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ABSTRACT  

 

Resistance to Thyroid Hormone (RTH) syndrome is a developmental disease 

characterized by the failure of peripheral tissues to respond to thyroid hormone signaling. 

A382PfsX7 is a nonfunctional RTH-associated variant of thyroid hormone receptor α1 which 

fails to bind thyroid hormone and disassociate from corepressors. The mutation also deletes a 

nuclear export signal (NES) from the C-terminal end of the receptor. This thesis sought to 

determine whether this NES deletion altered the intracellular distribution of TR in a way which 

would imply interference with its role in transcriptional activation and repression. Using lipid-

based transfection of fluorescently-labeled TR into HeLa (human) cells and fluorescent 

microscopy, the nuclear-to-cytoplasmic ratio of wild-type (WT) and mutant TR and the presence 

of TR aggregates was evaluated. Coexpression of WT-TRα1 and A382PfsX7 is associated with a 

cytosolic shift in localization and an increased frequency of TR aggregation. These data suggest 

that novel interactions between WT and mutant receptors may increase the aggregation 

propensity of TR and thereby alter localization. 
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INTRODUCTION  

In response to developmental or environmental cues, hormones are released into the 

blood and travel to peripheral tissues, where they bind receptors and elicit developmental and 

metabolic changes. One such ligand-receptor pair is thyroid hormone (TH) and the thyroid 

hormone receptor (TR). There are multiple checkpoints which regulate thyroid hormone 

signaling and mutations or exogenous disruptions at any of these checkpoints could dysregulate 

the system. This thesis studies the intracellular localization of a mutant form of thyroid hormone 

receptor alpha 1 (TRα1) that causes the disorder Resistance to Thyroid Hormone syndrome. 

The Hypothalamic-Pituitary-Thyroid Axis 

Production of TH begins with the secretion of thyrotropin-releasing hormone (TRH) from 

the hypothalamus (Figure 1). TRH is received by TRH receptors on the anterior pituitary gland. 

In response to the TRH signal, the pituitary gland produces and secretes thyrotropin/thyroid-

stimulating hormone (TSH) which in turn stimulates the thyroid gland. 

 Thyroid hormone is synthesized in the follicular cells and the follicular lumen of the 

thyroid gland (Mondal et al., 2016). Iodine is transported into the follicles via the sodium iodine 

symporter. An unknown iodide transporter moves I- from the follicular thyroid cells into the 

lumen where TH biosynthesis occurs (Mondal et al., 2016). Thyroid peroxidase (TPO), in the 

presence of hydrogen peroxide, catalyzes the iodination of tyrosine residues on homodimeric 

thyroglobin (Tg) (Yen et al., 2001; Mondal et al., 2016). TPO also facilitates the phenolic 

coupling of iodinated tyrosyls on Tg (Mondal et al., 2016). Although Tg is abundant in the 

thyroid follicles, each Tg produces only one to four TH molecules, due to less than 3% of its 

tyrosine residues being properly accessible for iodination. The iodinated tyrosyls remain bound 

to Tg and are stored in the follicular lumen (Yen et al., 2001; Mondal et al., 2016). Continuing 
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production and secretion of TSH from the anterior pituitary induces the proteolysis of the 

coupled tyrosyls from Tg, releasing TH for transport (Mondal et al., 2016). Monocarboxylate 

transporter 8 (MCT8), a high-affinity transporter for T4 and T3, exports TH into the blood serum 

(Halestrap, 2012).  

T4 and T3 differ in their pattern of iodination and their affinity for TR (Figure 2). In T4, 

both carbon rings are di-iodinated; in contrast, the outer ring of T3 is mono-iodinated. T3 is the 

major TR ligand, although T4 can bind TR with lesser affinity. The thyroid gland predominantly 

makes inactive T4 but does produce and secrete biologically active T3 at lesser levels. The 

majority of T3 is produced via deiodination of the outer ring of T4 (Yen et al., 2001). TH 

biosynthesis is controlled by a negative feedback loop. Elevated levels of circulating TH inhibit 

the TRH-TSH signaling pathway, decreasing TH production.  

Thyroid Hormone Transport and Processing 

Due to its general hydrophobic nature, TH binds to several transport proteins to travel 

through the blood serum (Figure 3). Thyroxine-binding globulin (TBG), transthyretin (TTR), and 

human serum albumin (HSA) all play a role in the transport of TH to peripheral tissues (Mondal 

et al., 2016; Yen et al 2001). While TBG has the highest affinity for T4, TTR and HSA have 

higher plasma concentrations, giving them a general binding capacity greater than that of TBG 

(Mondal et al., 2016). However, cells only uptake free T4 and T3 (Yen et al., 2001). TH bound to 

serum transport proteins cannot enter peripheral tissues, but this interaction with transport 

proteins is impermanent. Eventual dissociation of TH allows for its uptake by peripheral tissues 

via plasma membrane transporter MCT8.  

Inside the cell, T4 undergoes deiodination to convert it into active T3.  Iodothyronine 

deiodinases (DIOs) catalyze deiodination of TH. Mono-deiodination of the phenolic outer ring 
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forms active T3. Removal of iodine from the inner ring produces inactive rT3 (Mondal et al., 

2016).  Further deiodination of T3 produces another inactive TH variant, T2. Diffusion of TH into 

the nucleus and binding to TR results in TR-mediated recruitment of coactivators and other 

complexes which activate TH-target gene transcription.    

Thyroid Hormone Receptors 

Thyroid hormone receptors are ligand-activated transcription factors and members of the 

nuclear receptor (NR) superfamily. Unlike many nuclear receptors, such as steroid receptors, 

TRs do not require ligand binding to translocate into the nucleus. They regulate transcription by 

interacting with thyroid hormone response elements (TREs) independent of TH (Yen et al., 

2006). Classically, TR positively regulates TREs. Upon ligand binding, TR disassociates from its 

corepressors and recruits coactivators to begin transcriptional activation (Figure 5). Negatively 

controlled TREs have also been identified but are poorly characterized.  

Two genes encode thyroid hormone receptors. The THRA gene, located on chromosome 

17, regulates the production of TRα and its subtypes. The other gene, THRB located on 

chromosome 3, codes for TRβ subtypes. Between these two loci, four major TH-binding variants 

are produced: TRα1, TRβ1, TRβ2, and TRβ3 (Brent 2012; Cheng et al 2010). THRA also 

produces TRα2, a C-terminal variant of TRα which is unable to bind ligand (Liu et al., 1995; 

Burgos-Trinidad and Koenig 1999; Yen et al., 2006). Although highly conserved in sequence 

and mechanism of function, these four subtypes regulate different bodily processes through 

tissue-dependent expression. TRα1 is most highly expressed in skeletal muscle, the 

gastrointestinal tract, heart, and brain. TRβ1 is in the liver, brain, kidney, and thyroid. TRβ2 is in 

the anterior pituitary, hypothalamus, and retina. TRβ3 is in the kidney, livers, and lungs (Brent, 

2012; Cheng et al., 2010; Mondal et al., 2016). Most notably, this tissue-dependent expression 
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means TRβ isoforms have a greater role in mediating the negative feedback loop of TH 

expression.  

Thyroid Hormone Receptor Domains 

Thyroid hormone receptors consist of four major domains— (1) a variable N-terminal A/B 

domain, (2) a DNA-binding domain (DBD), (3) a hinge domain, and (4) a ligand-binding domain 

(LBD). Among the NR superfamily—and between TR subtypes—the A/B domain has the 

greatest variability in sequence and length (Wu et al., 2000; Jin and Li, 2010; Brent, 2012). It 

contains activation function-1 (AF-1) (Wu et al., 2000; Jin and Li, 2010). AF-1 induces ligand-

independent transactivation. A study of TR-heterodimer function without T3 stimulation was still 

able to quantify levels of the β-galactosidase reporter, presumably due to the AF-1-mediated 

transactivation function (Wu et al., 2000). The A/B domain of TRα also contains a nuclear 

localization sequence (NLS-2) which is absent from the TRβ isoform (Mavinakere et al., 2012). 

The DNA-binding domain (DBD) is most conserved across the NR superfamily (Lazar et al., 

1991; Jin and Li, 2010; and Mondal et al., 2016). The DBD contains two “zinc finger” motifs 

and recognizes thyroid hormone response elements (TREs) (Lazar et al., 1991, Yen et al., 2001; 

Yen et al 2006; Mondal et al., 2016). The TRE consensus sequence (also known as a “half-site”) 

is 5’-AGGTCA-3’. Half-sites can be arranged as direct, palindromic, or inverted palindromic 

repeats and may be separated by a short, random sequence of bases (Miyamoto et al., 1993; 

Velasco et al., 2007; Paquette et al., 2014).  

The hinge domain is a flexible linker domain thought to orient the DBD and the ligand 

binding domain (LBD) on TREs (Pissios et al., 2000; Jin and Li, 2010). However, the hinge 

domain also plays a role in stabilizing TR after ligand binding or following interactions with 

corepressors (Pissios et al., 2000; Yen et al., 2001). Helix-1(H1) and Helix-2(H2) of the hinge 
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region are incorporated in the conserved LBD structure of TR (Pissios et al., 2000). While H1 

and H2 do not interact directly with the ligand, they play major roles in maintaining total protein 

stability and stability of the ligand-binding cavity (Pissios et al., 2000; Wagner et al., 1995).  The 

stabilization of TR seems to rely on LBD-hinge interactions, which are induced by TH when 

ligand-bound and by nuclear corepressor (NCoR) in the absence of TH (Pissios et al., 2000). The 

hinge domain also contains NLS-1 which is conserved between TRα and TRβ (Yen et al., 2001; 

Mavinakere et al., 2012).  

The LBD is a multifunctional domain. It mediates ligand binding, ligand-dependent 

transactivation, and regulates coregulator interactions and dimerization (Yen et al., 2001; Mondal 

et al., 2016). Including H1 and H2 of the hinge domain, the conserved LBD structure contains 12 

α-helices (H1-H12) which form an antiparallel “α-helix sandwich” (Jin and Lin, 2010). H12 of 

the LBD contains activation function-2 (AF-2), a leucine-rich sequence which facilitates ligand-

dependent transactivation (Yen et al., 2001). The LBD contains at least two nuclear export 

signals (NES), one within H12 (NES-H12) and one (or two) spanning H3 and H6 (NES-H3/H6) 

(Mavinakere at al., 2012).  

Intracellular Trafficking of Thyroid Hormone Receptors 

Although a higher density of TR accumulates in the nuclear compartment, TR shuttles 

rapidly between the nucleus and cytoplasm (Bunn et al., 2001; Grespin et al., 2008; Mavinakere 

et al., 2012). TR relies on karyopherins—importins and exportins—for efficient 

nucleocytoplasmic trafficking (Bunn et al., 2001; Mavinakere et al., 2012; Submaranian et al., 

2015; Roggero et al., 2016). This process requires RanGTP to facilitate cargo exchange (Figure 

4). 
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Importins recognize basic amino acid sequences found in the NLS of the hinge or the A/B 

domains. TR interacts with importin 7 and importin α1/β1 (Roggero et al., 2016). Nuclear export 

is influenced by a calreticulin/exportin 1 (CRT/CRM1) dependent pathway and by exportins 4, 5, 

and 7 (XPO4, XPO5, and XPO7) (Grespin et al., 2008; Submaranian et al., 2015). While XPO5 

and XPO7 directly affect nuclear export, XPO4 has an indirect effect on nucleocytoplasmic 

shuttling. Knockdown of XPO4 alters the rate of TR transport, but not the overall distribution 

(Submaranian et al., 2015).  

The intracellular distribution of TR relies on protein interaction partners as well as inherent 

nuclear trafficking motifs. Interestingly, the DNA binding ability of TR does not affect its 

nuclear-to-cytoplasmic distribution. However, TRs deficient in the ability to bind their 

coregulator NCoR shift towards a cytosolic distribution (Yen et al., 2006). Addition of common 

heterodimer partner retinoid-X-receptor (RXR) induces a return to nuclear localization. This 

suggests that the stability conferred by nuclear binding partners—such as NCoR and RXR—may 

augment nuclear retention.  

TR Regulation of Gene Expression 

Thyroid hormone receptors bind to TREs as monomers, homodimers, or heterodimers 

with RXR. If unassociated with ligand, TR recruits corepressors, such as NCoR and silencing 

mediator for retinoid and thyroid hormone receptor (SMRT) (Cheng et al., 2010; Schoenmakers 

et al., 2013; Yen et al., 2016). The corepressor complex recruits histone deacetylases to induce 

tight packing of the DNA, blocking access by transcriptional machinery (Cheng et al., 2010; 

Brent, 2012; Yen et al., 2016). The interaction domains of corepressors contain an 

LXXXIXXXL/I motif which is recognized by TR (Yen et al., 2001; Jin and Li, 2010).  
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The binding of T3 induces a conformation change in the AF-2/H12. Helix 12 encloses the 

ligand like a "lid," changing the surface structure of the LBD (Quack and Colberg, 2001; Jin and 

Li, 2010). This leads to dissociation of corepressors and recruitment of coactivators with binding 

motif LXXLL (Jin and Li, 2010). The corepressor and coactivator binding sites overlap; thus, the 

conformation change of TR in response to ligand-binding is a crucial part of inducing 

transactivation via coregulator exchange (Jin and Li, 2010). Coactivators of TR include steroid 

receptor coactivators (SRC-1, SRC-2, and SRC-3), vitamin D receptor interacting protein/TR 

associated protein complex (DRIP/TRAP), and CREB-binding protein (Quack and Colberg, 

2001; Yin et al., 2006; Schoenmakers et al., 2013). SRC-1 recruits histone acetyltransferases to 

neutralize DNA-histone interactions and open DNA. DRIP/TRAP is thought to act as an 

anchoring protein which recruits RNA polymerase II (Yin et al., 2006).   

The concentrations of TR, RXR, and T3, the organization of half-sites, and the sequence 

or flanking sequence of TREs affect the prevalence of TR monomers, homodimers, or 

heterodimers. Monomers are sufficient to binds to TREs. TRα1 monomers are capable of binding 

TREs, adopting agonist conformation, and binding coactivators of TR (SRC-1, TRAP/DRIP), 

but are more susceptible to destabilization when changes are introduced in half-sites or flanking 

sequences (Quack and Colberg, 2001). Furthermore, monomers and TR/RXR heterodimers 

coexist in limiting RXR concentrations, signifying that the role of monomeric TR in gene 

expression depends on the expression levels of both binding partners (Quack and Colberg, 2001). 

Homodimer prevalence increases with TR concentration (Lazar et al., 1991; Miyamoto et al., 

1993). Homodimerization of TR also depends on the isoform. Some studies report almost 

negligible TRα homodimer formation, while others detect both TRβ and TRα homodimers bound 

to TREs (Lazar et al., 1991; Nagaya et al., 1996; Velasco et al., 2007).  TRβ homodimerizes 
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more readily than TRα, and at lower concentrations (Lazar et al., 1991; Miyamoto et al., 1993; 

Velasco et al., 2007). T3 may also destabilize certain homodimer complexes from TREs 

(Miyamoto et al., 1993). 

The organization of the TRE also affects the binding of TR monomers and dimers. The 

direction of the repeat (direct, palindromic, or inverted palindromic) and the length of the spacers 

between half-sites favors certain TR complexes. (Forman et al., 1992; Nagaya et al., 1996; 

Velasco et al., 2007; Paquette et al., 2014). Overall, TR/RXR heterodimers have more stability 

than monomers and homodimers and are more versatile (Lazar et al., 1991; Nagaya et al., 1996; 

Quack and Colberg, 2001; Wu et al., 2001; Velasco et al., 2007; Paquette 2014). Heterodimers 

are more tolerant of changes in consensus sequence and flanking nucleotides; they also have 

adequate binding affinity across all TRE types (Quack and Colberg, 2001; Velasco et al., 2007; 

Paquette 2014).  

Role of Thyroid Hormone Signaling in Development and Disease  

Thyroid hormone signaling regulates development across vertebrates. Experiments using 

the frog Xenopus tropicalis highlight the prominent, yet divergent, roles TRα and TRβ play in 

tadpole metamorphosis. TRβ knockouts (TRβKO) delay tail regression, as is exhibited by a 

decrease in mRNA expression of extracellular matrix-degrading enzymes in the tail (Nakajima et 

al., 2018). Olfactory nerve reduction and gill absorption are also slower in TRβKO tadpoles 

(Nakajima et al., 2018). TRα knockout (TRα KO), interestingly, does not halt metamorphosis; 

TRαKO tadpoles complete metamorphosis more rapidly, consistent with the observation that the 

high levels of TRα expressed throughout tadpole development repress certain metamorphosis-

inducing genes (Choi et al., 2017; Schreiber 2017). TRα also affects gut remodeling. TRαKOs 
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had less folds in their intestinal lumen, resulting in a shorter gastrointestinal tract than their wild-

type counterparts (Choi et al., 2017). 

A retroviral oncogene of TRα1, v-ErbA, is carried by the avian erythroblastosis virus 

(AEV). v-ErbA is incapable of binding T3 and exhibits dominant-negative effects on the function 

of both TRα1 and its heterodimer partner, RXR (Bonamy et al., 2005; Bondzi et al., 2011).  

Dominant-negative inhibition occurs due to v-ErbA introducing competition for TREs and TR 

coregulators (Bonamy et al., 2005). However, this oncogene also disrupts the shuttling of TRα. 

The expression of v-ErbA in tandem with WT-TRα lead to colocalization of both receptors in 

cytosolic inclusions (Bonamy et al., 2005). 

Thyroid-related malfunction of the TH-signaling pathways also affects human health and 

development. Mutations in TR have been found in several types of cancer, including thyroid 

cancer, breast cancer, renal cell carcinoma, and hepatocellular carcinoma (Kim et al., 2012). 

Epigenetic silencing of TR also relates to cancer progression. A study of differentiated thyroid 

cancer found hypermethylation of the TRβ promoter and the subsequent decrease of TRβ mRNA 

positively correlated with cancer progression. Treatment with a demethylation agent reduced 

proliferation and migration (Kim et al., 2012). An analysis of 227 triple-negative breast tumors 

found that low TRβ expression corresponded with poor clinical outcomes in patients with triple 

negative breast cancer (TNBC) (Gu et al., 2015). shRNA knockdown of TRβ in TNBC-

representative cell lines resulted in increased colony formation and decreased sensitivity to the 

chemotherapy drugs docetaxel and doxorubicin. Overexpression or stimulation with TRβ 

agonists reversed the poor clinical phenotype, reducing cell growth and increasing 

chemosensitivity. An excess or deficit of TH circulating through the body also has adverse 

effects on health. Symptoms of hypothyroidism are varied, but may include tiredness or lethargy, 
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dry skin, hair loss, shortness of breath, palpitations, and vertigo (Carle et al., 2014). 

Hyperthyroidism can lead to increased heart rate, osteoporosis, fatigue, muscle wasting, and 

damage to the eye or optic nerve (Mondal et al., 2016). Due to their impact on metabolic 

functions, mutations in TR or other TH-regulatory proteins, such as deiodinases, are linked to 

obesity and type-2 diabetes (Mondal et al., 2016).  

Resistance to Thyroid Hormone Syndrome  

Failure of TR to mediate TH-signaling results in Resistance to Thyroid Hormone 

syndrome (RTH). Patients with RTH usually have mutations in the THRA or THRB gene which 

decrease TR ligand-binding and/or transactivation function, although there are some cases 

documented where no TR mutation is identified (Tylki-Szymanska et al., 2015) 

RTH manifests in two distinct clinical phenotypes—RTHα and RTHβ—depending on the 

affected TR isoform. Mutations in THRB were originally identified as contributing to the RTHβ 

phenotype. This phenotype is characterized by high serum levels of T4, T3, and TSH, which is 

indicative of a malfunctioning negative feedback loop due to defective TRβ in the hypothalamus, 

pituitary, and thyroid gland (Tylki-Szymańska et al., 2015). Persons afflicted by RTHβ also 

experience goiter and delayed growth and development (Ortiga-Carvalho et al., 2014).  

Mutations in THRA causing RTHα went largely unnoticed, possibly due to the near-

normal TH and TSH levels exhibited by patients (Schoenmakers et al., 2013). Only in the last 

decade have novel THRA mutations showing impaired TH-sensitivity been linked to a form of 

RTH. Symptoms of RTHα include delayed growth and development, chronic constipation, 

skeletal abnormalities, and altered basal metabolic rate and resting heart rate (Moran et al., 2013; 

Schoenmakers et al., 2013; Ortiga-Carvalho et al., 2014). 
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RTH-inducing mutants can be heterozygous and, less frequently, homozygous (Ortiga-

Carvalho et al 2014). Cases of autosomal dominant inheritance have been reported and RTH can 

be widely inherited in families (Ortiga-Carvalho et al., 2014; Tylki-Szymańska et al., 2015; 

Demir et al., 2016). Often, heterozygous mutations exhibit dominant-negative inhibition of their 

wild-type counterparts. Dominant-negative inhibition can occur between subtypes as well, as 

seen in reports where mutant TRβ interfered with WT-TRα function (Yen et al., 1992). 

Interestingly, inserting dimerization-blocking mutations into dominant-negative mutants can 

eliminate dominant-negative ability, suggesting that the formation of inactive mutant-and-wild-

type TR heterodimers may be a means of inhibiting wild-type TR function (Nagaya et al., 1993). 

Cases of RTH range from mild to severe, depending on the mutation. As sensitivity to TH varies 

by the case, certain patients can improve with T4 therapy (Moran et al., 2013; Moran et al., 

2017).  

TRα1 Mutant A382PfsX7 

 A case study isolated a heterozygous, dominant-negative TRα1 mutant A382PfsX7 in a 

female patient with RTHα (Moran et al., 2013). The patient exhibited classic RTHα-attributed 

symptoms such as obesity, short stature, macrocephaly, chronic constipation, and delayed 

development of motor and language skills. Several features—a low free-T4: free-T3 ratio, 

subnormal rT3 levels, and epilepsy— were less common, but linked to other RTHα phenotypes 

produced in mouse models.  

In the RTHα patient, a guanine nucleotide deletion elicited a frameshift beginning at 

codon 382, and the amino acid specified by the codon changed from alanine to proline. Six 

subsequent residues were altered; the final substitution inserted a stop codon which truncated the 

receptor at codon 388 (Figure 6). This premature stop codon deleted 22 C-terminal amino acids, 
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including a portion of H11 and the entire H12. A382PfsX7 does bind T3 nor does it exhibit 

transactivation capabilities. The removal of H12 exposed a hydrophobic cleft which facilitated 

constitutive corepressor binding (Moran et al., 2013).  

Investigation of the Intracellular Localization of Mutant A382PfsX7 

Decreased transactivation function allows mutant TRs to exert deleterious effects on 

development, growth, and metabolism that culminate in RTH. However, investigation into how 

mutations within localization signal sequences affect the disease phenotype has been sparse. 

Since TR function relies in part on maintaining the balance of nuclear and cytosolic TR, 

aberrative transport of the mutant could be tied to a molecular profile of RTHα. Altered shuttling 

of the mutant suggests an alteration in transcriptional activity – whether it be repressive or 

activating. 

The truncation of A382PfsX7 eliminates H12 of the LBD, removing AF-2 and NES-H12 

(Moran et al., 2013). This thesis assesses whether the elimination of the second NES in the LBD 

affects the intracellular localization of A382PfsX7. Since the mutation described is 

heterozygous, both individual expression of A382PfsX7 and WT-TRα1 and coexpression of WT 

and mutant were studied. Given that most RTH mutations characterized are heterozygous, 

evaluating the behavior of coexpressed mutant and WT has clinical relevance (Ortiga-Carvalho 

et al., 2014). Prior to the experiment, it was predicted that the mutant would show increased 

nuclear distribution relative to WT, due to the deletion of an export signal This increased nuclear 

localization was expected be seen in the coexpression treatment as well. Furthermore, the mutant 

was assayed for aggregation that may be linked to dominant-negative inhibition, as was observed 

in the oncoprotein v-ErbA (Bondzi et al., 2011).  
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EXPERIMENTAL DESIGN 

Construction of Recombinant Protein mCherry-A382PfsX7 Plasmid   

An A382PfsX7 expression plasmid (GeneArt) was inserted into an mCherry expression 

vector with a CMV promoter (Clontech) via restriction enzyme digest (Figure 7). The insert and 

vector contained complementary cleavage sites for KpnI and BamHI restriction endonucleases 

(New England Biolabs). For the initial digest, 4 μg of the plasmid, 4 μl of 10x NEBuffer, 20 

units of KpnI (amounting to 2 μl), and ddH20 to 40 μl were digested for five hours in a 37ᵒC 

waterbath. Vector and insert were purified using a QIAquick PCR Purification Kit (Qiagen). The 

elution was then digested with 10x NEBuffer, 20 units of BamHI (amounting to 1 μl), and ddH20 

to 40 μl at 37ᵒC for 5 hours. 

Vector and insert were run in 10x glycerol-dye loading buffer on an agarose gel to 

separate undigested, partially digested, and fully digested fragments. Undigested mCherry and 

A382PfsX7 and a 2-log ladder were included in the run as references. Electrophoresis was 

performed for 40 minutes at a constant 100 volts. Following completion of the run, the gel was 

stained with ethidium bromide (1 μg/ml). Fully digested vector and insert were cut from the gel 

and extracted using a QIAquick Gel Extraction Kit (Qiagen). A 1:3 ratio of vector-to-insert was 

incubated overnight with T4 ligase and T4 10x ligase buffer at 16ᵒC. Following its successful 

ligation, the mCherry-A382PfsX7 gene construct was transformed in NEB-5alpha Competent E. 

coli using New England Biolabs High Efficiency Transformation Protocol for C2987H cells. 

Transformed E. coli were amplified in LB-media containing 30 μg/ml kanamycin and grown 

shaking at 300 rpm, 37ᵒC. DNA was extracted by a ZymoPURE Plasmid Midiprep (Zymo 

Research) and the concentration measured on a NanoDrop ND-1000 spectrophotometer (Thermo 

Scientific). Prior to use, the plasmid was sequenced (Molecular Gene Lab, Biology Department, 
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College of William and Mary) to confirm successful construction of an mCherry-tagged 

A382PfsX7 expression plasmid. Expression plasmid for wild-type human TRα1 tagged with 

enhanced green fluorescent protein (eGFP-hTRα1) was obtained from a glycerol stock kept by 

the Allison Lab. A portion of glycerol stock was grown shaking as described above in LB-media 

containing kanamycin. DNA extraction was performed using ZymoPURE Plasmid Midiprep and 

the concentration was measured using the NanoDrop ND-1000. 

Cell Culture and Transfection 

Work with cell lines was done in a Class II Biological Safety Cabinet. HeLa cells were 

maintained at 37ᵒC in an 83 cm3 culture flask in 20 ml of Minimal Essential Medium 

(MEM)(Gibco) with 10% Fetal Bovine Serum (FBS) containing a phenol red pH indicator. 

When cell confluency became 80%, cells were split to a lower density in a new flask.  

Identical procedures for the localization assay and the aggregation assay were used, with 

the only difference being the method of scoring. Experimental trials were performed in 6-well 

plates (Figure 7). Twenty-four hours before the intended transfection, HeLa cells were seeded at 

~ 2.5× 105 cells per well with 2 ml of MEM (+10%FBS). Cells were incubated at 37ᵒC for a day, 

or until confluency was ~70%. Each well was transfected with 2 μg of plasmid (2 μl), 4 μl of 

Lipofectamine 2000, 494 μl Opti-MEM, and 1.5 ml of MEM (+10% FBS) for a total volume of 2 

ml. Plates were incubated for 8 hours and then the media was replaced with 2 ml of MEM (+10% 

FBS). Twenty-four hours after the start of the transfection, the plate was removed from the 

incubator, fixed with 3.7% formaldehyde solution (9.6 ml ddH2O, 1.2 ml 37% formaldehyde, 

and 1.2 ml 10x D-PBS), stained with a drop of FluoroMount + DAPI, and placed upon slides. 

Three treatments were applied across each transfection: (1) eGFP-hTRα1, (2) mCherry-

A382PfsX7, and (3) eGFP-hTRα1 + mCherry-A382PfsX7. Individual WT and mutant 
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transfections utilized 2 μg of the respective plasmid.  Cotransfections used 2 μg DNA total with 

1 μg each of WT and mutant plasmid. The complete transfection of a 6-well plate was considered 

one independent replicate. The experiment was replicated four times.  

Localization Assay Scoring and Analysis 

Slides were assessed using a Nikon Eclipse TE2000-E inverted microscope (Nikon) and 

NIS-Elements AR 3.2. Oversaturated regions were identified and adjusted accordingly for 

scoring.100 cells were scored per slide, amounting to 800 cells scored per treatment across the 

four replicates. The intracellular distribution of the recombinant proteins was indicated by 

calculating the average nuclear-to-cytoplasmic (N:C) ratio of fluorescence intensity across 

treatments. Regions of interest (ROIs) were selected in both the nucleus (RIO1) and cytoplasm 

(ROI2).  ROIs were placed in areas with even TR distribution and the placement of ROIs on 

aggregates was avoided to prevent over-or-underestimations of the N:C ratio.  The ROI intensity 

was collected and exported from NIS-Elements into Excel for analysis. Each scored cell was 

evaluated at the two ROIs, and two measurements of the nuclear and cytoplasmic intensity were 

exported. For cells scored in the coexpression treatment, intensity of both WT and mutant were 

reported separately. The mean N:C ratio of each slide was calculated. Data were exported to R 

version 3.3.2 for statistical analysis. Results were analyzed with an unpaired, two-tailed 

Student’s t-test. The significance level was set at α= 0.05 for all analyses. The normality of the 

data collected was verified by a Shapiro-Wilk test for normality and generation of a quantile-

quantile plot prior to computation of the t-test statistic.  

Aggregation Assay Scoring and Analysis 

The presence of aggregation was assessed qualitatively. Cells were scored for the 

presence or absence of aggregates. Four replicates were conducted, and 100 cells were scored per 
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slide. One slide of the cotransfection treatment was eliminated due to improper placement of the 

coverslip. Data were analyzed in R version 3.3.2. The frequency of aggregates was analyzed 

using a Pearson’s chi-square test for independence with a significance level α = 0.05. The 

successive pairwise comparisons were done using a chi-square test for independence. To account 

for the increased rate of type I error, a Bonferroni Correction was applied to the significance 

level, reducing it to α = 0.016̅. The chi-square analysis of the 2 x 2 contingency included a Yates 

continuity correction. The magnitude of effect between treatments was calculated with an odds 

ratio 

RESULTS 

Coexpression of WT-TRα1 and A382PfsX7 Increases Cytosolic Distribution  

Limited response to T3 and deficiencies in transactivation are well-documented molecular 

characteristics of nonfunctional, RTH-inducing TR mutants (Moran et al., 2013; Ortiga-Carvalho 

et al., 2014; Moran et al., 2017). Constitutive corepressor binding has also been implicated 

(Moran et al., 2013; Schoenmakers et al., 2013). Conducive to these observations, RTH 

mutations commonly manifest in the LBD, which regulates these functions. Less studied is 

whether certain LBD mutations may also affect TR trafficking. Mutations causing RTH may 

overlap with NES regions in the LBD, suggesting that some cases of RTH may showcase altered 

TR shuttling. Analysis of oncoprotein v-ErbA indicates that aberrant intracellular localization 

may be another hallmark of dominant-negative inhibition (Bonamy et al., 2005). While TRα 

primarily localizes to the nucleus, v-ErbA expression induces a shift of TRα and heterodimer 

partner RXR to the cytoplasm. Mislocalization of TR may affect its function as a transcription 

factor. 
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To determine whether the nonfunctional TRα1 mutant A382PfsX7 mislocalized due to 

the deletion of its second NES, eGFP-hTRα1 and mCherry-A382PfsX7 were expressed, 

individually and concurrently, in HeLa cells. HeLa cells express negligible endogenous TR 

(Selmi and Samuels, 1991); thus, the only TR acting in the cell would be that which was 

introduced artificially. Although WT-TR may passively diffuse into the nucleus, the TRs used in 

this experiment were tagged with fluorescent proteins. These recombinant proteins were too 

large to diffuse through nuclear pore complexes, ensuring that (1) any nucleocytoplasmic 

trafficking that occurred would be mediated by importins/exportins and (2) TR would require 

functional NLS/ NES to interact with these transporter proteins.  

Despite the loss of NES-H12, the mutant A382PfsX7 did not display a significant shift in 

nuclear-to-cytoplasmic distribution when compared to WT-TRα1 (Figure 8; p = 0.1922). 

Unexpectedly, the cotransfection of WT and mutant produced a subtle cytosolic shift in TR 

distribution. The cotransfected WT and cotransfected mutant had a significantly lower N:C ratio 

compared to their individually transfected counterparts (Figure 9; coexpressed-WT vs WT: p = 

0.0007*; Figure 10; coexpressed-A382PfsX7 vs A382PfsX7: p = 0.0001*). However, it may be 

noted that while the N:C ratio decreased slightly, yet significantly, the overall distribution of 

both mutant and WT remained predominantly nuclear (Figure 11). These results were contrary to 

the initial prediction that deletion of an NES would increase mutant presence in the nucleus. It 

was concluded that the A382PfsX7 mutation alone did not alter intracellular distribution. Instead, 

the results suggest that a novel interaction between A382PfsX7 and WT-TRα1 may occur that is 

sufficient to either sequester TR in the cytoplasm or decrease retention in the nucleus. 
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Co-transfection of WT-TRα1 and A382PfsX7 Shows Increased Presence of TR Aggregates 

Aggregation could be a potential explanation for shifts in intracellular distribution. 

Previous characterization of the TRα1 oncoprotein v-ErbA by the Allison lab determined that it 

alters nucleocytoplasmic transport, shifting the typical nuclear distribution of TR towards the 

cytosol (Bonamy et al., 2005; Bonamy and Allison, 2006). Furthermore, v-ErbA accumulates in 

cytosolic foci which display hallmarks of the aggresome—a highly regulated compartment 

facilitating proteasome-mediated degradation of misfolded proteins—formation (Bondzi et al., 

2011).  

Aggregation occurs when nonpolar amino-acid residues are exposed to the aqueous 

intracellular environment and self-associate into β-structures (Silva et al., 2013; De Baets et al., 

2015). Aggregation prone regions (APRs) are usually buried in the hydrophobic core of proteins, 

where they can be stabilized by tertiary interactions. Residues that comprise APRs have high 

hydrophobicity and low net charge. Gatekeeper residues that surround most APRs prevent 

aggregation (De Baets et al., 2015). These residues tend to be enriched with acidic or basic 

(glutamate, aspartate, lysine, arginine), large and flexible (lysine or arginine), or β-structure-

incompatible (proline or glycine) amino acids (De Baets et al., 2015). Mutations or damage to 

Table 1: Localization of A382PfsX7 and WT-TRα1 

Treatment �̅�1 �̅�2 T-statistic P-value 

A382PfsX7 vs. WT 2.458 2.551 -1.3702 0.1922 

Cotransfected WT vs. 

WT 
2.204 2.551 -4.2915 0.0007* 

Cotransfected 

A382PfsX7 vs.  

A382PfsX7 

2.177 2.458 -5.2384 0.0001* 
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either the APR, the gatekeeper residues, or adjacent tertiary stabilizing residues could all 

increase the aggregation potential of a polypeptide.  

 Aberrant aggregation of functional and nonfunctional proteins is potentially another 

means of the dominant-negative inhibition displayed by many TR mutants and may contribute to 

the dysregulation of TH-target genes. Aggregation could also affect the mislocalization of 

shuttling proteins. The removal of H12 due to the A382PfsX7 mutation increases access to the 

hydrophobic cleft accommodating corepressors. Furthermore, the deletion of 22 C-terminal 

amino acids suggests residues they once stabilized are available to form novel interactions, 

potentially with their aqueous environment. To determine whether RTH-inducive mutant 

A382PfsX7 displayed aberrant TR aggregation, HeLa cells transfected with the receptor(s) of 

interest were analyzed for aggregate formation after the 24-hour incubation. The subcellular 

location of aggregates present was recorded; however, due to the subjectivity of the former 

assessment, only the explicit presence or absence of aggregates was analyzed statistically.  

 The initial 3x2 test for association between treatment and aggregation was significant 

(Chi-square test, P-value < 2.2 x 10-16). Treatments were further assessed by pairwise 

comparisons. The frequency of aggregates in cells expressing either WT or mutant differed 

significantly from that of the coexpression treatment (WT vs. Cotransfection: P-value < 2.2 x 10-

16; A382PfsX7 vs. Cotransfection: P-value < 2.2 x 10-16). In a majority of cells scored, 

colocalization between A382PfsX7 and WT-TRα1 was observed within aggregates (Figure 12). 

However, colocalization was not assessed quantitatively. The differing magnitudes of 

aggregation were assessed by an odds ratio. The odds of success (“success” defined as the 

presence of TR aggregates) in the cotransfection treatment was 2.665 and 3.507 times higher 

than the odds of success within WT and A382PfsX7 treatments respectively. As a reference, the 
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odds ratio between the WT and A382PfsX7 was calculated (𝑂�̂�= 1.315). The results show that a 

significant increase in aggregation occurs under co-expression of WT and A382PfsX7, further 

supporting the notion that a novel interaction occurs between mutant and WT-TR. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Comparison of TR Aggregation Across Treatments 

Comparison 
Chi-Square Test 

Statistic 
P-value 

WT vs. A382PfsX7 

vs. Cotransfection 
142.26 < 2.2 x 10^-16* 

WT vs. A382PfsX7 5.1962 0.02645 

WT. vs 

Cotransfection 
79.168 < 2.2 x 10^-16* 

A382PfsX7 vs. 

Cotransfection 
121.51 < 2.2 x 10^-16* 

Table 3: Magnitude of Aggregation 

Comparison Odds Ratio 
Upper 95% 

Confidence Interval 

Lower 95% 

Confidence Interval 

Cotransfection vs. 

WT 
2.665 3.317 2.142 

Cotransfection vs. 

A382PfsX7 
3.507 4.405 2.791 

WT vs. A382PfsX7 1.315 1.666 1.039 
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DISCUSSION 

Localization and the Dominant-Negative Effect of A382PfsX7 

 Contrary to expectations, the lack of NES-H12 in A382PfsX7 had no effect on its 

intracellular distribution, suggesting that this mutant is capable of shuttling between the nucleus 

and cytoplasm with an efficacy similar to WT. It may be that NES-H3/H6 in the LBD or the 

CRM1/calreticulin dependent NES (location unknown) are sufficient to maintain normal nuclear 

export in the absence of NES-H12. Interestingly, the coexpression of A382PfsX7 and WT 

produced a small, but statistically significant shift of TR distribution towards the cytosol. It is 

worth noting that the TR distribution within co-transfected cells remained predominantly 

nuclear. Yet, it does suggest that heterozygous RTH-inducing mutations may affect the cellular 

phenotype differently than homozygous mutations, perhaps due to the dominant-negative 

inhibition exhibited by many TR mutants. However, since such inhibition also occurs between 

subtypes, homozygous mutations do not necessarily preclude the potential for dominant-negative 

effects between TRα and TRβ, which were not tested for in this thesis. In lieu of its altered 

subcellular distribution when co-expressed with WT, A382PfsX7 was analyzed for its ability to 

promote aggregation of TR. The frequency of aggregation between individually transfected WT 

and A382PfsX7 did not differ significantly from expected values. However, HeLa cells co-

expressing WT and A382PfsX7 did show a significant increase in TR aggregates.  The odds ratio 

of co-transfected cells showcasing aggregation was increased 2-3 times that of the individual 

transfections 

 That the mutation alone was insufficient to alter subcellular distribution and 

aggregation implies a novel protein-protein interaction between WT and A382PfsX7 that affects 

TR localization when the two are coexpressed. There is evidence that interactions between WT 
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and mutant TR affect both localization and aggregate formation, as seen in the dominant-

negative oncoprotein v-ErbA, which shifts WT-TRαl distribution towards the cytosol and 

displays colocalization with WT in cytosolic aggregates (Bonamy et al., 2005; Bondzi et al., 

2011). Altered subcellular localization and aggregation of TR following coexpression of WT-

TRα1 and A382PfsX7 may be related to the dominant-negative inhibitory effect displayed by 

certain heterozygous RTH mutants. Dominant-negative inhibition has several theorized 

mechanisms. Most commonly postulated are (1) mutant or nonfunctional WT/mutant 

heterodimers competing for TRE binding sites or (2) titration out of RXR or other TR auxiliary 

factors due to association with TR mutants (Matsushita et al., 2000; Bonamy et al., 2005; 

Bonamy and Allison, 2006; Bondzi et al., 2011). Dominant-negative inhibition of TR function 

implies that a mutant disrupts WT function in the nucleus. Mutant TR may directly impede WT 

function by obstructing access to TREs or auxiliary factors. Alternatively, skewing the nuclear-

to-cytoplasmic distribution of WT-TR, as is shown here, indirectly affects TR transcriptional 

regulation by limiting the amount of WT capable of interacting with TH-target genes. 

Furthermore, since TRs are capable of repression and activation of genes without TH-interaction, 

a skew in TR distribution could affect gene expression regardless of the direction of the shift.  

 Investigating heterozygous RTH-causing variants with mutations in the import or 

export sequences may elucidate whether mislocalization is linked to disease pathogenesis or 

dominant-negative inhibition. However, that WT localization showed a significant deviation 

from the norm only when coexpressed with A382PfsX7 implies protein-protein interactions 

influence the latter’s dominant-negative inhibition of WT and that the altered N:C distribution 

may stem from this interaction. Protein-protein interactions are commonly associated with 

dominant-negative ability. An RTH-inducing TRβ mutant, L428R, which has impaired 
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dimerization function, displays no dominant-negative inhibition of WT (Matsushita et al., 2000). 

This is further supported by the finding that restoring the ninth heptad of the TR dimerization 

sequence to natural TR-inhibitor TRα2—a C-terminal variant with little T3 or RXR affinity—

augments its dominant-negative effect (Burgos-Trinidad and Koenig, 1999). This supports that 

the TR dimerization motif—a series of heptad repeats in the LBD— plays a key role in 

regulating whether mutants exhibit dominant-negative function. The dimerization region spans 

residues 279 to 372, which contains H11 of the LBD (Selmi and Samuels 1991). In addition to 

the deletion of H12, the A382PfsX7 frameshift alters six residues within H11 before the 

premature C-terminal deletion. This may elicit abnormal dimerization of A382PfsX7 due to 

destabilization of H11 and may be responsible for the unusual localization seen in the 

coexpression of WT and mutant.  

WT/A382PfsX7 Coexpression and Aggregate Formation 

 The A382PfsX7 frameshift changes the amino acid residues at codons 382 through 

388 from Ala-Ser-Arg-Phe-Leu-His-Met to Pro-Ala-Ala-Ser-Ser-Thr-STOP. Aggregation prone 

regions tend to be enriched with hydrophobic or aromatic amino acids such as valine, 

phenylalanine, tyrosine, and isoleucine (Prabakaran et al., 2017). A382PfsX7 does not gain many 

hydrophobic residues due to the frameshift. A majority of the changes result in amino acids that 

are less characteristic of APRs. Serine and threonine, both hydrophilic amino acids, and proline, 

whose ring structure is incompatible with β-sheet secondary structures, are reduced in APRs and 

less likely to form the β-strand interactions necessary for aggregation (De Baets et al., 2015; 

Parbakaran et al., 2017). Proline is also a known gatekeeper residue that prevents APRs from 

aggregating (De Baets et al., 2015; Prabakaran et al., 2017). The change in primary protein 

structure, as caused by the A382PfsX7 mutation, does not appear to increase aggregation 
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propensity of the receptor. It seems more likely that the deletion of H12 exposes hydrophobic 

side chains, which previously had been shielded by the α-helix, to the surrounding solvent. The 

receptor may alter shape to accommodate the new interactions between hydrophobic side-chains 

and the aqueous cell environment, increasing its potential for self-assembly into β-sheets. 

 Aggregated proteins are not involved in nucleocytoplasmic trafficking and could 

contribute in part to the altered N:C ratio of the coexpressed TR. The increased cytosolic 

presence of TR could be due to premature sequestration in the cytoplasm or decreased retention 

in the nucleus. To that regard, further investigation into the intracellular mobility of A382PfsX7 

would be beneficial. A study found that DNA-binding is not required for the nuclear retention of 

TRβ, but knockdown of NCoR shifts TRβ distribution to the cytosol (Yen et al., 1992). Addition 

of RXR precipitated an increase in nuclear TR density (Yen et al., 2006). This suggests that 

forming a stable complex within the nucleus enhances nuclear retention as auxiliary factors—

such as NCoR and RXR—may compete with exportins for TR-binding. That A382PfsX7 has 

functional DNA-binding and an increased proclivity for its corepressors implies that A382PfsX7 

can form stable nuclear complexes. Thus, the altered N:C ratio in the co-expression treatment 

may more likely be the result of premature cytosolic sequestration.  

 Formation of WT-mutant heterodimers also may play a role in the aggregation of 

A382PfsX7 with WT-TRα1. Compared to TRβ, TRα is less prone to homodimerization 

(Miyamoto et al., 1993). However, WT-mutant TRα1 heterodimers may be more stable than their 

respective homodimers. The alterations to A382PfsX7 structure may increase the aggregation 

propensity of the heterodimer, trapping mutant and WT-TRα1 in cytosolic inclusions. However, 

observing the aggregation of RTH mutants may be more relevant under physiological conditions 

where TH-signaling occurs. T3 stimulation can disassociate homodimers from TREs and favors 
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TR/RXR heterodimers (Hao et al., 1994; Miyamoto et al., 1993). T3 exposure was able to 

partially reverse TRα shift to cytosol in v-ErbA and WT co-expression in mouse cells, 

decreasing the strong correlation between TRα1 and v-ErbA colocalization (Bonamy et al., 

2005). Cells exposed to physiological levels of thyroid hormone may be less likely to form 

protein aggregates due to preferential TR-RXR interaction, and thus show less colocalization of 

WT and mutant in aggregates. If T3 affects aggregation, the affected peripheral tissues of a 

patient may showcase less aggregation than the cell line tested here, although perhaps more so in 

cases of RTHβ where TH levels are constitutively high. 

 Alternatively, misfolded TR mutants may lead to a prion-like induction of the 

misfolding and sequestration WT. More recently, some pathogenic mutations have been found to 

induce prion-like misfolding of their WT counterparts. The R248Q mutant of tumor suppressor 

gene p53 is shown to act as a “seed” which facilitates aggregation of WT-p53, p63, and p73 

(Ano Bom et al., 2012). This “seeding” ability is a hallmark of prion (protein misfolding) 

diseases.  Furthermore, aggregating cancerous p53 mutants are theorized to act in a dominant-

negative manner wherein one mutant in a p53 tetramer is sufficient to cause loss-of-function and 

lead to prion-like sequestration of WT p53 (Silva et al., 2013). However, if A382PfsX7 does 

induce prion-like misfolding and accumulation, it is unusual that the singular expression of 

A382PfsX7 did not show a significant increase in aggregation. If A382PfsX7 increased the 

mutant’s intrinsic aggregation propensity, it would be expected to aggregate regardless of WT 

presence. This suggests that the interaction between WT and A382PfsX7 increases the 

aggregation potential of both receptors, rather than A382PfsX7 being a prion-like inducer of 

aggregation. 



31 
 

 
 

Implications of Aggregation on RTH Therapeutic Practices 

 Disease mutations causing aggregation require cells to devote more energy to 

protein quality control to ensure proper refolding or degradation of misfolded proteins. 

Molecular chaperones and heat shock proteins must be recruited to refold or stabilize misfolded 

proteins. Otherwise, misfolded protein aggregates and must be targeted for destruction via (1) 

ubiquitin-tagged proteasome degradation, (2) lysosomal-mediated removal, or (3) aggresome 

recruitment for proteasome degradation (Bondzi et al., 2011). Analysis of the aggregates 

precipitated by v-ErbA show they colocalize with aggresomal markers GFP-250 and GFP-170 

(Bondzi et al., 2011). In this study, it was noted that the most common location of 

WT/A382PfsX7 aggregates was perinuclear (Figure 12; data not shown). This suggests travel to 

the perinuclear microtubule organizing center, which is a hallmark of aggresome formation 

(Bondzi et al., 2011). It is unknown whether aggregation and aggresome formation is 

cytoprotective or a result of the pathogenesis of disease mutants. However, in support of the 

cytoprotective potential of aggregate formation, downregulation of aggregation-promoting 

interface acetyltransferase p300 correlates with increased toxicity in cancerous p53 mutants due 

to debilitated proteasome activity (Silvia et al., 2013).   

 Protein aggregation is being more frequently recognized as a factor in human 

diseases, even outside of traditional protein-misfolding diseases such as Alzheimer’s disease, 

Parkinson’s disease, and prion diseases (Silvia et al., 2013). A comprehensive analysis of the 

human proteome found that mutations which increase the intrinsic aggregation potential of a 

protein are more significantly associated with pathogenic mutants than neutral mutants (Da Baets 

et al., 2015). Since aggregation affects a protein’s function, trafficking, and degradation, any 

associated pathways could be potential therapeutic targets in aggregation-inducing diseases. 



32 
 

 
 

Furthermore, the subcellular characteristics of a pathogenic mutant could indicate the severity of 

a disease or the response to a therapeutic approach. For example, there is a correlation between 

p53 aggregation and tumor aggressiveness (Silva et al., 2013). The presence of α-galactosidase 

aggregates in cases of Fabry disease (a lysosomal storage disorder) can be used to predict 

patients’ responsiveness of DGJ1 therapy with 77.5 percent accuracy (Siekierska et al., 2012). T4 

therapy is a common treatment in thyroid-responsiveness disorders. Mutant TRs in RTH display 

reduced or negligible TH-binding, but less severe mutations can increase transactivation and 

reverse dominant-negative inhibition when exposed to higher levels of T3 (Chatterjee et al., 

1991). In less severe cases of RTH, T4 therapy can increase the growth rate and improve the 

body composition of the patient (Moran et al., 2017). It can also be used to normalize basal 

metabolism (Moran et al., 2013). Aggregation of WT and mutant TR could affect the outcome of 

T4 therapy on the clinical phenotype of RTH, due to its limiting of functional TR able to respond 

to the TH signal. Gauging a mutant’s aggregation potential could be a useful indicator of a 

person’s response to T4 therapy. 

   

 

 

 

 

 

 

 

 

                                                           
1 DGJ: 1-deoxygalactonojirimycin 
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Figure 1: Hypothalamic-Pituitary-Thyroid Axis 

A cascade of hormone signals from hypothalamus to pituitary gland to thyroid gland stimulates the 

production and secretion of thyroid hormone (TH). Elevated circulating free TH suppress production of 

thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH). 
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Figure 2: Forms of Thyroid Hormone 

Deiodinases catalyze the removal iodide from the outer or inner 

carbon rings of T4 to form active T3 or inactive reverse T3 (rT3) 

respectively. 
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Transport 

 

(a) T
3
 and T

4
 bind serum transport 

proteins thyroxine-binding globulin 

(TBG), transthyretin (TTR) and 

human serum albumin (HSA) to be 

transported through the blood into the 

periphery. (b) Only free T
3
/T

4
 is able 

to enter cells through 

monocarboxylate transporter 8 

(MCT8). Once imported into 

peripheral tissues, T
4 
and T

3
 can be 

further modified to active T
3
 or 

inactive rT
3 
by deiodinases (DIOs).  
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Figure 4: Thyroid Hormone Receptor Nucleocytoplasmic Transport  

 

An importin recognizes and binds a nuclear localization signal (NLS) on TR and enables its transport across 

the nuclear membrane through a nuclear pore complex (NPC). Inside the nucleus, the importin binds 

RanGTP and undergoes a conformational change, releasing TR. Free TR disperses into the nucleus and can 

bind DNA. The TR nuclear export signal (NES) is bound by an exportin in conjunction with RanGTP. The 

TR-exportin-RanGTP complex exits the nucleus through the NPC. Once in the cytosol, RanGTP is 

hydrolyzed to RanGDP and the complex disassociates.  



42 
 

 
 

 

  

RXR TR 

Corepressor 

TRE 

5’-AGGTCAAGGTCA-3’ 

TH Binding Site 

Transcriptional 

Activation 

T
3
 Absent  

Coactivator 

RXR TR 

TRE 

5’-AGGTCAAGGTCA-3’ 

T
3
 

T
3
 

T
3
 

T
4
 

T
3
 

Transcriptional 

Activation 

T
3
 Present  

Figure 5: Regulation of Thyroid Hormone Receptor at Response Elements   

 

(a) TR binds preferentially to TREs as heterodimers with RXR. When ligand is absent, the 

heterodimer binds corepressors (SMRT, NCoR) and recruits histone deacetylases to condense 

chromatin and limit transactivation. (b) Binding of T3 changes the conformation of TR, leading it to 

recruit coactivators (SRC, DRIP/TRAP), facilitate the binding of basal transcriptional machinery, 

and activate transcription of the target gene.  
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  WT-TRα1 

Mutant-TRα1 A382PfsX7 

Location of Key Sequences 

NLS-1: 130-147 

NLS-2: 22-29 

NES-H3/H6: 209-265 

NES-H12: 390-407 
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1 52 128 190 410 

NES-H3/H6 NES-H12 NLS-1 NLS-2 
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Figure 6: Domains of TRα1 and A382PfsX7 

 

The A382PfsX7 mutation removes 22-carboxy-terminal amino 

acids. Helix-12, which plays a role in nuclear export and 

facilitates T
3
-binding is absent from the mutant structure.  
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Figure 7: Experimental Methodology 

 

(a) Gene of interest and fluorescent vector are cleaved at identical restriction sites. Complementary ends 

are ligated together. (b) WT TRα1 and mutant A382PfsX7 were expressed in vectors containing an eGFP 

and mCherry tag respectively. (c) HeLa cells were seeded at 2.5 x 105. (d) After a 24-hour incubation, 

cells were treated with the eGFP-WT plasmid (2μg), the mCherry-mutant plasmid (2μg), or both the WT 

and mutant plasmids (1μg each). Cells were grown for 8 hours before media change. Twenty-four hours 

after the start of the transfection, the cells were fixed and stained with DAPI for visualization by 

fluorescent microscopy. (e) Regions of interest were selected within and directly adjacent to the nucleus 

of cells expressing eGFP or mCherry. 
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Figure 8: Localization of WT-TRα1 and A382PfsX7 

 

No significant difference between the N:C ratio of A382PfsX7 and WT-TRα1 was observed; p = 

0.1992; four independent replicates were tested; 600 cells scored per replicate (100 per well); bars 

represent mean N:C ratio of treatment indicated; error bars indicate the mean ± standard error of the 

difference of means  
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Figure 9: Localization of WT-TRα1 and Co-Transfected WT 

 

A significant difference between the N:C ratio of WT-TRα1 and WT-TRα1 coexpressed with 

A382PfsXx7 was observed; p = 0.0007; four independent replicates were tested; 600 cells scored per 

replicate (100 per well); bars represent mean N:C ratio of treatment indicated; error bars indicate the 

mean ± standard error of the difference of means 

* 
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Figure 10: Localization of A382PfsX7 and Co-Transfected A382PfsX7 

 

A significant difference between the N:C ratio of A382PfsX7 and A382PfsX7 coexpressed 

with WT-TRα1was observed; p = 0.0001; four independent replicates were tested; 600 cells 

scored per replicate (100 per well); bars represent mean N:C ratio of treatment indicated; error 

bars indicate the mean ± standard error of the difference of means 
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Figure 12: Presence of A382PfsX7 and WT-TRa1 Aggregates in Co-Transfected HeLa 

cells 
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Table 4: N:C Ratio Data 

Treatment N:C Ratio 

A382PfsX7 2.516797 

A382PfsX7 2.500417 

A382PfsX7 2.579932 

A382PfsX7 2.395339 

A382PfsX7 2.406804 

A382PfsX7 2.424793 

A382PfsX7 2.526203 

A382PfsX7 2.362033 

hTRa1 2.75242 

hTRa1 2.645164 

hTRa1 2.610994 

hTRa1 2.404656 

hTRa1 2.583635 

hTRa1 2.718006 

hTRa1 2.326709 

hTRa1 2.369932 

CoA382PfsX7 2.383618 

CoA382PfsX7 1.996378 

CoA382PfsX7 2.340166 

CoA382PfsX7 2.144127 

CoA382PfsX7 2.156791 

CoA382PfsX7 2.068286 

CoA382PfsX7 2.09192 

CoA382PfsX7 2.238431 

CohTRa1 2.361562 

CohTRa1 1.874758 

CohTRa1 2.20944 

CohTRa1 2.364252 

CohTRa1 2.321375 

CohTRa1 2.147228 

CohTRa1 2.150043 

CohTRa1 2.209673 

 

  



51 
 

 
 

 

Table 5: Chi-Square Observed Frequencies 

 No aggregates Aggregates Total 

Wild-type hTRα1 602 198 800 

TRα1-A382PfsX7 640 160 800 

Cotransfection (WT + 

Mutant) 
373 327 700 

Total 1615 685 2300 
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