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Abstract

Advancements in information technology have enabled scientists to

collect data of unprecedented size as well as complexity. Nowadays,

high-dimensional data commonly arise in diverse fields as biology,

engineering, health sciences, and economics. In this project, we

consider both linear and non-parametric models with variable se-

lection in the high-dimensional setting by assuming that only a

small number of index coefficients influence the conditional mean

of the response variable. Both the numerical results and the real

data application demonstrate that the proposed approach selects

the correct model with a high frequency and estimates the model

coefficients accurately even for moderate sample size and ultra-high

dimensionality.
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Chapter 1

Introduction

Among numerous modern problems in multiple scientific fields, such as biology, engi-

neering and health sciences, “high-dimensionality” is a noteworthy characteristic feature.

Here, the word “high-dimensionality” refers to the case that the number of explanatory

variables p is large, and is potentially much larger than the sample size n in the data.

The analysis of high-dimensional data gives rise to many new challenges and opportuni-

ties for developing new statistical methodologies. Take a simple linear model for example,

when having many more unknown parameters than the number of observations, the least-

squares fitting is ill-posed.

As the number of explanatory variables increases, it is often useful and reasonable to

assume that the p-dimensional parameters are sparse with many components being zero,

and this assumption is well known as the “sparsity” assumption. With sparsity, it becomes

a big challenge to identify the significant variables efficiently, and several procedures have

been developed to conquer such challenge.

Variable selection plays an important role to overcome such challenge in high-dimensional

data analysis. The two standard variable selection techniques usually being used are for-

ward selection and backward selection. For forward selection, we sequentially adds impor-

tant explanatory variables into the model one at a time, while for backward selection, we
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successively eliminates insignificant variables out of the model. However, these stepwise

selection methods can be computationally expensive and produces large error when the

dataset is large.

Shrinkage methods can get more accurate estimations and work more efficiently as

they simultaneously select variables and estimate coefficients. Tibshirani (1996) intro-

duced the Least Absolute Shrinkage and Selection Operator (LASSO), which adds the

sum of absolute values of the coefficients to the traditional sum of square error objec-

tive function and shrinks some coefficients to zero to get model with fewer explanatory

variables. Fan and Li (2001) proposed another shrinkage method SCAD, which shares

some properties with the LASSO but makes its penalty functions bounded by a constant

to generate unbiased estimation for variables with larger coefficients. Moreover, MCP

proposed by Zhang (2010) reduces the biasness to the variables with larger coefficients

and is more likely to penalize smaller coefficients to zero.

All the above-mentioned shrinkage methods are proved to be theoretically stable and

computationally efficient for selecting the correct model even when p is relatively large.

However, when the dimension of the index parameters exceeds the sample size, it becomes

a serious scientific endeavor to find the relationship between the response and the explana-

tory variables. Obstacles to high-dimensionality can be both theoretical and practical. To

address these issues, several researchers have contributed some useful computational algo-

rithms. For example, Fan and Lv (2008) introduced Sure Independent Screening (SIS),

which is based on correlation learning, to reduce dimensionality from high to a moderate

scale that is below the sample size. Moreover, the marginal regression can be nonlinear

even when the true underlying model is linear. Fan, Feng and Song (2011) further extend

the correlation learning in SIS to marginal nonparametric learning which can address the

above-mentioned address this issue.

Nowadays, many problems in biology such as microarray and RNA-seq data analysis

are involved in the case of p >> n since there are numerous biological features to be
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estimated but very few samples that can be produced in lab. In this project, we aim

to analyze a representative huge dataset with p >> n by applying the aforementioned

techniques to conquer the challenge of how to accurately extract important information

from a huge amount of data.

The article is organized as follows. In Chapter 2 we introduce the background and

dataset of the study. In Chapter 3 we give a review of regression models, model selection

criteria, and variable selection techniques. In Chapter 4 we implement the techniques

in Chapter 3 and provide the results of our study, including the comparison of different

models and variable selection results. Some concluding remarks are given in Chapter 5.
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Chapter 2

Bardet-Biedl Syndrome and Data

Bardet-Biedl syndrome (BBS) is a human genetic disorder that can affect many body

systems including the retina. One major feature of Bardet-Biedl syndrome is vision loss.

According to Scheetz et al. (2006) , gene TRIM32 has been identified as the 11th mem-

ber to the BBS associated gene family.

The goal of this project is to identify the genes which are statistically significantly

related to gene TRIM32 and build an accurate model. The results could help the

researchers discover additional genes relevant to BBS or other human eye diseases.

The corresponding experiment selected 120 12-week-old male F2 offspring rats for tis-

sue harvesting, microarray analysis, and genotyping. As discussed in Scheetz et al. (2006)

, among the 31, 042 noncontrol gene probes on the array, probes that were not expressed

in the eye or probes that lacked sufficient variation were excluded. A probe to be consid-

ered “expressed in the eye”, its maximum expression value among the 120 F2 rats must

be greater than the 25th percentile of the entire set of expression values. For a probe

to be considered as “sufficient variable”, it must have at least 2-fold variations in gene

expression level.

As a result, the dataset records the gene expression values of 18, 976 probes that were

considered to be both “expressed in the eye” and “sufficiently expressed” for all the 120
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F2 rats. The dataset is publicly available in the Gene Expression Omnibus repository,

www.ncbi.nlm.nih.gov/geo (GEO assession id: GSE5680).

In the dataset, gene TRIM32 (probe ID 1389163 at) is the response variable (Y ) with

the remaining 18, 975 gene probes as explanatory variables (Xj’s). Scheetz et al. (2006)

also suggest that among the 18, 975 explanatory probes, there are about 3,057 gene probes

having a 4-fold or greater change in expression. From biology point of view, the relatively

high degree of expression variations indicates that these gene probes are potentially more

important.

Having 120 samples (n) and 18, 975 explanatory probes (p), the microarray dataset

(n << p) raises an ultra-high dimensional problem. As pointed out in Fan and Lv (2008)

, the dimensionality is “ultra-high” when the number of explanatory variables, p, is one

or several orders of magnitude larger than the sample size, n.
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Chapter 3

Methodology

In this section, we introduce the methods we use to analyze the microarray data in this

project.

3.1 Models

To identify important genes related to TRIM32 , the most straight forward and intuitive

method is linear regression and the model can expressed as

Yi =

p∑
j=1

Xijβj + εi, i = 1, . . . , n,

where Yi is the ith observation of the response variable, βj, j = 1, . . . , p is the unknown

coefficient to estimate, Xij, i = 1, . . . , n, j = 1, . . . , p represents the explanatory variable

and εi ∼ N(0, σ2) is the white noise which is independent from the explanatory variable.

The method of least squares is a standard approach in linear regression, and “Least

squares” means that the overall solution minimizes the sum of the squares of the residuals.

Specifically,

β = {βj}pj=1 = min
β

n∑
i=1

(
Yi −

p∑
j=1

Xijβj

)2

.
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The basis assumption for linear model is that the relationship between the response

and the explanatory variable is linear. However, in pratice, the relationship between the

covariates and the response variable may not be linear. In contrast to the restricted form

of linear models, additive models are more flexible by accommodating nonlinear functions

for each covariate. The additive model is expressed as

Yi =

p∑
j=1

mj(Xij) + εi (3.1)

where Yi is the ith observation of the response variable, mj(·) is the unknown smooth

function for the jth feature, Xij, i = 1, . . . , n, j = 1, . . . , p represents the explanatory

variable and εi ∼ N(0, σ2) is the white noise which is independent from the explanatory

variable.

To estimate the unknown function mj(·) in (3.1), we consider the use of polynomial

spline smoothing in Xue and Yang (2006) . The appeal of polynomial splines is that they

often provide good approximations of smoothing functions with a simple linear combina-

tion of spline basis. Suppose that each Xij, j = 1, . . . , p, takes value between a and b,

where a and b are some finite numbers. We divide [a, b] into (N + 1) subintervals with a

sequence of points given as

{tk}N+r
k=1−r = t1−r = · · · = t−1 = t0 = a < t1 < · · · < tN = b = tN+1 = · · · = tN+r.

Let Br(u) = {Bk,r}Nk=1−r be the spline basis functions of order r, and m(·) of which the

kth order derivative of m(·) is continuous on [a, b]can be estimated by

m̂ = Br(x)γ,

where γ is the spline coefficient.

3.2 Model Selection Criteria

Model selection criteria plays an important role in selecting the best model from multi-

ple candidates. Two traditional model selection criteria are Akaike Information Cri-
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terion (AIC) by Akaike (1973) and Bayesian Information Criterion (BIC) by

Schwarz (1978) , and they are defined as

AIC = n log (MSE) + 2× k;

BIC = n log (MSE) + log (n)× k,

where MSE = 1
n

∑n
i=1

(
Yi −

∑p
j=1Xijβ̂j

)2
and k represents the number of parameters in

the model.

Another popular criteria for model selection is k-fold cross validation (CV) by

Stone (1974) . We randomly partition the entire dataset into k equal sized subsets. For

each iteration (k iterations in total), we pick a single subset as the validation data and

use the remaining k − 1 subsets as training data to build a model. We collect the result

of how well the model predicts the validation data for each iteration and calculate the

average of k results, we can get a single estimation as the model selection criterion.

As pointed out in Wang, Li and Leng (2009) , the traditional BIC can identify the true

model consistently, as long as the dimension of the explanatory variable is fixed. When

the dimensionality is fixed dimension, the number of candidate models is also fixed. Thus,

as long as the corresponding BIC can consistently differentiate the true model from an

arbitrary candidate model, the true model can be identified with probability tending to

1. However, if the predictor dimension also goes to ∞, the number of candidate models

increases extremely fast. Thus, the traditional theoretical arguments for BIC are no

longer applicable. To overcome such a challenging difficulty, Wang, Li and Leng (2009)

proposed a modified BIC (mBIC) which is defined as

mBIC = n log (MSE) + log (n)× k × Cn,

where Cn > 0 is some positive constant. As one can see, when Cn = 1, mBIC = BIC

and Wang, Li and Leng (2009) suggested Cn = log (log (d)) based on extensive numerical

studies.
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When the model space is even larger, Chen and Chen (2008) reexamined the Bayesian

paradigm for model selection and proposed an extended family of Bayes information

criteria (eBIC). eBIC takes into account both the number of unknown parameters and

the complexity of the model space and is defined as

eBIC = n log (MSE) + log (n)× k + 2γ log

(
p

k

)
, 0 ≤ γ ≤ 1.

3.3 Variable Selection Techniques

3.3.1 Classical Variable Selection Technique

Forward selection and backward selection are two standard variable selection techniques.

Forward selection starts from a null model (no variables in the model). For each

step, we try all variables from the remaining predictors one at a time to test which variable

statistically improves the model the most based on a certain model selection criterion such

as AIC or BIC, and then add this variable to the model. We keep repeating the process

until no more variables can improve the model.

Backward selection starts from a full model (all variables in the model). For each

step, we remove a variable in the model that has the lowest statistical significance to the

model based on AIC or BIC. We keep repeating the process until removing any of the

remaining variables in the model will incur a significant loss.

3.3.2 Shrinkage Methods

Unfortunately, all the above-mentioned classical variable selection techniques are compu-

tationally expensive, particularly in high dimensional situations. Thus, in the past decade,

various shrinkage methods, such as the LASSO by Tibshirani (1996) and the SCAD by

Fan and Li (2001) , have been proposed. The shrinkage methods can select variables and

estimate coefficients simultaneously. It has been shown that when the tuning parame-
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ters can be selected appropriately, the true model can be identified consistently. More

discussion can be find in Fan and Li (2001) , Fan and Peng (2004) , and Zou (2006) . Re-

cently, similar results have also been extended to the situation with a diverging number

of parameters by Fan and Peng (2004) .

The main idea of shrinkage method is to add a penalty function pλ(·) to the traditional

sum of square error objective function, which can be expressed as

R =
n∑
i=1

(
Yi −

p∑
j=1

Xijβj

)2

+

p∑
j=1

pλ(|βj|).

Several penalty functions can be considered in the penalized regression:

• Least Absolute Shrinkage and Selection Operator (LASSO) by Tibshirani (1996)

pλ(|β|) = λ|β|.

• Smoothly Clipped Absolute Deviation (SCAD) by Fan and Li (2001)

pλ(|β|) =


λ|β| if |β| ≤ λ;

−
( |β|2−2aλ|β|+λ2

2(a−1)

)
if λ < |β| ≤ aλ;

(a+1)λ2

2
if |β| > aλ

where a = 3.7 is suggested in Fan and Li (2001) .

• Minimax Concave Penalty (MCP) by Zhang (2010)

pλ(|β|) =

λ|β| −
|β|2
2a

if |β| ≤ aλ;

aλ2

2
if |β| > aλ

where a = 3 is suggested in Zhang (2010) .

There are many other different penalty functions such as Adaptive Lasso by Zou (2006)

. In this project, we use the three penalty functions above (LASSO, SCAD, and MCP)

to compare the results.
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3.3.3 Sure Independence Screening (SIS)

In practice, it is often assumed that when the dimension p is very high, only a small number

of explanatory variables among X1, X2, . . . , Xp contribute to the response Y . Moreover,

in biology, a genetic disease is often related to one or a group of genes. Therefore, with

the assumption of sparsity in our project, we can improve our estimation accuracy by

choosing a subset of significant predictors.

In this project, we implement Sure Independence Screening (SIS) by Fan and Lv (2008)

to screen the explanatory variables.

As pointed by Fan and Lv (2008) , Sure Independence Screening has a property that

all the important variables will survive after variable screening with a probability tending

to one. Therefore, the screening process of applying componentwise marginal regression

for each explanatory variable and selecting a set of variables by MSE or coefficient in SIS

guarantees to keep the important variables after screening.

The basic procedures of Sure Independence Screening + penalized regression:

1. Standardize all explanatory variables Xj, for j = 1, 2, ..., p, and the response variable

Y .

2. Apply marginal regression on each explanatory variable Xj to Y (Y ∼ Xj, for

j = 1, 2, ..., p).

Calculate the coefficient ωj = Xj
TY (linear SIS only) or the MSE for each j =

1, 2, ..., p (linear and nonparametric SIS).

3. Select a subset of d explanatory variables Xj with the first d largest coefficients |ωj|,

or the first d smallest MSEs.

The new dimension of features is reduced from p to d, where d < n, usually pick

d = n− 1 or d = n/log(n)

4. After shrinking the data matrix to n × d, we can then apply penalized regression,
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using different model selection criteria (BIC/eBIC/CV) to do further variable selec-

tion.

Note that sorting by the coefficients in the process of variable screening is faster but it

only applies to linear SIS. By contrast, screening by MSE is slower but it works for both

linear and nonparametric SIS.

Figure 3.1: Sure Independence Screening + penalized regression

Figure 3.1 shows an example of using SIS to reduce the dimension of feature from p

to d = n/log(n) and then applying penalized regression to select variables.

3.3.4 Iterative Sure Independence Screening (ISIS)

Fan and Lv (2008) also introduced an extension of Sure Independence Screening (SIS):

iterative SIS (ISIS).

The basic procedures of Iterative Sure Independence Screening + penalized regression:

1. Standardize all explanatory variables Xj, for j = 1, 2, . . . , p, and the response vari-

able Y .
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2. For each step, use an SIS based variable selection method such as SIS-LASSO to

select a subset of explanatory variables.

3. Get the residuals from regressing Y over the chosen subset of explanatory variables.

(residual = Y − Ŷ ).

4. Treat the residuals as the new responses and repeat from Procedure 2 by apply-

ing the same variable selection method to the remaining variables. (residual ∼

Xremaining)

5. After several iterations, we get a subset of variables with size d < n. In practice,

we can pick a maximum number of variables in the subset or a maximum number

of steps to end the iterations.

An advantage of iterative SIS is that it not only keeps the marginally correlated ex-

planatory variables as SIS, but it also considers variables that have high joint correlations

with the response. Therefore, using iterative SIS can overcome some problems in the

original SIS and make the variable selection more reasonable.
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Chapter 4

Application and Results

In this chapter, we implement all the methodologies described in Chapter 3 to the Mi-

croarray dataset. To evaluate the different methods, we calculate mean squared prediction

error (MSPE) which can be used to determine how well a model predicts unknown data.

The lower MSPE suggests the better prediction for future data of a model.

4.1 Application of Methodology

In this project, we employ all the techniques in Chapter 3 to select variables and build

models.

As mentioned in Chapter 2, about 3, 000 gene probes exhibit relatively higher vari-

ances and are considered to be potentially more important variables. To speed up the

performance, we select 3, 000 explanatory variables with the largest variances instead of

all the 18, 975 predictors as a starting point. (we use p = 18, 975 to make comparison

later)

For building linear models, we directly apply SIS package in R, which iteratively

screens the predictors and uses penalized linear regression to select variables. We could

get 9 linear methods, the combination of choosing one from the three penalty functions
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(LASSO/SCAD/MCP) and one from the three model selection criteria (BIC/eBIC/CV).

We use the 9 linear methods to build linear models.

For building additive models, we implement nonparametric SIS by simulating the pro-

cess of linear SIS. In nonparametric SIS, we first get the spline basis for each explanatory

variable and apply marginal regression to each basis to select a group of the bases with

the lowest marginal errors. The number of bases we select is n − 1, which is 119 in this

dataset. We then get 9 nonparametic methods: choosing one from the three group penalty

functions (group LASSO/group SCAD/group MCP) and one from the three model se-

lection criteria (BIC/eBIC/CV). We use the 9 nonparametric methods to build additive

models.

In practice, we use default tuning parameters for all penalty functions and model

selection criteria. (a = 3.7 in SCAD and group SCAD, a = 3 in MCP and group MCP,

γ = 1 in ebic, nfolds = 10 in CV)

4.2 Results

To calculate MSPE, we randomly pick 80 samples as the training data, apply SIS with a

certain method (penalty function+model selection criterion) to get a new model, and use

the parameters from the new model to predict the remaining 40 samples. We compare the

prediction Ŷ with the response Y of the 40 samples and calculate the MSE. Repeating

this process for 100 times, we get the averaged MSE as the MSPE.

16



4.2.1 Linear Models Comparison

MSPE LASSO SCAD MCP

BIC 0.0148 0.0180 0.0207

eBIC 0.0148 0.0180 0.0207

CV 0.0136 0.0160 0.0155

Table 4.1: MSPE of the 9 linear models (p = 3000)

From Table 4.1, some partial conclusions are drawn:

1. LASSO predicts unknown data better than SCAD and MCP.

2. Using model selection criterion CV predicts unknown data better than using BIC

and eBIC for each penalty function.

We select the linear model with the lowest MSPE for each penalty function. Among

the three selected linear models, the model using method (LASSO+CV) has the lowest

MSPE.

We further use p = 18, 975 to select variables and build models using the three selected

methods (LASSO+CV/SCAD+CV/MCP+CV):

LASSO SCAD MCP

p = 3000 p = 18, 975 p = 3000 p = 18, 975 p = 3000 p = 18, 975

MSE 0.0023 0.0013 0.0014 0.0006 0.0014 0.0006

MSPE 0.0136 0.0080 0.0160 0.0106 0.0155 0.0131

# of variables 25 25 25 25 25 25

Table 4.2: Comparison of 3 selected linear models

From Table 4.2, some partial conclusions are drawn:
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1. The MSEs and MSPEs are lower than the those using p = 3000. Therefore, using

the full dataset (p = 18, 975) to build linear models and select variables may help

get a better result.

2. LASSO predicts unknown data better than SCAD and MCP, which is identical

to the partial conclusion when using p = 3000.

3. LASSO+CV might be the best method to apply for building linear model.

4.2.2 Additive Models Comparison

MSPE group LASSO group SCAD group MCP

BIC 0.0205 0.0886 0.1463

eBIC 0.0222 0.0218 0.0380

CV 0.0136 0.0139 0.0274

Table 4.3: MSPE of the 9 additive models (p = 3000)

From Table 4.3, some partial conclusions are drawn:

1. Group LASSO and group SCAD predict unknown data better than group

MCP.

2. Using model selection criterion CV predicts unknown data better than using BIC

and eBIC for each group penalty function.

We select the model with the lowest MSPE for each group penalty function. Among

the three selected additive models, the model using method group LASSO+CV and

group SCAD+CV have low MSPEs.

We further use p = 18, 975 to select variables and build models using the three selected

methods (group LASSO+CV/group SCAD+CV/group MCP+CV):

18



group LASSO group SCAD group MCP

p = 3000 p = 18, 975 p = 3000 p = 18, 975 p = 3000 p = 18, 975

MSE 0.0018 0.0047 0.0084 0.0017 0.0112 0.0085

MSPE 0.0136 0.0184 0.0139 0.0165 0.0274 0.0236

# of variables 37 18 15 26 1 1

Table 4.4: Comparison of 3 selected additive models

From Table 4.4, some partial conclusions are drawn:

1. For group LASSO and group SCAD, the MSEs are lower than the those using

p = 3000 while the MSPEs are higher, which raises a problem of “overfitting”.

Therefore, using the full dataset (p = 18, 975) cannot get better results.

2. Group LASSO and group SCAD each selects a larger number of variables while

group MCP only selects one variable. Therefore, the group MCP model is

not a relatively good estimation, but the only variable in this model needs to be

considered.

3. The model using group LASSO+CV has the lowest MSPE but has too many

variables. The model using group SCAD+CV has low MSPE and a moderate

number of variables. Therefore, group SCAD+CV with p = 3000 might be the

best method to apply for building additive model.
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Chapter 5

Conclusion

From the results we get, linear models we built by using SIS+penalized linear re-

gression can fit the dataset very well and can also predict future unknown data quite

successfully. The linear model using shrinkage method LASSO with model selection cri-

terion CV performs the best among all. In addition, using dataset starting from a larger

dimension of p also improves data fitting and unknown data prediction. Therefore, the

variables in the models with p = 18, 975 need to be considered.

On the other hand, the additive models using group LASSO and group SCAD

give good estimations and predictions. However, using the full dataset to build additive

models does not improve unknown data prediction. We need to take the variables selected

by these additive models with p = 3000 into consideration.
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p = 3000 p = 18, 975

probe ID gene name LASSO SCAD MCP group group group LASSO SCAD MCP

LASSO SCAD MCP

1389584 at

1374106 at

1383110 at

1367627 at Gatm

1384466 at Ispd

1385168 at Lrif1

1393817 at Wdr76

1379881 at

1372248 at Sesn1

1373887 at

1389910 at Tmem230

Table 5.1: variables that appear in at least 3 models

Based on Table 5.1, the first 8 probes, especially 1389584 at, 1374106 at, and 1383110 at,

are very likely to be both statistically and biologically significant genes. The other 3

probes, 1372248 at, 1373887 at, and 1389910 at, although do not have high degree of

expression variations as Scheetz et al. (2006) suggests, might also be important genes.

After some careful studies of these selected genes in lab, there might be some further

discussions about whether the high degree of gene expression variation is biologically

significant.
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