisfies the following properties.
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• All rows of A are nonzero.

• A is row reduced over Z.

• If Aij is a corner entry and j ∈ I, then Aij|mj.

Example 2.3.4. Let G be the group generated by group elements

a1 =



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


a2 =



1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1


a3 =



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1



a4 =



1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1


a5 =



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1


a6 =



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1


Given a generating sequence U = (g1, g2, g3), where

g1 = a21a
−1
2 a4,

g2 = a33a4a6,

g3 = a24a5a6.

Then, U is in standard form with the associated exponent matrix


2 −1 0 1 0 0

0 0 3 1 0 1

0 0 0 2 1 1

 .
An admissible sequence of exponents for U is a sequcnce (α1, . . . , αs) of integers

such that if Aij is a corner entry and j ∈ I, then 0 < αj ≤ mj/Aij. Let E(U) denote

the admissible sequence of exponents for U , and let S(U) denote the set of products

of gα1
1 . . . gαn

n where α1, . . . , αn ranges over E(U). S(U) is generally not a subgroup of

G, unless some conditions are satisfied which we will discuss later on in this paper.
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Proposition 2.3.5. Suppose U = (g1, . . . , gs) is a sequence of elements in G in

standard form, and (β1, . . . , βs), (γ1, . . . , γs) ∈ E(U). If gβ11 . . . gβss = gγ11 . . . gγss , then

βi = γi where 1 ≤ i ≤ s.

Proof. Let A be the exponent matrix associated with U , and let g = gβ11 . . . gβss =

gγ11 . . . gγss . If A1j is the corner entry of the first row and aδ11 . . . a
δn
n is the collected

word of g, then δk = 0, where 1 ≤ k < j. Then we have two cases:

1. If j /∈ I, then Gj/Gj+1 is isomorphic to Z, and hence δj = A1jβ1 = A1jγ1. Since

A1j 6= 0, β1 = γ1.

2. If j ∈ I, then Gj/Gj+1 is isomorphic to Zmj
and δj ≡ A1jβ1 ≡ A1jγ1 (mod mj).

But both β1 and γ1 are nonnegative and less than mj/A1j, so A1jβ1 and A1jγ1

are nonnegative and less than mj. Therefore A1jβ1 = A1jγ1 and β1 = γ1.

Thus, after the first step we can multiply g−β11 on both sides to get gβ22 . . . gβss =

gγ22 . . . gγss . Continuing inductively, we get βi = γi, where 1 ≤ i ≤ s.

The above procedure in the proof of Proposition 2.3.3 gives us an algorithm to solve

the membership decision problem in S(U) of G. Throughout the process, consider

h = aβ11 . . . aβnn .

function POLY_MEMBER (U,g)

#U = sequence (g_1,...,g_s) of elements of G in standard form

#g = an element in G

(the function returns true if g is in S(U) and false otherwise.

A := exponent matrix of U;

h := g;

done := false;

for i in [1..s] do

if done break;

A_{ij} := corner entry of A in i-th row;

if some \beta_k != 0 for some (beta < j) then return false;

if A_{ij} does not divide \beta_j return false;

q := \beta_j / A_{ij};
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h := g_i^{-q}h;

od;

return (h = 1);

end;

Definition 2.3.6. Given a sequence U = (g1, . . . , gn) of elements of G in standard

form, U is full if it satisfies the following conditions:

1. For 1 ≤ i < j ≤ s the set S(U) contains g−1i gjgi.

2. Let A be the associated exponent matrix of U . If Aij is a corner entry and

j ∈ I, then S(U) contains gqi where q = mj/Aij

Example 2.3.7. Consider the sequence U from Example 2.3.4. To make the sequence

full, we need to add the elements in the conditions above and iterate through the row

reduction process. The resulting associated exponent matrix of the full sequence is

A =



2 −1 0 1 0 0

0 0 3 1 0 1

0 0 0 2 1 1

0 0 0 0 3 1

0 0 0 0 0 2


Now we can decide whether a sequence U and its acceptable set of exponents S(U)

is a subgroup of G.

Proposition 2.3.8. If U = (g1, . . . , gs) is a sequence of elements of G in standard

form, then S(U) is a subgroup of G if and only if U is full. If U is full, then the

sequence g1, . . . , gs is the polycyclic generating sequence of S(U).

Proposition 2.3.9. If H is a subgroup of G, then there is a unique sequence U =

(g1, . . . , gn) such that H = S(U).
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Now, suppose we have a subgroup H of G, generated by the sequence U =

(h1, . . . , hs). If we could transform U into standard form with a deterministic al-

gorithm, then we can solve the membership search problem on H using the above

algorithm POLY MEMBER.

We can first apply elementary row operations on the associated matrix A of U

to reduce it to row echelon form. Suppose hi and hj have the leading term aβk and

aγk, with |β| > |γ|. Replacing hi with hih
−q
j where q = bβ/γc, we can change the

exponent of the leading term ak of hi to β mod γ. Repeating this step until it is

impossible, one can obtain an exponent matrix A to have no two elements having the

leading terms involving the same generator. Then we can switch rows and delete zero

rows (identity element) from A and assume that A is in row echelon form. (Also, one

can replace hi by h−1i to make all the leading terms positive.)

Now we transform the row echelon matrix A into a full exponent matrix. Sup-

pose there is a corner entry Aij such that j ∈ I and Aij does not divide mj. Let

α = gcd(Aij,mk) = pAij + qmk and add hpi to U as a new element. Then, repeat the

above process to get A back into row echelon form. Repeating this procedure for all

corner entries of A, it now satisfies the second requirement of being full.

In order to satisfy the first requirement, we test, for each i, j ∈ {1, . . . , s}, whether

hihjh
−1
i ∈ S(U). If the POLY MEMBER returns false, let u be the last value assigned

to h before the function terminated. Add it to U , then repeat the above procedure

from reducing to the row echelon form. The resulting matrix A is the associated ex-

ponent matrix of V , the polycyclic generating sequence of H. Then, we can apply the

POLY MEMBER function to solve the membership search problem on the subgroup

H.
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Chapter 3

The Nonlinear Decomposition

Attack

Roman’kov [14] suggested the Nonlinear Decomposition Attack as the supplement of

the Linear Decomposition Attack [10], when the platform group does not admit a

faithful linear representation. The Nonlinear Decomposition Attack depends heavily

on efficiently solving the membership search problem on the platform group to de-

compose the secret private key into known elements. In our case, the membership

search problem in polycyclic groups is efficiently solvable [15].

There are three major components for general implementation for the nonlinear

decomposition attack. First we need to find the generating set in which either one

of the two public keys are stored. Then, we solve the membership search problem

for the chosen public key in terms of those generators using properties of polycyclic

groups. Finally, we obtain the shared key using the public key, which is a word of

the generating set. Below, the claims and proofs from the first section “Finding the

Shared Key” are from [14].
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3.1 Finding the Shared Key

Roman’kov proposed a deterministic method of finding a generating set for a public

key. We will analyze the general time complexity on the presented calculations in later

sections. For example, in the protocol proposed by Ko, Lee et al., [9] Alice’s public

key is ga, where g is public. Then, we can generate gA := 〈ga | ga = a−1ga, a ∈ A〉.

3.1.1 Semidirect Product Protocol

While discussing the semidirect-product protocol, denote

gi = φi−1(g) · φi−2(g) . . . φ(g) · g.

Lemma 3.1.1. Let G be a group, g an element in G, and φ an endomorphism on G.

Then define H = 〈gi | i ∈ N〉 and gi = φi−1(g) · φi−2(g) . . . φ(g) · g. Assuming that H

is finitely generated and the membership decision problem is solvable in G, there is

an algorithm to find a finite generating set of H in terms of the gi’s.

Proof. Note that 〈g, g1, . . . , gn〉 = 〈g, φ(g), . . . , φn−1(g)〉, since one can apply gi ·

(gi−1)
−1 = (φi−1(g) . . . φ(g) · g) · (g−1 · (φ(g))−1 . . . (φi−2(g))−1) = φi−1(g) for any

i ∈ N .

For any l ∈ N, denote Hl = 〈g0, . . . , gl−1〉 = 〈g, φ(g), . . . , φl−1(g)〉. By the assump-

tions above, we can efficiently calculate the minimum number k such that gk+1 ∈ Hk,

meaning Hk+1 = Hk. Thus, there is a group word w of Hk = 〈g, φ(g), . . . , φk−1(g)〉

such that w = φk(g). Then it follows that

φk+1(g) = u(φ(g), . . . , φk−1(g), φk(g))

= u(φ(g), . . . , φk−1(g), w(g, φ(g), . . . , φk−1(g)))

= v(g, φ(g), . . . , φk−1(g))

(3.1)
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for some other group word v(g, φ(g), . . . , φk−1(g)) ∈ Hk. Therefore Hk+n ∈ Hk for all

n ∈ N, and the subgroup stabilizes after a finite number of steps. Then, we have the

generating set {g, φ(g), . . . , φk−1(g)} of Hk.

Now we have either Alice’s or Bob’s public key (suppose from now we have Alice’s)

as a word in (g, g1, . . . , gk). Letting hi = gi−1 where g0 = g, the subgroup Hk above is

equal to 〈h1, . . . , hk〉. We have Alice’s (or Bob’s) public key as a word in (g1, . . . , gk):

gm = u(h1, . . . , hk) =
∏k

j=1 g
εj
ij

, where

ij ∈ {i, . . . , k}, εj ∈ {1,−1}, j ∈ {1, . . . , k}, k ∈ N.

Then since φij(gn) · gij = φn(gij) · gn,

K = gm+n = φn(gm) · gn = φn(
∏k

j=1 g
εj
ij

) · gn =
∏k

j=1 φ
n(gij)

εj · gn =∏k
j=1(φ

n(gij · gn · g−1n ))εj · gn =
∏k

j=1(φ
ij(gn) · gij · g−1n )εj · gn,

where all elements gn, gij , εj, and φij for ij ∈ {1, . . . , k} are known. Thus, we have

the shared key without solving the underlying problem of finding n ∈ N such that

gn = gm of the platform group.

3.1.2 Ko-Lee Protocol

Lemma 3.1.2. Suppose G is a group and g ∈ G. Assuming the word and membership

search problems are solvable in G and all subgroups are finitely generated in G, there

is an algorithm that finds the generating set of the subgroup gA = 〈ga | a ∈ A〉.

Proof. One can construct an algorithm that eventually terminates to obtain the gen-

erating set, similar to the semidirect product protocol.

Let L0 = g, the known public element. Then let Mi = {a | a ∈ A}, where a is a

word in A = 〈a1, . . . , ak〉 of length i. Then, M1 = {a1, a2, . . . , ak, a−11 , a−12 , . . . , a−1k } =

{m1, . . . ,m2k}. The algorithm proceeds as follows:

1. Set some order among the elements in M1.
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2. Iterating in order, test whether each gmj is in the group 〈g, gm1 , . . . , gmj−1〉.

3. After iterating through all elements in M1, one can obtain the subset L1 =

{g, gmj1 , . . . , gmjl} such that gmji /∈ 〈g, gmj1 , . . . , gmji−1 〉

4. If 〈L0〉 6= 〈L1〉, proceed to i = 2

Note that gA = 〈ga | a ∈ A〉 = 〈g ∪
⋃∞
i=1Mi〉. Moreover, since we assume that all

subgroups of G are finitely generated, the process terminates for some n ∈ N, and we

have the generating set Ln such that 〈Ln〉 = gA.

Then, suppose we have gA = 〈gc1 , . . . , gcs〉. Since we assumed that the membership

search problem is solvable, we can obtain ga = w(gc1 , . . . , gcs), where w is a group

word.

Note that since A and B commute element-wise, bci = cib for all 1 ≤ i ≤ s and b ∈ B,

so we have

w((gb)c1 , . . . , (gb)cs) = w(gc1 , . . . , gcs)b = gab = K.

Thus we obtain the shared key without solving the conjugacy search problem of the

platform group.

3.2 Implementation

As mentioned above, the nonlinear decomposition attack is divided up into three

major parts:

• Find the generating set of a public key.

• Solve the membership search problem of the public key within the subgroup.

• Obtain the key from the public key as a word of the generating set of the

subgroup.
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As the membership search problem is described above, we describe finding the gen-

erating set and obtaining the solution in pseudocode to visualize the logistics.

3.2.1 Ko-Lee Protocol

find_generating_set := function(G,A,g);

input

G : public platform group G

A : public subgroup of G

g : public element g

gen_list := [g]; # L_0 in the lemma 3.1.2

exponent_list := [Identity(G)]; #exponent list to keep track of c_i’s

i := 1; # counter for number of iterations.

gen_set_A := Gen(A); # known polycyclic generating set of A

extended := true;

while extended do

prev_subgroup := Subgroup(G,gen_list);

# since we only deal with finite groups, we have a_i^{-1} = a^m for

# some positive m.therefore, we only have a^i elements to test for

# i-th iteration, where a is the number of generating elements of A.

for j in [1..a^i] do

result_word := Identity(G);

result := Identity(G);

# generate words of length i

for k in [1..i] do

new_index := ((j mod Length(gen_set_A)^(k+1)) -

(j mod Length(gen_set_A)^k))

/ Length(gen_set_A)^k;

new_letter := gen_set_A[new_index+1];

result := new_letter*result;

od;

# test whether it extends the subgroup

if not (g^result in Subgroup(G, gen_list)) then

Add(gen_list,g^result);

Add(exponent_list,result);

fi;

od;
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# if the last iteration did not extend the group, break.

if prev_subgroup = Subgroup(G, gen_list) then

extended := false;

fi;

i := i + 1;

od;

return [gen_list,exponent_list];

end;

Note that we keep track of the exponents ci’s of the generating sequence, since we

need to calculate a group word in terms of (gb)ci ’s later when we arrive at the shared

key.

find_key := function(G,gen_set,gm_in_terms_of_gen_set,gn);

input

G : public platform group G

gen_set : generating set (including the exponents) of A

gm : Alice’s key in terms of A’s original generating set

gn : public key of Bob

result := Identity(G);

# K = w((g_b)^c_1,...,(g_b)^c_s)

# gen_set and gm are lists with specified formatting.

for i in [1..Length(gm)] do

result := result * gn^(gen_set[2][gm[i]]);

od;

return result;

end;

3.2.2 Semidirect Product Protocol

The method of finding the generating set of the subgroup containing the public keys

is not much different than the one used in the Ko-Lee Protocol.

find_generating_set := function(G,endomorphism,g);

input

G : the public group G

endomorphism : known endomorphism \phi : G -> G
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g : known public element in G

result_gen_list := [g];

add_gen := Image(endomorphism,g);

cur_gen := add_gen*g;

subgroup := Subgroup(G, result_gen_list);

# While the group is extended by g_{i-1}, proceed to g_i

while not cur_gen in subgroup do

Add(result_gen_list,cur_gen);

subgroup := Subgroup(G, result_gen_list);

add_gen := Image(endomorphism,add_gen);

cur_gen := add_gen*cur_gen;

od;

return result_gen_list;

end;

find_key := function(G,endomorphism,gm_in_gen_set,gn);

input

G : public group G

endomorphism : known endomorphism in G

gm_in_gen_set : Alice’s public key in terms of the gen_set

gn : Bob’s public key

result := Identity(G);

for i in [1..Length(gm_in_gen_set)] do

left := gn;

# \phi^{i_j}(g_n)

for j in [1..gm_in_gen_set[i]] do

left := Image(endomorphism,leftPart);

od;

#the rest of multiplication in the iteration

result := result * (left * gen_set[gm_in_gen_set[i]] * gn^-1);

od;

result := result * gn;

return result;

end;

Note that when the group is finite, negative exponents can be regarded as (−1

mod n), where n is an integer.
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3.3 Time Complexity Analysis

3.3.1 Membership Search Problem

To analyze the efficiency of the nonlinear decomposition attack, one can look at the

worst-case time complexity analysis. Since there are three independent parts in the

nonlinear decomposition attack, we only need to consider the process which requires

the highest complexity. In the analysis we assume G to be a finite polycyclic group.

Consider finding the generating set in the presented protocols, Ko-Lee protocol and

semidirect product protocol. We first consider the complexity of the membership

search problem, then apply it to each protocol to find the general time complexity of

those protocols. We follow the algorithm of solving the membership search problem

in Chapter 2.

First, note that every row operation on the associated exponent matrix requires a

proper collection process. As M.F. Newman and A.C. Niemeyer proposed in [13], the

upper bound of the collection algorithm on G with derived length d and maximum

normal word length N is N3d−1, using collection from the left.

Lemma 3.3.1. Let G = G1 ⊇ G2 ⊇ G3 ⊇ · · · ⊇ Gn−1 ⊇ Gn ⊇ Gn+1 = 1 be

a polycyclic series of G, with (g1, . . . , gn) the polycyclic generating sequence of G.

Assume U is the generating sequence of H and A the associated exponent matrix

of U . Suppose the subgroup H is generated by s elements. Then the total time

complexity of solving the membership search problem on H is O(n5b(logϕ(b))2)

Proof. The row reduction process is essentially the Euclidean algorithm applied to the

row which has the same generating element as its leading term on the associated ex-

ponent matrix. By [2], the worst case time complexity of Euclid’s algorithm is logϕ(a)

where a is the larger exponent and ϕ = (1 +
√

5)/2 is the golden ratio. Let b by the

upper bound over all exponents of a collected word in G. Since G can be generated

by n elements, the subgroup of G can have at most n polycyclic generating elements
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by Corollary 2.1.20. Therefore, there can be at most n2 Euclidean Algorithms of

complexity logϕ(b) applied during the row operations, so the time complexity of the

row reduction process is O(n2 logϕ(b)). Then, permuting the rows and replacing the

corner entries with positive terms take at most O(n log(n) + n) = O(n log(n)) steps,

thus the overall complexity remains the same.

Next, we need to make all the corner entries divide mk, the order of the cyclic group

Gk/Gk+1. (Since we assume the group to be finite, there exist such mi’s for all

i ∈ {1, . . . , n}.) Since we again use the extended Euclidean algorithm to calculate

β = gcd(Aij,mk) = pAij + qmk where Aij is a corner entry, its time complexity

is O(logϕ(b)). Then as we add the resulting element exponent vector to the ex-

ponent matrix and repeat the above procedure, we have O(n2 logϕ(b) · logϕ(b)) =

O(n2(logϕ(b))2).

Then, we need the sequence U to be full. Since there are at most n2 elements on

which to test the first condition (for 1 ≤ i < j ≤ s the set S(U) contains g−1i gjgi)

and n elements on which to test the second condition (if Aij is a corner entry and

j ∈ I, then gqi ∈ S(U) where i ∈ {1, . . . , n} and q = mj/Aij), and each test is

done by the POLY MEMBER algorithm. The definition of admissible sequence of

exponents of U , denoted E(U), is the sequence (β1, . . . , βs) of integers such that

if Aij is a corner entry, then 0 ≤ bi < mj/Aij, if i ∈ I. So, the process to ac-

quire h = 1 (h is the tested element after cancellation during POLY MEMBER)

takes at most n(b − 1) cancellations. Thus the time complexity of making U full is

O(n2(nb) + n(nb)) = O(n3b). Moreover, if we add another element not in S(U), we

iterate through the row reduction process again. Therefore the total time complexity

would be O(n3b · n2(logϕ(b))2) = O(n5b(logϕ(b))2).

Since the above procedures are piecewise independent, the total time complexity

of solving the membership search problem is O(n5b(logϕ(b))2).
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3.3.2 Ko-Lee Protocol

We need to analyze two steps: finding the generating set of the subgroup gA (or

gB, but assume we are searching for the subgroup containing Alice’s public key) and

finding the shared key.

Claim 3.3.2. Suppose A = {1}, and suppose we add successively other elements

g /∈ 〈A〉 until 〈A〉 = G. Let |G| = pα1
1 · · · pαn

n , where pi’s are distinct primes. Then

the process takes at most α :=
∑n

i=1 αi iterations.

Proof. Let |Gi/Gi+1| = p
βi1
1 · · · p

βin
n be the prime factorization of the order of Gi/Gi+1.

Then, suppose the new element is in Gj, such that its image of the natural mapping to

Gj/Gj+1 is not the identity. Also, the order of the image in Gj/Gj+1 is some multiple

of those primes p
γj1
1 · · · p

γju
n where γjl ≤ βjl . Then consider the process on Gj/Gj+1:

Consider the multiset X = {pγj11 , p
γj2
2 , . . . , p

γjn
n } which means X contains pi exactly

γji times, and γj =
∑n

i=1 γji

z = 1; #z \in G_j/G_{j+1}

gen_set = []; #the obtained generating set of G_j/G_{j+1}

for i in [1..\gamma_j] do

x = Random(X);

X = X - x; # take one element out of X

z = z * x; # multiply z by x

g = element_of_order z; take element of order z in G_j/G_{j+1}

Add(gen_set, z); # add g to gen_set

od;

Since the group is cyclic, any multiplication of the elements in the subgroup generated

by gen set will have order of the least common multiple of those elements, bounded

above by the order of the last element added to the subgroup. Therefore, for all

iterations, because the group is cyclic, none of the new elements are in the previous
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generating set. If the new g is in the subgroup generated by the previous set of

elements, then we arrive at a contradiction, having an element of order greater than

the upper bound provided above. Moreover, the process cannot take more than∑n
i=1 βji steps, since then it means there is at least one step where we add an element

of order equal to another element’s order by the pigeonhole principle. Since the group

is cyclic, this means that we added an element already in the group generated by the

previous elements, which contradicts our assumption.

Thus, this process takes
∑n

i=1 γji iterations for the image of the elements in the

subgroup to fully contain Gj/Gj+1. Moreover,
∑n

i=1 γji = βj, and
∑n

i=1

∑n
j=1 βij =∑n

i=1 αi = α. Therefore, the maximum iterations required for the images to fully

contain every coset Gi/Gi+1, i ∈ {1, . . . , n} is α. Therefore, it requires at most α

iterations for the process to terminate.

In finding the generating set of gA, we first set gA0 = {g}, and test for each

iteration starting from i = 1 whether gAi extends Li−1, where gAi = {ga| the word

length of a ≤ i}. Each iteration takes (2a)i membership decision tests, where |A| =

a. So the total number of subgroup membership search tests is bounded above by∑α+1
i=1 (2a)i where α is the total number of prime factors of |G| as in Claim 3.3.2

(since a ≤ n, the upper bound becomes
∑α+1

i=1 (2a)i). Also, each subgroup test has

time complexity of O(n5b(logϕ(b))2) as well as 2i multiplications for each αi iterations

on ith iteration. The total time complexity of finding the generating set is

O(n5b(logϕ(b))2(
α+1∑
i=1

2iniN3d−1)) = O(n5b(logϕ(b))2 · 2α+1n(α+1)N3d−1)

= O(2α+1n5+(α+1)b(logϕ(b))2N3d−1).

Now, as we are going to solve the membership search problem in a different generating

sequence than the original sequence, in Ko-Lee protocol, we need to keep track of each

polycyclic generating sequence in terms of the original generating set (to calculate
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the shared key). Therefore, in order to analyze the time complexity of the nonlinear

decomposition attack, we need the maximum word length of an element ga ∈ gA in

terms of the original generating set (gc1 , . . . , gcs).

Claim 3.3.3. Suppose we have generating sequence (not necessarily polycyclic) V =

(h1, . . . , hs) of H. Then the maximum length of any element h ∈ H in terms of

those element by converting the sequence and applying the membership search test

is (n2 + n) · bn logϕ(b).

Proof. Noting that there are only additions of g−1i gjgi’s and gpi ’s while making the

sequence full, during the POLY MEMBER algorithm, the elementary row operation

that makes the resulting sequence the longest in terms of the original generating

sequence is replacing gi with gig
β
j where β is an integer. In our case, there are a

maximum of n generating elements, and for each step in row reduction, we have

an upper bound of logϕ(b) operations, and each time the β is bounded above by b.

Thus each row reduction process increases the length of the word in terms of the

original generating set of the element represented by the row in the exponent matrix

by blogϕ(b) · li + lj, where li, lj are the word lengths of the elements represented by the

ith and jth rows in terms of the original generating set before the row operation.

Now, consider the last row of the exponent matrix A. Denoting the word length of the

ith row as li, the (i+1)st row of A will have length blogϕ(b) · li+ li+1, by induction. Thus

the last (nth) row will have length at most bn logϕ(b) + ln = bn logϕ(b) + 1 ≈ bn logϕ(b).

Then, we ensure each corner entry Aij divides mj by multiplying integers, bound

by b. To finalize and make A full, we apply the POLY MEMBER algorithm of

n2 + n elements on S(U), and in the worst case, n2 + n elements will be added to

the sequence V over the process. As a result, there will be n2 + n additional row

reduction iterations. Therefore, the upper bound of the word length of an element in

the generating sequence in terms of the original generating set is (n2+n)·bn logϕ(b).
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(We noticed during the test cases, even for fairly small b’s, that putting the words

in terms of the generating set often required large amount of memory and was a severe

restriction on testing the algorithm.)

Finally, we need to calculate the shared key. The shared key calculation is fairly

simple, as it only needs to calculate the conjugation (gb)ci , where 〈gci〉 = gA. The

maximum number of generating element for gA is α, and each conjugation is two

multiplications, which is equivalent to two collection processes. Also, the maximum

word length of a ∈ A in terms of gci is, by Claim 3.3.3, (n2 + n) · bn logϕ(b), so two

collections for each gci in the word. Therefore we need 2 · (n2 +n) · bn logϕ(b) collection

processes, which equals to 2 · (n2 + n) · bn logϕ(b) ·N3d−1 = O(n2bn logϕ(b)N3d−1).

In summation, the overall attack has time complexity of

O(2α+1n5+(α+1)b(logϕ(b))2N3d−1 + (n2 + n) · bn logϕ(b) + n2bn logϕ(b)N3d−1)

= O(2α+1n5+(α+1)b(logϕ(b))2N3d−1 + n2bn logϕ(b)N3d−1).

3.3.3 Semidirect Product Based Protocol

On this protocol, note that gi = φi−1(g) · · · · · φ(g) · g By Claim 3.3.2, we need a

maximum of
∑n

i=1 αi = α iterations, provided that |G| = pα1
1 · · · pαn

n , to obtain the

generating set of the subgroup containing Alice and Bob’s key. Note that since the

public endomorphism φ is operation-preserving, we have φ(g) = φ(u(g1, . . . , gn)) =

u(φ(g1), . . . , φ(gn)). Also, the generating elements gi’s can be mapped to any element

with word length bounded above by nb, and the word length of all φj(g)’s are bounded

above by N , the maximum normal word length. In each step, the maximum length

of the image of the public element φi(g) after the endomorphism φ is bounded above

by N2. To collect the elements, we need to apply N collections, each taking at most

N3d−1 steps.

The ith iteration has some basic steps:
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• Calculate φi−1(g). This can be done efficiently by applying the endomorphism

once on φi−2(g) from the previous step.

• Multiply the calculated φi−1(g) by the previously calculated gi−1 to obtain gi.

• Apply the subgroup test to see if gi extends the subgroup generated by {g, g1, . . . , gi−1}.

• If the subgroup is extended, proceed to (i+ 1)st iteration.

First, we have φi−2(g) already collected. Therefore, we need to compute N ·N3d−1 to

get φi−1(g) in a collected form. Then we multiply φi−1(g) and gi−1, taking at most

N3d−1 steps, and apply POLY MEMBER on the resulting element gi, which takes

O(n5b(logϕ(b))2) time. Then we add it to the subgroup, depending on whether it

extends the group. The total time complexity of each step is then bounded above by

(1 +N)N3d−1 +n5b(logϕ(b))2. Therefore, the number of steps of the whole procedure

is bounded above by α((1 +N)N3d−1 + n5b(logϕ(b))2).

After solving the membership search problem for Alice’s key gm, we calculate the

shared key by
k∏
j=1

(φij(gn) · gij · g−1n )εj · gn,

where gm =
∏k

j=1 g
εj
ij

.

The number ij is bounded above by α, the number of iterations taken to find the

generating set. Since we can calculate and store φij(g)’s, it takes α · (1 +N)N3d−1 to

calculate and store those elements. Then since the upper bound of word length in the

subgroup H = 〈gi|i ∈ {1, . . . , α}〉 is bounded above by (n2 + n)bn logϕ(b), we have k ≤

(n2+n)bn logϕ(b). Therefore the complexity of finding the shared key for the semidirect

product protocol is bounded above by α((1 + N)N3d−1 + n5b(logϕ(b))2)) + (n2 +

n)bn logϕ(b)(2N3d−1)+N3d−1 = (α(1+N)+2(n2+n)bn logϕ(b)+1)N3d−1+αn5b(logϕ(b))2).
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3.4 Test Results

The test results were done in a linux OpenSUSE machine, Dell Optiplex 9020 with

an Intel Core i7 processor and 16 GB of RAM .

Ko-Lee protocol was used as the testing. The platform group G was P wrC2, where

P was a Heisenberg Group of order p3 and Zp as the field for each entry.

The time measurements are average time in 100 trials with random public element g,

Alice’s public key, and Bob’s public key to calculate the shared key.

p Alice and Bob Eve

5 ∼0(ms) 15.92(ms)

7 ∼0 38.56

11 ∼0 719.44

13 ∼0 5112.64 ( 5 sec)

17 ∼0 11982.76

19 ∼0 23941.04

23 ∼1/4 113164.88 ( 2 min)

29 ∼1/4 907250.44

31 ∼1/4 626605.6

37 ∼1/4 3090570.68( 45 min)

41 ∼1/2 3304778.24 ( 50 min)

Note that the computation time for Eve, the adversary, does not consistently grow

in accordance with p, and the group order |G|, most apparent between p = 29 and

p = 31. The reason was quite unclear, but we noticed that for a few of the test cases

the computation time were much longer than the average of all test cases. Observing

the relations among the elements a, b, and g could be the way to find the source of

the difference, but it was not apparent why there were so much gap between some

test cases and the others.
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Chapter 4

Future Research

4.1 More Platform Groups

Even though we only tested for some specific polycyclic groups, the process of imple-

menting and testing the nonlinear decomposition attack on other types of polycyclic

groups should not be much different. As the nonlinear decomposition attack depends

largely on the membership search problem of the group, any group with an efficient

membership search problem would be vulnerable under nonlinear decomposition at-

tack, if it is used as a platform group for a conjugacy problem based cryptosystem.

4.2 Better Upper Bounds

Since we only assumed the worst case on analyzing the complexity of these algorithms,

one could easily apply more constraints and come up with a better upper bound for

the computational complexity of the attack.
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Appendix A

Group Theory

A.1 Commutator Subgroups

Since polycyclic groups are strongly related to the derived series and the lower central

series, below are some of the relevant propositions and properties of those series

from [15]. Note: The derived subgroup of G is the group [G,G]

Proposition A.1.1. The derived subgroup G′ is normal in G and the quotient G/G′

is abelian in G. If N E G and N is abelian in G, then N ⊇ G′.

Remark A.1.2. Suppose H1, H2, K1, K2 ⊆ G such that H1 ⊆ H2 and K1 ⊆ K2. Then

[H1, K1] ⊆ [H2, K2].

Corollary A.1.3. If H ⊆ G, then H(i) ⊆ G(i) and γi(H) ⊆ γi(G).

Proof. Apply induction on the above proposition.

Proposition A.1.4. If f : G1 → G2 is a group homomorphism, then [f(H), f(K)] =

f([H,K]) for all H,K ⊆ G

Corollary A.1.5. If f : G1 → G2 is a group homomorphism, then f(G)(i) = f(G(i))

and γi(f(G1)) = f(γi(G2))
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Proof. Applying induction on the above proposition.

Corollary A.1.6. If N E G and g is the natural homomorphism from G to G/N .

Then g([H,K]) = [g(H), g(K)]

Proposition A.1.7. If H,K E G, then [H,K] E G and [H,K] ⊆ H ∩K.

Proposition A.1.8. For any elements x, y, z ∈ G, the following hold.

• [xy, z] = [x, z][x, z, y][y, z]

• [x, yz] = [x, z][x, y][x, y, z]

• [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1

Proposition A.1.9. If H,K,L ⊆ G and N E G such that [K,L,H], [L,H,K] ⊆ N ,

then [H,K,L] ⊆ N .

Proposition A.1.10. For all i ≥ 1 and j ≥ 1,[γi(G), γj(G)] ⊆ γi+j(G).

Corollary A.1.11. G(i) ⊆ γ2i(G) for all i ≥ 0.

A.2 Implementation of the Membership Search Al-

gorithm

word_solve_new := function(G, gen_set, gm) ;

result := [];

H := Subgroup(G, gen_set);

MyFreeGroup := FreeGroup(Length(gen_set));

gen_bundle := IgsParallel(gen_set, GeneratorsOfGroup(MyFreeGroup));

gen_elems := gen_bundle[1];

gen_reference := gen_bundle[2];

h := gm;

while not h=Identity(G) do

h_exp := GenExpList(h);
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for i in [1..Length(gen_elems)] do

if GenExpList(gen_elems[i])[1] = h_exp[1] then

w := gen_elems[i];

index := i;

break;

fi;

od;

exp := 0;

for j in [1..Order(GeneratorsOfGroup(G)[h_exp[1]])] do

if Order(GeneratorsOfGroup(G)[h_exp[1]]) <> infinity then

exp := (exp + GenExpList(w)[2])

mod Order(GeneratorsOfGroup(G)[h_exp[1]]);

else

exp := (exp + GenExpList(w)[2]);

fi;

if exp = GenExpList(h)[2] then

exp := j;

break;

fi;

od;

v := w^(exp);

h := v^-1*h;

Add(result,index);

Add(result,exp);

od;

# converting the format according to LetterRepAssocWord format

result2 := [];

for o in [1..(Length(result)/2)] do

index := (o*2) - 1;

for p in [1..result[index+1]] do

Add(result2, LetterRepAssocWord(gen_reference[result[index]]));

od;

od;

result := Flat(result2);

return result;

end;
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