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A NEW UPPER BOUND FOR THE

DIAMETER OF THE CAYLEY GRAPH

OF A SYMMETRIC GROUP

Hangwei Zhuang



Abstract

Given a finite symmetric group Sn and a set S of generators, we can represent the

group as a Cayley graph. The diameter of the Cayley graph is the largest distance

from the identity to any other elements. We work on the conjecture that the diameter

of the Cayley graph of a finite symmetric group Sn with S = {(12), (12 . . . n)} is at

most
(
n
2

)
. Our main result is to show that the diameter of the graph Sn is at most

3n2−4n
2

.
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Chapter 1

Preliminaries

A permutation of a set X is a function from X to itself that is both one-to-one and

onto. For example,  1 2 3 4 5

3 2 4 1 5


can be written in cycle as (134), where missing elements are mapped to themselves.

This is called the cycle notation of a permutation. And we are going to use this

notation below. A group is a set with an associative binary operation containing an

identity and an inverse for each element. A symmetric group Sn is a group containing

all permutations on Xn = {1, 2, . . . n}. In a symmetric group, the binary operation is

function composition. The identity is the bijection that maps each element in Xn to

itself. Any permutation’s inverse is its inverse function. For the sake of discussion, we

can think of Xn as a cycle with n positions and each permutation maps n elements

into the n positions. The elements of a subset S of a group G are called generators

of G, and S is said to be a generating set, if every element of G can be expressed as

a finite product of generators. We will also say that G is generated by S.

A group can be represented with a Cayley graph or Cayley digraph . A Cayley

graph of a group G with generating set S has elements of G as vertices and an edge
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set E(Γ) consisting of all ordered pairs (g, gs) such that g is in G and s is in S. The

distance of two elements in such a graph is the number of edges in a shortest path

connecting them [1].

We are interested in the diameter of the undirected Cayley graph of a finite sym-

metric group. For the undirected version of Cayley graph, the edge set is the identity-

free set S
⋃
S−1. We mainly discuss the Cayley graph of a finite symmetric group

Γ(Sn) in the following.

Let g be an element in Sn. We define d(g, S) as the minimum number of elements

of S
⋃
S−1 to express g as a product or the distance on the undirected Cayley graph

from the identity to g. Also, from the graph property, the distance from identity to g

is equal to the distance from g to identity. The diameter of Γ(Sn) is diam(Γ(Sn)) =

maxg∈Sn d(g, S).

We investigate a special generating set S = {(12), (12 . . . n)} for Sn. The two

elements in the generating set represent two basic operations if we arrange elements

of Xn on a cycle. A swap π = (12) represents we swap the location of elements at

positions 1 and 2 and a rotation σ = (12 . . . n) rotates the whole cycle. That is, maps

every element to its adjacent position. In this context, the d(g, S) is the smallest

number of swaps and rotations needed to sort g. For this specific permutation group

with S = {(12), (12 . . . n)}, we denote the distance from g to identity on the Cayley

graph simply as d(g) in the following.

All notations not mentioned here are from [5].
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Chapter 2

Introduction

Permutations have a wide range of applications from computational biology to social

sciences. For example, a chromosome can be viewed as a permutation of genes.

Measuring the “distance” of two permutations, especially from a permutation to

identity permutation, is very useful in problems such as restoring a gene sequence[6]

or solving a rubik’s cube[4]. In mathematics, this is the problem to find the diameter

in Cayley graphs or Cayley digraphs.

Erdős and Rényi did some initial investigations on representing any element in a

finite group with arbitrary elements in that group from a probabilistic approach[7].

They also pointed out the complexity with non-abelian groups comparing to abelian

ones.

Later Babai and Seress[2] gave an upper bound of the diameter of the Caley graph

of a symmetric group or an alternating group of degree n with any generating set to

be exp((nlnn)1/2(1 +O(1))) and made the following conjecture.

Conjecture 2.1. The true bound of the diameter of the Caley graph of a symmetric

group or an alternating group of degree n is nconstant

Seress and Helfgott gave a better quasipolynomial upper bound of the diameter of

the Caley graph of a symmetric group exp((lnlnn)O(1)) in 2011[8]. This result implies
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a quasipolynomial upper bound on the diameter of all transitive permutation groups

of degree n.

In Tan’s thesis [4], an upper bound is given for the well-known generating set

{(12), (12 · · ·n)} by an algorithmic approach.

Theorem 2.2. Let S = {(12), (12 · · ·n)}, diam(Γ(Sn)) ≤ 5n(n− 1).

A conjecture for the upper bound of the diameter of the Caley graph of a sym-

metric group of degree n is made by Li.

Conjecture 2.3 (C.-K. Li, private communication). Let S = {(12), (123 . . . n)} be

the generating set of Sn, and let G be the corresponding Cayley graph. Then the

diameter of G is at most
(
n
2

)
= n2−n

2
.

By computer search, the conjecture is true for n ≤ 5, and the permutation

(1, n)(2, n− 1)...(n−1
2
, n+1

2
) achieves the diameter

(
n
2

)
.

In this thesis, we give the following upper bound of the diameter of the Cayley

graph.

Theorem 2.4. Let S = {(12), (123 . . . n)} be the generating set of Sn, and let G be

the corresponding Cayley graph. Then the diameter of G is at most 3n2−4n
2

.
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Chapter 3

Some properties

In this section, an upper bound of the number of steps to obtain a specific permuta-

tion is found by developing an algorithm. During the experiments, properties of the

symmetric group and its generating set are studied.

First by group property, the distances of a composition of two permutations should

not exceed the sum of the distances of those two permutations to identity.

Lemma 3.1. Let τ, λ ∈ Sn, then

d(τλ) ≤ d(τ) + d(λ)

.

Proof. Let si, ri be elements in S
⋃
S−1. Suppose d(τ) = m, d(λ) = n, τ = es1s2 · · · sm,

λ = er1r2 · · · rn. τλ can be written as es1s2 · · · smer1r2 · · · rn = s1s2 · · · smr1r2 · · · rn,

a product of m+ n elements of S
⋃
S−1. If d(τλ) > d(τ) + d(λ), there is a contradic-

tion with the definition of d(τλ) as the minimum number of elements of S
⋃
S−1 to

express g as a product.d(τλ) ≤ d(τ) + d(λ), where τ and λ ∈ Sn.

Given the inequality in Lemma 3.1, we can decompose a permutation to simpler

cases. Thus we look into the simplest permutations , transpositions, or 2-cycles.
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We first give some useful definitions.

Definition 3.2. For a, b ∈ Xn, we define l(a, b) as min(|b− a|, (n− |b− a|)). This is

the distance on the cycle of Xn

We are going to determine the distance that an element in Xn travels for any

permutation.

Definition 3.3. For any a ∈ Xn, with destination γ(a), let γ(a) = b. If b > a, we

define the spin of a, s(a) = b − a when b − a < n
2

or s(a) = −[n − (b − a)] when

b−a > n
2
. If b < a, s(a) = b−a when a− b < n

2
or s(a) = n− (a− b) when a− b > n

2
.

On the sorted cycle, the spin of every element = 0.

The spin represents an element’s path or direction and number of elements it

needs to swap with to its destination on X.

Lemma 3.4. For a permutation τ = (ab) that interchanges two elements a, b ∈ Xn.

Without loss of generality assume a < b,

d(τ) ≤


4l(a, b)− 3 + 2 min(l(1, a), l(2, b)), when b− a ≤ n

2

4l(a, b)− 3 + 2 min(l(1, b), l(2, a)), when b− a ≥ n
2
.

Proof. Here we provide an algorithm. Assume b − a ≤ n/2. We first rotate a to

position 1 so it can start swapping with a + 1 or rotate b to position 2 so it can

swap with b − 1. Let’s assume here we rotate a to 1. This takes a − 1 rotations. In

other cases, we always choose the shortest route to rotate a or b to positions 1 or

2 so they can start swapping. For b − a ≥ n/2 we rotate a to 2 and b to 1 so we

rotate min(l(a, 2), l(b, 1)) times. We observe that it is necessary to swap both a and

b with all elements between a and b. Each πσ swaps a with the next element and

decreases the spin by one. To make sure that other elements other than a and b are

fixed, the spin of other elements should not change. We can first interchange a with
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every element between a and b until a and b are at positions 1 and 2 respectively.

This is realized by (πσ)l(a,b)−1. Then we swap a, b. Similar to above process, we need

to interchange b with every element between a and b using (σ−1π)l(a,b)−1. Now b is at

position 1 and we need to rotate it back to where a originally was. This takes another

a − 1 steps. The whole process needs 4(l(a, b) − 1) + 1 + 2a − 2 = 4l(a, b) + 2a − 5

swaps and rotations. When b−a ≥ n
2
, d(ab) ≤ 4l(a, b)−3 + 2 min(l(1, b), l(2, a) when

b− a ≥ n
2

following the same process.

Then we can readily find an upper bound for the distance from identity to a

permutation that is the composition of two 2-cycles.

Lemma 3.5. Assume 0 < b− a, d− c ≤ n
2
, (ab) ∩ (cd) = ∅, Let λ = (ab)(cd),

d(λ) ≤ 4l(a, b)−3+4l(c, d)−3+min(l(1, a), l(2, b))+min l((1, c), l(2, d))+min(l(a, c), l(b, d))+1

Proof. From Lemma 3.1 and Lemma 3.2, let λ = (ab)(cd), τ1 = (ab), τ2 = (cd),d(λ) ≤

d(τ1) + d(τ2). We continue to use the algorithm in Lemma 3.2. After interchanging a

and b we do not need to rotate b back to its position immediately but instead we rotate

c or d to positions 1 or 2 to start swapping. Now that a or b are at positions 2 or 1,

we’ll rotate min(l(a, c), l(b, d)) times to prepare c or d for the swap. We observe that

in any transposition (ab), s(a) is always less than or equal to n/2. In any permutation

(ab)(cd), (ab) ∩ (cd) = ∅, a and b needs to interchange with all the elements between

a and b. If no π during this (ab) affect any element between c and d, the situation is

simple. If there is any π involving elements between c and d, to ensure every other

element is fixed, those elements must be swapped for an even number of times. If an

element is swapped when moving a towards b, there must be another swap to move

it back when moving b towards a. Furthermore, as (ab) ∩ (cd) = ∅,we observe that

after (ab), α and β are at positions 1 and 2, since the swap only happens at positions

1 and 2, 1 additional rotation σ or σ−1 is needed. Therefore, d(λ) ≤ 4l(a, b) − 3 +
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4l(c, d)− 3 + min(l(1, a), l(2, b)) + min l((1, c), l(2, d)) + min(l(a, c), l(b, d)) + 1.

With the similar approach, we can achieve the maximum number of steps in the

case of a permutation that is composed with only transpositions. The following is a

cycle of reversed order.

Lemma 3.6. The permutation (1, n)(2, n− 1)...(n−1
2
, n+1

2
) needs at most

(
n
2

)
steps to

sort.

Proof. We follow the same algorithm in Lemma 3.2 and Lemma 3.3 for this permuta-

tion. Here we only need to rotate once before we start interchanging elements because

our first transposition is (1, n). To complete this transposition, 4l(1, n)− 3 steps are

needed. After this transposition we can immediately rotate once to get 2 to position

1 and start swapping. Repeat the process until (n
4

+ 1, 3n
4

) when b− a ≤ n− (b− a).

Remember one rotation is needed between each transposition. Now we rotate twice so

each element can be interchanged with least other elements from the other direction.

Counting the After all pairs are interchanged, now n−1
2

and n+1
2

are on positions 1 and

2. To restore the desired position, n−1
2
− 1 rotations are needed. The whole process

takes

2

n−1
2∑

k=1

(4k − 3) + 2 ∗ (n− 1)/2 = (n− 2)
n− 1

2
+ n− 1 =

(
n

2

)
steps.

We can make some observations based on the above algorithm.

Observation 3.7. A swap π can contribute to two disjoint cycles.

Proof. Suppose a and b are swapped and s(a) = s(a) − 1, s(b) = s(b) + 1. For

s(a) > 0 and s(b) < 0, both elements are 1 element closer to their destinations.

However, if s(a), s(b) > 0 or s(a), s(b) < 0, one of the element is 1 element further

to its destination and will need more steps to move it back. Thus we hope not to
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swap two elements with same signs of spin. Here +,− and 0 represent different

directions.

Observation 3.8. [9] For any a ∈ X, the shortest path on the cycle for a to its des-

tination is fixed. a can always swap with less than n
2

other elements to its destination.

In specific, a should swap with s(a) other elements to get to its destination.

van Zuyle et. al.’s paper [9] describes using circular transpositions to sort a

permutation. The result still applies to our case, only to add that rotations are

needed to get elements that are swapped to the positions 1 and 2.

From the result we make the following claim

Proposition 3.9. When we have a product of disjoint cycles λ = κ1κ2 · · ·κm, the

number of swaps needed for λ should be the sum of the number of swaps needed for

all κi.
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Chapter 4

Permutation as a Product of

2-Cycles

Now we consider an arbitrary permutation.

Theorem 4.1 ([5]). Every permutation in Sn is a product of transpositions.

Particularly, we can represent any k-cycle in cycle notation as (x1x2 · · · xk) by

Definition 2.1. Note that as long as the order does not change, which element x1 is

can be of our own choice. It can then be written as the products of k−1 transpositions

(x1xk)(x1xk−1) · · · (x1x2).

In Chapter 2 we discussed permutations as product of disjoint 2-cycles, now we

investigate permutations as product of non-disjoint 2-cycles.

Lemma 4.2. If we have two consecutive transpositions sharing a common element

in the form of λ = (ab)(ac),

d(λ) ≤ 2 min(l(a, 1), l(a, 2)) + 4(l(a, b) + l(a, c))− 2 ∗ 3 + 1.
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Proof. From Lemma 3.1 and Lemma 3.2,

d(λ) ≤ 4 min(l(a, 1), l(a, 2)) + 4(l(a, b) + l(a, c))− 2 ∗ 3.

But here we observe that we can just first interchange a and b and then interchange

b and c. We notice that after interchanging a and b, b is at positions 1 or 2 and no

extra rotations are needed to rotate b to position 1. If b happens to need swapping

from a different direction, at most one rotation is needed. Thus only

2 min(l(a, 1), l(a, 2)) + 4(l(a, b) + l(a, c))− 2 ∗ 3 + 1

is sufficient to complete the process.

Now we represent a general k-cycle with product of non-disjoint 2-cycles.

Observation 4.3. In k-cycle (x1xk)(x1xk−1) · · · (x1x2), ∀i ∈ Z, at most two l(x1, xi)

takes the same value.

Proof. It is obvious that no two xi takes the same value and l(x1, xi) = min(|xi −

x1|, (n− |xi − x1|)). Thus no more than two xi can take the same integer value.

Lemma 4.4. For any k-cycle x = (x1xk)(x1xk − 1) · · · (x1x2),

d(x) ≤ n+ 2kn+ 3.

Proof. A k-cycle is a sequence of transpositions with a common element. Following

Lemma 4.2 and Observation 3.6, 4
∑k

i=2 l(x1, xi) − (k − 1) ∗ 3 steps can map every

element back to its destination. At most k − 2 rotations are needed to connect two

transposition 2 min(l(x1, 1), l(x1, 2)) are used to rotate x1 so that it can start to swap

at first and rotate the whole cycle back to place at the end. Note that we can always

choose x1 as the smallest element or the element that’s closest to positions 1 or 2 as
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x1.

d(x) ≤ 2 min(l(x1, 1), l(x1, 2)) + 4
k∑

i=2

l(x1, xi)− (k − 1) ∗ 3 + k − 2

≤ n+ 4 ∗ (
kn

2
+
k

2
)− 3(k − 1) + k − 2

≤ n+ 2kn+ 3

Next we represent a permutation as product of disjoint k − cycles.

Theorem 4.5. [5] A permutation can be written as the product of m disjoint k-cycles.

Let g = p1p2 · · · pm, where pi are disjoint cycles. Let ki be the length of each cycle

m∑
i=1

ki ≤ n, and m ≤ n

2
.

Proof. As the m k−cycles are disjoint, no two elements appear in two cycles
∑m

i=1 ki ≤

n. For any k − cycle,k ≥ 2. Thus m ≤ n
2
.

Theorem 4.6. For any permutation g,

d(g) ≤ 5n2

2
+

3n

2
.

Proof. From Lemma 3.1,

d(g) ≤ mn+ 2n
m∑
i=1

ki + 3m

≤ n2

2
+ 2n2 + 3 ∗ n

2

=
5n2

2
+

3n

2
.
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We find that since we can choose any element in a k-cycle to be the common

element in the non-disjoint transpositions, we can obtain a better upper bound by

dividing the cycle into four.

Observation 4.7. For any k-cycle on Xn, we can divide Xn into four quarters, with

at least dk
4
e elements involved in the cycle in one quarter.

Proof. We can use the pigeonhole principle. If we divide Xn into four quarters and

distribute the k elements among those four quarters, at least one quarter would

contain at least dk
4
e such elements.

Lemma 4.8. There exists an element y such that the element’s distance on X with

at least dk
4
e other elements ≤ dn

4
e.

Proof. From Observation 4.7, at least one quarter contains at least dk
4
e elements

that’s involved in the k − cycle. The distance between every two of those elements

should not exceed dn
4
e. Thus for every such element, it’s distance on X with at least

dk
4
e other elements ≤ dn

4
e.

Note that we can choose an arbitrary element on the cycle to be x1. If for each

k− cycle we choose an element described in Lemma 4.8 as x1, we can obtain a better

upper bound.

Theorem 4.9. For any permutation g,

d(g) ≤ 9n2

4
− 3n

2
.

Proof. If for each k-cycle we choose an element described in Lemma 4.8 as x1, at least

for dk
4
e xis, l(x1, xi) ≤ dn4 e. Then

k∑
i=2

l(x1, xi) ≤
k

4
· n

4
+

3k

4
· n

2
=

7nk

16
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.To obtain an upper bound of d(pi) for any ki − cycle pi, the same formula as in

Lemma 4.4 gives,

d(pi) ≤ n+ 4 ∗ 7nk

16
− 3(k − 1) + k − 2 = n+

7nk

4
− 2k + 1

. For any g as the product of m disjoint cycles,

d(g) ≤ mn+
7n

4

m∑
i=1

ki − 2
m∑
i=1

ki +m ≤ 9n2

4
− 3n

2
.
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Chapter 5

Permutation as a Product of

3-Cycles

In this chapter, we write a permutation as a product of 3-cycles or 3-cycles and a

2-cycle and improve the upper bound.

Theorem 5.1. [5] A product of two two-cycles (ac)(ab) can be also written as a

3− cycle (abc).

With Theorem 5.1, obviously we can convert a product of 2-cycles to a product

of 3-cycles.

Theorem 5.2. Any permutation g ∈ Sn can be written as a product of only 3-cycles

or 3-cycles and one 2-cycle.

Proof. A permutation is always odd or even[5]. Any permutation g or k-cycle can

be written as a product of either even number of transpositions or odd number of

transpositions. Let a k-cycle gk = (x1xk)(x1xk−1) · · · (x1x2). By Theorem 5.2, if

gk is a even permutation, we can write gk = (x1xk−1xk)(x1xk−3xk−2) · · · (x1x2x3)

as a product of k−1
2

3-cycles. If gk is an odd permutation, we can write gk =

(x1xk−1xk)(x1xk−3xk−2) · · · (x1x3x4)(x1x2) as a product of k−2
2

3-cycles and one trans-

position.
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Now we determine the steps which we needed to obtain any 3-cycle.

Theorem 5.3. For any 3-cycle λ = (abc) on Xn,

d(λ) ≤ 2n− 4.

Proof. We develop a similar algorithm as with 2− cycles and discuss two cases. We

first describe the algorithm:

1. We find the nearest element a to position 1 with a positive spin or the nearest

element b to position 2 with a negative spin. Rotate a to position 1 or rotate b

to position 2.

2. Check the elements on position 1 and 2. If the two elements have different signs,

go to (3). If the two elements have same signs then continue to rotate from the

same direction as (1) until the spin of the two elements on positions 1 and 2

have different signs.

3. For elements on the position 1 a and on position 2 b, swap a, b. s(a)− =

1, s(b)+ = 1 Then go back to (1). If the spin of all elements are 0, the permu-

tation is sorted.

Consider a 3-cycle (abc). Without loss of generality assume a < b < c, c has

the opposite spin sign as a, a and b do not swap, c will swap with both a and

b. There are two swaps contribute to two different elements. Whenever we have

one such swap, one swap is saved. However in step (2) of the algorithm, whenever

two elements have the same sign of spin meet, one more rotation is needed. So

2(b−a)−1+2(c−b)−1+2(c−a)−1−2+1 = 4(c−a)−4 steps are sufficient. Adding

rotations needed to rotate the first element swapped to position 1, at most n rotations

are sufficient. The same rule applies to if c has the same spin sign as a. In this case,

there are no swaps that reduce the absolute spin of two different elements. Also there

18



are two extra rotations between a and b , 2(b−a−1)+2(c−b−1)+2(n−(c−a)−1)+2 =

2n− 4 steps are sufficient. In both cases, adding rotations needed to rotate the first

element swapped to position 1, at most n rotations are sufficient. As in the first case

c− a ≤ n
2
, in both cases,

d(abc) ≤ 2n− 4.

Then using the similar approach in the last chapter, we find the maximum steps

we need for any k-cycle and represent any permutation as product of disjoint k-cycles.

Theorem 5.4. For any k-cycle pk,

d(pk) ≤ 2nk − 3k + 2n− 2

2
.

Proof. If pk is an even permutation, it can be written as a product of k−1
2

3-cycles.

Then similar with the discussion of 2-cycles, only at most one rotation is needed

between two 3-cycles. At most

(2n− 4) · k − 1

2
+
k − 1

2
− 1 + n =

2nk − 3k + 1

2

steps are sufficient. If pk is an odd permutation, it can be written as a product of k−2
2

3-cycles and one transposition. At most

(2n− 4) · k − 2

2
+
k − 2

2
− 1 + n+ 2n− 3 =

2nk − 3k + 2n− 2

2

steps are sufficient. We conclude that

d(pk) ≤ 2nk − 3k + 2n− 2

2
.
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Theorem 5.5. For any permutation g,

d(g) ≤ 3n2 − 4n

2
.

Proof. As in Theorem 4.5, we write any permutation as product of m k-cycles. From

Lemma 3.1,

d(g) ≤
m∑
i=1

(
2nki − 3ki + 2n− 2

2
) ≤ n2 − 3n

2
+mn−m ≤ 3n2 − 4n

2
.
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Chapter 6

Future Research

We obtained an upper bound of 3n2−4n
2

for the diameter of the Cayley graph of

a finite symmetric group with the natural generating set S = {(12), (12 · · ·n)} by

representing any permutation as a product of 3-cycles and 2-cycles. The natural next

step would be investigating swaps and rotations needed for the permutation as a

product of longer cycles or other complex cycle decomposition. While the result can

be used for special sorting problems, we hope to generalize it to symmetric groups

with an arbitrary generating set. For example, the transposition in our generating set

can be replaced by a 3-cycle or, though trivial, another adjacent transposition. This

result may also serve as a stepping stone for researches regarding sorting algorithms

or other graph diameter problems. We find a case that reaches the upper bound of(
n
2

)
conjectured by Li. Study of this conjecture will be very valuable. The problem

of alternating group is wide open.
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