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Interactions between Fiscal and Monetary Policy:

A New Keynesian Model

with Regime Switching Process

Zihao Chen∗

May 12, 2017

This paper examines the interactions between traditional fiscal and monetary policy tools:

government spending and the interest rate. Two models are used: a baseline linear model,

and a Markov switching model with active/passive fiscal and monetary policy combinations.

The linear model is estimated and the posterior mean parameterization is used to calibrate the

regime-switching model. Sims (2002) algorithm and policy function iteration are used to solve

the models, and a particle filter is used to evaluate the likelihood functions. The results show

that government spending alone cannot raise inflation despite the positive effect on output. The

duration of the stimulus effect in output increases significantly under active fiscal regime. The

strongest effect occurs when both monetary and fiscal policy are active.
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1 INTRODUCTION

Policy responses during the Great Recession were unprecedentedly aggressive. In the past when

the government tried to combat adverse economic situations, take the Great Moderation as an

example, the main policy tool was the short-term interest rate, the federal funds rate. However,

besides the effective federal funds rate staying at the zero lower bound (ZLB) for more than seven

years, which has rendered conventional monetary policy meaningless in this period, the Federal

Reserve has implemented unconventional policy tools such as quantitative easing and has paid

an extensive amount of attention to forward guidance on the future federal funds rate. On the

other side, congress passed the Economic Stimulus Act worth approximately $152 billion and the

Trouble Asset Relief Program (TARP) valued at $455 billion, which were comprised of tax rebates

and liquidity injections.1 In 2009, congress also passed the American Recovery and Reinvestment

Act in 2009, which is a long-term stimulus package nominally worth $831 billion in total. It

includes federal tax relief, improved social security and unemployment benefits, investments in

infrastructure projects, and increased expenses in healthcare, education, and scientific research.2

According to projections by the Congressional Budget Office (CBO) in 2009, federal debt

as a share of Gross Domestic Product (GDP) was expected to rise from 44% in 2008 to over

100% in 2023, which is high compared to the post World War II share between 20% to 40%.

In hindsight, March 2017 CBO projections point out that the short-term growth rate of federal

debt was more significant while the long-run expected growth of debt has stabilized as the current

situation improves.3 In most times, tax revenues are frequently adjusted to stabilize government

debt. However, during recessions, in order to have active fiscal policy response, the government

pays more attention on injecting liquidities into the market as opposed to debt stabilization.

1The financial amount is stated in the following reports: "H.R. 5140, Economic Stimulus Act of 2008," Congres-
sional Budget Office, https://www.cbo.gov/publication/19471; "Report on the Troubled Asset Relief Program?October
2012," Congressional Budget Office, https://www.cbo.gov/publication/43662.

2The financial amount is stated in "Estimated Impact of the American Recovery and Reinvestment Act on
Employment and Economic Output from October 2011 Through December 2011," Congressional Budget Office,
https://www.cbo.gov/publication/43013.

3Long term budget projections are available at https://www.cbo.gov/about/products/budget-economic-data
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This paper, following the direction of Davig and Leeper (2011), will shed light on the inter-

actions between monetary and fiscal policies over the business cycle of the U.S. macroeconomy

using a data-driven method. It aims to answer the following two questions:

1) Despite the history of monetary policy being more active than fiscal policy, the Great Re-

cession has implied a possible new pattern of economic regulation, with both active fiscal and

monetary responses depending on the circumstance. How do they interact with each other?

2) Traditional one-regime dynamic stochastic general equilibrium (DSGE) modeling technique

may not be able to produce the rich dynamics demanded by the current economic situation. With

regime-switching, a natural question to ask is which policy response combination produces the

best outcome under each fiscal/monetary regime.

For this paper, I estimate a log-linear New Keynesian model with exogenous processes for

income tax rate, total factor of production (TFP), nominal interest rate, and risk premium, using

data from 1986Q1 to 2016Q4. The New Keynesian model is the workhorse model for monetary

policy analysis around the world. Thus, it is a natural framework to consider the interactions

between monetary and fiscal policy. In my model, the effective return in the economy is defined

as the product of nominal interest rate and risk premium. The government in my model spends a

fixed proportion of GDP, and is funded by one-period nominal bonds and the labor tax. The bond

holdings are completely endogenous and unobservable in the model while tax rate responds to

the debt-to-GDP ratio and is susceptible to exogenous shocks. The representative infinitely-lived

household in the model is utility maximizing and allocation consumption dynamically. Their utility

function values consumption and leisure and they are constant relative risk averse (CRRA). The

New Keynesian aspect is fulfilled by monopolistically competitive firms that have some pricing

power which takes the form of Rotemberg (1982) costly price adjustments.

In my model, the productivity of labor is only affected by the TFP, which has an exogenous

shocks and a permanent component. My model also assumes constant capital stock and thus in-

vestment. Thus, the channel of crowding out effect of increase in government spending and that
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of crowding in of increase in interest rate do not exist. As common specification of market clear-

ing, consumption moves in the same direction as output. In my model, this provides an answer

for an important question – an increase in tax rate, thus government spending, stimulates private

consumption, as the increase in output exceeds the increase in the tax paid by households, i.e., the

substitution effect outweighs the wealth effect. Sticky price, under this situation, dictates the price

to adjust gradually, smooths out inflation, and allows the real variables to evolve.

My baseline model is a linear model without regime switching process. In my alternative

model, I introduce a Markov process, where the economy moves between two states (expansion

and recession) following a given statistical distribution. This regime switching is plausible and

realistic as I will show in Section 4 that the estimated regimes generally follows the empirical

evidence. This specification is also in line with how people form their expectations about differ-

ent economic regimes – that policy state changes over time probabilistically. Although for some

almost-fully informed agents, future economic states might be deterministic, most people expect

the the economy to change based on current available information. In a dynamic model, this is

simplified into a distribution that is contingent on the current state of policy.

The linear model is fully estimated using quarterly data on output, inflation, and interest rate

from 1986Q1 to 2016Q4. The posterior mean parameterization is then used to calibrate the regime

switching model. The models are solved using Sims (2002) algorithm and policy function iteration.

A particle filter is used to evaluate the likelihood function and to produce the filtered likelihood for

each policy states in the regime-switching model. My results show that an increase in government

spending alone cannot effectively raise inflation, and its positive effect on aggregate output is very

small compared to that of an interest cut. However, active fiscal policy does substantially increase

the length of the stimulus effect, though not its half-life. A one standard deviation increase in

government spending and decrease in interest rate produces the largest effect under the active

monetary and active fiscal policy state.

The paper develops as follows: Section 2 reviews recent literature related to this paper; Section
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3 presents the baseline model with details in specifications, solution method and estimation pro-

cedures, quantitative results and interpretations; following the structure of Section 3, the regime-

switching non-linear model is discussed in Section 4, with a brief comment on another regime-

switching mechanism; Section 5 talks about future extensions of this paper; Section 6 concludes.

2 LITERATURE REVIEW

There has been an enormous amount of different dynamic stochastic general equilibrium (DSGE)

models used for policy analysis. The most prominent structure is the New Keynesian model,

in which monetary policy responds aggressively to inflation based on a certain policy rule, in

most cases, the Taylor principle. Output gap in New Keynesian models is viewed as inflation

pressure. This structure is extensively used among central banks for its ability to accommodate

both real and nominal quantities. Christiano et al. (2010) outlined the basic structures of the

NK model with two variations that are generally viewed as the second generation of the New

Keynesian model. Following their chapter in the Handbook of Macroeconomics, there has been

various literatures with richer financial sectors and labor market, as a response to the rise in demand

of richer dynamics due to the Great Recession. That distinct event has triggered very interesting

policy reactions, which may not be produced with traditional policy specifications, as will later be

proven in this paper. Thus, some researchers have also shifted their focus when studying monetary

policy, from the Taylor rule to unconventional policies used by the Fed in the past decade, such as

forward guidance (McKay 2016). Due to the size of literatures falling under this category, in this

section, I only review the ones directly related to my model. Some more literatures are mentioned

in Section 5.

Davig and Leeper authored a paper in 2011 in similar topics using sample from 1949Q1 to

2008Q4 with Calvo pricing. Their government demand (spending) is specified as a composite

of diffrentiated goods, gjt, in the same portion as households, using Dixit and Stiglitz (1977)

aggregator Gt =
[∫ 1

0
g
θ−1
θ

jt dj
] θ
θ−1

. In their paper, they used lump-sum tax rather than proportionate
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tax, and exogenous shock is turned on for the lump-sum tax and the interest rate. The government

budget and fiscal and monetary rule are:

Gt = τt +
Mt −Mt−1

Pt
+
Bt

Pt
− (1 + rt−1)Bt−1

Pt
(1)

rt = α0(SMt ) + απ(SMt )πt + αy(S
M
t )yt + σr(S

M
t )εrt (2)

τt = γ0(SFt ) + γb(S
F
t )bt−1 + γy(S

F
t )yt + γg(S

F
t )gt + στ (S

F
t )ετt (3)

They specified two states for fiscal and monetary policy respectively: active and passive, thus

four combinations in total. Their results showed that active monetary/passive fiscal (AM/PF) com-

bination resembles the dynamics of a typical real business cycle model and Ricardian Equivalence

rather than traditional Keynesian framework, where an increase in government spending decreases

the life-time wealth of the representative households by decreasing consumption and leisure and

increasing working time by a small amount. Under the passive monetary/active fiscal (PM/AF)

situation, an increase in government spending, which is expected to persist, increases inflation ex-

pectations, and thus decreases interest rates, which then crowds in private consumption by lower-

ing the expected return on saving, creating a larger output multiplier than the AM/PF combination.

PM/PF option shows similar dynamics as AM/PF, with higher tax changes; AM/AF is explosive

and no equilibrium exists.

In Davig and Leeper (2011), the fiscal multipliers after 5 quarters is around 0.8 for AM/PF

regime, and around 1.7 for PM/AF and PM/PF regimes. The permanent change of output regarding

to a one unit change in government spending is around 0.86 for AM/PF and 1.36 for PM/AF and

PM/PF. Simulation of the government spending paths as implied by the ARRA implies a multiplier

of 0.68 under a fixed regime of AM/PF, and 3.00 under PM/AF.

While studying the topic of fiscal-monetary interactions, Davig and Leeper (2011) also touched

on the disagreement of the effect of government spending shocks on private consumptions. Barro

and King (1984) and Baxter and King (1993) argued that government uses tax revenues to finance
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an increase in its spending, thus decreasing the households’ wealth and moving private consump-

tion in the same direction. However, several empirical studies have revealed a positive correlation

between government spending and private consumption, including Blanchard and Perotti (2002).

Gali et al. (2007) and Monacelli and Perotti (2008) both suggested a positive government spending

multiplier for private consumption though smaller than unitary. Most researchers in this side of the

debate argue that representative households’ preference and habit formation ensure a larger rise in

real wage and a smaller increase in labor supply when tax increases, making the substitution effect

more dominant than the wealth effect.

Besides DSGE models, another method to study such subject is to use vector autoregression

(VAR), which approaches the question from empirical perspective, largely based on data instead of

structural models. The emphasis of such research often lies in identification and recursive ordering.

Recent papers such as Dungey and Fry (2009) usually combine traditional exclusion restrictions

with cointegration and sign restrictions to disentangle the shocks under the proposed structural

VAR framework. Among the VAR literature, Auerbach and Gorodnichenko (2012) developed a

smooth transitioning VAR (STVAR) that allows regime switching while maintaining linearity in

the model. It uses the seven-quarter moving average of output growth to produce the likelihood

of the economy being in expansion or recession. Different from smooth transition autoregres-

sive models (STAR), differential contemporaneous responses to structural shocks exist in STVAR.

In my paper, I will adopt the smooth regime switching mechanism described in Auerbach and

Gorodnichenko (2012), calibrate the tuning parameter to match the regimes with NBER published

recession periods. However, there are fundamental issues of implementing the STVAR into DSGE

models. Details are discussed in section 4.4.

On the topic of regime switching, Markov switching is no doubt one of the most famous and

popular mechanisms, in which regime switches according to a known transition matrix and the

current state is only dependent on the previous state, i.e. an unobservable state variable following

a first-order Markov chain exists in the model. Below is the form of the transition matrix of a two

state Markov-switching model (st = 1, 2). This notation of the transition matrix will be consistent

7



throughout the paper: the row number (the first index) indicates the state that we are condition-

ing upon, and the column number (the second index) indicates the state that we are transitioning

towards.

P =



P(st = 1|st−1 = 1) P(st = 2|st−1 = 1)

P(st = 1|st−1 = 2) P(st = 2|st−1 = 2)


 =



p11 p12

p21 p22




Filtering is the core in Bayesian and quasi- maximum likelihood methods as required to eval-

uate the likelihood of a certain parameter set. When models are linear and the innovations are

normally distributed, the likelihood can be calculated analytically using the Kalman filter as in

Dynare. However, with non-linear features, the time-series behavior of the model must be pro-

duced numerically. There has been multiple extensions of the Kalman filter due to its efficiency,

robustness, simplicity, and optimality, for example, the Unscented Kalman Filter (UKF), the Ex-

tended Kalman Filter (EKF), and the Sigma-point Kalman Filter (SPKF). In this paper, I use a more

intuitive and straightforward sequential Monte Carlo method developed by Gordon, Salmond, and

Smith (1993). The basic idea of this simulation-based filter is to use discrete points (particles)

to collectively approximate the unknown density. Details of implementation are provided in the

following sections.

3 LINEAR MODEL

This section provides the specification of the baseline linear model. The extended model is based

largely on this linear model with only a few changes to add in regime switching. Four actors

co-exist in this model: a representative forward-looking household which owns all the firms and

tries to maximize its lifetime utility; a representative firm that sell a final good as a bundle of

intermediate goods; a government which issues a one-year bond and collects proportional taxes;

and finally a central bank which acts upon fluctuations in inflation and output. A deterministic

trend is assumed to exist in the model that drives economic development besides the growth of
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total factor of production (TFP). The trend can be related to the population growth in reality and is

the endogenous growth of all factors that drives output growth, in our case TFP and labor supply.

3.1 Model Specification

3.1.1 Households

The household agent chooses {ct, nt, bt}∞t=1 to maximize its lifetime utility with constant relative

risk aversion (CRRA):

E0

∞∑

t=0

βt
(

(ct/zt)
1−γ − 1

1− γ − χ n
1+η
t

1 + η

)
(4)

Both consumption and labor is assumed to be an aggregate of all consumptions and labor supplies,

i.e. nt =
∫ 1

0
nitdi for labor and ct =

∫ 1

0
citdi for consumption. β is the discount factor; zt is the

trend defined with respect to the steady state growth rate, zt = zt−1ḡ; 1/γ is the intertemporal

elasticity of substitution, or γ is the risk aversion parameter; 1/η is the Frisch elasticity of labor

supply; and χ is a scaling parameter such that in steady state, the household allocates 1/3 of its

time for labor.

In this model, the representative bond has a nominal face value of 1 and a premium discounted

by the effective interest rate, defined as the product of the nominal rate i and the risk premium s, of

the period when the bond is purchased. At any given time t, the household spend money purchasing

goods, bonds, and paying taxes on its labor income, and receives money on real bond payments,

labor income, and firm dividends. Thus, its choices are constrained by its budget constraint:

ct + bt/(itst) = (1− τt)wtnt + bt−1/πt + dt (5)

Bond serves as a saving instrument for households. Excess income not spent on consumption

is used to purchased interest-bearing bonds. The optimality condition of household implies the
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following equations:

wt/zt = χnηt (ct/zt)
γ(1− τt)−1 (6)

1 = βEt

[(
ct/zt

ct+1/zt+1

)γ
zt
zt+1

stit
πt+1

]
(7)

3.1.2 Firms

In the economy, there is a continuum of identical monopolistically competitive intermediate good

producers, indexed by i, producing differentiated intermediate goods, as well as one final good

retailer or bundler. Assuming the same TFP and level of development and constant capital across

the entire economy, each firm produces yit amount of intermediate goods priced at pit, following

yit = ztatnit. The final good producer bundles yit together with an aggregator displaying constant

elasticity of substitution (CES), in our case, the Dixit-Stigliz aggregator, yt =
(∫ 1

0
y
θ−1
θ

it di
) θ
θ−1

. As

all producers are identical and have the same labor demand, the aggregate production function is

given by

yt = ztatnt (8)

Our final good bundler takes pt as given by the market. Thus, its profit is defined as ptyt −
∫
yitpitdi. The optimal condition means that

0 = pt
dyt
dyit
− pitdi

Based on the definition of yt, it can be shown that

ŷit = ŷt − θ(p̂it − p̂t)

From the above, it is clear that θ in the Dixit-Stigliz aggregator serves as the elasticity of sub-
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stitution between intermediate goods. When θ is close to zero, the production function becomes

Leontief, in which all inputs are perfect complements; and when θ approaches infinity, all inputs

become perfect substitutes. To better serve the reality, in this model, θ is restricted to a value larger

than 1.

Since intermediate good producers are monopolistically competitive, each has the market power

to set prices of its own goods, rather than only being able to accept the market price. This is the

source of nominal rigidity in New Keynesian models. There are two commonly used pricing mech-

anisms, both of which yield the same dynamics. Calvo (1983) dictates that at each time period,

only a portion of the firms can adjust their prices; while Rotemberg (1982) poses adjustment cost to

firms, which is quadratic to the percentage of the change and proportional to the aggregate nominal

output. Though both will give us the same log-linearized form in terms of aggregate production,

Calvo (1983) is more computationally-demanding due to the existence of price dispersion among

producers. Here, I proceed with Rotemberg pricing.

Since the firms are maximizing their lifetime profits, the adjustment cost produces the trade-

off of paying the costs and keeping the price. Using the functional form in Ireland (1997), the real

adjustment cost is specified as αit = ytϕ(pi,t/(π̄pi,t−1)−1)2/2. The ϕ parameter controls the scale

of adjustment costs. Profits are reflected by dividends, which is dit = (pit/pt)yit−wtnit−αit. The

goal is to maximize the present value of all future dividends, expressed by E0

∑∞
t=0 q0,tdit, where

qt,t+1 = β
(

ct/zt
ct+1/zt+1

)γ
zt
zt+1

is the pricing kernel from the bond Euler equation, and q0,0 ≡ 1, q0,t ≡

Πt
j=1qj−1,j . Assuming symmetry, the optimality condition yields

ϕ(π̂t − 1)π̂t = (1− θ) + θ
wt
atzt

+ βϕEt

[(
ct
ct+1

)γ (
zt
zt+1

)1−γ
(π̂t+1 − 1)π̂t+1

yt+1

yt

]
(9)

where π̂ denotes deviation from steady state, i.e. πt = π̄π̂t. (For detailed derivation of firm

optimization please see Appendix B.)
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3.1.3 The Government

In this model, the government spending strictly follows the state of the economy, as a fixed pro-

portion of the output after adjusted for resource loss during the price adjustment process. In other

models, it is also common that government spending is specified as a function of bonds, tax rev-

enues, and output, or even as a fixed level. However, I am more interested in studying the dynamics

produced by tax shocks, and this specification allows me to simplify the problem as most govern-

ment spending rises are accompanied by a rise in taxes. Admittedly though, such specification

produces a wealth effect feeding back to the output and restricted the calculation of government

spending multipliers.

Since this is a closed economy model with constant capital, consumption takes up the rest of the

GDP. The government makes revenue through selling bonds and levying taxes, and has expenses

in repaying the bonds due at the current period and general government spending. As implied by

the government budget constraint, the tax rate should respond to the lagged debt level: when debt

level at t − 1 is high, the government needs to raise taxes and/or issue more debt to finance the

repayment. Empirically, the government measures the debt level by debt-to-GDP ratio, and reacts

to the deviation of debt-to-GDP ratio to its preset debt target. So is the tax rule specified here. As

an instrument of fiscal policy, tax rate is also susceptible to exogenous shocks. The above implies

the following equations:

ygdpt = (1− ϕ

2
(π̂t − 1)2)yt (10)

ct = (1− κ)ygdpt (11)

gt = κygdpt (12)

bt/(itst) + τtwtnt ≥ bt−1/π̄π̂t + gt (13)

τt = τ̄ + δ(bt−1/yt−1 − by) + σ̄tετ,t (14)
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3.1.4 The Central Bank

The central bank controls the nominal interest rate based on inflation and output:

int = (int−1)ρi (̄ıπ̂φπt (yt/yt−1)φy)1−ρi exp(σ̄iεi,t) (15)

ρi denotes the persistence of interest rate and is between 0 and 1; φπ, φy are the responses to

inflation and output fluctuations respectively. This Taylor rule follows the dual mandate of the

Federal Reserve - stabilize inflation and control unemployment. For simplicity reasons, the zero

lower bound (ZLB) is not binding.

3.1.5 Miscellaneous

To allow an exogenous output shock and a different source of an ’interest’ shock, the laws of

motion of TFP and risk premium are defined as

at = (1− ρa) + ρaat−1 + σ̄aεa,t (16)

st = (1− ρs) + ρsst−1 + σ̄sεs,t (17)

where ρa, ρs denotes the persistence of TFP and risk premium respectively. In this model, all

shocks are denoted by εwith a subscript indicating the source of the shock. All shocks are assumed

to follow standard normal distribution with no serial correlation or correlation with others.

3.2 Equilibrium and Steady State

Due to the existence of unit root in the original system sketched above, no steady state exists unless

the system is detrended. Below is a summary of the detrended system with the tilde indicating
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transformed variables.

yt
yt−1

= zt
ỹt
ỹt−1

(18)

w̃t = χnηt c̃
γ
t (1− τt)−1 (19)

1 =

(
β

ḡ

)
Et

[(
c̃t
c̃t+1

)γ
stit

(π̄π̂t+1)

]
(20)

ỹt = atnt (21)

ϕ(π̂t − 1)π̂t = (1− θ) + θ(wt/at) + βϕEt

[(
c̃t
c̃t+1

)γ
(π̂t+1 − 1)π̂t+1

(
ỹt+1

ỹt

)]
(22)

ỹgdpt = (1− ϕ

2
(π̂t − 1)2)ỹt (23)

c̃t = (1− κ)ỹgdpt (24)

b̃t/(itst) + τtw̃tnt = b̃t−1/(π̄π̂t) + κỹgdpt (25)

τt = τ̄ + δ(b̃t−1/ỹt−1 − by) + σ̄tετ,t (26)

int = (int−1)ρi (̄ıπ̂φπt (ỹt/ỹt−1)φy)1−ρi exp(σ̄iεi,t) (27)

at = (1− ρa) + ρaat−1 + σ̄aεa,t (28)

st = (1− ρs) + ρsst−1 + σ̄sεs,t (29)

The steady state value of TFP and risk premium is set to equal to 1, while steady state wage,

which is also the steady state marginal cost of production, equals to the marginal revenue of the

firm as shown in the appendix. In steady state, there is no incentive for the firms to adjust prices,

therefore there is no adjustment cost to the economy, meaning ỹgdpt = ỹt. To summarize, steady

state implies:

ā = 1 (30)

s̄ = 1 (31)
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ī = ḡπ̄/β (32)

w̄ = (θ − 1)/θ (33)

τ̄ = (1/π̄ − 1/̄i)by/w̄ + κ/w̄ (34)

ȳ = [w̄(1− τ̄)(1− κ)γ]1/(η−γ) (35)

n̄ = ȳ (36)

c̄ = (1− κ)ȳ (37)

b̄ = byȳ (38)

To transform the above system into a linear system, equations are log-linearized around its

steady state. Variables with hats in the log linearized system denotes percentage deviation from

steady state.

ŵt = ηn̂t + γĉt +
τ̄

1− τ̄ τ̂t (39)

ŝt + ı̂t + γĉt = γEtĉt+1 + Etπ̂t+1 (40)

ŷt = ât + n̂t (41)

ϕπ̂t = θw̄(ŵt − ât) + βϕEtπ̂t+1 (42)

ĉt = ŷt (43)

ŷgdpt = ŷt (44)

b̄

īs̄
(b̂t − ît − ŝt) + τ̄ w̄n̄(τ̂t + ŵt + n̂t) =

b̄

π̄
b̂t−1 + (κȳπ̄ − b̄

π̄
)π̂t + κȳŷt (45)

τ̂t =
δby

τ̄
b̂t −

δby

τ̄
ŷt + σ̄τετ,t (46)

ı̂nt = ρiı̂
n
t−1 + (1− ρi)φππ̂t + (1− ρi)φy(ŷt − ŷpt ) + σ̄iεi,t (47)

ât = ρaat−1 + σ̄aεa,t (48)

ŝt = ρsst−1 + σ̄sεs,t (49)
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3.3 Solution, Calibration, and Estimation

3.3.1 Solution Method

The solution method follows Sims (2002) Gensys algorithm, which is designed to solve stochastic

linear rational expectations models. The model is mapped into the following representation

G0Xt+ 1 = G1Xt + Ψεt+ 1 + Πηt+ 1

where ε is a vector of exogenous shocks, in my case, the shocks for TFP, risk premium, interest rate,

and tax rate, η is a vector of forecast errors, defined as ηxt+1 = xt+1 − Etxt+1, andG0,G1,Ψ,Π

are functions of µ, our structural parameters. The solution is expressed in a VAR(1) form

Xt = TXt− 1 +Mεt

where T and M dictates the evolution of the model. Based on the results from Gensys, with

parameters in the parameter space shown in Figure 4, my model has a unique and stable solution.

3.3.2 Calibration

I calibrated five poorly estimated parameters based on empirical evidence and previous papers.

The calibrated values are summarized below. The discount factor can be calculated as β = ḡπ̄/̄i

as shown in the model. However, GDP growth turned out to be a poor proxy for the growth of

economy in this case. As implied by the model, the growth of the economy is mainly driven by

the growth of total factor of product. Therefore, I chose the quarterly growth of TFP introduced

in Fernald (2014) as the proxy. The series takes real-time inputs from the U.S. economy and

implements an adjustment for factor utilization. The "β’s" are calculated for each quarter for my

16



sample period and the mean was taken as the calibrated value for β.

β =
1

T

T∑

t=1

(1 + Gt
100

)0.25(1 + Πt
100

)0.25

(1 + It
100

)0.25
4

Below is the table of calibrated parameters and the base of my calibration.

Parameter Description Value Target
β Discount factor 0.9984 Fernald (2014)
θ Elasticity of substitution 6 Average markup over marginal cost equal to 0.2

1/η Frisch elasticity of labor supply 3 Peterman (2016)
κ % of govt spending in GDP 0.2 Empirical evidence from U.S. data
b̄y Debt-to-GDP target 0.75 President’s office 2012 budget

Table 1: Baseline Calibration

3.3.3 Estimation

The rest of the parameters are estimated using a Metropolis-Hastings algorithm that utilizes a par-

ticle filter to evaluate the likelihood of the posterior distribution. Three observables from 1986Q1–

2016Q4 are used for estimation: output, interest rate, and inflation. Output is the calculated real

GDP per capita value with GDP series obtained from the National Income and Product Accounts

(NIPA) tables and civilian noninstitutional population data from the Bureau of Labor Statistics.

For the interest rate, I use the effective federal funds rate published by the Board of Governors of

the Federal Reserve System; and inflation is based on the implicit price deflator also available from

the NIPA tables. 5

4Capital letters in this paper generally denotes empirical data used in calibration or estimation, unless previously
mentioned in the model specification section

5Data are available on the website of St. Louis Fed (https://fred.stlouisfed.org/) with series names: GDP, GDPDEF,
CNP16OV, FEDFUNDS.
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The raw data are then transferred into model implied units:

ŷdatat = D

[
log

(
GDPt

DEFt/100 · (POPt · 106)

)]

π̂datat = D[log(DEFt)]

ı̂datat = D
[
log(1 + FFRt/100)0.25

]

where D(·) indicates first difference. Thus all data are percentage deviations from the last period.

Figure 1 shows the comparisons between forecasts made from the model and the original data

after transformation. We can see that both inflation and interest rate are centered around zero. At

the end of the interest rate, we can see clearly a period that signifies the ZLB, where interest rate

has not been changed following two significant decrease in interest rate. Output is not centered

around zero because steady state growth rate is embedded in the series. It is exactly the fact that it

does not center around zero that allows a precise estimation of the steady state growth rate. From

the graph, we can see that the model predicts the data very precisely.

The estimation procedure is outlined following Figure 1. It generally follows the estimation

algorithm in Plante et al. (2016) and uses the adapted particle filter in Herbst and Schorfheide

(2016), which is based off on Stewart and McCarty (1992) and Gordon et al. (1993) but is mod-

ified such that it better accounts for unexpected fluctuations in the data. My estimation algorithm

involves four phases: initial mode search, preliminary Metropolis-Hastings, Metropolis-Hastings

(1), and Metropolis-Hastings (2). Let Θ ≡ {δ, γ, ϕ, φπ, φy, ρa, ρs, ρi, g, π, σi, σa, σt, σs} be a vector

of estimated parameters.
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Figure 1: Comparison between forecasts from the model and empirical data

Estimation algorithm: The first step is to randomly draw 10000 set of parameters based on their

prior distributions. All parameters are assumed to be independent during the mode search phase.

Then the model is solved by gensys using the given parameter values. If a general equilibrium

exists, then the algorithm proceeds to using the particle filter to calculate the likelihood for the
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model. The posterior log-likelihood is defined as

log lposti = log lpriori + log lmodeli = log p(Θi|µ,σ) + log lmodeli (50)

i = 1, . . . , 10000

Then the draws with posterior likelihood above the 90-th percentile, Θsub, are used to calculate

the variance-covariance matrix, Σ, using the following formula, and the draw with the highest

posterior log likelihood, Θ0 is stored for the preliminary MH algorithm.

Θ̃ = Θsub −
1

1000

1000∑

i=1

Θi

Σ = Θ̃′Θ̃/1000 (51)

The second step starts with Θ0 and calculates the posterior log likelihood of this initial draw

similar to Equation (50). Θ0 serves as the first accepted draw, Θ̂1, with the hat denoting accepted

draws. Then the following draws are drawn from N(Θ̂i−1, cΣ), i = 1, . . . , 25000. c is a tuning

parameter calibrated such that the acceptance rate is around 21% to 30%, which around the op-

timal acceptance rate argued in Roberts and Rosenthal (2001). Posterior log likelihoods are then

evaluated, and the acceptance rule is as following:

accept Θcand
i if exp(log lcandi − log li−1) > u, u ∼ U(0, 1)

If accepted, then Θ̂i = Θcand
i , log li = log lcandi . If rejected, then Θ̂i = Θ̂i−1, log li = log li−1.

After finishing 25,000 draws, the first 5000 draws are discarded because they usually display high

volatility and serve as the burn-in period. The rest are used to calculate a Θ̄ and a refined variance-

covariance matrix, Σ1, as the starting point for the first main MH stage.

The first and second stage of the main MH algorithm follows the same idea of the above

preliminary stage. The two main stages are set to make 50000 draws, and the covariance matrix is
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recalculated after each stage. Normally after MH(1) is finished, the posterior distributions of the

parameters should have already formed their shapes and converged to its true distribution given

our sample and our prior specification. MH(2) serves as an extra stage to ensure convergence.

Parameter priors and posteriors are reported in the next subsection.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1725

1730

1735

1740

Figure 2: Log Likelihood of the last 5000 accepted draws – MH(2)

Figure 2 shows estimation diagnostics. We can see the clear advantage of Metropolis Hastings

algorithm, that it accepts draws with lower log-likelihood probabilistically, thus while exploring

the area around a local maximum in our parameter space, and allows the possibility of moving to

the next local maximum. However, the acceptance rate ensures that the algorithm would not move

too far away from the maxima, as shown by the range of our log-likelihood value which is between

1725 to 1740. The third figure shows the values of each draw after thinning the after-burn draws at

1:100 ratio. The sketch pattern shown in the figures indicates that the accepted values do converge

to the posterior modes, as opposed to the case when they do not converge, there would be clear

shifts in the graphs.
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Figure 3: Trace plots of accepted draws after thinning – MH(2)

Adapted particle filter: The particle filter is first initialized by simulating the model 25 times

with random shocks et,p = {εa,t,p, εs,t,p, εi,t,p, εt,t,p, }0
t=−24, where p ∈ {0, . . . , 40000} indicates

the index of the particle. The result of the simulation is a draw of the state vector from the ergodic

distribution.

The adaption phase gives the mean of the adapted distribution ēt, which is solved to maximize

p(ξt|zt)p(zt|zt−1), and zt−1 is the state vector. This phase is solved using the fminsearch routine

of Matlab, which chooses different values of ēt to minimize the objective function defined as

−1 · exp(−ξ′tH−1ξt/2) · exp(−ē′tēt/2) (52)

which is derived from the density of ξt, the difference between our model prediction and our actual
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data, assumed to be multivariate normally distributed, and from the density of current state given

the previous state

p(ξt|zt) = (2π)−3/2|H|−1/2exp(−ξ′tH−1ξt/2)

p(zt|zt−1) = (2π)−3/2exp(−− ē′tēt/2)

⇒ p(ξt|zt)p(zt|zt−1) ∝ exp(−ξ′tH−1ξt/2) · exp(−ē′tēt/2)

H ≡ diag(σ2
me,ŷdata , σ

2
me,π̂data , σ

2
me,̂ıdata)

TheH matrix is defined as a diagonal matrix of measurement error covariance matrix. Without

measurement errors, the particle filter suffers from degeneracy. Following Plante et al. (2016), the

measurement error variances are set to 10% of the variances of corresponding observable.

After the adaptation, the vector of shocks is drawn, et,p ∼ N(ēt, I). Then we can obtain the

updated state vector zt,p, and vector of endogenous variables. The unnormalized weight of each

particle p is

ωt,p =
p(ξt,p|zt,p)p(zt,p|zt−1,p)

g(zt,p|zt−1,p, x̂datat )
∝ exp(−ξ′t,pH−1ξt,p/2) · exp(−e′t,pet,p/2)

exp(−(et,p − ēt)′(et,p − ēt)/2)
(53)

Then the model log likelihood of period t can be calculated using

log lmodelt =

Np∑

p=1

ωt,p/Np (54)

The weights are then normalized such that the sum equals to 1, and the set of particles is sys-

tematically resampled using the algorithm described in Kitagawa (1996). The model log likelihood

of the next data point is then calculated following the steps outlined above until we have the log

likelihood values for all 124 data points. The model log likelihood of the parameters is defined as

the sum of that of individual data points.
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3.4 Estimation Results and Analyses

The prior and posterior distributions for the parameters are summarized in Table 2 and a compar-

ison between prior distributions and kernel smoothed density for posterior draws is presented in

Figure 3. For the prior values, I generally followed Plante et al. (2016) and Gust et al. (2013), and

have set the variances for the prior distributions to larger values, such that they are informative but

less restrictive about the posterior modes.

Prior Distribution Posterior Distribution
Dist. Mean Std Lower Upper Mean 0.05 0.95 Std

δ norm 0.3 0.1 0 10 0.2819 0.096219 0.46842 0.11523
γ norm 2.31 0.5 0 10 3.0791 2.4347 3.7576 0.4041
ϕ gam 99.62 20 10 250 85.66762 61.5012 114.7344 16.3767
φπ norm 2.44 1 1.01 10 3.5474 2.6127 4.6707 0.62871
φy norm 0.5 0.4 0 5 0.11035 0.032672 0.20449 0.052472
ρi beta 0.6 0.2 0 1 0.87784 0.83678 0.91266 0.022854
ρa beta 0.6 0.2 0 1 0.98927 0.97573 0.99738 0.006172
ρs beta 0.6 0.2 0 1 0.9329 0.88741 0.97094 0.024781
ḡ norm 1.004 1E-3 1 2 1.0033 1.0027 1.0039 3.7087E-4
π̄ norm 1.006 1E-3 1 1.5 1.0059 1.0043 1.0075 9.7449E-4
σ̄i invgam 0.01 0.01 1E-5 1 9.3108E-4 8.0063E-4 1.0825E-3 8.6638E-5
σ̄a invgam 0.01 0.01 1E-5 1 1.5435E-2 1.2283E-2 1.9107E-2 0.00209
σ̄t invgam 0.01 0.01 1E-5 1 1.0525E-2 3.3946E-3 2.6752E-2 7.7213E-3
σ̄s invgam 0.01 0.01 1E-5 1 2.165E-3 1.6734E-3 2.7977E-3 3.4254E-4

Table 2: Prior and posterior distributions of the estimated parameters

From Table 2 and Figure 4, it is shown that most of the parameters are well-informed by the

data, especially the interest response to inflation and output, as well as the persistence of TFP,

risk premium, and interest rate. The estimated mean and standard error for Rotemberg pricing

adjustment cost coefficient (ϕ) is in line with the estimates from recent literatures, approximately

corresponding to a Calvo pricing duration of five quarters. The persistence of interest rate is larger

than that in Plante et al. (2016), which can be attributed to the larger post-Great Recession sample

included in my model. The steady state quarterly growth rate and inflation rate are 0.33% and

0.59% respectively, very well representing the empirical evidences from my sample period, which

are 0.34% and 0.54% respectively. The monetary response to output gap is a bit low comparing
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to other estimates, for example, 1.49 in Plante et al. (2016). However, this estimate has fluctuated

between 0.1 to 2 in the past. For example, it was around 0.5 in the so-called Taylor 1993 rule, but

in later revision, it was changed to 1.0 in Taylor 1999.6
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Figure 4: Prior distribution vs. kernel smoothed density for posterior draws

As we can see from Figure 4, that although most parameters are well estimated, the steady state

inflation rate and tax response to debt are not informed by the data based on the graph. However,

despite of this fact, the two parameters make sense as the posterior mean of inflation moves to the

mean of the data, and the tax response parameter has its mean around 0.3, which implies that a

switch in the debt target takes the economy about 10 years to adjust, consistent with Congress’s

budget window, according to Richter and Throckmorton (2015).

6See https://www.kansascityfed.org/publicat/econrev/pdf/12q4Kahn.pdf for details.
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The lack of tax and debt data is speculated to be the cause of the problem. There have been

failed attempts to include both series as observables. I have produced the net tax rate according to

Blanchard and Perrotti (2002), however, particle filter cannot accommodate the dynamics in the tax

rate. For the bond data, the Federal Reserve Bank of San Francisco produces the monthly market

value for government bond, which can serve as a good proxy to the one term bond in the model.

But because of my specification, government spending is specified as a fixed proportion of GDP

and bond serves as an entirely endogenous variable responding to tax deviations and government

spending. Thus my model cannot produce the dynamics as we see in the Great Recession, where

tax revenue and output fell, but the value of government debt increased extensively in order to

fund all the resuscitate measures described in the Introduction section. Davig and Leeper (2011)

has included government debt as an observable because of their different way of specifying the

policy function for tax rate. In their specification, tax rate responds to debt and output respectively

instead of a ratio of the two. Despite the difference, my specification is also valid in the sense that

with many reductions and simplifications, my model is less computationally demanding and still

produces the basic dynamics as shown in the following impulse response functions.
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Figure 5: Impulse response function of a 1 standard deviation increase in tax rate

From Figure 5, we can see that an increase in tax rate decreases bond level in the same time
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period, forces household to spend. Since tax rate responds to bond-to-GDP ratio, the well-informed

household would expect the tax rate to decrease in the future, thus also has the incentive to increase

its consumption and thus supplies more labor hours, raising output and lowering interest rate. This

is counterintuitive in a sense that an increase in tax is supposed to crowd out private consumption.

However, in my specification, as I mentioned before, tax rate is an instrument of fiscal policy, more

specifically, it is the way to fund government spending. Thus an increase in tax rate in this model

translates to an increase in government spending. The wealth effects take place after the initial

time period, as government spending feeds back to output. From the impulse response, we can see

that the crowding out of private consumption is outweighed by the increase in the overall output

by government spending. The increase in labor hours also signifies a large increase in tax revenue,

and therefore less bond is required to finance government spending. However, for inflation, we can

see an increase in government spending alone is not enough to increase the inflation rate. This will

be discussed more in details when the IRF with interacting fiscal and monetary policy is shown.

Figure 6 on the next page shows the effects of an decrease in interest rate, which is the tradi-

tional monetary tool for the Federal Reserve during recessions. A decrease in interest rate disin-

centivizes households to purchase bonds, as shown by a decrease in the bond holdings, increasing

the money demand in the economy as well as the consumption and thus output and inflation.

Lower return on bond also increases the labor hours supplied by the household, since people are

compensated in another channel rather than mainly labor.

Figure 7 shows the interaction between an increase in government spending and an interest cut.

It is clear that output and inflation both rises with these two inflationary policy reactions. When

only government spending changes, inflation is not ready to increase, which has been the situation

for the period after the Great Recession. During that period, the federal reserve has already hit the

zero lower bound (ZLB), thus interest cut is no longer an option (or an impulse) to the economy,

and inflation has stayed low until around late 2014 and early 2015. Back to the model, as a result

of both interest cut and increased tax revenue, the bond holding decreased significantly, which also

helps explain why the model cannot accommodate the data where bond is used to fund most of
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Figure 6: Impulse response function of a 1 standard deviation decrease in interest rate

the government spending during the Great Recession. As for labor hours, an increase in output

motivates people to supply more labor, as well as the decreased return on bond holdings. It is clear

that the effect on output and inflation is significant with the combination of these two policies,

under the condition that interest rate can be lowered, which was not the situation during the Great

Recession.

The graphs illustrate the biggest disadvantage of using a linear model without regime switching

to analyze policy interactions. After 2007Q4, the Federal Reserve quickly hit the ZLB, leaving

only passive policy tools available on the monetary side of the response mechanism. Intuitively

and theoretically, such tools do not include manipulating the interest rate in the same way as before,

because it has already been ’bound.’ Ideally, to study the dynamics, the model should have different

regimes determined by passive or active policy states. For better modeling of post-Great Recession

periods, the model should use another set of variables driving the decision making process when

ZLB is binding, such as uncertainty measures. My next section discusses a specification which

aims more towards the general situation.
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Figure 7: Impulse response function of a 1 standard deviation increase in tax rate
and a 1 standard deviation decrease in interest rate

4 REGIME-SWITCHING MODEL

4.1 Model Specification

The regime-switching model discussed here is an extension of the baseline model in the last sec-

tion. Thus, most of the model specification is adopted except for the policy rules. In order to

accommodate for possible policy states, the policy rules are modified into the following form

int = (int−1)ρi (̄ıπ̂
φπ(SMt )
t (yt/yt−1)φy(SMt ))1−ρi exp(σ̄iεi,t) (55)

τt = τ̄ + δ(SFt )(bt−1/yt−1 − by) + σ̄tετ,t (56)

where SXt ∈ {1, 2}, X ∈ {F,M} is the unobserved state variable. The value 1 and 2 correspond

to active and passive respectively. With two regimes for each policy type, there are a total of four

states in the model. The aggregated state variable St takes the following values and follows a
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four-state Markov chain.

St =





1 ≡ active monetary, active fiscal (AMAF)

2 ≡ active monetary, passive fiscal (AMPF)

3 ≡ passive monetary, active fiscal (PMAF)

4 ≡ passive monetary, passive fiscal (AMAF)

In Davig and Leeper (2011), they also assumed the variance of monetary shocks to take on two

different values independent from the coefficients, resulting in a total of four monetary regimes.

It is plausible because policy rate can be expected to be more volatile in a certain period of time

than the other under the same policy regime. However, the states of the variance would be highly

endogenous and unobservable, and even in Davig and Leeper’s paper, they assumed the same

policy coefficients for the two ’variance state’, which implies that the difference in variance does

not interfere with policy decisions. Also, as they point out in their paper, such specification do

not yield different solution; the only effect lies in the evolution of different shocks. Thus, without

compromising the main research question, my model does not take such variations into account.

4.2 Solution and Calibration

4.2.1 Policy Function Iteration

The regime switching feature, specifically the unobserved state, needs me to solve the full non-

linear model. I chose the numerical algorithm described in Richter et al. (2014), which iterates on

the policy functions until the solution converges.

The model can be written as

E[f(vt+ 1,wt+ 1, vt,wt)|Ωt] = 0
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where v = (a, s) are exogenous variables,w = (ỹ, ỹgdp, w̃, c̃, n, i, π, τ, b̃) are the endogenous vari-

ables, and f(·) is a vector-valued function. The expectation is conditioned upon our information

set Ω = {S, P,z}, where S is the steady state value from the linear model, P is the parameter

space, and z = (b̃, i, ỹgdp, a, s, εi, ετ , St) is the state vector. Due to the computational limit, the

state space is discretized into (5, 5, 5, 3, 3, 3, 3, 4) = 40500 points. For i, b̃, ỹgdp respectively, the

bounds of the state space are set to ±2.5%,±10%,±4% of the steady state value, and the points

are equally distributed between the bounds using the linspace routine in Matlab. The state space

for a, s, εi, ετ is discretized using Rouwenhorst’s method of approximation based on Rouwen-

horst (1995) and Kopekcy and Suen (2010). Although St is a state variable, due to its known

property, it is set to have four values: 1, 2, 3, 4. Its transition matrix, which will be specified

in the next section, is incorporated into the Rowenhorst weight matrices to form the integration

weights (Φ(·)). After initializing the grids, I obtain the initial conjectures for the policy functions,

ct = f(vt,wt), πt = g(vt,wt). The initial conjectures are obtained from the solution of the

linear system.

The iteration starts by updating the variables at time t except for those containing expectation

operators using the calibrated parameters for that specific state. The next step is to use linear inter-

polation to obtain the updated value for policy functions at each node, which will then be used to

calculate the value of the expression inside of the expectation operators in Equation (20) and (22).

The value of the expectation operator at time t is obtained by integration with the aforementioned

integration weights (Φ(·))

E[f(vt+ 1,wt+ 1, vt,wt)|Ωt] =
∑

Φ(at, st, εi,t, ετ,t)f(vt+ 1,wt+ 1, vt,wt)

The above steps are repeated until Chris Sims’ csolve function finds the optimal value of

ct+1, πt+1 that satisfy Eqn (20) and (22). The policy function is then updated and the next iter-

ation starts. The algorithm terminates until the value of the policy function converges, meaning the

maximum distance between the updated policy function values and the previous ones is less than
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the threshold (in my case, 1E-7).

4.2.2 Simulation and Modified Particle Filter

The simulation algorithm is similar to the above iterations. The aim is to simulate the model enough

times such that it converges to the stochastic steady state. At t = 0, it is also initialized by the

steady state values from the linear model. For t = 1, . . . , 10000, it first updates the time t value for

the exogenous state variables, and then uses the policy function values from the solution to update

consumption and inflation at time t using linear interpolation and Hermite extrapolation, followed

by updating all other variables. The values of variables converge after around 100 simulations.

Even with stochastic states, the variables still converge to a steady state with no significant decrease

in the rate of convergence.

Due to the existence of the unobserved state variable, it is very hard to use the fminsearch

routine to implement the adapted particle filter. Thus, for this model, I only used the regular

particle filter, which draws the four random shocks from normal distribution and the states based

on its transition matrix. Unlike the linear model, where the updated state variables can be directly

calculated using the T and M matrix, the nonlinear model requires simulation at each single

particle due to the difference in state. This significantly decreased the speed of the particle filter,

from only couple seconds per time to around 10 minutes per time.

Recall that in Section 3.3.3, following Equation (53), the weights of each particle are then

normalized and input into the Kitagawa (1996) algorithm to resample. Here the normalized weights

are also used to calculate the probability of that data point being in each state. Therefore, we can

obtain the filtered probability of the state variable from the particle filter.

4.2.3 Calibration

Since this model is even more computationally demanding than the linear model, I only calibrated

the model based on previous literatures and my linear estimates. Another alternative of estimating
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the model is to use VAR estimates to approximate the values of the policy states.

P F =




0.94 0.06

0.05 0.95


 PM =




0.97 0.03

0.01 0.99




I obtained the above transition matrices for fiscal and monetary regimes from Davig and Leeper

(2011). The entire transition matrix is then calculated by

PM ⊗ P F =




0.9118 0.0582 0.0282 0.0018

0.0485 0.9215 0.0015 0.0594

0.0094 0.0006 0.9306 0.0594

0.0005 0.0095 0.0495 0.9405




Policy parameters are calibrated around the posterior mean from the estimates of the linear

model as shown in Table 3. To exacerbate the effect of regime switching, the difference between

parameters in different states are set as far as permitted and as not distorting the true dynamics.

Different parameter calibration affects the solution time of the model. With the shown calibration,

the solution time is around six hours on a four-core machine.

Parameter Posterior Mean Active Regime Passive Regime
φπ 3.5474 4.5 1.01
φy 0.11035 0.5 0.05
δ 0.2819 0.1 0.5

Table 3: Policy coefficients calibration

4.3 Results and Analyses

Active fiscal policy in this model is specified as the government injecting liquidity into the market

by issuing bonds. Thus the tax response to debt in active regime is lower than that in the passive

fiscal regime. Active monetary regime is defined as the Federal Reserve actively adjusting the

policy rate according to inflation and output. Figure 8 shows the probability of in the active states

33



0 20 40 60 80 100 120

Fiscal

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Monetary

0

0.2

0.4

0.6

0.8

1

Figure 8: Filtered probability of in the active states

obtained from the particle filter. Overall, this model produces richer dynamics and is more suitable

for analysis of policy interactions.

As shown in the graph, the fiscal states are well filtered but it is not the case for the monetary

states. For the fiscal states, we can see that the government became active in 1990s when the

economy enjoyed fast development, again in early 2000s after the dot-com crisis, and right after

the Great Recession. The graph generally resembles the one shown in Davig and Leeper (2009).

On the monetary side, the filter does not yield satisfactory results. But at around 2008, it does

capture the shift in monetary policy when Federal Reserve quickly lowered the policy rate and hit

the ZLB.

It is worth noting that unlike what is produced by the linear model, although an increase in tax
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Figure 9: Impulse response function of a 1 standard deviation
increase in tax rate under PMAF regime

rate still represents an increase in government spending, such impulse results in an initial crowding

out of private consumption in Figure 9. However, the household expects the tax rate to decrease

in the future given a lower bond level, thus labor supply increases and consumption also increases

soon after the initial impulse as a result of utility smoothing. Similar to Davig and Leeper (2011),

under the PMAF regime, an increase in government spending persists, as shown in the above graph

by the response of output (because government spending is specified as a proportion of the output).

This is the state that is the closest to the the situation in the Great Recession. From the graph, same

conclusion as the linear model can be reached: increase in government spending alone is not

enough to raise the inflation rate. In this nonlinear model, the crowding out effect is significant

enough to decrease the inflation rate during the first couple quarters. Under this regime, tax rate

does not respond aggressively towards changes in the debt level. Thus we can see that the change

in bond level persists even after 20 quarters, and the tax increase dies out quickly after the initial

impulse. The pattern for the interest rate can be attributed to it responding to the inflation change.

The passivity of monetary policy is reflected in the scale.

35



5 10 15 20 25

0

0.01

0.02

0.03

5 10 15 20 25

-0.04

-0.02

0

0.02

5 10 15 20 25

-0.01

-0.005

0

0.005

0.01

5 10 15 20 25

-0.8

-0.6

-0.4

-0.2

0

5 10 15 20 25

-2

0

2

4

5 10 15 20 25

0

0.01

0.02

0.03

Figure 10: Impulse response function of a 1 standard deviation
increase in tax rate under AMPF regime

With Active Monetary/Passive Fiscal combination, Davig and Leeper (2011) argued that it re-

sembles the dynamics of a RBC model and Ricardian Equivalence better than the New Keynesian

Model. Figure 10 agrees with their conclusion. However, due to the fact that my model has distor-

tionary tax instead of lump sum tax, there are some variations. Although the tax rate has increased,

the crowding out on private consumption is not obvious. An increase in government spending

does decreases the household’s lifetime wealth, lowers its inflation expectation, and increases its

labor supply by a small amount. But the effect of lowered inflation expectation is very quickly fol-

lowed by a sharp decrease in interest rate as the result of the active monetary policy specification.

Generally speaking, this regime displays similar dynamics as the AMAF regime.

For Figure 7 in the last section, I argued that although an increase in government spending and

a lowered interest rate can have strong inflationary results, but the situation is not likely to happen

during the Great Recession. The impulse response of the PMAF regime supports my argument by

giving the interest rate a very small impulse. (See Appendix A.) Even if the Federal Reserve were

able to further lower the interest rate, the impulse responses would still be dominated by the effect
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of an increased tax rate, and the inflation rate would not rise either.
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Figure 11: Impulse response function of a 1 standard deviation increase in tax rate
and a 1 standard deviation decrease in interest rate under AMAF regime

The combination of the policy responses is the most effective under AMAF regime, where

inflation response stays positive and output response quickly becomes positive after the interest

rate adjusts and the positive effect still exists 20 periods after the initial shock. With a decrease

in bond returns and a decrease in the need of bonds to fund government spending, bond level

decreases significantly and the change persists even after 40 periods.

Table 4 summarizes the impulse responses under different regimes with a 1 standard deviation

shock. From the table, it is clear that the duration of the effects differ significantly among dif-

ferent fiscal regimes, and tax shocks contribute more to inflation responses comparing to output

responses. The effects from 1 standard deviation tax shock are smaller than that of an interest

shock with the same magnitude. However, one thing to note is that during the Great Recession,

the Federal Reserve was unable to adjust the interest rate while tax shocks were once as high as 6

standard deviations. The standard deviation implied from empirical evidence of a linear regression

is also three times as large as the one in our model parameterization.
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Impulse Output Response Inflation Response
Var. State max max qt. half end max max qt. half end

i, τ

AMAF 0.1908 1 3 92 0.0911 1 1 9
AMPF 0.2133 1 3 24 0.0743 1 1 19
PMAF 0.3600 1 4 96 0.1811 1 2 12
PMPF 0.3683 1 4 37 0.1560 1 1 32

i

AMAF 0.1922 1 2 84 0.0686 1 2 11
AMPF 0.2048 1 2 23 0.0609 1 1 19
PMAF 0.3645 1 3 92 0.1644 1 2 13
PMPF 0.3709 1 4 37 0.1477 1 2 32

τ

AMAF 0.0185 6 17 80 0.0224 1 1 27
AMPF 0.0218 3 5 20 0.0133 1 1 15
PMAF 0.0119 8 19 75 0.0166 1 1 40
PMPF 0.0107 3 7 25 0.0083 1 1 20

Table 4: Summary of impulse responses under different regimes with a 1 standard deviation shock

4.4 Comments on the Smooth Transitioning Method

The biggest advantage of the smooth transitioning model described in Auerbach and Gorodnichenko

(2012) is that it preserves the linear feature of the model, by including the regime switching as

an observable rather than an unobservable. The state variable is treated as a continuous variable

bounded by 0 and 1, and is expressed as the probability of being in one state. The state is calculated

using the following formula

F (zt) =
exp(−λ(zt − γ))

1 + exp(−λ(zt − γ))
(57)

where zt is the seven quarter moving-average of the GDP growth, and γ is a tuning parameter,

such that t : F (zt) > 0.8, which signifies a recession, is roughly 21% of the entire sample,

corresponding to the business cycles published by the NBER.7 In my calculation, λ and γ are

calibrated to 3 and 0.8 respectively. The graph below shows my replication of the probability of

being in a recession, which generally resembles the graph in their paper.

The implementation of this method in a structural VAR problem is relatively easy compared

7http://www.nber.org/cycles.html
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Figure 12: Probability of being in a recession using the smooth transitioning method

with implementing it to estimate a DSGE model. Two sets of coefficients are estimated in the VAR,

and for each time period, we can view the usual VAR coefficients as a weighted average of the two

sets of coefficients. However, to estimate a DSGE model, the solution depends on the values of the

parameters. To implement this method, the model needs to be solved every time we move to the

next data point in the filtering process, as opposed to the current linear model, where one solution

is obtained for 124 data points. Due to the difference in parameters, when the algorithm moves to

the next data point, the weights for the resampling process may no longer be valid, thus decreasing

the efficiency of the particle filter.

However, the true difficulty of implementing this method lies in its foundation. This empirical

based method is suitable for VAR or other empirical methods without any doubt, but it is very

hard to be extended to be included in structural modeling. For example, without good proxies, it is

almost impossible and implausible to construct the regimes for fiscal policy and monetary policy

individually following this method.
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5 FUTURE EXTENSIONS

Due to the constraint on time, computing power, and my own knowledge, this project only scratched

the surface of fiscal monetary interactions. Given the above sections, a natural extension should

be a better specified government spending and fiscal policy rule. VAR estimation should also be

included to confront the dynamics and estimates from the structural model. More thoughts can also

be given to the regime switching part. For example, how can the regimes better represent periods

before and after the Great Recession, the period when the ZLB was binding, and even the current

period, where the ZLB is no longer binding and the economy is recovery but it is not safe to say

that the current period is in the same state as any period before the Great Recession happened.

Besides the traditional Markovian switching mechanism, other mechanisms can also be used,

for example an extension of the smooth transitioning regime switching. Chang et al. (2017)

has developed a similar approach where an autoregressive latent factor determines regimes by

examining the value against a threshold level. The difference between it and the standard Markov

switching is that it is endogenous or weakly exogenous, and is allowed to be correlated with the

innovations. Different from Auerbach and Gorodnichenko’s approach, the state variable is still

discrete rather than continuous. This method is also developed under a single-equation framework,

but current work is being done to extend it into a DSGE model.

Uncertainty measures and stochastic volatility can also be included in the model to produce

richer dynamics. Uncertainty measures signify market confidence, which is very important in the

post-Great Recession period. Multiple literature has emerged discussing the relationship between

market confidence and economic growth, or between forward guidance and economic growth, such

as Plante et al. (2016), the paper that is heavily cited in this project, as well as McKay (2016).

However, after all, a direct upgrade would be to conduct a full-scale estimation for the non-

linear model. Even according to Dr. Leeper himself, this would be a very significant extension for

Davig and Leeper (2011) as well.
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6 CONCLUSION

This paper studies the dynamics of interactions between fiscal and monetary policy. The results are

obtained from a baseline linear model and a nonlinear model with Markov switching. In both mod-

els, the government spending and consumption are specified as a fixed proportion of the aggregate

income. Proportional tax on labor income is implemented as a method to fund government spend-

ing, meaning that an exogenous rise in the tax rate signifies an increase in government spending.

The models are solved using data-driven methods and impulse responses are obtained.

Both models show that only an increase in government spending is able to increase output but

is not enough to raise inflation expectations. Under certain regimes, where the crowding out ef-

fect of government spending on private consumption dominates the dynamics of the first several

quarters, such change can have significant disinflationary impact. Agreeing with Davig and Leeper

(2011), I conclude that the effect of increased government spending is likely to persist under pas-

sive monetary and active fiscal regime; while active monetary and passive fiscal regime resembles

Ricardian Equivalence. The policy combination of lowering interest rate and increasing govern-

ment spending is most effective under active monetary and active fiscal combination, which can

be the policy state that we are currently in or are about to step in. This model is not built to ac-

commodate unconventional monetary policies that have been implemented in the past few years,

but there is sufficient empirical evidence suggesting that the Federal Reserve is ready to become

active again.
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A Impulse Responses for the Regime Switching Model

A.1 1 standard deviation negative shock on interest rate
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Figure 13: A decrease in interest rate in AMAF regime
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Figure 14: A decrease in interest rate in AMPF regime
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Figure 15: A decrease in interest rate in PMAF regime
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Figure 16: A decrease in interest rate in PMPF regime
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A.2 1 standard deviation positive shock on tax rate
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Figure 17: An increase in tax rate in AMAF regime
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Figure 18: An increase in tax rate in AMPF regime
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Figure 19: An increase in tax rate in PMAF regime
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Figure 20: An increase in tax rate in PMPF regime

49



A.3 1 st.dev. positive shock on tax rate and negative shock on interest rate
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Figure 21: An increase in tax rate and a decrease in interest rate in AMAF regime
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Figure 22: An increase in tax rate and a decrease in interest rate in AMPF regime
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Figure 23: An increase in tax rate and a decrease in interest rate in PMAF regime
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Figure 24: An increase in tax rate and a decrease in interest rate in PMPF regime
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B Firms’ Problems under Rotemberg (1982) Pricing

As specified in section 3.1.2, there are two types of firms in the economy: a continuum of identical

monopolistically competitive intermediate good producers indexed by i (producers), and a final

good bundler bundling intermediate goods together (bundler). Denote the price determined by the

producers as pit and the price taken by the bundler as pt. Denote the output by the producers as

yit, and the aggregate output as yt, which is the output of the bundler assuming no resource loss

during the ’bundling’ process. Using Dixit-Stiglitz (1977) aggregator, our bundler bundles things

together using the following production function that displays constant elasticity of substitution:

yt =

(∫ 1

0

y
θ−1
θ

it di

) θ
θ−1

(1)

As a price taker without monopolistic power, the bundler’s goal is to maximize its profit by

choosing its demand from all producers

max
yit

ptyt −
∫ 1

0

yitpitdi (2)

The optimality condition implies the following

0 = pt
dyt
dyit
− pitdi (3)

dyt
dyit

=
θ

θ − 1

(∫ 1

0

y
θ−1
θ

it di

) 1
θ−1 θ − 1

θ
y
− 1
θ

it di

=

((∫ 1

0

y
θ−1
θ

it di

) θ
θ−1

) 1
θ

y
− 1
θ

it di

= y
1
θ
t y
− 1
θ

it di

⇒ yit =

(
pit
pt

)−θ
yt (4)
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Equation (4) shows the optimal output for each producers. The log-linearization form of (4) shows

why θ is the elasticity of substitution:

ŷit = ŷt − θ(p̂it − p̂t) (5)

To find pt, substitute equation (4) into equation (1):

yt =



∫ 1

0

((
pit
pt

)−θ
yt

) θ−1
θ

di




θ
θ−1

⇒ pt =

(∫ 1

0

p1−θ
it di

) 1
1−θ

(6)

Assuming TFP, real wage, and the exogenous trend are identical for all firms, and each firm

follows the same production function (Equation (7)), then we can set up the cost minimization

problem for our producers

yit = ztatnit (7)

min
nit

wtnit + µit(yit − ztatnit) (8)

where the lagrange multiplier µit is the marginal cost of producing one more unit of output. The

optimality condition implies that in equilibrium, every firm faces the same marginal cost.

µit =
wt
ztat

= µt ∀i (9)

With marginal cost for producers, we can now maximize the present value for dividends/profits.

From the bond’s Euler equation (Equation (7) in section 3.1.1), the pricing kernel (the real interest
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rate) is defined as

qt,t+1 = Et

[
πt+1

stit

]
= βEt

[(
ct
ct+1

)γ (
zt
zt+1

)1−γ
]

(10)

Following Rotemberg (1982) and Ireland (1997), producers face adjustment costs when trying to

change their price, αit = yt
ϕ
2

(
pit

π̄pit−1
− 1
)2

. In this form, firms face higher adjustment costs when

the output or price level is high. Since in equilibrium, every producer faces the same marginal cost,

pit = pt ∀i. Thus under Rotemberg pricing, there is no price dispersion between producers, unlike

Calvo (1983). Producers try to maximize their lifetime dividends, defined in real terms as the profit

subtracted by labor costs and adjustment cost. The representation of the problem is shown in (11)

and the following equations are the first order condition and its transformations.

max
{pit}∞t=0

E0 q0,t

[(
pit
pt

)
yit − wtnit − yt

ϕ

2

(
pit

π̄pit−1

− 1

)2
]

(11)

max
{pit}∞t=0

E0 q0,t

[(
pit
pt

)1−θ
yt −

wt
ztat

(
pit
pt

)−θ
yt − yt

ϕ

2

(
pit

π̄pit−1

− 1

)2
]

(12)

0 = (1− θ)yt
p−θit
p1−θ
t

+ θyt
wt
ztat

p−θ−1
it

p−θt
− ytϕ

(
pit

π̄pit−1

− 1

)
1

π̄pit−1

− Et qt,t+1yt+1ϕ

(
pit+1

π̄pit
− 1

)
pit+1

π̄p2
it

(13)

0 = (1− θ)yt
p−θt
p1−θ
t

+ θyt
wt
ztat

p−θ−1
t

p−θt
− ytϕ

(
pt

π̄pt−1

− 1

)
1

π̄pt−1

− Et qt,t+1yt+1ϕ

(
pt+1

π̄pt
− 1

)
pt+1

π̄p2
t

(14)

0 = (1− θ)yt + θyt
wt
ztat
− ytϕ(π̂t − 1)π̂t − Et β

(
ct
ct+1

)γ (
zt
zt+1

)1−γ
yt+1ϕ(π̂t+1 − 1)π̂t+1

(15)

ϕ(π̂t − 1)π̂t = (1− θ) + θ
wt
atzt

+ βϕEt

[(
ct
ct+1

)γ (
zt
zt+1

)1−γ
(π̂t+1 − 1)π̂t+1

yt+1

yt

]
(16)

Thus, the optimal condition of profit maximization implies Equation (16), which is shown as Equa-

tion (9) in section 3.1.2. In steady state, π̂ = 1, we have the equilibrium wage as w̄/z̄ = θ−1
θ

.
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