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Abstract

A matrix is called totally nonnegative (TN) if the determinant of
every square submatrix is nonnegative and totally positive (TP)
if the determinant of every square submatrix is positive. The TP
(TN) completion problem asks which partial matrices have a TP
(TN) completion. In this paper, several new TP-completable pat-
terns in 3-by-n matrices are identified. The relationship between
expansion and completability is developed based on the prior re-
sults about single unspecified entry. These results extend our un-
derstanding of TP-completable patterns. A new Ratio Theorem
related to TP-completability is introduced in this paper, and it can
possibly be a helpful tool in TP-completion problems.
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Chapter 1

Introduction

1.1 Definitions and Notations

A matrix is called totally nonnegative (TN) if the determinant of every square submatrix
is nonnegative and totally positive (TP) if the determinant of every square submatrix is
positive. A partial matrix is a rectangular array in which some entries are specified,
while the remaining entries are free to be chosen. A completion of a partial matrix is a
choice of values for the unspecified entries, resulting in a conventional matrix.

In this paper, an m-by-n matrix is denoted as A = (a;;). Its submatrix lying in rows
indexed by « and columns indexed by [ is denoted as Ala, f], with o C {1,2,...,m}
and 8 C {1,2,...,n}. A minor is the determinant of a square submatrix and the minor
associated with the submatrix Afa, 5] is denoted as detA[a, 8], when |a| = |B|. |a] is the
cardinality of elements in the set «.

For a = {aq,a9,....,ax} C {1,2,...,n},0 < ag < ... < oy < n, the dispersion of « is
d(a) = a;—aq —k+1. It measures how spread out the index set is relative to {1, 2, ..., n}.
We call a a continuous index set if d(a) = 0. If a and § are two continuous index sets
and |a| = |B| = k, then the submatrix A[a, 8] is called a contiguous submatriz of A and
its minor a contiguous minor. If either a or 5 is {1, 2, ....k}, we call the submatrix Ala, f]
an initial submatriz and its minor an initial minor [1].

1.2 Examples of TP matrices

In this section we give an important example of a TP matrix.



1.2.1 Vandermonde Matrices

Our example of TP matrices is the Vandermonde matrices that arise in the problem of
determining a polynomial of degree at most n — 1 that interpolates n data points [1].

Suppose that n data points (z;,y;)I, are given, we want to find the set of coefficients
{ag, ay, ..., a,_1 } such that the polynomial p(x) = ag + a1z + asz®+ ... + a, 12" ! satisfies
p(z;) = yi,i = 1,2,...,n. We can express these equations by the following linear system:

[N
S
|
—

1z 7 ... 2] ao (
2 n—1

1z x5 ... x4 ai Yo
2 n—1

1 z, = ), Ap_1 Un

The n-by-n coefficient matrix is called a Vandermonde matriz, and we know that this
coefficient matrix is totally positive if 0 < z1 < z9 < ...z, [1].

A simple example of a 3-by-3 Vandermonde matrix V with zy = 1, o = 2 and 23 = 3 is
shown below:

1
V=|1
1

W N =
Ne N

Now we introduce an theorem that is very important in TP matrix problems.

Theorem 1.1 (Thm 3.1.4 in [1}). If all initial minors of A € M,,,, are positive then A
s TP.

This theorem states that in order to determine whether a matrix is TP, one only needs
to check all the initial minors of that matrix. If all the initial minors are positive, the
matrix is TP.

W DN
O =~

1
For the Vandermonde matrix V = |1
1

It is a TP matrix because detV = 2 > 0, detV'[{1,2},{1,2}] =1 > 0, detV'[{1, 2},{2,3}] =
2> 0, detV[{2,3},{1,2}] =1 > 0 and all the entries (which are considered as a minor of
a 1-by-1 submatrix) are positive as well. By Theorem 1.1, all the initial minors of V' are
positive, so this Vandermonde matrix V' is TP.



1.3 The TP Matrix Completion Problems

In this section, we introduce the concept of partial TP matrix and the TP matrix com-
pletion problems.

1.3.1 Introduction

The TP (TN) completion problem asks which partial matrices have a TP (TN) completion.
Obviously, for a completion of a partial matrix A to be TP (TN), matrix A must have
been partial TP (TN), which requires each of its fully specified submatrices is TP(TN) [1].

Not all partial TP (TN) matrices have a TP (TN) completion. For example, the following
partial TP matrix from [1] is not TP completable:

1 1 04 =z
- lo4 1 1 04
A=102 08 1 1

y 02 04 1

The determinant of the matrix can be expressed as
det(fl) = —0.0016 — 0.008x — 0.328y — 0.2zy,

which is always negative for positive x and y.

This example shows that for some partial TP matrices, additional conditions on the en-
tries are necessary for a TP completion. So it is natural to ask which partial TP matrices
guarantee that a partial TP matrix has a TP completion. This is the main focus of this
paper and we will introduce several partial TP matrices that always have TP completions
and use these results and discuss them more later in this paper.



Chapter 2

Supporting Lemmas

In this section, some definitions and supporting lemmas are introduced, and these defini-
tions and lemmas are important for the rest of the results shown in this paper.

2.1 Patterns and Completability

Definition 2.1. A Pattern is a rectangular array of specified and unspecified positions
(x’s and 7’s). We use P to denote a pattern (a combinatorial object) and at the same
time, the set of partial TP matrices that display that pattern. We say that a pattern
P is TP completable if all partial (TP) matrix of P has a TP completion. We call such
patterns TP completable patterns [1].

It is a major open problem to characterizing the TP completable patterns. The same may
all be said if we replace TP with TN above.

Many such TP-completable patterns have been identified, the monotonically labelled block
clique patterns in the TP case [7] has been discussed in the previous works. For patterns
with just one unspecified entry [3] and patterns with a full line of unspecified entries [4],
the TP- and TN- completable patterns have been identified. We will use these results in
this paper.

Now, we will introduce some lemmas that are helpful in the discussion of TP completion
problems.

Lemma 2.2 (Lemma 2.4 in [3]). Let A be an m-by-n partial TP matriz. Then there exist

. . A
positive vectors x,u,v,w such that the augmented matriz [A\x}, [u A}, L}} , and {iﬂ

are all partial TP.



This Lemma is the foundation of the “exterior bordering” technique used in many TP-
completion problems. The “exterior bordering” technique is to extend any existing partial
TP matrix by adding a line above or below or to the right or to the left. And the new
matrix is also partial TP [1].

The following two lemmas consider a non-completable pattern P appearing non-contiguously
or contiguously in a larger-sized pattern P’. We will discuss the TP-completability of the
pattern J’.

Lemma 2.3. Suppose a non-completable pattern P appears non-contiguously in a larger-
sized pattern P'. If we use data such that there is no TP completion for pattern P and,
we insert rows or columns so that the larger-sized pattern P’ remains partial TP, pattern
P is also not TP completable.

3 x 2
Example: Let A be a 3-by-3 matrix |y 3 1].
3 4 3

Matrix A is not TP completable. For det A[{1,2}] > 0, we have zy < 9. But for
det A[{1,2},{2,3}] > 0 and det A[{2,3}, {1,2}] > 0, we have zy > 13.5. So there are no
such z, y that satisfies these two conditions. So matrix A has no TP completion.

Now, we can use the data in matrix A and insert columns to obtain another matrix B
and matrix B needs to remain partial TP.

For example, let B =

W 0 W
we w
B~ W K
N
W = N

One can easily check that Matrix B is partial TP, and matrix A appears as a submatrix.
Matrix A = B[{1,2,3},{2,3,5}].

Matrix A is not TP completable, so there are no such z and y that can make the sub-

matrix B[{1,2,3},{2,3,5}] TP. So there are no such x and y that can make the whole
matrix B TP. Matrix B is not TP completable.

Furthermore, pattern

8 &8

xr x 7 x

77 x| is not TP completable because the matrix B in
rT T T x

not TP completable.

the previous example is no

Now we can discuss the case when a non-completable pattern P appears contiguously in

bt



a larger-sized pattern .

Lemma 2.4. If a non-completable pattern P appears contiguously in a larger-sized pattern
P’ the pattern P’ is also not TP completable.

Proof. Since pattern P is not completable, there exists matrix Mp in this pattern that is
partial TP but not TP-completable. For this matrix Mp, we can use “exterior bordering”
technique (see Lemma 2.2) to obtain a matrix Mp that is in a larger size. Based on
Lemma 2.2, Matrix Mp is still partial TP and the original matrix Mp is now a submatrix
of matrix Mpg. Since the submatrix Mp has no TP completion with the given data,
we can’t choose positive data for the unspecified entries to make the matrix Mp TP.
Therefore, matrix Mp is not TP completable and pattern P’ that is displayed by matrix

Mg is not TP completable as well. O
Example:

x 7
The 3-by-3 pattern P= |7 =z x| is not TP completable [1].

T T T

for any pattern P’ such that this non-completable pattern P appears contiguously, this
pattern P’ is also not TP completable.

For example, a matrix with the following pattern is not TP completable.

8
8 8 v
8 8 8

2.2 Separable Patterns

Two positions in an m-by-n (m < n) matrix are “linked” if both occur in some initial
submatrix. We call a pattern P “separable” if no unspecified position of P is linked to
another unspecified position. Let’s say that there are two unspecified entries in pattern
P, one in column ¢ and another in column k (i < k).

Lemma 2.5. For an m-by-n (m < n) matriz A. Consider the submatriz consisting of
column 1 to column i4+m —1 to be Ay and the submatrixz consisting of column k —m + 1
to column n to be As. Then A is TP completable iff Ay and As are both TP completable.

Proof. If submatrices A; and A, are both TP-completable, we can complete both matrices
Ay and As so that each initial minors in matrix A is positive. According to Theorem 1.1,
matrix A is now TP. So matrix A is TP-completable. O]



x x 7T r v T o ow
Example: The following pattern: |z =z = x x 7 x x| is TP completable.
T r r T T T T X

Proof: The two unspecified entries are not linked so this pattern is separable. And the
submatrix A; consisting of columns 1 to 5 and the submatrix A, consisting of columns 4
to 8 are both TP completable. Then by Lemma 2.5, this pattern is TP completable.

2.3 Transpose and symmetry

Class TP is closed under transposition and reversal of indices (see more in [3]). Reversal

of indices is the same as forward-backward symmetry. The following lemma is introduced
in (3] :

Lemma 2.6 ([3]). For any m-by-n matriz A that is TP, its transpose and its forward-
backward symmetry are also TP.

Example:
a b c
The forward-backward symmetry of matrix |d e f| is equal to:
g h 1
00 1| fa b c| |0 0 1
01 0| |d e fI]|0 1
1 0 0[]|g h 2| |1 0O
a b ¢ t h g
So the forward-backward symmetry of matrix [d e f| = |f e df.
g h i c b a

Corollary 2.7. If a matrix pattern is TP completable, its transpose and its forward-
backward symmetry are also TP completable.

Proof. If a pattern P is TP completable, there exist values for the unspecified entries that
can make a matrix in this pattern TP. From the Lemma 2.6, we know that the transpose
of this TP matrix is also TP. So for the unspecified entries in the transpose pattern P,
there exist values that can make the transpose pattern TP completable. Proof for the
forward-backward symmetry pattern is the same. O]

Lemma 2.8. If a matrix pattern is not TP completable, then its transpose and its forward-
backward symmetry are not TP completable.



Proof. By Lemma 2.7, if the transpose and the forward-backward symmetry of a pat-
tern are TP completable, the matrix pattern is TP completable. Using contrapositive
statement, we know that if a pattern is not TP completable, its transpose and forward-
backward symmetry are not TP completable as well. So we can conclude that lemma 2.8
is true. O

2.4 Single Entry Case

In this section, we consider a partial TP (TN) matrix with only one unspecified entry. A
partial TP matrix with only one unspecified entry can be both TP-completable or non
TP-completable.

Consider the case:
100 100 40 =

40 100 100 40
20 80 100 100
3 20 40 100

x has to be smaller than % to make the determinant positive, but z itself needs to be

positive for TP completion. Thus there is no TP completion for this partial matrix.

It turns out that among all the single unspecified entry cases, the number of TP-completable
patterns is rather limited. We now state several important theorems that are very helpful
in other results discussed in this paper. These theorems deal with partial TP matrices in
different sizes, but all of them have only one entry unspecified.

Theorem 2.9 (Thm 2.6 in [3]). Let A be a 2-by-n partial TP matriz with exactly one
unspecified entry. Then A is completable to a TP matriz.

Theorem 2.10 (Thm 2.8 in [3]). Let A be a 3-by-n, n > 3, partial TP matriz with exactly
one unspecified entry. Then A is completable to a TP matriz.

Theorem 2.11 (Thm 2.11 in [3]). Let A be an m-by-n partial TP matriz in which 4 <
m < n and in which the only unspecified entry lies in the (s,t) position. Any such A has
a TP completion if and only if s+t <4 ors+t>m+n— 2.

Theorem 2.11 states that for an m-by-n partial TP matrix with only one unspecified entry,
the positions of unspecified entries that always allow TP completability are those in the



upper-left corner or lower-right corner. They are shown below as “x” [5].

T T
X
Z

T
T

r T
r T X

The above theorems play a fundamental role in many TP-completable patterns. We
can call these twelve positions “good positions” for single unspecified entry. And this
theorem is very fundamental for the later discussions.

2.4.1 Line insertion

Line insertion is another useful technique to create TP matrix.

Theorem 2.12 (Thm 2.3 in [4]). Let A be a TP matriz. Then, a line can be inserted
between any pair of adjacent lines in A so that the resulting matriz is TP.



Chapter 3

Completability of Specific Patterns

In this section, we discuss the completabilities of several specific patterns.

3.1 Vandermonde Completions

1 1 1 1 1
1z 22 23 xf
Consider the matrix V' = (1 7 7 7 1y | being partial TP. Matrix V' is TP com-
1
1

Ty xi 13 1)
vz w23 o}

pletable.

Proof. For any y such that 1 < y < x1, there always exists a Vandermonde Completion.
We can complete the third row of the matrix V as [1 yi oyr oyl y]. Since 1 < 2} <

4 4 . oy, 1 .
y < z; < x5, we can get the inequalities, x; < y1 < x9 < x3. So matrix V has a TP
completion. Therefore, this Vandermonde Completion is a TP Completion. m

3.2 Completion of Tridiagonal Patterns

We define a tridiagonal pattern as a matrix pattern that has specified entries only on
the main diagonal, the first diagonal below this, and the first diagonal above the main
diagonal. All the other entries are unspecified.

10



For example, the following pattern is a tridiagonal pattern:

Vv Y8R
D08 8 OR
VR 8 8 9
8 8 8 v v
8 8 v v v

Lemma 3.1. Any n-by-n Tridiagonal Patterns (n > 3) are TP completable.

Proof. We can use induction to prove this lemma. We want to show that an m-by-m
tridiagonal pattern is TP completable. First, we can start from the 3-by-3 submatrix at
the lower-right corner. This 3-by-3 submatrix is TP completable because the unspecified
entries are at the (1,3) and (3,1) positions [1]. So we can find positive values for the two
unspecified entries in the 3-by-3 submatrix. Now we move on to the 4-by-4 submatrix in
the lower-right corner. This 4-by-4 submatrix has the following pattern:

) .\3& &

8 8 8 8
8 8 8
8 8 &8 W

We can look at the sub-pattern of this above pattern, which is:

Do 88
8 8 8 8
8 8 8
8 8 8

and complete this subpattern first.

we can complete the (4, 1) entry by ignoring the third row. This simplification is possible
because at current step, we will not complete any minors other than the ones consisting
of row 1,2 and 4. The (4, 1) entry is at a good position of the submatrix consisting of row
1, 2, and 4 by Theorem 2.10. So we can complete the (4,1) entry and then move to the
(3,1) entry. (3,1) entry is again at a good position, so we can complete (3,1) entry.
After completing the (4,1) entry and (3,1) entry, we need to deal with the following
pattern

8 8 8 8
8 8 8 8

8 8 9
8 8 8 =

T

Again we start from the (1,4) entry. (1,4) entry lies at the (1, 3) entry of the submatrix
consisting of columns 1,2 and 4. so it is TP completable by Theorem 2.10 and we can

11



complete the (1,4) entry. At current step, we have not completed any minors that involve
both column 3 and 4 because there is still one more unspecified entry at the (1, 3) position.
Now we only have one unspecified entry at (1,3) position in this 4-by-4 matrix. This un-
specified entry is at a good position and it has a TP completion according to Theorem 2.11.

Now we have completed the 4-by-4 submatrix in the lower-right corner. We will move on
to the 5-by-5 submatrix in the lower-right corner and complete it using the same method.
This method indicates that if we can complete the k-by-k submatrix in the lower-right
corner, the (k+ 1)-by-(k + 1) submatrix in the lower-right corner is also TP-completable.
Therefore, using induction, we can complete ann m-by-m tridiagonal pattern. Therefore,
an m-by-m tridiagonal pattern is TP completable. O

3.3 Completable patterns in 3-by-3 matrices

In this section, we are going to explore all the non-completable patterns in the 3-by-3 par-
tial matrices. We will discuss the completability of all the 3-by-3 patterns with different
numbers of unspecified entries ( 7 ’s ).

We start with a 3-by-3 pattern with single unspecified entry

Lemma 3.2 (Thm 2.8 in [3]). All partial 3-by-3 TP matrices with exactly one unspecified
entries are TP completable.

Lemma 3.3 ([3]). All partial 3-by-3 TP matrices with exactly two unspecified entries are
TP completable except for the following four patterns:

z 7 x T T T z 7 x T T T
? x x|, |z x 7, |z xz 7|, |7 x x
T T X z 7 x T T T z 7 x

Lemma 3.4. All partial 3-by-3 TP matrices with three unspecified entries are TP com-
pletable except for the following four patterns:

7 x oz z 7 x z 7 x z x 7
x x 7, |? x x|, |z x 7|, |? x x.
z 7 x z x 7 7T oz z 7 x

Proof. In the cases when the partial 3-by-3 TP matrices have exactly three unspecified
entries, we should discuss the completability in three different cases.

Case 1: If the three unspecified entries are in the same line: we can use bordering or line
insertion (see Lemma 2.2 or Theorem 2.12) to complete it to a TP matrix.

12



Case 2: If two of the three unspecified entries are in the same line: First consider
the sub-matrix consisting of the row with fully specified entries and the row with only
one unspecified entry. It’s a 2-by-3 partial TP matrix with only one unspecified entry.
Based on Theorem 2.9, it is TP completable. And notice that, when we complete this
first entry, we have not complete any minors that involve the line with two unspecified
entries at this current step. After completing the first entry, we can then use bordering
methods or line insertion to complete the whole matrix (see Lemma 2.2 or Theorem 2.12).

Example: The following 3-by-3 partial TP pattern P = is completable.

8 V8
DR K
8 V8

We can first focus on the submatrix consisting of row 1 and 3. This submatrix is a
2-by-3 partial TP matrix with only one unspecified entry and we can complete that en-
try by Theorem 2.9. When we complete the (3,2) entry of the matrix A, we have not
completed any submatrices that involve both the entries in row 2 and the entry (3,2),
because minors that contain the (2,3) entry and the entries in the second row have at
least one more unspecified entry to complete at this current step. Now we can use line
insertion method to add in the second row because there is only one specified entry in
row 2. We are able to find positive values for the remaining two enspecified entries and
therefore, we can find the TP completion for this pattern. So pattern P is TP completable.

Case 3: If all of the three unspecified entries are in different lines:
In this case, there are six different patterns in total that we need to consider. We will
discuss the TP completability of each pattern.

?
Pattern 1: Pattern |x is TP completable.
x

8 V&
~ 8 8

For this pattern, we can make the (1,1) entry big enough to make all the initial minors
and the determinant positive.

x x 7
Pattern 2: Pattern [z 7 x| is TP completable.
T r ox

We can first make the (2,2) entry positive and the (1,3) and (3,1) entry zero so that all
the initial minors remain positive. Then we can increase the (1,3) and (3,1) entry just
a little bit to make the two entries positive, and at the same time, make all the initial
minors remain positive. Using this method, we can have a TP completion for this pattern.
This pattern is TP completable.

13



T xox
Pattern 3: Pattern [x x 7| is not TP completable.
x 7 x

By scaling rows and columns, we can change this pattern into the following equivalent

one:

? 1
1 Yy
1 b

0

y is a variable representing the unspecified entry at the (2,3) position and a and b rep-
resenting the constants at the (2,2) and (3,3) position. In order for all the minors to
be positive to have a TP completion, y should be between a and b (i.e., a < y < b).
But a and b can take on any values as long as the matrix remains partical TP, so it is
possible that a is bigger than 0. In this case, we can’t find any interval for y to have a
TP completion. so there’s no TP completion for this pattern. That is, this pattern is not
TP completable.

Pattern 4: Similarly, the forward-backward symmetry of this pattern is also not TP

r 7 o
completable (see Lemma 2.8). So pattern |? =z x| is not TP completable
r x 7
r 7 x
Pattern 5: Pattern [z x 7| is not TP completable.
7 x ow

The proof is similar to the previous pattern. We can change it into this equivalent pattern
by scaling:

[, S

?
1
b

—e Q2

When a is bigger than %, we can not find an interval for y. So there’s no TP comple-
tion and, this pattern is therefore not TP completable.

Pattern 6: The transpose of the previous pattern is and this pattern is also

8 V&
DR &
8 8 9

not TP completable (see Lemma 2.8).

Therefore, all partial 3-by-3 TP matrices with three unspecified entries are TP com-
pletable except for the following four patterns:

14



Lemma 3.5. All 3-by-3 partial TP matrices with four or more unspecified entries are TP
completable.

Proof: If a 3-by-3 partial TP matrix has four or more unspecified entries, at least
one line of the matrix has at least two unspecified entries. We can complete any 2-by-3
submatrix of this matrix first and then use bordering method or line insertion (see Lemma
2.2 or Theorem 2.12) to complete the matrix to a TP matrix.

3.4 Completable patterns in 3-by-n matrices

In this section, we are going to explore non-completable patterns in an 3-by-n partial TP
matrices with less than three unspecified entries.

First, We can discuss the TP completability when there is only one unspecified entry in
a 3-by-n partial TP matrix (n > 3).

Theorem 2.10: Let A be a 3-by-n (n > 3) partial TP matrix with exactly one unspeci-
fied entry. Then A is completable to a TP matrix.

Now, if there are exactly two unspecified entries in a 3-by-n partial TP matrix (n > 3),
we can discuss the TP completability in different cases based on the locations of the two
unspecified entries.

Case 1: If the two unspecified entries are in the same line:

Lemma 3.6. Let A be a 3-by-n partial TP matriz with exactly two unspecified entries in
the same line, n > 3. Then A is TP completable.

We can prove this Lemma by looking at an example.
Example: The following 3-by-n partial TP pattern P =

Tz 7 x T
Tz 7 x T
T T T T x
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is TP completable.

Proof. The strategy is to complete the unspecified entries one by one. We first focus on
the submatrix consisting of rows 2 and 3. In this submatrix, there is only one unspecified
entry in this 2-by-n partial TP matrix, so we know by theorem 2.9, we can find a positive
value to complete this 2-by-n sub-matrix. So we can find a positive value for the entry at
the (2,2) position for the original matrix A and matrix A remains partial TP. Notice that
at current step when we complete the (2,2) entry, because the (1,2) entry is still unspec-
ified, we haven’t completed any submatrices that involve both the entries in the first row
and the (2,2) entry. So such simplification is possible. Now we have a 3-by-n partial TP
matrix with exactly one unspecified entry at the (1,2) position. By the Theorem 2.10,
we know that we can find positive values for the (1,2) entry to have a TP completion for
this pattern P. Therefore, this pattern P is TP completable.

The same method can be used to prove that other 3-by-n partial TP matrices are TP
completable when there are exactly two unspecified entries in the same line.
m

Case 2: If the two unspecified entries are in adjacent columns:
In this case, there are six patterns in total that we need to consider:

7 7 x x 7 xz 7 Tz T T
x T, |l x|, |? xf, |z xf, |? x|, |z 7],
T x xz 7 T T 7 xz 7 ?7 x

If any of these 3-by-2 patterns appears in the middle of the 3-by-n partial TP matrix, this
3-by-n partial TP matrix is not TP completable, because we can find a non-completable
3-by-4 pattern appearing contiguously in this matrix. By lemma 2.4, this 3-by-n partial
TP matrix is then not TP completable.

However, there are two exceptions when two of these 3-by-2 patterns appear as the first
two columns of the 3-by-n matrix.

So, the following two patterns are TP completable:

T x - X Tz x T
x 7?7 x -+ z|l,and |x T =z x
T x T - X z 7 x T
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T r ox -
Proof. Let pattern P = |z 7 x --- z|.

Since both of the unspecified entries lie in the first two columns of P and this pattern is
partial TP, the first 3-by-4 submatrices in P contains all the initial minors that involve
the unspecified entries. So we only need to consider the first 3-by-4 sub-matrices, which
1s

8 8 9
8 208
8 8 8
8 8 8

This 3-by-4 pattern is TP completable, so we can find positive values that make this
3-by-4 matrix TP and also make the original 3-by-n matrix TP. Therefore, the 3-by-n
partial TP pattern P is TP completable.

Similar method can be used to prove the second 3-by-n pattern is TP completable.

T x o xow
Because the 3-by-4 sub-pattern |z x =z x| is TP completable, the 3-by-n pattern
r 7T x x
T T o x
r xr x x| is also completable.
x 7 x x

O

Case 3: If there is a fully specified column between the columns of the unspecified entries:
There are six sub-patterns in total when there is a fully specified column between the
columns of the unspecified entries:

7 x x 7 x x z x 7 z x 7 T T T T T T
x x 7, |z x x|, |? z x|, |r x x|, |7 z xf, |x x ?
T T X x x 7 T T T Tz x z x 7 7Tz x

Lemma 3.7. Let A be a 3-by-n partial TP matrixz with exactly two unspecified entries
and there is a fully specified column between the columns of the unspecified entries, n > 3.
Then A is TP completable.

Proof. Let’s say the first unspecified entry lies in the column ¢ and the second column
lies in the column (i + 1). First, we can focus on the sub-matrix A; consisting of all the
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columns except column k. The submatrix A; is a 3-by-(n — 1) partial TP matrix with
exactly one unspecified entry. By Theorem 2.10, this sub-matrix A; is TP completable,
and we can find positive value for the first unspecified entry that makes the submatrix
A; TP. Now we could add in the column k and the original matrix A remains partial TP,
because these are only two specified entries in column (i + 1) and we can always insert a
line in a 2-by-n TP matrix and remain TP. So now matrix A is a 3-by-n partial TP matrix
with exactly one unspecified entry. By Theorem 2.10, matrix A is TP completable. [

Example:
Let A be a 3-by-7 partial TP matrix with the following pattern:

T x T x x T X
T T T T T T X
T x x x 7T x x

By lemma 3.7, we know that this matrix A is TP completable.

Proof. We can focus on the sub-matrix A; consisting of all the columns except column
5, and this sub-matrix A; is a 3-by-6 partial TP matrix with one unspecified entry at
(1,3) position. By Theorem 2.10, we can find positive values for the (1,3) entry and the
sub-matrix A; remains TP. Now we can add in column 5. Because there are only two
specified entries in column 5, we can find values for these two entries that can make the
first two rows of matrix A TP and thus, matrix A remains partial TP. Now, matrix A is
a 3-by-7 partial TP matrix with only one unspecified entry at (3,5) position. By theorem
2.10, this matrix A is TP completable.

O

Case 4: If there are two or more fully specified columns between the columns of the
unspecified entries:

Lemma 3.8. Let A be a 3-by-n partial TP matrixz with exactly two unspecified entries,
n > 3. If there are two or more fully specified columns between the columns that contain
the unspecified entries, A is TP completable.

Proof. By lemma 2.5, since there are two or more fully specified columns between the
columns that contain the unspecified entries, the two unspecified entires are not linked,
so matrix A is separable. We can separate matrix A into two submatrices, and each of
the submatrix is TP completable because each submatrix only has one unspecified entry

in a 3-by-m matrix (m < n) by theorem 2.10. O
xrz 7T x x x T X

Example: Matrix A= |z * = x x x x| is TP completable.
r x x x v v !
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Proof: The two unspecified entries are separated enough and they are not linked.

r x 7T x x A A A
We can separate this pattern into two sub-patterns: |z =z x z z| and |x = = =«
T T xr T r x 7 x

Since these two patterns are both TP completable, by Lemma 2.5, matrix A is TP com-
pletable.
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Chapter 4

Completion and Expansion

In this section, we will discuss the relationship between expansion and TP-completion.

4.1 Expansion of a 3-by-3 pattern with single unspec-
ified entry

Definition 4.1. An Expansion of an m-by-n pattern P is an m/-by-n’ pattern P’,
m’ > m, n’ > n, resulting from the sequential duplication of lines, starting from P, so
that

1) each duplicated line is adjacent to the line it copies and

2) each line that is copied contains at least one unspecified entry.

Example:

o - 7?7 xr x ox
An expansion of pattern L ?] is |z z x 7 7.
’ r x x 7 7
First, row 2 is copied as row 3, then column 3 is copied as column 4 and finally column 1

is copied between columns 1 and 2.

If the original pattern P is TP-completable, it is natural to ask if any expansion is TP
completable.

And we define a good expansion as an expansion that preserves the completability. If
a matrix is TP completable and after expansion, the larger-size matrix is also TP com-
pletable, we can say that this expansion is a good expansion. Similarly, a bad expansion
is an expansion that changes the completability of a matrix after expansion.
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Theorem 4.2. Let matriz A be a 3-by-3 partial TP matriz with exactly one unspecified
entry. Then the expansion of this pattern is also TP completable.

Proof. We start our proof by looking at one specific pattern. Based on Theorem 2.10 ,
x 7 x

pattern P |z x x| is TP completable.
r x x

We can expand this pattern P twice and get the following pattern P;

88 8 8
8 R v
88
SHESEE SRS

And this new pattern P; is also TP completable.

Proof: The strategy is to complete one unspecified entry each time and repeat until com-
pletion. We start from the second row and complete one entry each time from right
to left. Observe that the unspecified (2,3) entry is positioned at the (1,2) entry of the
submatrix consisting of rows 2, 3, 4 and columns 1, 3 and 4. Theorem 2.10 implies the
TP completability of the (2,3) entry with respect to the 3-by-3 submatrix, and hence a
value for the (2,3) entry can be chosen to keep the whole matrix partial TP. Notice that
because the entry at the (2,2) and (1, 3) positions are unspecified, we have completed no
submatrices other than the one consisting of rows 2, 3, 4 and columns 1, 3 and 4. This
fact reduces the number of minors to be taken care of at each step.

Following the direction from right to left, the next entry to be specified is the (2, 2) entry.
Its TP completability is implied by Theorem 2.10, as it is at the (1,2) position of the
3-by-4 submatrix composed of rows 2 to 4 and all the columns.

Now the second row has been completed such that the matrix remains partial TP. Now
we can move to the first row to complete the unspecified entries in the first row. Similarly,
we complete one entry each time from right to left. The (1, 3) entry, can be viewed as the
single unspecified entry residing at the (1,2) position of the submatrix that contains all the
rows and the columns 1, 3 and 4. Its TP completability with respect to the submatrix is
implied by Theorem 2.10 and, hence a value can be chosen for the (1, 3) entry to keep the
whole matrix partial TP. Such simplification is possible because minors that contain the
(1,3) entry and the entries in column 2 have one more entry to be specified later. Finally,
the completability of the (1,2) entry is again implied by the Theorem 2.11. Therefore,
we complete all the unspecified entries and get a TP completion for this 4-by-4 matrix.
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A more general case for the expansion of this pattern P: An expanded pattern P’ (the
set of m-by-n partial TP matrices that display that pattern) can be illustrated as the
following:

ai ? ? ? a1n

az ? ? ? a2 n

as ? ? ? a3 n
Am—2,1 ? ? ? Am—2.n
Am-11 @m-12 Am-13 - -+ Am-1n-1 Am-1n
i Am,1 Am,2 Am,3 EEEIENEEE Am,n—1 Amn |

Similarly, the strategy is to complete one unspecified entry each time and repeat until
completion. We start again from the row (m — 2) and complete one entry each time from
right to left on that row. The unspecified (m — 2,n — 1) entry is positioned at the (1, 2)
entry of the submatrix consisting of rows (m — 2) to m and columns (n — 2) to n. The-
orem 2.10 implies the TP completability of the (m — 2,n — 1) entry with respect to the
submatrix, and hence a value for the (m —2,n — 1) entry can be chosen to keep the whole
matrix partial TP. Notice that because all entries above or to the left of the (m—2,n—1)
entry (except a,,_21) are still unspecified, we have completed no submatrices other than
the one consisting of rows (m —2) to m and columns (n—2) to n at the current step. Such
simplification is possible because minors that contain the entry (m —2,n — 1) and entries
in columns other than 1, n — 1 and n have at least one more entry to be unspecified later.
So after completing the (m — 2,n — 1) entry, this pattern remains partial TP.

Following the direction from right to left, the next entry to be specified is the (m—2,n—2)
entry. It’s TP completability is implied by Theorem 2.10, as it is at the (1,2) position of
the 3-by-4 submatrix composed of rows (m — 2) to m and columns 1, n —2 n — 1 and n.

We can continue to complete each entry on the row m — 2 by using the same strategy
and then move to the row m — 3 and complete unspecified entry one by one from right
to left. The TP completability of unspecified entries on the row m — 3 is now implied by
Theorem 2.11 as the size of the submatrices we focus on are getting bigger. Following
these steps, we can get a TP completion for this pattern.

For the pattern , the transpose and the forward-backward symmetry of its

8 8 8
8 8 v
8 8 8
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expansion is actually the expansion of the patterns

rT r T xT xr o
? x z|land |x x w
r xr x x 7 x
x 7 x
Therefore, by Lemma 2.7, since the expanded pattern of |z x x| is TP completable,
xT xr o

its transpose and its upper-right symmetry is also TP completable.

B x T x
so the expansions of the patterns |? x x| and |z x x| are also TP completable.
B x T
r r 7] T T T
Similarly, since pattern |x x 7| is the transpose of the pattern [ z x|, we can
T T T x 7
T T T
conclude that the expansion of the pattern |x x 7| is also TP completable.
A

Now we look at the remaining patterns of the 3-by-3 matrices with one unspecified entry.

The border patterns, which are the expansions of the following pattern

8 8 8
8 VR
8 8 8

are TP completable and a proof can be found in [5].

We look at the following pattern:

8 8 9
8 8 8
8 8 8

The expansion of this 3-by-3 pattern can be illustrated by the following graph in an
m-by-n matrix:
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a1 n—1 A1 n
asn—1 as n
agn—1 a3 n

? ? e 7

Am—2n—-1 Am—2n
m-1,1 Om-12 Am-13 - -« Ap—1n-1 Am—1n
am,1 am,2 am,3 Am,n—1 Am.n |

Similarly, the strategy is to complete one unspecified entry each time and repeat until
completion. We start from the (m—2) row and complete one entry each time from right to
left. The unspecified (m —2,n—2) entry is positioned at the (1, 1) entry of the submatrix
consisting of rows (m — 2) to m and columns (n — 2) to n. This submtraix is a 3-by-3
matrix with 1 unspecified entry on the (1,1) position. So Theorem 2.10 implies the TP
completability of the (m — 2,n — 2) entry with respect to the submatrix, and a value for
the (m — 2,n — 2) entry can be chosen to keep the whole matrix partial TP. Notice that
at the current step, because all entries to the left of and above the (m — 2,n — 2) entry
are still unspecified, we have completed no submatrices other than the one consisting of
rows (m —2) to m and columns (n —2) to n. Minors that contain the entry (m —2,n —2)
and entries in columns other than columns (n —2), (n — 1) and n have at least one more
entry to be specified later.

Following the direction from right to left, the next entry to be specified is the (m—2,n—3)
entry. It is TP completable based on theorem 2.10 as it is at the (1, 1) position of the
3-by-4 submatrix composed of rows (m — 2) to m and columns n — 3 to n. This simplifi-
cation is possible because we have not completed any minors in the original matrix that
contains the (m — 2,n — 3) entry other than the one in that 3-by-4 submatrix.

We can continue to complete each entry on the row (m — 2) by using the same strategy
and then move to the row (m — 3) and complete the unspecified entries one by one from
right to left using the same approach. The TP completability of each entry on the row
(m — 3) followed by Theorem 2.10 or Theorem 2.11 based on its position in the corre-
sponding submatrix. Following the same step, we can complete each entry from right to
left on each row, and move to the row above until completing all the entries on row 1. So,
we can get a TP completion for this expanded pattern.

T T o
Therefore, we just proved that the expansion of the pattern |z z x| is TP completable.
T xr x

Similarly, by Lemma 2.7, the forward-backward symmetry of the expanded pattern is
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also TP completable. This symmetry is actually the expansion of the pattern of a 3-by-3

r xr T
matrix |z = =
x x 7
T xr x
Therefore, the expansion of the pattern |z z x| is also TP completable.
x x 7
x x 7 r xr T
Now the remaining patterns are the following: |z z x| and |z z =z
r xr T T xox
T xr x
Since the expansion of the pattern |z x x| is the transpose of the expansion of the
7 x o
x x 7
pattern |x x x|. The expansions of these two patterns have the same completability.
r xr T
We can first look at the pattern
x x 7
r xr T
r xr T

The expansion of this 3-by-3 pattern can be illustrated by the following graph in an
m-by-n matrix:

ai 1.2 ?

azq a2 9 ?

as as 2
m—21 Gm—-22 ? ? ?
m-11 Am-12 Am—-13 Am—-1n—-1 Am—1n
B Am,1 Am,2 am,3 Amn—1 Amn i

Similarly, the strategy is to complete one unspecified entry each time and repeat until
completion. We start from the first row and complete one entry each time from left to
right. The unspecified (1,3) entry is positioned at the (1,3) entry of the submatrix con-
sisting of rows 1, m —1 and m and columns 1 to 3. This submtraix is a 3-by-3 matrix with
1 unspecified entry on the (1, 3) position. So Theorem 2.10 implies the TP completability
of the (1,3) entry and a value for the (1,3) entry can be chosen to keep the whole matrix
partial TP. Notice that at current step, because all entries below and to the right of the
(1,3) entry are still unspecified, we have completed no submatrices other than the one



consisting of rows 1, m — 1 and m and columns 1 to 3.

Following the direction from left to right, the next entry to be specified is the (1,4) entry.
It is TP completable based on theorem 2.10 as it is at the (1,4) position of the 3-by-4
submatrix composed of rows 1, m — 1 and m and columns 1 to 4. This simplification is
possible because we have not completed any minors in the original matrix that contains
the (1.4) entry other than the one in that 3-by-4 submatrix.

We can continue to complete each entry on the first row by using the same strategy
and then move to the second row and complete unspecified entry one by one from left
to right using the same approach. The TP completability of each entry on the second
row followed by Theorem 2.10 or Theorem 2.11 based on the size of the corresponding
submatrix. Following the same step, we can complete each entry from left to right on
each row, and move to the row below until completing all the entries on the row (m — 2).
So, we can get a TP completion for this expanded pattern.

x x 7
Therefore, we just proved that the expansion of the pattern [z = x| is TP completable.
r xr x
r xr x
And based on what we have discussed before, the expansion of the pattern |z z =«
7 x ow
x x 7
shares the same completability with the expansion of the pattern |x x z].
r xr T
r xr x
Therefore, the expansion of the pattern |z x x| is also TP completable.
7T ox

In conclusion, we have shown that the expansion of all the 3-by-3 matrix with one un-
specified entry is TP completable.
O

4.2 Expansion of a pattern with single unspecified
entry

As we know from the Theorem 2.11, for an m-by-n (4 < m < n) partial TP matrix
with only one unspecified entry, the positions of unspecified entries that always allow TP
completability are those in the upper-left corner or lower-right corner. They are shown

U,

below as “x” [5].
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8
8

i
r X
r T X

We can call these 12 positions ”good” positions, and those six positions at the upper-
left corner “upper-left good ” positions and those six positions at the lower-right corner
“lower-right good” positions.

Lemma 4.3. Any m-by-n (4 < m < n) pattern P with only one unspecified entry at any
one of the twelve good positions is TP-completable. Furthermore, any expansion of this
pattern P is also TP-completable.

Proof. case 1: If the unspecified entry lies in one of the “upper-left good” positions (posi-
tion (a, b)), we can complete each unspecified entry sequentially using the method stated
in the previous 3-by-3 cases. The order is really essential. For the unspecified entries
on the same row, we should complete each unspecified entry from right to left, starting
from the row with the largest row number i. And then we should move to the row above,
row (i — 1). In this order, we can make sure that every unspecified entry we complete
at each step lies on the good position (a,b) of the corresponding sub-matrix. Thus, the
completability of the unspecified entry at each step is implied by Theorem 2.11. Following
this process, we can find a TP completion for this pattern.

case 2: If the unspecified entry lies in one of the “lower-right good” positions (position
(¢,d)), we can again complete each unspecified entry sequentially. For this case, we should
complete each unspecified entry on the same row from right to left, starting from the first
row with unspecified entries. After completing that row, we should move to the row
below and complete that row from right to left. In this order, we can make sure that
every unspecified entry we complete at each step lies on the good position (a,b) of the
corresponding sub-matrix. Thus, the complitability of each unspecified entry at each step
is implied by Theorem 2.11. Following this process, we can find a TP completion for these
patterns.

O
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4.3 Expansion of a 3-by-3 pattern with two unspeci-
fied entries

In this section, we will discuss one example of an expansion of a 3-by-3 pattern with two
unspecified entries.

Example: An simple expansion of TP-completable pattern

8 8 9
8 V&
8 8 8

18

8 8 8 09
8 8 8 09
8 298 &
8 200K &
8 8 8 8 8

This expanded pattern is TP-completable.

Proof. We can start the proof from the following sub-pattern

T T T

r T T
r x 7 7 x
r x 7 7 x
T X T T X

This sub-pattern is TP-completable because we can use the same method used in the
previous examples. We start the completion from the (4,4) entry and complete all four
unspecified entries in that block using the Theorem 2.11.

After completing those question marks, we end up with the following pattern:

8 8 8 09
8 8 8 09
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
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Similarly, we can complete the unspecified entries one by one using the Theorem 2.11
because every unspecified entry is in the good position of the corresponding submatrix.

Therefore, there is a TP-completion for this expanded pattern.

4.4 Sequentially completable patterns

For all the patterns above, we have been using the same approach to prove that these
patterns are TP-completable. Notice that in this approach, we complete each unspecified
entry sequentially.

Definition 4.4. By following certain order, we can complete all the unspecified entries
one by one. We call these patterns sequentially completable patterns.

All the expanded patterns we have shown earlier are sequentially completable patterns.
However, there are other patterns that are not sequentially completable.
Example:

Pattern is not sequentially completable.

8 8 8 8
8 08 8
8 8 8 8
8 8 &8 W

Proof. Assume the opposite, this pattern is sequentially completable. By the definition,
we can complete the two unspecified entries one after another. Let us say we complete
the unspecified entry at the (1,4) position and the matrix remain partial TP. Then we
have a pattern with only one unspecified entry, but this single unspecified entry is not at
any of the good positions. Similarly, if we start with the unspecified entry at the (3,2)
entry, we will end up with a pattern that only has one unspecified entry, but it is not at
the good position either. Therefore, this patten is not sequentially completable. O]

4.5 Conjectures on expansion and completability

Two conjectures on the relationship between expansion and TP-completability will be
given. We have not found any counter-example, but have not found a clever way to prove
them either.
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Conjecture 4.5. An expansion of a TP-completable pattern is TP-completable.
Conjecture 4.6. An expansion of a non TP-completable pattern is also not TP-completable.

Further research is needed to prove these two conjectures.
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Chapter 5

Ratio Theorem

In this chapter, we introduce a new idea named Ratio Theorem that can be potentially
helpful in the problems of TP matrices.

5.1 Ratio Theorem in a 2-by-n matrix

A special case of Sylvester’s determinant identity that can be useful in the analysis of TP
matrices is the following. If A is a n-by-n and partitioned as

ai A12 ais
A= Ay Ay A

as;  Asz  ass

with Ags(n — 2) — by — (n — 2) and non singular, then

air Ao Ago Azﬂ _A12 a13 ] {Am Am}
det det — det det
‘ |:A21 Azz} ¢ {A32 ass ‘ _A22 Ags ‘ azg Az

d@t(AQQ ) '

We use this result to calculate the determinants and derive a ratio theorem that can help
us to determine whether a matrix is totally positive or not.

det(A) =

a1(i41) fOT’

Theorem 5.1. Let A be a 2 — by — n matriz with all positive entries, if Z—; > e

any 1 <i <n—1, then matriz A is totally positive.

Proof: We know that Z—; > % and all the entries are positive, so by rearranging, we

can get ay;as(i+1) > A2:a1(;41), and by moving all the numbers to the left side, we can get
A1402(i+1) — 2:Q1(i4+1) > 0. Since this inequality is true for all 1 <4 < n —1, all the minors
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of the matrix A is positive. Therefore, this matrix A is totally positive.

5.2 Ratio inequalities in a 3-by-3 TP matrix

In this section, we discuss some inequalities between the ratios of certain minors in a
3-by-3 TP matrix.

Example:

Let

~.

s
I
Q Q.2
>0 o
~ 0O

be a TP matrix, then

detAuo)y2) _ detAng)yas) _ detAn2)es)

detApgyn2 — detAeg.as — detAeg)es)

Proof. we can interchange the column 2 and 3, and the determinant of the new matrix
A’ is negative.

a ¢ b
A=1d f e
g v h

By Sylvester’s determinant identity, the can get the following inequality:

(af —cd)(fh — ei) < (ce = bf)(di — fg).

Since they are all minors or the negative of minors for the original matrix A, we know
(af —ecd) > 0,(fh —ei) <0,(ce —bf) <0,(di — fg) > 0, So we can find the following
inequality of ratios:

af—cd>ce—bf_bf—ce
di—fg  fh—ei ei—hf
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Therefore, we have the inequality

af—cd>bf—ce
di — fg = ei—hf’

that is the same as the inequality

detAu o), _ detAn o) es)

detAwz)az)  detAez)es)

Similarly, if we interchange column 1 and 2 of matrix A and, use the same method, we
can obtain the following inequality:

detAqgya2) _ detAn)as)

detApaya2) ~ detAps) )
Therefore, combining these two inequalities, we know that for a TP matrix A,

detAng)yn2 _ detAng)yas _ detAn2)es)

detApz) o~ detApgas  detApgs)es)

5.3 Ratio Theorem in an m-by-n matrix

For an m-by-n(m < n) matrix A with all the positive entries, we can check all the ratios of
the contiguous determinants, starting from the determinants of all the 1-by-1 submatrices
to the determinants of all the (m — 1)-by-(m — 1) matrices.

Example:
For an m-by-n (m < n) matrix A with all the positive entries, all the determinants for
1-by-1 matrices are positive. We start from checking the minors of all the 2-by-2 matrices.
It Qi1 a2 Qin
> > >
QA(i4+1)1 A(i4+1)2 A(i+1)n

is true for all 1 <4 < (m—1), all the determinants of the 2-by-2 submatrices are positive.

Now all the determinants of the 2-by-2 submatrices are positive. For any 2 <i < (m—1)
and 2 < j < (n—1), let B = det {a(i_l)(j_l) a(i_l)]}, C = det{ Gi(-1) ij ,
di(j-1) Qi AG+1)(G-1)  AG+1)
D — det A(i—1)j Q>i—1)(j+1) E = det Qij Ai(j+1)
Qi Qi(j+1) A(i+1)j  AG+1)(G+1)
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If Z B~ D BE—CD > 0, and we know a;j is positive, so === BE-CD -, ), Using the Sylvester’s

determmant identity, we know that all the determinants of 3 by-3 matrices are positive.
We can use this method many times and check all the determinants of submatrices in
larger sizes. If the ratios of the determinants of all the submatrices meet the similar

inequality as we stated above, we can conclude that all minors are positive.

Since all the minors are positive, this matrix A is TP.

5.3.1 Simple Ratio Theorem in an m-by-m matrix

Lemma 5.2. For a matrix A with positive entries, if

det Aitt...ithyGittith) b AGit ik 42 k1)
det A(i+1,i+2,...i+k+1);(j,j+1,...j+k) det A(i+1,z’+2,...z’+k+1);(j+1,j+2...j+k+1)

is true for any 1 <i,j < (m—1) and k =0,1,2,..., matriz A is TP and vice verse.

As we have discussed earlier, for the submatrices whose indices are contiguous, the in-
equality of ratios stated in the lemma 5.2 is sufficient to decide whether the initial minors
are positive. Sylvester’s determinant identity is the key method used here.

Example:

Let i =2,7 =2,k =0, ji: iifz > ji: izfg, so we know that det A 3).(2.3) is positive. Simi-

larly, we can show that det A(s34);(2,3,4) and det Ao 3 4),(1,2,3) are positive.

Now let i =1, =1,k =2,

det A(1,2,3);(1,2,3) - det A(1,2,3);(2,3,4)

det A3 ay.1,23  det A 34234

Rearranging the inequality, we can get det A(17273);(172,3) det A(27374);(27374) > det A(172,3);(27374) det A(27374);(17273)

SO
det A(1,2,3),(1,2,3) det Ap3.4y,(2,3,4) — det A1 2.3):2,3.4) det A3.4):01,2,3)

>0
det A23),(2,3)

By Sylvester’s determinant identity, this shows that det A(; 23 .4.(1,2,34) is positive.
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By using this method, we can show that all initial minors (and more minors) of matrix
A is positive, so matrix A is TP.

If matrix A is TP, its minors are positive, so the inequality stated in lemma 5.2 can be
derived by Sylvester’s determinant identity.

Now we conjecture a more general Ratio Theorem:
Conjecture 5.3. For a TP matriz A,

det Ay i) - 9€t A5
>
det A(i/17.,.7;;€);(

fodr) deb A iy

/

is true if i, <, and j, < j,, for all p=1,2,..k, and iy,,j, are not equal to i,

same time.

, Jp at the

This conjecture on general Ratio Theorem can possibly be helpful in TP completion
problems. More research can be done in this area.
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