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Abstract

This thesis describes an algorithm that generates various ink

bamboo paintings. First, a completely procedural model is used

to generate the geometric shape of bamboos. The model uses a

grammar-like approach that recursively generates new parts of

the bamboo in a randomized manner. The random parameters

are bounded by rules that simulate the natural form of bamboo.

The structure of the bamboo is represented line segments with

directions. Various ink stroke sprites of stalk, branch, or leaf

shapes are mapped to line segments, using reverse mapping

and bilinear sampling to eliminate aliasing e↵ects. The sprites

are mapped in di↵erent degrees of transparency to simulate the

e↵ect of various shades of ink produced by changes in forces

when using an ink brush. Finally, a seal is applied to sign the

work and enhance the visual e↵ect.

The algorithm is implemented in Python 3 and can be run on

any computer with the imageio library installed. The output of

the program is saved in a PNG image file, which can be used

for various types of illustrations. This model is able to produce

unique images during every run, and would significantly reduce

human labor in painting stylistically similar artworks of ink bam-

boo paintings.
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Chapter 1

Introduction

1.1 Art Background

Ink landscape painting has been an important branch of East Asian art and art history

for hundreds of years. It originated in the Fourth Century as the backgrounds of Bud-

dhist murals. However, in paintings from Tang Dynasty, landscapes still only serve as

structural elements. They did not became the subject matter of ink paintings until the

Eighth Century, and reached its peak in Song and Yuan Dynasty. A large number of

Chinese, Japanese, and Korean artists have been active in ink landscape painting since

then, and di↵erent schools have developed the art over a long period of time.

There were many genres of ink landscape paintings, including religion, figure, ar-

chitecture, foreign custom, dragon and fish, mountain and water, horse and bu↵alo,

bird and flower, ink bamboo, and vegetable and fruit. Among these subgenres of East

Asian painting, bamboo has been the most popular motif, as it represent the reclusive

dream of the literati class. In a work of bamboo painting in ink, a skilled artist and

calligrapher will paint a bamboo stalk or group of stalks with leaves. The contrast be-

tween the foreground and background, and between the varying textures represented
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Figure 1.1: A Page from Wu Zhen’s Ink Bamboo Album (Yuan Dynasty)

by the stalks and the leaves, gave scope to the painter to demonstrate his or her mastery

with an inkpot and a brush. [14]

Each famous bamboo painter developed his or her own style. For example, the work

of Wu Zhen (Yuan Dynasty), as seen in Figure 1.1, features lighter ink strokes, while

Zhen Banqiao (Qing Dynasty) preferred stronger contrasts (Figure 1.2). Because of the

volume of bamboo works painted over time, ink bamboo remains the most popular

landscape genre even in modern days, and the production of a work of ink bamboo

became one of the standard subjects to which an East Asian student could be set in a

competitive examination.

1.2 Related Work

In the digital era, the modeling and rendering on ink paintings has attracted much

attention from graphics researchers. Various research work has been done on the mod-

eling of trees and 2-D rendering of ink paintings (Chu and Tai 2005[1]; Huang et al.
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Figure 1.2: A ink bamboo work by Zheng Banqiao (Qing Dynasty)

2003[2]; Wang and Wang 2007[4]; Way et al. 2002[6]; Xie et al. 2011[7]; Xu et al. 2002;

Yang et al. 2012[9]; Yu et al. 2002[11]; Yu et al. 2003[12]). Other researchers pushed

their work into three dimensional space (Zhang et al. 1999[13]; Li and Yu 2006[3]).

In terms of procedural generation, each species of vegetation would require a dif-

ferent model to generate. Wang et al. [5] developed a model in 2014 that does 3-D

renderings of oak and elm trees; however, despite bamboo being an important subject

in ink landscape painting, less work has been done on the modeling and rendering of

ink bamboo painting. This paper fills the vacancy in this field of research by intro-

ducing a new procedural method that generates 2-D bamboo models and renders the

structure by mapping various styles of ink strokes.

3



Chapter 2

Procedural Generation

Through observation of ink bamboo paintings from both ancient and contemporary

artists, I noticed that, although each bamboo looks di↵erent, the structure of the bamboo

follows certain patterns. Thus, a procedural algorithm, as opposed to a manual one,

could be used to generate the forms of the bamboo to produce structurally di↵erent,

yet visually similar, models. I set up a group of random parameters within certain a

bounding range, to determine the quantity, position, height, length, and orientation of

the bamboo stalks, branches, and leaves.

2.1 Structural elements

Bamboo features tree-like structures. With three levels of nodes: Stalk, Branch, and

Leaf, similar to the reported technique in [Wang et al. 2014]. These nodes are connected

by Joints and are grouped into lists.

A Joint is an innovative structure introduced by this paper, that connects di↵erent

parts of the bamboo. It has a position, which is a 2-D point, a parent, and two children.

Joints are represented by ”X”s in the structure graph. They are not visible in the ren-

4



Figure 2.1: An example of generated bamboo structure

dered image.

A Stalk represents one independent bamboo. It has a root and a top, both of

which are joints, that represent the bottom end and the top end of the current stalk,

respectively. Stalk has a list of line segments (representing stalk segments), a list of

joints, and a list of branches that grow out from the main stalk of the bamboo. Stalk

also has a direction field that stores a 2-D vector representing the upward direction of

the top segment of the current stalk. Stalks are represented by black line segments in

the structure graph, as shown in Figure 2.1.

A Branch is structurally very similar to a stalk, except that instead of having a list

of child branches, it has a list of leaves that grow from the current branch. Each Leaf is

represented by a line segment. Branches are represented by blue lines while leaves are

represented by green lines in the structure graph.
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Figure 2.2: Distribution of bamboo quantities in 50 artworks

2.2 Quantity of Stalks

The number of bamboo stalks significantly influence the visual e↵ect of an image. If

there are too many bamboos, the image will be overcrowded, and the details would

not be easily seen. If there are too few bamboos, the image may look empty.

Artists have varying opinions on the number of bamboo stalks in their artwork. For

this paper, 50 ink bamboo images by both ancient and contemporary artists were se-

lected and analyzed to discover the number of bamboo stalks in them. Most paintings

have no more than four stalks. The distribution of the quantity is shown in Figure 2.2.

This data was converted into a probability distribution table and used as the prob-

ability distribution when generating the random number for bamboo quantity. The

upper bound of the number was set to 5 to simplify the model and save time during the

rendering of the image. As a result, the probability of the stalk quantity in the model is

also shown in Table 2.1.

6



Stalk Quantity 1 2 3 4 5

Possibility 6% 38% 30% 14% 12%

Table 2.1: Probability distribution of stalk quantities

2.3 Positions of Stalks

The positioning of the bamboo stalks is essential to the composition of the image as

well. The stalks should not scatter at the marginal areas, resulting in an unbalanced

composition. They should neither be too close, so that the ink strokes would overlap

with each other.

In the experimented model, each stalk procedurally grows from its root. Thus, the

horizontal position of the root determines the area that the stalk covers on the image.

The x-coordinate of the first root was set at a random position between the trisect point

and half point of the width of the image. Each of the following roots was placed to

the right of the previous root with a random separation between 100 and 200 pixels,

as shown in the code below. This way of positioning would ensure that the bamboo

stalks appear near the golden ratio points on the width of the image. Every root was

placed 10 pixels below the x-axis to hide the lower end of the stalk.

1 def get_root_position(width):
2 return Vec2d(random.randint(int(0.33 * width), int(0.5 * width)), -10)
3

4 def get_new_root(previous_root):
5 return Vec2d(previous_root + random.randint(100, 200), -10)

7



Figure 2.3: Growing process of a stalk

2.4 Growth of Stalks

For each root, a new stalk was constructed. A random integer between 3 and 5 was

chosen as the number of segments of that stalk. The grow() method of the stalk was

called the corresponding number of times.

During each call, a new segment of a random length grew upwards in a slightly

rotated direction from the current top of the stalk. The first segment rotated [0, 10]

degrees, and the proceeding segments rotated [0, 5] degrees in the same direction. The

length fell between that of the shortest and longest stalk texture obtained (in the range

[242, 335]). New segments of the same stalk rotated towards the same side to create

the bending form of the bamboo. A new Joint was constructed as the new top of the

stalk. This process is shown in the code below and illustrated in Figure 2.3.

1 def grow(self):
2 rand_length = get_segment_length()

3 rand_angle = get_random_angle()

4 new_seg = Segment(self.top.position, \

5 self.direction.rotate(rand_angle * self.bend_side), rand_length)

6 self.top = Joint(new_seg.get_end().x, new_seg.get_end().y, new_seg)

8



Figure 2.4: Growing process of two branches on one stalk

2.5 Branches

After each growth of new stalk segments, the model decided if a branch would grow

from the new joint. If so, it would grow on the opposite side of the stalk of the previous

branch. The direction of the branch was obtained by rotating the direction of the stalk a

random angle from the vertical direction towards the determined side. The angle was

between 30 and 85 degrees to ensure that a branch always grew upward. The growth

of new branches from a stalk is shown in the code below.

1 # within Stalk.grow()

2 if self.decide_grow_branch():
3 new_branch = Branch(self.top, self.branch_side)

4 self.branch_side *= -1

5 for j in range(get_segment_count()):
6 new_branch.grow()

7 new_branch.grow_tip_leaf()

8 self.top.l_branch = new_branch

9 self.branches.append(new_branch)

The growth of a branch was similar to that of a stalk. The grow() method will be

called a random number (in the range [6, 10]) of times. The segment length, which

determined the distance between leaves, fell between 20 and 40 pixels, so that the

total length of a branch varied between 120 and 400 pixels. The new branch segments

remained in the same direction as the first segment. During rendering, a branch was

9



considered as a single line segment, whose origin was at the joint with the stalk and

end was at the tip of the branch. The growth of a branch is shown in the code below.

Figure 2.4 shows the process of growing two branches on a single stalk.

1 def grow(self):
2 seg_length = random_seg_length()

3 leaf_length = random_leaf_length()

4 new_seg = Segment(self.top.position, self.direction, seg_length)

5 self.top = Joint(new_seg.get_end().x, new_seg.get_end().y, new_seg)

2.6 Leaves

After each growth of new branch segments, one leaf of random length grew at alternate

sides of the branch to simulate the alternate leaf pattern of bamboo, as shown in the

left of Figure 2.5. The angle between the leaf direction and the branch direction was

between 30 and 45 degrees. This process is shown in the code below.

1 # within Branch.grow()

2 # grow one leaf to each side at the joint

3 leaf_angle = random_leaf_angle()

4 leaf = Segment(self.top.position, \

5 self.direction.static_rotate(leaf_angle * self.leaf_side), leaf_length)

6 self.leaf_side *= -1

7 self.top.l_branch = leaf

8 self.leaves.append(leaf)

9 self.joints.append(self.top)

10 self.segments.append(new_seg)

11 self.count = len(self.segments)

At the tip of each branch, one leaf facing toward the direction of the branch was

added, as shown below. The generated leaf pattern is shown in the right of Figure 2.5.

1 def grow_tip_leaf(self):
2 leaf_length = random_leaf_length()

3 leaf = Segment(self.top.position, self.direction, leaf_length)

4 self.top.l_branch = leaf

5 self.leaves.append(leaf)

10



Figure 2.5: The alternating leaf pattern

2.7 Result of Generation

To summarize the generation process at a high level, the model first generated a list of

roots. For each of these roots, the model grew a stalk consisting of several segments.

For each joint between the segments, there was a chance that a new branch would de-

rive. The branch consisted of several segments, and at each joint, a pair of leaves would

derive. There was also a single leaf at the tip of the branch. The resulting structure is

shown in the beginning of this chapter (Figure 2.1).

Once the generation process is complete, we have a collection of lists of line seg-

ments, which represent the positions of stalk segments, branches, and leaves. Examples

and more details on the generation results are discussed in section 4.1.
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Chapter 3

Rendering

3.1 Creation of Sprites

The ink stroke sprites were created by cropping out single stalks segments, branches,

and leaves from Natali Myasnikova’s ”Japanese Bamboo Illustration”. They were then

rotated so that their local y-axes (the lines that connects the two ends of stalks and

branches or the bottom and tip of leaves) align vertically.

In order to prevent unwanted overlap during rendering, di↵erent shades of black

in the sprites needed to be changed to di↵erent degrees of transparency (or opacity),

and the white backgrounds of the sprites needed to be changed to transparent, as done

by the code below.

1 px = imageio.imread(filename)

2 for y in range(px.shape[0]):
3 for x in range(px.shape[1]):
4 shade = px[y][x][0]

5 px[y][x] = [0, 0, 0, 255 - shade]

6 imageio.imwrite("out" + filename, px)

In total, this process resulted in 3 stalk styles, 2 branch styles, and 5 leaf styles.

(Figure 3.1 - 3.3) When applied to various structures, they can produce hundreds of
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Figure 3.1: Ink strokes for stalk segments

Figure 3.2: Ink strokes for branches

di↵erent bamboo forms.

3.2 Reverse Texture Mapping

The traditional forward mapping method maps pixels from the source image onto the

destination image. For some cases, a pixel on the source image might be mapped

to several pixels on the destination image, creating aliasing e↵ects. In this model,

the sprites are mapped to the generated structure using a reverse mapping method

with bilinear sampling and alpha-compositing. First, every pixel on the canvas is

transformed to the coordinate plane of the sprite. The pixels are first rotated around

the origin of the line segment, so that the direction of that segment aligns with the y-

axis. This was accomplished by translating the points to the origin, rotating the points

13



Figure 3.3: Ink strokes for leaves

by multiplying them with a rotation matrix (3.1), and then translating the coordinates

back to their original location, as shown in the code below (3.1).

2
6666664
x0

y0

3
7777775 =

2
6666664
cos✓ �sin✓

sin✓ cos✓

3
7777775 ⇥
2
6666664
x

y

3
7777775 (3.1)

1 def rotate_to_align(v1, v2, origin, point):
2 """ rotate point around origin so that v1 aligns to v2 """

3 sin = v1.sine_angle(v2)

4 cos = v1.cosine_angle(v2)

5 p = point - origin

6 result = np.matmul([[cos, -sin], [sin, cos]], [p.x, p.y])

7 return Vec2d(result[0], result[1]) + origin
8 new_coord = rotate_to_align(seg.direction, Vec2d(0, 1), seg.origin, Vec2d(x

, y))

Note that we do not need to compute the degree of ✓. The sine and cosine of theta

can be calculated from the normalized vectors v1 and v2.

1 def cosine_angle(self, v2):
2 return self.dot(v2) / (self.length() * v2.length())
3

4 def sine_angle(self, v2):
5 return self.x * v2.y - v2.x * self.y

The pixels are then stretched (or squashed) along the y-axis, so that the line segment

to be textured has the same length as the sprite. Since a line segment does not have

14



Figure 3.4: Reverse mapping

Figure 3.5: Bilinear sampling

a width, the mapped area on the canvas is not proportional to that of the sprite. The

width of the sprite is preserved. This result is actually desirable, because segments of

di↵erent length should have the same width.

1 def stretch_y(point, seg, scale):
2 dy = (point.y - seg.origin.y) * scale

3 y = seg.origin.y + dy

4 return Vec2d(point.x, y)
5 new_coord = stretch_y(new_coord, seg, sprite.shape[0] / seg.length)

After this transformation, each pixel (x, y) on the canvas is mapped to a point (u, v)

in the sprite’s coordinate system (Figure 3.4). Because the referenced position (u, v)

does not usually have integer coordinates, the color from the four neighboring pixels

are sampled using bilinear interpolation, as shown in the code below and in Figure 3.5.

1 def bilinear_sample(point, sprite):
2 """ get the target color using bilinear interpolation """

3 x1 = math.floor(point.x)

15



4 x2 = x1 + 1

5 y1 = math.floor(point.y)

6 y2 = y1 + 1

7 dx = point.x - x1

8 dy = point.y - y1

9 a = sprite[y1][x1] * (1 - dx) + sprite[y1][x2] * dx

10 b = sprite[y2][x1] * (1 - dx) + sprite[y2][x2] * dx

11 result = a * (1 - dy) + b * dy

12 return result

3.3 Applying Di↵erent Shades

In traditional ink paintings, di↵erent weights of ink strokes result in di↵erent shades

of black color on the image. Although this model could not simulate weights of ink

strokes in a dynamic manner, it can simulate the e↵ect by using alpha-composition

when applying colors onto the canvas.

During the rendering process, each stalk is assigned a di↵erent degree of shading,

ranging from 0.6 to 1.0. The number determines the opacity of the sprites applied to

that bamboo.

1 def composite(c1, c2, shade):
2 """ alpha-composite color c1 and c2 """

3 a1 = c1[3] * shade / 255

4 a2 = c2[3] / 255

5 r = alpha_composite(c1[0], c2[0], a1, a2)

6 g = alpha_composite(c1[1], c2[1], a1, a2)

7 b = alpha_composite(c1[2], c2[2], a1, a2)

8 a = a1 + a2 * (1 - a1)

9 a = int(a * 255)
10 return [r, g, b, a]
11

12 def alpha_composite(ch1, ch2, a1, a2):
13 """ alpha-composite on chanel c1 and c2 """

14 return int((ch1 * a1 + ch2 * a2 * (1 - a1)) / (a1 + a2 * (1 - a1)))

In the end, the color of pixel (x, y) on the canvas is obtained by

16



Figure 3.6: Seal

1 self.pixels[y][x] = composite(bilinear_sample(new_coord, sprite), \

2 self.pixels[y][x], shade)

3.4 Signature Seal

Chinese painters usually carve their name onto a stamp and seal it at the corner of the

painting once it is completed to represent their signatures. A seal with my Chinese

name was also applied to the image after the rendering. The Chinese characters are in

ancient fonts and read: ”Signed by Yangyang He”. It serves as a signature as well as

enhances the overall visual e↵ect. The seal is pre-produced in Adobe Photoshop, and

is applied to a fixed position at 180 ⇥ 180 pixels from the bottom-left or bottom-right

corner.

3.5 Output

During the generation process, the bamboo grows towards the positive direction of the

y-axis, assuming that the origin of the coordinate system is in the lower-left corner. The

origin of an image coordinate system, however, is at the upper-left corner. Thus, it is

necessary to flip the canvas up-side-down before writing the color information into an

image file.

17



The rendered image can be saved as a PNG file using theimageio library. Depending

on the complexity of the bamboo model and the size of the canvas, it may take several

minutes to render the image. Because the sizes of the models and the sprites are

independent of the size of the canvas, the model could be rendered in various sizes

and proportions. To obtain an appropriate field of view, the images were rendered as

portrait (vertical) images in a resolution of 480⇥720 and landscape (horizontal) images

in 1160 ⇥ 720.
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Chapter 4

Results

Two PNG images are generated after each run of the model. The first shows the

structure of the bamboo, and the second is the rendered image. The structure data

of the bamboo models can also be saved in Python lists and dictionaries that can be

written into a JSON (JavaScript Object Notation) file for later access or re-rendering.

4.1 Structure Graph

The structure graph shows the skeletons of the bamboos’ structures. Figure 4.1(a),

4.2(a), 4.3(a) are some examples of structure graphs. In the picture, black lines represent

stalk segments, blue lines represent branches, and green lines represent leaves. The

crosses represent joints between di↵erent elements.

4.2 Rendered Image

The rendering result is written into PNG image files using the imageio library. Figure

4.1(b), 4.2(b), 4.3(b) are rendered images of the structures shown before them. Note

that Figure 4.1(a) is a vertical image of resolution 480⇥ 720, while the other two images
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(a) Structure graph of Figure 4.1(b) (b) Rendered image of Figure 4.1(a)

Figure 4.1: Sample rendered images

are of size 1160 ⇥ 720 pixels.

4.3 Structure Data

Each bamboo has three categories of elements: stalks, branches, and leaves. Each

element is represented by a line segment, which has an origin, a direction, and a length.

Thus, each category is a collection of line segments, which can be put into a Python list.

The structural data of a single bamboo can be stored in a Python dictionary with three

entries. The keys of the entries are the lists of line segments, and a constructed scene is

just a list of such dictionaries.

These structural data can be stored in a JSON file for future access. The user can later

use this file to re-render the same scene (same structures of bamboos) with di↵erent

shades of ink, di↵erent seals, or other di↵erent render parameters.
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(a) Structure graph of Figure 4.2(b) (b) Rendered image of Figure 4.2(a)

Figure 4.2: Sample rendered images

(a) Structure graph of Figure 4.3(b) (b) Rendered image of Figure 4.3(a)

Figure 4.3: Sample rendered images
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4.4 Performance Analysis

The time needed to produce a single image depends largely on the complexity of the

structure (number of stalks, branches, and leaves) that was generated. Over 60 test

runs, the time consumed for each image varied from a couple of minutes to over ten

minutes. More testings show that the majority of the time was spent on the rendering

process. For example, in a case with 2 stalks (6 segments in total), 2 branches, and 19

leaves, the generation process took less than 0.001 seconds, while the rendering took

445 seconds.

The reverse texture mapping is the most time consuming component in this model.

The algorithm had to transform the coordinates of each pixels on the canvas to the

coordinate system of the texture for each segment to be mapped. This means that for an

1160 ⇥ 720 image, more than 800K transformations were performed for each segment

to be mapped. The limited performance of the Python programming language also

reduced the speed of rendering. As section 4.6 would discuss, the optimization of this

algorithm would significantly improve the performance of the model.

4.5 Applications

The model presented here could be used for application where basic ink artwork is

required to reduce the cost of human labor. Because of the randomness during the

construction and rendering process, each run of the model would produce di↵erent

images. The advantage of the model is that it can produce a large number of unique

works in a comparatively short amount of time to that of a human artist. For example,

the output of Figure 4.1(a) can be used as the background design of letter paper. As

the model is able to produce images of a variety of sizes and shapes, other usages may

include: wall decorations, gifts, illustrations, etc.

22



4.6 Future Work

As discussed in section 4.4, currently, the model takes several minutes to render one

image, depending on the quantity of segments in the scene. The reverse mapping

algorithm could be further optimized to save rendering time, if methods like bounding

boxes were used to reduce the number of unnecessary computations.

Altering the e↵ect of di↵erent degrees of shades by changing the alpha channel of

the image when compositing is not ideal. Since the structure of the bamboo consists of

directed line segments, such line segments can be used as the trajectory guidance of an

ink brush. A more realistic render could then be done by simulating a virtual ink brush

model that paints in di↵erent weights and speed along the generated trajectory. Yang

et al. [10] developed a model that could reproduce the writing process of calligraphic

artwork; similar method could be used in this model to produce dynamic simulation

of the brushwork. This would create animations of the painting process, which can be

used for the training of entry level painters.
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Chapter 5

Conclusions

This paper proposes a procedural model that generates various ink bamboo paintings.

The model chooses random horizontal positions for the bamboo roots. Bamboo seg-

ments then grow out of the roots in a recursive manner: First, a stalk segment grows.

If there is a branch at the top joint of the segment, then a branch segment grows. A

leaf grows on top of the branch before another branch segment grows. When a branch

is constructed, the growth of the stalk continues. After a whole bamboo is completed,

another bamboo is generated following a similar procedure until the randomly deter-

mined quantity is reached. Each random parameter in the model is controlled by rules

observed through real ink bamboo paintings. The growth rule of the leaves simulates

the phyllotaxy (arrangement of leaves) of bamboo.

Stalk, branch, and leaf sprites are created from Natali Myasnikova’s artwork. They

are applied to the canvas using a reverse mapping method and bilinear interpolation.

This approach reduces the aliasing e↵ect that forward mapping might cause. Sprites

of di↵erent bamboo are applied with di↵erent degrees of shades, which is controlled

by the alpha channel when compositing the sprites and the images. Finally, a Chinese

seal is stamped to enhance the visual e↵ect and serve as a signature.
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Appendix A

Code listings

main.py

1 import random
2 import time
3 import imageio
4

5 from Painter import Painter
6 from Canvas import Canvas
7 from Vec2d import Vec2d
8 from Stalk import Stalk
9

10 IMAGE_WIDTH = 1160

11 IMAGE_HEIGHT = 720

12

13

14 def main():
15 # Initializations

16 timestamp = str(int(time.time()))
17 filename1 = "./sample_output/" + timestamp + "_sturcture.png"

18 filename2 = "./sample_output/" + timestamp + "_render.png"

19 canvas_struct = Canvas(IMAGE_WIDTH, IMAGE_HEIGHT)

20 canvas_render = Canvas(IMAGE_WIDTH, IMAGE_HEIGHT)

21 png_painter = Painter()

22

23 # Read sprites

24 stalk_sprite = [imageio.imread(’./sprite/stalk-1.png’), imageio.imread(’./

sprite/stalk-2.png’), imageio.imread(’./sprite/stalk-3.png’)]

25 branch_sprite = [imageio.imread(’./sprite/branch-1.png’), imageio.imread(’
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./sprite/branch-2.png’)]

26 leaf_sprite = [imageio.imread(’./sprite/leaf-1.png’), imageio.imread(’./

sprite/leaf-2.png’), imageio.imread(’./sprite/leaf-3.png’), imageio.

imread(’./sprite/leaf-4.png’), imageio.imread(’./sprite/leaf-5.png’)]

27 seal_sprite = imageio.imread(’./sprite/seal-90.png’)

28

29 print("Constructing...")
30 t0 = time.clock()

31

32 # start construction

33 quantity = get_bamboo_quantity()

34 newest_root = get_root_position(IMAGE_WIDTH)

35 roots = list()
36 roots.append(newest_root)

37 for i in range(quantity - 1):
38 newest_root = get_new_root(newest_root.x)

39 roots.append(newest_root)

40

41 stalks = list()
42 for root in roots:
43 length = get_segment_count()

44 new_stalk = Stalk(root, length)

45 for j in range(length):
46 new_stalk.grow()

47 stalks.append(new_stalk)

48

49 t1 = time.clock() - t0

50 print("Construction time", t1, "seconds.")
51

52 # start rendering

53 stalk_count = 1

54 stalk_total = len(stalks)
55 for stalk in stalks:
56 print("Rendering stalk", stalk_count, "/", stalk_total)
57 shade = get_shade_degree()

58 for seg in stalk.segments:
59 canvas_struct.paint_seg_black(seg)

60 canvas_render.paint_seg_sprite(seg, stalk_sprite[

get_stalk_sprite_index()], shade)

61

62 for branch in stalk.branches:
63 seg = branch.get_segment()

64 canvas_struct.paint_seg_blue(seg)

65 canvas_render.paint_seg_sprite(seg, branch_sprite[
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get_branch_sprite_index()], shade)

66 for joint in branch.joints:
67 canvas_struct.paint_joint_blue(joint)

68 for leaf in branch.leaves:
69 canvas_struct.paint_seg_green(leaf)

70 canvas_render.paint_seg_sprite(leaf, leaf_sprite[

get_leaf_sprite_index()], shade)

71 for joint in stalk.joints:
72 canvas_struct.paint_joint_red(joint)

73 stalk_count += 1

74

75 canvas_render.paint_seal(seal_sprite)

76

77 print("Rendering time", time.clock() - t1, "seconds.")
78 print("Saving images...")
79 png_painter.paint_png(canvas_struct, filename1)

80 png_painter.paint_png(canvas_render, filename2)

81

82

83 def get_bamboo_quantity():
84 i = random.randint(1, 100)

85 if i <= 6:
86 return 1
87 elif 6 < i <= 44:
88 return 2
89 elif 44 < i <= 74:
90 return 3
91 elif 74 < i <= 88:
92 return 4
93 elif 88 < i <= 100:
94 return 5
95

96

97 def get_segment_count():
98 return random.randint(3, 4)
99

100

101 def get_root_position(width):
102 return Vec2d(random.randint(int(0.33 * width), int(0.5 * width)), -10)
103

104

105 def get_new_root(root):
106 return Vec2d(root + random.randint(100, 200), -10)
107
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108

109 def get_stalk_sprite_index():
110 return random.randint(0, 2)
111

112

113 def get_branch_sprite_index():
114 return random.randint(0, 1)
115

116

117 def get_leaf_sprite_index():
118 return random.randint(0, 4)
119

120

121 def get_shade_degree():
122 return random.choice([1.0, 0.9, 0.8, 0.6])
123

124

125 main()
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Branch.py

1 import random
2 from Segment import Segment
3 from Vec2d import Vec2d
4 from Joint import Joint
5

6

7 class Branch:
8

9 def __init__(self, root, side):
10 self.root = root

11 self.top = Joint(root.position.x, root.position.y, self)

12 self.segments = list()
13 self.joints = list()
14 self.leaves = list()
15 self.count = 0

16 self.direction = Vec2d(0, 1)

17 self.leaf_side = 1

18 self.grow_first_seg(side)

19

20 def grow(self):
21 seg_length = random_seg_length()

22 leaf_length = random_leaf_length()

23 new_seg = Segment(self.top.position, self.direction, seg_length)

24 self.top = Joint(new_seg.get_end().x, new_seg.get_end().y, new_seg)

25

26 # grow one leaf to each side at the joint

27 leaf_angle = random_leaf_angle()

28 leaf = Segment(self.top.position, self.direction.static_rotate(

leaf_angle * self.leaf_side), leaf_length)

29 self.leaf_side *= -1

30 # right_leaf = Segment(self.top.position, self.direction.static_rotate(-

leaf_angle), leaf_length)

31 self.top.l_branch = leaf

32 # self.top.r_branch = right_leaf

33 self.leaves.append(leaf)

34 # self.leaves.append(right_leaf)

35

36 self.joints.append(self.top)

37 self.segments.append(new_seg)

38 self.count = len(self.segments)
39

40 def grow_first_seg(self, side):
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41 seg_length = random_seg_length()

42 leaf_length = random_leaf_length()

43 seg_angle = random_branch_angle() * side

44 new_seg = Segment(self.top.position, self.direction.rotate(seg_angle),

seg_length)

45 self.top = Joint(new_seg.get_end().x, new_seg.get_end().y, new_seg)

46

47 # grow one leaf to each side at the joint

48 leaf_angle = random_leaf_angle()

49 leaf = Segment(self.top.position, self.direction.static_rotate(

leaf_angle * self.leaf_side), leaf_length)

50 self.leaf_side *= -1

51 # right_leaf = Segment(self.top.position, self.direction.static_rotate(-

leaf_angle), leaf_length)

52 self.top.l_branch = leaf

53 # self.top.r_branch = right_leaf

54 self.leaves.append(leaf)

55 # self.leaves.append(right_leaf)

56

57 self.joints.append(self.top)

58 self.segments.append(new_seg)

59 self.count = len(self.segments)
60

61 def grow_tip_leaf(self):
62 leaf_length = random_leaf_length()

63 leaf = Segment(self.top.position, self.direction, leaf_length)

64 self.top.l_branch = leaf

65 self.leaves.append(leaf)

66

67 def get_segment(self):
68 length = (self.segments[len(self.segments)-1].get_end() - self.root.

position).length()

69 return Segment(self.root.position, self.direction, length)
70

71

72 def random_branch_angle():
73 return random.randint(30, 85)
74

75

76 def random_leaf_angle():
77 return random.randint(30, 45)
78

79

80 def random_leaf_length():
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81 return random.randint(120, 170)
82

83

84 def random_seg_length():
85 return random.randint(20, 40)
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Canvas.py

1 import numpy as np
2 import math
3 from Vec2d import Vec2d
4

5

6 SEAL_X = 180

7 SEAL_Y = 180

8

9

10 class Canvas:
11

12 def __init__(self, width, height):
13 self.width = width

14 self.height = height

15 self.pixels = np.ndarray(shape=(height, width, 4), dtype=np.uint8)

16 for i in range(height):
17 for j in range(width):
18 self.pixels[i][j].fill(255)

19 # print(self.pixels[0][0])

20

21 def paint_pixel(self, x, y, r, g, b, a):
22 if x in range(0, self.width) and y in range(0, self.height):
23 self.pixels[y][x] = [r, g, b, a]

24

25 def paint_pixel_black(self, x, y):
26 self.paint_pixel(x, y, 0, 0, 0, 255)

27

28 def paint_pixel_red(self, x, y):
29 self.paint_pixel(x, y, 255, 0, 0, 255)

30

31 def paint_pixel_blue(self, x, y):
32 self.paint_pixel(x, y, 0, 0, 255, 255)

33

34 def paint_seg(self, seg, r, g, b, a):
35 x0 = seg.origin.x

36 y0 = seg.origin.y

37 x1 = seg.get_end().x

38 y1 = seg.get_end().y

39 dx = abs(x1 - x0)
40 dy = abs(y1 - y0)
41 x, y = x0, y0

42 sx = -1 if x0 > x1 else 1
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43 sy = -1 if y0 > y1 else 1
44 if dx > dy:
45 err = dx / 2.0

46 while x != x1:
47 self.paint_pixel(x, y, r, g, b, a)

48 err -= dy

49 if err < 0:
50 y += sy

51 err += dx

52 x += sx

53 else:
54 err = dy / 2.0

55 while y != y1:
56 self.paint_pixel(x, y, r, g, b, a)

57 err -= dx

58 if err < 0:
59 x += sx

60 err += dy

61 y += sy

62 self.paint_pixel(x, y, r, g, b, a)

63

64 def paint_seg_black(self, seg):
65 self.paint_seg(seg, 0, 0, 0, 255)

66

67 def paint_seg_green(self, seg):
68 self.paint_seg(seg, 0, 255, 0, 255)

69

70 def paint_seg_blue(self, seg):
71 self.paint_seg(seg, 0, 0, 255, 255)

72

73 def paint_joint(self, joint, r, g, b, a):
74 x = joint.position.x

75 y = joint.position.y

76 self.paint_pixel(x, y, r, g, b, a)

77 self.paint_pixel(x+1, y+1, r, g, b, a)

78 self.paint_pixel(x+1, y-1, r, g, b, a)

79 self.paint_pixel(x+2, y+2, r, g, b, a)

80 self.paint_pixel(x+2, y-2, r, g, b, a)

81 self.paint_pixel(x-1, y+1, r, g, b, a)

82 self.paint_pixel(x-1, y-1, r, g, b, a)

83 self.paint_pixel(x-2, y+2, r, g, b, a)

84 self.paint_pixel(x-2, y-2, r, g, b, a)

85

86 def paint_joint_red(self, joint):
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87 self.paint_joint(joint, 255, 0, 0, 255)

88

89 def paint_joint_green(self, joint):
90 self.paint_joint(joint, 0, 255, 0, 255)

91

92 def paint_joint_blue(self, joint):
93 self.paint_joint(joint, 0, 0, 255, 255)

94

95 def paint_seg_sprite(self, seg, sprite, shade):
96 x_bound = sprite.shape[1] - 1

97 y_bound = sprite.shape[0] - 1

98 for y in range(self.height):
99 for x in range(self.width):

100 # transform every pixel to the coord of the sprite

101 new_coord = rotate_to_align(seg.direction, Vec2d(0, 1), seg.

origin, Vec2d(x, y))

102 # new_coord = stretch(new_coord, seg, sprite.shape[0]/abs(seg.

origin.y - seg.get_end().y))

103 new_coord = stretch_y(new_coord, seg, sprite.shape[0] / seg.

length)

104 # new_coord = stretch_x(new_coord, seg, 0.4)

105 new_coord.x -= seg.origin.x - sprite.shape[1] / 2

106 new_coord.y -= seg.origin.y

107

108 # bilinearly sample color and do alpha-composition

109 if new_coord.x < x_bound and new_coord.x > 0 and new_coord.y <
y_bound and new_coord.y > 0:

110 self.pixels[y][x] = composite(bilinear_sample(new_coord,

sprite), self.pixels[y][x], shade)

111

112 def paint_seal(self, sprite):
113 x = SEAL_X

114 y = SEAL_Y

115 for q in range(90):
116 for p in range(90):
117 self.pixels[y + q][x + p][0] = sprite[89 - q][p][0]

118 self.pixels[y + q][x + p][1] = sprite[89 - q][p][1]

119 self.pixels[y + q][x + p][2] = sprite[89 - q][p][2]

120

121

122 def rotate_to_align(v1, v2, origin, point):
123 """ rotate point around origin so that v1 aligns to v2 """

124 sin = v1.sine_angle(v2)

125 cos = v1.cosine_angle(v2)
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126 p = point - origin

127 result = np.matmul([[cos, -sin], [sin, cos]], [p.x, p.y])

128 return Vec2d(result[0], result[1]) + origin
129

130

131 def stretch_y(point, seg, scale):
132 dy = (point.y - seg.origin.y) * scale

133 y = seg.origin.y + dy

134 return Vec2d(point.x, y)
135

136

137 def stretch_x(point, seg, scale):
138 dx = (point.x - seg.origin.x) * scale

139 x = seg.origin.x + dx

140 return Vec2d(x, point.y)
141

142

143 def composite(c1, c2, shade):
144 """ alpha-composite color c1 and c2 """

145 a1 = c1[3] * shade / 255

146 a2 = c2[3] / 255

147 r = alpha_composite(c1[0], c2[0], a1, a2)

148 g = alpha_composite(c1[1], c2[1], a1, a2)

149 b = alpha_composite(c1[2], c2[2], a1, a2)

150 a = a1 + a2 * (1 - a1)

151 a = int(a * 255)
152 return [r, g, b, a]
153

154

155 def alpha_composite(ch1, ch2, a1, a2):
156 """ alpha-composite on chanel c1 and c2 """

157 return int((ch1 * a1 + ch2 * a2 * (1 - a1)) / (a1 + a2 * (1 - a1)))
158

159

160 def bilinear_sample(point, sprite):
161 """ get the target color using bilinear interpolation """

162 x1 = math.floor(point.x)

163 x2 = x1 + 1

164 y1 = math.floor(point.y)

165 y2 = y1 + 1

166 dx = point.x - x1

167 dy = point.y - y1

168 a = sprite[y1][x1] * (1 - dx) + sprite[y1][x2] * dx

169 b = sprite[y2][x1] * (1 - dx) + sprite[y2][x2] * dx
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170 result = a * (1 - dy) + b * dy

171 return result
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Joint.py

1 from Vec2d import Vec2d
2

3

4 class Joint:
5

6 def __init__(self, x, y, parent):
7 self.position = Vec2d(x, y)

8 self.parent = parent

9 self.stalk = None

10 self.l_branch = None

11 self.r_branch = None
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Painter.py

1 import imageio
2

3 class Painter:
4

5 def __init__(self):
6 pass
7

8 def paint_p3(self, canvas, filename):
9 file = open(filename, ’w’)

10 file.write("P3\n")
11 file.write(str(canvas.width) + " " + str(canvas.height) + "\n")
12 file.write(str(255) + "\n")
13 for i in range(canvas.height - 1, -1, -1):
14 for j in range(canvas.width):
15 file.write(str(canvas.pixels[i][j][0]) + " ")
16 file.write(str(canvas.pixels[i][j][1]) + " ")
17 file.write(str(canvas.pixels[i][j][2]) + " ")
18

19 file.close()
20

21 def paint_p6(self, canvas, filename):
22 file = open(filename, ’w’)
23 file.write("P6\n")
24 file.write(str(canvas.width) + " " + str(canvas.height) + "\n")
25 file.write(str(255) + "\n")
26 for i in range(canvas.height - 1, -1, -1):
27 for j in range(canvas.width):
28 file.write("%B" % canvas.pixels[i][j][0])
29 file.write("%B" % canvas.pixels[i][j][1])
30 file.write("%B" % canvas.pixels[i][j][2])
31 file.write("\n")
32

33 file.close()
34

35 def paint_png(self, canvas, filename):
36 # Reflect the image vertically

37 for i in range(canvas.height // 2):
38 canvas.pixels[[i, canvas.height - 1 - i]] = canvas.pixels[[canvas.

height - 1 - i, i]]

39 imageio.imwrite(filename, canvas.pixels)
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Segment.py

1 from Vec2d import Vec2d
2

3

4 class Segment:
5 """Line segment class"""

6

7 def __init__ (self, origin, direction, length):
8 self.origin = Vec2d(origin.x, origin.y)

9 self.direction = Vec2d(direction.x, direction.y).normalize()

10 self.length = length

11

12 def get_end(self):
13 return Vec2d(int(self.origin.x + self.direction.x * self.length), int(

self.origin.y + self.direction.y * self.length))
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Stalk.py

1 import random
2 from Segment import Segment
3 from Vec2d import Vec2d
4 from Joint import Joint
5 from Branch import Branch
6

7 class Stalk:
8

9 def __init__(self, root, length):
10 self.root = Joint(root.x, root.y, self)

11 self.top = Joint(root.x, root.y, self)

12 self.segments = list()
13 self.joints = list()
14 self.branches = list()
15 self.count = 0

16 self.bend_side = random.choice([-1, 1])

17 self.direction = Vec2d(0, 1).rotate(get_initial_angle() * self.bend_side

)

18 self.length = length

19 self.branch_side = random.choice([-1, 1])

20

21 def grow(self):
22 rand_length = get_segment_length()

23 rand_angle = get_random_angle()

24 new_seg = Segment(self.top.position, self.direction.rotate(rand_angle *

self.bend_side), rand_length)

25 self.top = Joint(new_seg.get_end().x, new_seg.get_end().y, new_seg)

26 if self.decide_grow_branch():
27 new_branch = Branch(self.top, self.branch_side)

28 self.branch_side *= -1

29 for j in range(get_segment_count()):
30 new_branch.grow()

31 new_branch.grow_tip_leaf()

32 self.top.l_branch = new_branch

33 self.branches.append(new_branch)

34 self.joints.append(self.top)

35 self.segments.append(new_seg)

36 self.count = len(self.segments)
37

38 def decide_grow_branch(self):
39 if len(self.segments) + 1 == self.length:
40 return False
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41 i = random.randint(1, 100)

42 if i <= 45:
43 return True
44 else:
45 return False
46

47

48 def get_segment_count():
49 return random.randint(6, 10)
50

51

52 def get_segment_length():
53 return random.randint(242, 335)
54

55

56 def get_random_angle():
57 return random.randint(0, 5)
58

59

60 def get_initial_angle():
61 return random.randint(0, 10)
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Vec2d.py

1 import math
2

3 class Vec2d:
4 """2D Vector/Point class"""

5

6 def __init__(self, x, y):
7 self.x = x

8 self.y = y

9

10 def normalize(self):
11 self.x = self.x / self.length()

12 self.y = self.y / self.length()

13 return self
14

15 def rotate(self, angle):
16 rad = angle * math.pi / 180

17 x = self.x * math.cos(rad) - self.y * math.sin(rad)

18 y = self.x * math.sin(rad) + self.y * math.cos(rad)

19 self.x = x

20 self.y = y

21 return self
22

23 def static_rotate(self, angle):
24 rad = angle * math.pi / 180

25 x = self.x * math.cos(rad) - self.y * math.sin(rad)

26 y = self.x * math.sin(rad) + self.y * math.cos(rad)

27 return Vec2d(x, y)
28

29 def sqaured_length(self):
30 return self.x * self.x + self.y * self.y
31

32 def length(self):
33 return math.sqrt(self.sqaured_length())
34

35 def dot(self, v2):
36 return self.x * v2.x + self.y * v2.y
37

38 def cosine_angle(self, v2):
39 return self.dot(v2) / (self.length() * v2.length())
40

41 def sine_angle(self, v2):
42 return self.x * v2.y - v2.x * self.y
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43

44 # override methods

45 def __add__(self, other):
46 return Vec2d(self.x + other.x, self.y + other.y)
47

48 def __sub__(self, other):
49 return Vec2d(self.x - other.x, self.y - other.y)
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make sprite.py

1 import imageio
2 import sys
3

4

5 def main():
6 filename = sys.argv[1]

7 print(filename)
8 px = imageio.imread(filename)

9 for y in range(px.shape[0]):
10 for x in range(px.shape[1]):
11 shade = px[y][x][0]

12 px[y][x] = [0, 0, 0, 255 - shade]

13 imageio.imwrite("out" + filename, px)

14

15

16 main()
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