o
WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

4-2017

Saving Babies Using Big Data

Evan Dienstman
College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

b Part of the Applied Statistics Commons

Recommended Citation
Dienstman, Evan, "Saving Babies Using Big Data" (2017). Undergraduate Honors Theses. Paper 1048.
https://scholarworks.wm.edu/honorstheses/1048

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1048?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Saving Babies Using Big Data
A thesis submitted in partial fulfillment of the requirement

for the degree of Bachelor of Science in Mathematics from
The College of William and Mary

by

Evan Dienstman

Accepted for

(Honors, High Honors, Highest Honors)

Prof. John Delos, Director

Prof. Leah Shaw

Prof. Junping Shi

Prof. Daniel Vasiliu

Williamsburg, VA
April 21, 2017

William & Mary Mathematics Honors Project

Saving Babies Using Big Data

Student

Evan Dienstman

eddienstman@email .wm.edu

Academic Advisers

John Delos, jbdelo@um.edu
Daniel Vasiliu, dvasiliu@wm.edu

May 10, 2017

This project was jointly supported by NSF Grant 1331021.

Contents

List of Figures 5
Abstract 6
Acknowledgments 7
1 Introduction 8
1.1 Medical Background oo 8
1.2 Prior Work e 9
1.3 Data Collection 9
1.4 Notes on the Matlab Code 10
2 Heart Rate Characteristics 12
2.1 Meano 12
2.2 Variance e e e 12
2.3 Asymmetry 12
2.4 Sample Entropyo 13
2.5 Decelerations 13
2.6 HRC Subcategories e 14
3 Data Organization and Preprocessing 16
3.1 HRB Files e 16
3.2 Excel Files s 16
3.3 Dienstman Result Files 17
3.4 CSV Files o s 18
4 Time Series 21
4.1 Time Series Figures 21
4.2 Time Series DIiscussion e 22
5 Univariate Probability Density Functions 24
5.1 Kernel Density Estimation Definition 24
5.2 Univariate PDF Figures o o 25
5.3 Univariate PDF Discussion 26
6 Univariate Risks 28
6.1 Risk Definition e 28
6.2 Univariate Risk Figures L. 29
6.3 Univariate Risk Discussion o 29

7 Bivariate Probability Density Functions
7.1 Bivariate PDF Figures o
7.2 Bivariate PDF Discussion 0 0.
8 Bivariate Risks
8.1 Bivariate Risk Figures o
8.2 Bivariate Risk Discussion L o000
9 Single Variable Logistic Regression
9.1 Single Variable Logistic Regression Definition
9.2 Single Variable Logistic Regression Figures
9.3 Single Variable Logistic Regression Discussion

10 HeRO Score

10.1 HeRO Score Definition

10.2 HeRO Score Figures

10.3 HeRO Score Discussion e

11 Conclusion

11.1 Discussion
11.2 Future Work

A Additional Figures
A.1 Time Series Figures

A.2 Univariate PDF Figures
A.3 Univariate Risk Figures
A.4 Bivariate PDF Figures o
A5 Bivariate Risk Figures o
A.6 Single Variable Logistic Figures

A.7 HeRO Score Figures

B Matlab Programs

B.1 Result Files
B.2 CSV Files

B.3 Time Series Figures

B.4 Univariate PDF Figures
B.5 Univariate Risk Figures L.
B.6 Bivariate PDF Figureso o
B.7 Bivariate Risk Figures o
B.8 Single Variable Logistic Figures

B.9 HeRO Score Figures

Bibliography

31
31
32

33
33
34

35
35
36
36

38
38
39
40

42
42
42

44
44
46
49
50
ol
52
o4

56
56
62
67
73
76
82
86
89
92

98

List of Figures

1.1 RRInterval 9
2.1 Deceleration e 14
3.1 RCTEvents2.XLS o i v i ittt s e 17
3.2 Dienstman Result File Example 18
3.3 CSV File Example 19
4.1 Individual Time Series Figure Example 22
4.2 Average Time Series Figure Lo L. 22
5.1 Comparison of Histogram and Corresponding KDE 25
5.2 Univariate PDF Example 0L 26
6.1 Univariate Risk Example 0L 29
7.1 Bivariate PDF Example 32
8.1 Bivariate Risk Example o 33
9.1 Single Variable Logistic Regression Example 36
10.1 HeRO Score Figure Example 39
10.2 Average HeRO Score Figure 40
Al Time Series 1 e e 44
A2 Time Series 2 e 45
A3 Time Series 3 e 45
A4 Univariate PDF 1. 46
A5 Univariate PDF 2. 46
A.6 Univariate PDF 3. 47
A7 Univariate PDF 4. 47
A.8 Univariate PDF 5. 48
A9 Univariate PDF 6. 48
A.10 Univariate Risk 1 49
A.11 Univariate Risk 2 e 49
A12 Bivariate PDE 1 e 50
A.13 Bivariate PDF 2 50
Al4 Bivariate Risk 1. 51
A.l5 Bivariate Risk 2. 51
A.16 Single Variable Logistic Figure 1 52
A.17 Single Variable Logistic Figure 2 52

A.18 Single Variable Logistic Figure 3 53

A.19 Single Variable Logistic Figure 4 53
A.20 HeRO Score Figure 1. 54
A.21 HeRO Score Figure 2. 54
A.22 HeRO Score Figure 3 L 55

Abstract

Because of their underdeveloped immune systems, premature babies are at an increased
risk to contract many illnesses. Thus, early detection of a disease is vital to saving a pre-
mature baby’s life. Current methods of detecting illnesses, however, have been inadequate,
providing many false positives and insufficient amount of warning time. However, patterns
in the heart rate of babies have shown signs of predicting the onset of sepsis in premature
infants. Research conducted by Prof. John Delos and others suggest that low variability
and clusters of decelerations in an infant’s heart rate may indicate an impending septic
event. Additionally, there is weak evidence that low variability may be linked to gram-
positive bacteria and clusters of decelerations may be linked to gram-negative bacteria. If
this statement is true, then not only will the heart rate of an infant predict the onset of
sepsis, but also provide a partial diagnosis and thereby indicate the preferred treatment
for the baby. However, much more work needs to be done to prove this hypothesis. Over
twelve terabytes of data has been collected on premature babies’ heart rate and breathing.
To search through this data, one first needs to know what to look for. Unfortunately, only
looking for low variability and clusters of decelerations would be inadequate since most
babies experience some low variability and decelerations in their heart rate at some point.
Therefore, sophisticated statistical analysis is necessary to quantify this data. The general
idea of this analysis includes creating many different heart rate characteristics (HRCs) and
measuring their predictive power through multiple methods. The results of our research
indicate that the HRCs of variance, sample entropy, and asymmetry are strong predictors
of illness. However, no HRC shows strong signs of indicating the type of invading organism
that caused the illness.

Acknowledgments

I would like to thank my academic advisors at William & Mary, Prof. John Delos and
Prof. Daniel Vasiliu, for their instruction and support during this entire process. Various
Matlab programs used in the research are original/modified programs by Prof. Douglas
Lake and Abigail Flower. I would also like to thank our UVA friends, Prof. Douglas Lake
and Dr. Randall Moorman, for their guidance on the medical side of this project. The
data calculations in this report were performed on computational resources supported by
William & Mary’s high-performance computers (SciClone). This project is an extension of
work started as part of my participation in EXTREEM-QED program at William & Mary.
The EXTREEM-QED program is supported by NSF Grant 1331021.

Chapter 1

Introduction

Premature babies are at an increased risk of having a septic event due to their immature
immune systems. Therefore, nurses must frequently take blood samples of the infants in
order to determine a patient’s health status. Blood work, however, is a slow process, so
doctors might not be performing the best treatment for the infant while waiting for the
results of a test. Furthermore, drawing blood, as with any invasive measure, could cause
complications. Our goal is to try to use the baby’s heart rate as a quick, noninvasive way
to decide if an infant is unhealthy. Research has already shown some signs that reduced
variability and transient decelerations in the heart rate could predict sepsis [1]. We also
hypothesize that low variability may be linked to gram-positive bacteria and clusters of
decelerations may be linked to gram-negative bacteria, giving insight into the preferred
treatment for the baby. In order to test our two hypotheses, we will develop heart rate
characteristics (HRCs) to better understand the data. We will then test the usefulness of
the HRCs at predicting sepsis. In the end, the ultimate goal will be to test if our HRCs are
predictive of sepsis and the hypothesis that low variability is associated with gram-positive
diseases and clusters of decelerations are associated with gram-negative diseases.

1.1 Medical Background

1.1.1 Sepsis

Sepsis refers to an inflammatory response caused by the body fighting off an infection
[2]. In order to detect sepsis, a nurse will look for changes in a baby’s body temperature,
digestion, and other vital signs. Unfortunately, these symptoms may not appear until
long after the baby has become infected. Another challenge is that even though early
treatment with antibiotics is very effective in treating sepsis, without the proper diagnosis
of the invading organism, a doctor will not be able to administer the best drug to the
patient. A nurse, consequently, must take a blood sample in order to properly identify the
pathogen. However, this procedure is time consuming and not ideal for very small infants.
In our report, we will focus on five classifications of invading organisms: coagulase-negative
staphylococci (CONS), gram-positive bacteria, gram-negative bacteria, fungus, and other.
The hope from the heart rate analysis is two-fold: 1) give earlier warning than current
methods about a septic event and 2) provide information about the type of organism that
caused the septic event. If we accomplish both our goals, then not only will we be able to
provide doctors with an inexpensive, noninvasive way of detecting sepsis in its early stages,
but also provide a partial diagnosis, and consequently a treatment, for the pathogen.

1.1.2 RR Intervals

An electrocardiogram (EKG) displays a time series of electric impulses created by the
heart. In this time series, the largest peaks occur at the beginning ventricular contraction.
This peak is defined as the R-peak. Physicians use the R-peak to represent the time a heart
beat occurs. Therefore, the RR interval is the time between one R-peak to the next, or
rather, the time between heart beats. When analyzing heart rate throughout this report,
we will use the RR intervals. Note that even though the the RR intervals are not technically
a rate, one can easily obtain a heart rate by finding the number of intervals in a certain unit
of time. Another way to relate the RR intervals to a heart rate is that large RR intervals
imply a slower heart rate and small RR intervals imply a faster heart rate. [1] Figure 1.1
shows an example time-series of an EKG with one RR interval.

Fll R-R Interval F:'"

|
Qg

Figure 1.1: RR Interval[Y)]

1.2 Prior Work

As reported in Mortality Reduction by Heart Rate Characteristic Monitoring in Very
Low Birth Weight Neonates: A Randomized Trial by Dr. J. Randall Moorman and Prof.
Douglas E. Lake, et al., four heart rate characteristics were found to provide early warnings
of illness: variance, asymmetry 1, asymmetry 2, and sample entropy. We will explain the
definitions of these measures in Chapter 2. A Heart Rate Observation score, or HeRO
score, which was previously derived using a sample of a few hundred sepsis events, was also
used in the randomized clinical trial to provide warning of illness. The HeRO score is a
measure that combines the four heart rate characteristics. We will explain more about the
HeRO score in Chapter 10. Specifically, the trial showed that as a consequence of these
early warnings, mortality in neonatal intensive care units was reduced by between 10 —40%
amongst various cohorts.

In this paper, we reanalyze the data from the clinical trial and develop a new HeRO
score based off this data. We also incorporate additional measures of heart rate variability
into the score. We hope that these two changes will improve the statistical predications of
the HeRO score.

1.3 Data Collection

All data was collected from electrocardiograms at eight neonatal intensive care units

(NICUs) during the randomized trial led by Dr. J. Randall Moorman [6]. The locations of
the NICUs have been withheld to protect the identity of the patients. In total, the trial
included around 3,000 babies with each baby having roughly one month’s worth of data.
From the 3,000 babies, about 1,000 septic events were recorded. Note that is is possible
for one baby to experience multiple septic events.

Each infant has a file containing a vector of RR intervals as well as the time each
RR interval ends. Times are calculated from time 0 corresponding to when the patient
was first connected to the EKG. Because the RR intervals are times themselves, the time
vector is simply a cumulative sum of the RR interval vector assuming the monitor is never
disconnected. However, the time vector is necessary since babies may be disconnected from
the monitor at times. We, therefore, need the time vector to indicate at what time each RR
interval occurred in the patient’s history. An example of these two vector are shown below:

rr_intervals = [420.25, 421.75, 420.25, 418.25, 422.00, 423.75 ...]
tt_intervals = [420.25, 842.00, 1262.3, 370470, 370880, ...

In the example above, rr_intervals refers to the RR intervals and tt_intervals refers
to the times of the RR peaks. Note that tt_intervals is a cumulative sum of rr_intervals
until the large jump from 1,262.3 to 370,470. A large jump like this corresponds to a
time when a baby was disconnected from the monitor. Smaller jumps may also occur
when the analyzing software fails to find a beat. In this example, both rr_intervals and
tt_intervals are measured in milliseconds. Throughout the rest of the report, we measure
the RR intervals in milliseconds and the times of the RR intervals in days.

The RR intervals and the times of the RR intervals constitute the bulk of the data for
a patient. Other data for a patient includes a site number corresponding to the patient’s
NICU, an ID number, demographic information, and a file indicating the times when the
patient was ventilated. If a patient is having difficulty breathing, the nurses will ventilate
the infant. We keep a record of this information because we believe ventilation reduces
heart rate variability. Lastly, we have another file containing all the patients that had a
septic event, the time of the event, and the invading organism that caused the event. Note
that a single patient can experience multiple septic events while at a NICU.

In order to better understand the data, we break up all the rr_interval vectors into half
hour pieces. Later, when we calculate statistical measures on the RR intervals, we calculate
them for each half hour vector instead of over the entire vector. Doing our calculations this
way helps us determine change in the various measurements over time. The choice to divide
our vectors into half hours is an empirical decision aided by opinions of Prof. Lake and Dr.
Moormon at UVA. Note that changing the length of the vector pieces will have an effect
on the statistical measurements, and similar work in the field uses 5 or 10 minute intervals.
However, for the purpose of this report, we use 30 minute intervals.

1.4 Notes on the Matlab Code

Throughout this thesis, we will reference Matlab code used to create data files and
figures. To help relate the code to the report, each section using code will contain the
names of the files involved at the beginning. Consider the following example below:

Bivariate Risk Figures: multiple_bivariate_risk figures —
one bivariate risk figure — one bivariate risk plot — one_risk matrix —
one_prob_matrix

10

The text above shows the code needed to create the bivariate risk figures. Note that
multiple_bivariate risk figures — one_bivariate_risk_figure

means that multiple bivariate_risk _figures calls one_bivariate risk _figure. How-
ever, sometimes an arrow does not mean one function calls another, but rather the second
function is the next function in the procedural order. While the report reviews important
aspects of the code, all code will not be discussed in detail. However, Appendix B contains
all the Matlab code for reference written by Evan Dienstman. Code written by other people
has been omitted from this report.

11

Chapter 2

Heart Rate Characteristics

Now that we have RR intervals broken up into half hour sections, we need to develop
statistical measures for each half hour that may be predictive of illness. We will focus on
seven statistical measures, or heart rate characteristics (HRCs), throughout this report:
mean, variance, sample entropy, three measures of asymmetry, and decelerations. Addi-
tionally, we will calculate five subcategories for each HRC: the raw HRC value, the 10th
percentile of the HRC over the past 12 hours, the 50th percentile of the HRC over the past
12 hours, the 90th percentile of the HRC over the past 12 hours, and the slope of the HRC
over the past 2 days. Accordingly, with seven HRCs and five subcategories for each one, we
get a total of 35 HRCs we will analyze. The remainder of the chapter gives the definitions
for each of these 35 HRCs.

2.1 Mean

The first HRC is the mean. For each half hour, we simply calculate the average RR
interval length. The mean for each half hour typically ranges from 420 ms - 440 ms.

2.2 Variance

Like the mean, we also calculate the variance for each half hour. However, when doing
our calculation, we take the natural logarithm of the variance so the scale is easier to
visualize. These log-variance values range from 0 - 5.

2.3 Asymmetry

Asymmetry is a measure of how skewed the data looks. To calculate asymmetry, consider
a vector with NV RR intervals with median m where B is the set of intervals below m and
A is the set of intervals above m. We can then define the following quantities:

1
r=—9Y (RR;, —m)? (2.1)
=5 ZGZB
1
ro = — (RRZ - m)2 (22)
2= ie;:

12

Notice that the calculations for r1 and 7y are similar to the calculation of variance except
with the median instead of the mean. Finally, we define three measures of asymmetry:

asymmetry-1 = In(ry) (2.3)
asymmetry_2 = In(rq) (2.4)

asymmetry_2
asymmetry_ratio = ASYTImERTy-= (2.5)
asymmetry_1

For each half hour, typical asymmetry_1 and asymmetry_2 values range from 0 - 10 and
asymmetry_ratio values range from 0 - 3. Any asymmetry_ratio greater than 1 indicates
that there are more intervals greater than the median than are less than the median, i.e.,
the data is skewed towards large intervals, indicating a slow heart rate [7].

2.4 Sample Entropy

The exact definition of sample entropy is beyond the scope of this report. However,
the general idea is that sample entropy is a measurement of how random the numbers in
the RR interval vector occur. A low sample entropy means the RR interval vector is fairly
regular while a high sample entropy means the intervals appear to be random. Values of
sample entropy range from 0 - 1 with 0 indicating the signal is completely periodic and 1
indicating the signal is completely random. Note that a horizontal line would be considered
perfectly periodic and would have a sample entropy of 0. A sine or cosine function would
also have a very low sample entropy. For a complete explanation of sample entropy, please
refer to the paper Physiological time-series analysis using approximate entropy and sample
entropy by J.S. Richman and J.R. Moorman [7].

2.5 Decelerations

The final raw HRC is number of decelerations. We define a deceleration as a sharp
increase in the RR intervals followed by a sudden return to a baseline. Recall that an RR
interval is the time between heart beats; therefore, an increase in the RR intervals represents
a decrease in the heart rate. Figure 2.1 shows an example of a deceleration highlighted in
red over time series of RR intervals.

Figure 2.1 contains one half hour worth of RR intervals. Within this half hour, there
are many more decelerations than one highlighted in red. The computer algorithm for
detecting decelerations was developed by Abigail Flower [2]. The algorithm uses a template
deceleration, such as the one highlighted in red, and sweeps the template through the signal.
The algorithm then makes a decision if the part of the signal in question is a significant
deceleration based on the height of the peak and how well the signal matches the template.
The algorithm then records the number of decelerations found. Typical values for the
number of decelerations in a half hour range from 0 - 10 with rare cases going up to 100.

13

Patient: 2384, Site: 1a, Half Hour: 670
I 1 T 1

500 [~ =

450

RR Intervals (millisecons)

350 [~ =

300 I | | | I | I
0 2 4 6 8 10 12 14 16 18

Time from Start of Half Hour (seconds) x10°

Figure 2.1: Deceleration

2.6 HRC Subcategories

In addition to all seven raw HRC measurements described above, we also calculate four
more measurements for each HRC. The first three are the 10th, 50th, and 90th percentiles of
the HRC values over the past 12 hours. To better understand the procedure for calculating
these subcategories, consider the example of calculating the 10th percentile of variance. If
all half hours are perfectly sequential in terms of their start times, i.e no missing data,
a window of 12 hours in the past will correspond to a vector of 24 half hours. We then
calculate the 10th percentile for these 24 variance values and record this value as the 10th
percentile of variance for the current half hour. The logic behind taking the 10th percentile
is that one very low variance over a 12 hour window might be a stronger predictor of sepsis
than looking at all the values for each half hour. However, because babies are frequently
disturbed by the nurses, we take the 10th percentile instead of the minimum to avoid taking
outliers caused by outside influences. Note that for a vector of 24 values, the 10th percentile
is about the second lowest value.

We then repeat this process for next half hour which will result in shifting our 12 hour
window up one half hour. Consequently, this new 24 half hour vector will be identical to
the previous one with the exception of the oldest half hour being removed from the end
and the current half hour being added to the beginning. We, therefore, should expect to
see similar 10th percentile values for consecutive half hours most of the time and sudden
changes sometimes once a new very low variance is captured by the window. The 50th and
90th percentiles follow a similar procedure.

The last subcategory is slope. In order to calculate the slope, we first index the raw
HRC values over the past 2 days. We then take a linear fit of the points in this vector and
map the slope of this fit to the HRC slope for the current half hour. Our thought process
behind recording the slope is that the actual value of the HRC might not be as strong of a
predictor as the rate of change of the values.

14

For any HRC subcategory, if there is insufficient data as a result of a baby being newly
connected to a monitor or from mechanical errors, we mark the HRC as °
NaN in Matlab. For exact thresholds of how much data we need, please see the documen-
tation of the relevant code.

‘not a number” or

15

Chapter 3

Data Organization and
Preprocessing

In this section, we will focus on where we get the data for our HRC calculations and
how we store the results of those calculations.

3.1 HRRB Files

All the information from the EKG monitors comes from .hrb files. Each baby has one
HRB file for his/her entire stay in the NICU. The HRB files contain the RR intervals as
well as the time of each RR interval. Additionally, the monitor also reports a 0 or 1 for
each interval to indicate whether the interval was good (0) or bad (1). Bad intervals may
be the result of the monitor missing a heartbeat or a mechanical error. Lastly, each file is
labeled with the four digit ID of the baby and contained in a folder with a site number of
his/her NICU. The eight site numbers are 11, 13, 15, 23, 24, 26, 27, and 30. We will discuss
what we do with this information in Section 3.3.

3.2 Excel Files

Apart from the HRB files, all the other information we have is contained in Excel
files. An example of what one of these Excel files looks like is shown in Figure 3.1. This
file, called RCTEvents2.x1s contains information for every baby who had a septic event.
Moving from left to right, the columns in the file are ID, site, birth weight, gestational
age, group, type of organism that caused the septic event, days of age at the time of the
event, death within 14 days after the event, death within 30 days after the event, HeRO
score at the time of the event, and ventilation status at the time of the event. For the
purpose of this report, we will ignore the group column. The organism column can contain
five different classifications of organisms: 1 - coagulase-negative staphylococci (CONS), 2 -
gram-positive bacteria, 3 - gram-negative bacteria, 4 - fungus, and 5 - other. The HeRO
score is a type of logistic regression that we will discuss in further detail in Chapter 10.
Concerning ventilation status, we have another Excel file containing specific times when
each patient was ventilated. Later, when we need to determine the ventilation status of
each individual half hour, we will use this file for the information. Again, we keep a record
of the ventilation status because we hypothesize that babies have lower heart variability

16

while ventilated. Finally, one other Excel file contains demographic information about all
babies that we will use later for separating babies into categories.

&, Import - C\Users\Evan Dienstman\Dccumeﬂts\De\Ds,RE&earch\DiensﬁmanﬁFiles\Babnyvents\RCTEventsZ.xIs Ll_lﬂ_hlﬂ =
IMPORT @gﬁ‘ﬁﬁ@ﬁ@
1 [Replace ~ unimportable cells with * NaM -+ a
RaguEgiAZ: 075 - Ba Mumeric Matrix I . . v
Variable Names Row: 1 = Cell Array Import
[N v TR
SELECTION IMPORTED DATA UNIMPORTABLE CELLS IMPORT
| RCTEvents2.xls |
A B T D E E G H 1 J K
D SITE BWT EGA Group Organism DaysofAge Deathl4DaysDeath30Days HeRO Ventilated
Number ¥ Number ¥ Number ¥ Number ¥ Number > Mumber > Mumber ¥ Mumber ¥ Mumber > Number > Number i
11D SITE BWT EGA Group Organism Days of Age [Death<14 .. |Death<30D... [HeRO Ventilated =
2 4102 11 865 28 2 1 148688 0 0 1.1999 0 9
3 4146 11 935 26 2 1 9.7931 1] (1] 0]
4 4147 11 1223 28 1 1 19.4340 1] (1] 1]
5 4156 11 947 27 2 1 63.4583 1] (1] 1.3275 0]
6 4168 11 1316 33 2 1 483410 1] (1] 0.2038 1]
7 4180 11 815 25 1 1 11.6368 1] (1] 0]
g 4185 11 710 24 1 4 233646 Q (1] 1.6763 1]
9 4189 11 207 25 2 2 50.0771 0 0 34549 1
10 4189 11 207 25 2 4 57.3104 0 0 0.9689 1
1 47202 11 200 30 2 3 61.1083 0 0 23973 0
12 4714 11 619 25 il 3 31.7625 0 0 11459 0
13 47214 11 619 25 il il 359292 0 0 0.7485 1
14 4714 11 619 25 il il 77.7799 0 0 0.4685 1
15 4715 11 540 25 2 il 7.5007 0 0 0.5952 1
16 4719 11 932 25 il il 10,6681 0 0 0.6463 0
17 4221 11 973 26 2 3 11,8819 0 0 1.8641 0
18 4221 11 973 26 2 il 45,3403 0 0 13902 0
19 4221 11 973 26 2 il 74,7354 0 0 0
20 4222 11 650 24 2 il 19,1030 0 0 29732 1
2 4222 11 650 24 2 il 103.8292 0 0 0.2919 0
22 4254 11 &10 26 2 il 89319 0 0 2.5501 1
23 4271 11 1100 30 2 il 10,5854 0 0 0.7148 0
24 4278 11 677 24 2 1 131243 1] (1] 4.8366 1]
25 4278 11 677 24 2 3 26.8361 1] (1] 3.5848 1]
26 4278 11 677 24 2 1 58.7563 1] (1] 0.2874 0]
27 4294 11 824 24 1 1 89.1708 1] (1] 41154 1]
28 4294 11 824 24 1 4 94.1597 1] (1] 0.4341 1]
20 430A 11 A3T 24 2 4 12 NS00 il il 24451 1 ke
|| . sheet1 | key | Sheet3 H

Figure 3.1: RCTEvents2.xls

3.3 Dienstman Result Files

Dienstman Result Files: Dienstman_submit_parallel — multiple_result_files —
one_result_file

Now that we have discussed all the raw data files, we can discuss how we process and
organize the data. For each HRB file, we need to break up the information into half hours
and calculate the HRCs for each half hour. The result of this procedure will be files similar
to the one in Figure 3.2. The file contains a structured array with many fields. The first
field is the start time of the half hour. The next 35 fields are the HRCs discussed in Section
2. The Good_Frac field refers to the percent of intervals in the half hour the EKG monitor
marked as “good”. Because of mechanical errors or disturbances from the baby, the monitor
might miss a heartbeat. Therefore, if an interval is recognized to be “bad”, an algorithm
in the machine will mark it. Ideally, we want the fraction of good beats to be as close
to 1 as possible. However, we currently do not remove any half hours for being below a

17

minimum threshold. We do however, do some preprocessing with the data. The results
of the preprocessing can be found in the final field Extra_Info. This field contains the
raw RR interval vector as well as the processed RR interval vector. The purpose of the
preprocessing is to remove the ”"bad” beats before calculating the HRCs. There are two
methods we use for preprocessing the data. For details on these methods, please refer to
one_result_file.m.

7 ienstrman b esults 042570

VARABLE vEW

. O Reuse Fire
(3 Dnstan e routs. . aill / No plots for selecti T onewn
plot Plot as mult... Plot as mutt. bar area [o mesh scater plotyy e
seicc T ornons

] 14667 struct with 3 fields

Fields CHstart Time CH Asymmetry 1 [Asymmetry 110 [Asymmetry 1,50 [H Asymmetry 1.90 [Asymmetry 1 Slope [1] Asymmetry 2 [Asymmetry 210 [Asymmetry 2.50 (1] Asymmetry 2.90 [H Asymmetry 2 Siope [Asymmetry Ratio [1] Asymmetry_Ratio 10 [1] Asymmetry_Ratio 50 [H Asymmetry Ratio 90 [H A«
i sam NN NN NN NN 2s74 NN NN NN NN 03468 NN NN NN
2 120 56955 s sae 5655 NN 232 e 2528 2sa74 NN ou Pyt 005 03468
3 12089 wsst san s 56955 NN 2002 22 28 2sa74 NN oamt oan 005 03469
‘ 12857 e a7t sa se055 Non 3se6t 2002 202 28074 Non osess oan ot osies
s 13065 % 4735 o0 s N 33688 200 28874 aset NN o753 oan ok oamss
s 134 s a7 s 5655 NN 2678 2002 28074 aset NN osest o o468 oanss
7 132 253 283 asst 56955 NN 2092 2002 2014 29008 NN o9 oan oss4 osmse
B 1360 o7 383) se055 Non 3305 2002 2008 3sest Non 020 oa ossts)
s 1309 a5 3863 w760 se5s N 2208 200 2008 aset NN omss oan osas)
0 07 s a0t 45075 sdgt NN 25257 2m 2098 25566 NN o6 oars oo osi3
u 1 ot 208 aso7s sat NN 2200 um 299 2566 NN o6t oars ormo oss13
2 s S0 3863 asmt sam Non 270 232 S0 35257 Non os0s7 o 0753)
5 1 Py as7 s sam N e P 30 92 NN ossm o osss oses7
u Lo w02 357 s s NN a3 22 30 s NN osea oam o885 os07
15 1519 2301 20 wars sar NN 17058 2002 20 a5 NN ozt oam 075% os0a1
16 15357 20 2700 wst sam NN e 20162 e 3305t Non 177 o oo os53
v 1556 m 2 e s N ssas 2002 frey ase6t NN 1325 oo oo oss
5 1574 20163 2 st s NN 250 200 fre ss NN o oam 052 1325
1 15083 a8 a0 st sar NN 7188 2002 fren s NN 20035 oam 01952 1325
» 16191 woms a0 439 sam NN 25 2002 2200 ssa9 NN osts o oso19)
2 1699 sotst 2a163 pres) w0 N 2 232 32000 1o Non 1ou1 osies oso19 132
2 16008 s 25163 pres w0 NN 65680 2 320 ss NN 20518 osiss oso18 1325
3 166 2 a0 sou7 w0 NN 2473 2 2200 ssa19 NN oar2 osiss 0305 17
x 1702 25094 a0 woiss w2 Non s 2 sam ssa9 NN 03 059 osir)
s 1 30662 27 soust ws02 NN 3618 2174 3305 sse19 Non osse0 oot 00 v
» 174 w6 2 som ast NN a8t 27t 330 sseis NN o103 o505 0s 177
S 176 2804 e soms % NN 2004 2sm s ssa19 NN 10m0 oss os72 17
= 17858 was a0 I asmt N 249 asm 230 ssa9 NN oz oss oss4)
» 13066 2067 27 2578 = Non s 25 sam sse19 Non osis3 oss o1t 1
) 1575 2am 2 25662 =z N 7 25m s sseis NN 1208 o084 0ss%)
a 15083 3o 20 o2 wm NN o 2sm fr 63680 NN 1702 o004 osoie 17
2 15092 2995 a0 25662 wsm NN anss asm 29 63680 NN osu1 o064 o017)
B 130 e 2780 35662 = Non wams 25 3368 6560 Non ossm0 o064 oo13)
F 1018 3503 2 958 s N 3363 25m 3505 6560 NN ossss o084 oa1 177
5 o7 2839 2 25 wm NN 23654 25m 33618 635680 NN L5 oz osis3 177
» 10525 24550 249 a7 sz NN 15500 2 250 63680 NN ouig oz osm2)
B 1973 26702 2005 35082 = Non 163 190 san 6560 Non osess oss o1 177
= 19002 2079 205 350 e N sso34 1950 s 6560 NN 18027 oz oo 177
» 20150 sas75 26762 25082 sm NN 25t P 350 635680 NN o5 o506 oo 18827
© 2039 w03 25102 a5im wm N 26053 2 29 63680 NN 05592 0505 osis3 18527

Figure 3.2: Dienstman Result File Example

We will refer to the files like the one in Figure 3.2 as Dienstman result files or just result
files. Each baby has a result file containing its HRCs for each half hour. Using William &
Mary’s SciClone computers, one can create these files using the following command:

Listing 3.1: Usage for Dienstman_submit_parallel

>> chmod u+x Dienstman_submit_parallel.txt
>> dos2unix Dienstman_submit_parallel. txt
>> ./Dienstman_submit_parallel.txt 1 500

This example will create result files for all babies. Since we have about 3000 babies,
we submit 500 batches of jobs indicated on the third line. Each batch will run at most
20 result files in serial. All the batches run in parallel on SciClone’s computers so we can
calculate all the result files as fast as possible. When executing the command above, make
sure all the programs it calls are in the appropriate directories. For more details about how
to create the result files, please see the appropriate code in Appendix B.

3.4 CSV Files

Dienstman CSV Files: Dienstman_submit_batch — csv_files — csv_splitter —
csv_avg_hrcs — csv_bin_widths — csv_indices — csv_logistic_coeffs

18

After calculating the HRCs for each half hour, we want to group like half hours into
CSV files for easier access. Such groups include sick vs. healthy, ventilated vs. not ven-
tilated, and the type of organism that went on to cause the illness for babies who ex-
perienced a septic event. For this report, our definition of sick is any half hour that
occurs 12 hours before a recognized septic event. The definition of healthy is any half
hour that is 7 days or more before an event or 3 days or more after an event. Concern-
ing ventilated vs. not ventilated, the ventilation status of each half hour can be found
within the Excel file RCT_Mechanical Ventilation Times.x1lsx. Additionally, the file
RCTEvents2.x1ls contains the organism that caused the illness if a baby had an event,
and the file RCT Demographics_ALL.x1ls contains the birth weight, gestational age, and
gender of each baby.

. tmport - Cilsersedignsian

A— - nimporsbi celfvith + NaN =
Opsmeg CoUmO ez v - | 14
Pt (6 e o+ VTSP Nomes Row: 1 2 [! | e

seuuens sascron irories on ORI LS wront

P helty org 1_ven Ocsv
A 5 < 5 € 3 5 W i y B C " N o 0 Q R s T U v W X v
site ID Mo Hour.~ EventTime Gender Gestaoml. Good Frac HeathStat— Orgmiom Stady Ventiated Vent Switc Veat Copies Welght Asymmetry- Asymmety._Asymimetry..Asymimetry.- Asymmetry.Asymmetry. Asyrmetry— Aymmetry - Asymonety - Asymimetry.-Asymimets
WMBER VMUBER TMUNBER NBER vIUNBER WAGER -WUMDER MUMBER UBER NUNGER vIUNGER MUMGER <MUIER MUMBER VUBER vNUBER CWNBER NBER TEXT MUMBER AUNBER CWNBER CWNGER TOT hUUBER

f Hat Hour..[Event Time |Gender | Gestatona. [Good Frac_|Heath St |organism_[suc entinted Ve Swic.. Vent Copes [Weight __|Asymmety.| Acymmety..|Asymmety.. | Asymmety. symmety. syt
3 a2 fosem2 s = osww o i o 0 o 0 o5 o9 oot [sawr [swm [ww ase lame i [
ol e ouss Juse o = osesz o A 0 o 0 o s s smw |5y Jessis [un oo Jeaws a2 [eos [N osuoes
s e o _|use o = ossse o i 0 0 0 o s asw9 smow [smr Jsssis [un Jazo Jesios [sas [emss [N ioss
6 i a102 1016131 14869 o 28 10.95971 0 0 0 o 0 o 1865 17.4985 14.5699 153045 169519 NaN 155312 42403 14.9681 6099 NaN |0.73763
7 a02 018215 14869 o 28 0.98764. 0 iy 0 o (1 o 865 6.4155 14.5699 53117 174985 NaN 15,0881 42403 151662 609 NaN |0.79309
s fu a2 o [use o = oo o i o 0 o 0 o5 a5 lasen [swse [rases [un e leaws am fess [N uoew
ol e ozme Juse o = oseiis o i 0 o 0 o s ss3 st [sats [rama [Nn Jassw Jeass am st NN oawns
0 fu e oauss |use o = ostiss o i 0 o 0 0 s oo ams [sam fsssis [un s e us |smi [N jossa
n m a102 10.26551 14869 o 28 10.98795 0 0 0 o 0 o 1865 57831 151225 1537199 69519 NaN 152197 42172 151254 55312 NaN |0.90257
12 u a02 0.28635 14869 o 28 0.96823 (1 iy 0 o 0 o 1865 57676 151225 55815 169519 NaN 165653 42172 151458 55312 NaN 11383
5 o a2 fooms[uss o = ooz o i o 0 o 0 o5 faas fesen [ssme [essio [Jeus feaws fass [es [N oseas
1 fo e osmoz Juse o = ooz o i 0 o 0 o s ooy [aseos [s7or [ossis [un Jaem Jeaws st [eos [N oree
15 fo e osss |use o = oses1 o i 0 0 0 0 s ssw [ise9 [smss [sssis [N Jaaoss leaws [saor [oss [N orsess
16 a102 10.3697 14869 o 28 10.96969 0 0 0 o 0 o 1865 6.5903 14.5699 57831 69519 NaN 54954 42403 151254 6099 NaN |0.83387
BYAN 1 [a02 1039054 14869 o 28 0.98285 0 i (1 o 0 o 865 54934 145699 57831 169519 NaN 50614 42403 151254 609 NaN 092135
1 fu a2 foae s o = osmis o i o 0 o 0 3 sm lises [sms [essio [[ss leaws [saow [eos [N osems
19 fu e Jouze_Jusw o = osn o i 0 o 0 o oss woms [ases [s7m1 Jessis [N Jana leawos st femss [N i
» fu e loasos Juse o = s o i 0 o 0 o s aams s [sas Jssm [Nn Jaam lwama fsosm [ssss [N uowr
a2 m a102 0.47389. 14869 o 28 0.46303 0 0 0 o 0 o 1865 7.4303 4.2816 57753 169519 NaN 163204 42112 151067 6099 NaN |0.85062
2 m a102 049473 14869 o 28 iy 0 i 0 o 0 o 1865 42843 14.2816 57676 169519 NaN 5179 42172 51254 609 NaN 1.2089
5 a2 fosis s o = o o i o 0 o 0 o5 sows s [sas [essio [[som leama fast fem [i
2 fu e osen_Juse o = os0s o i 0 o 0 o oss a3 fann [sas Jessis [NnJeosr Jeara Jsosst [sss [N osuzm
5 fu e s juse o = oo o i 0 0 0 o s aams s [sas Jessis [N lasw lesios [soss [ssss [N toms
% u a02 10.57809 14869 o 28 10.99765 0 1 0 o 0 o 1865 43157 4144 57676 169519 NaN 14,6665 42403 50614 5.5049 NaN 1.0813
27 Ja02 10.59892 14869 o 28 10.99383 (1 iy 0 o 0 o 865 55084 41424 155009 165903 NaN 47781 42403 4.9083 55049 NaN |0.86741
% fu e s Jusw o = ossis o v 0 o 0 o oss o Jaas 509 o3 N [z [suss [esom [ssws [Josas
» fu e osios Jusw o = oseen o i 0 o 0 o oss ao0 fann [sset Jesm[un swm s o [ssss N i
2 fu e st |use o = oseses o i 0 0 0 0 s asws s [sasw [oass [Nn Jaas Jeus son [ssss [N osnst
a1 a02 068228 14869 o 28 0.98874 0 0y 0 o 0 o 1865 41536 4144 51225 6211 NaN 49099 41183 14.7856 5.5049 NaN 11821
2 pm a02 070312 14869 o 8 099184 0 i 0 o 0 o 1865 46214 41424 49073 6211 NaN a1 41183 14.7856 55049 NaN 10195
5 e lormw fusw o = oo o v 0 o o o oss aoo s Jaeor loamn [N [sas [sum [ume |ssws [N o
3 fo e orurs Juse o = oo o i 0 o 0 o oss s fooms [ssn Josses [Nn Jows Jeuss [y [ssss [N osuns
35 fo e lorsses use o = osess o i 0 0 0 o s s Jeoms [ssen [ssses [N lassy lensy [y [sssis [N osuses
36 a02 10.78647 14869 o 28 0 0 1 0 o 0 o 1865 43109 14.0746 4.5258 16.0689 NaN 42383 41183 46891 54954 NaN 098223
7 Ja02 10.80731 14869 o 28 10.99761 (1 1 0 0 0 o 1865 38321 40594 45258 16.0689 NaN 47751 41703 47437 54954 NaN 12462
= fu e losmis Jusw o = ossos o v o o 0 o oss s oot [umes [smw [N Jemsy Jsy [y [sass [ooz

Figure 3.3: CSV File Example

Figure 3.3 depicts what one of these CSV files looks like. Every row in the CSV file
corresponds to one half hour. Half hours are first selected from the Dienstman result files as
either being sick or healthy using the file RCTEvents2.x1s which contains the event times.
It is important to note that the CSV files do not contain every half hour in the data set
since some half hours might not be classified as either sick or healthy. The Dienstman result
files contain a thorough record of this information organized by infant. Once we select a
half hour, we record the site, ID, start time, and HRCs for that half hour. If the baby had
a septic event, we also record the organism, event time, birth weight, and gestational age.
Lastly, for both healthy and sick, we record the ventilation status for that half hour. (The
last two columns in the CSV files are markers which can be ignored for the sake of this
report.) In order to create the CSV files, a user calls the following commands on William
& Mary’s SciClone computers:

19

Listing 3.2: Usage for Dienstman_submit_batch

1||>> chmod u+x Dienstman_submit_batch. txt
2|[>> dos2unix Dienstman_submit_batch.txt
3||>> qsub ./Dienstman_submit_batch

These commands call Dienstman_submit_batch.txt which in turn calls csv_files.m.
The programs make many CSV files. The first CSV file is an extensive file containing all
the sick and healthy half hours. The remainder of the files only contain specific types of
half hours. For example, one CSV file contains ventilated sick half hours of babies who
had a septic event caused by organism 1. Breaking the CSV files down into these smaller
subcategories helps with organization and loading in data when we do our analysis later.
In general, the CSV files help facilitate manipulation of large data sets that would be more
difficult with the result files. Thus, a majority of the statistical techniques later in the
report will use the CSV files. The remaining Matlab functions in the CSV series calculate
meta information from the CSV files that we will use later. For more information about
how to make the CSV files, please see Appendix B.

20

Chapter 4

Time Series

We are finally ready to analyze the predictive power of the HRCs. Before we use the
CSYV files to do a more sophisticated analysis, we will first use the result files to create a
time series graph of the HRCs for each infant who had a septic event. In this manner,
we can gain some intuition about how the HRCs behave, especially leading up to an event
for the babies that experienced one. We will also create a time series of the average HRC
values relative to the time of an event. The hope is that we will see significant changes in
the HRC values before an event, predicting the onset of sepsis.

4.1 Time Series Figures

Time Series Figures: multiple event figures_caller — multiple event figures —
one_event_hrc — one_event_plot

Figure 4.1 shows what a time series figure looks like for a single baby. The seven
subplots represent the seven HRC. On each subplot, there are five time series for the five
HRC subcategories. Note that the slope HRC uses the right y-axis. The black vertical
line indicates the time of the event, and the x-axis shows the half hour index relative to
the time of the event. The set of time series in a dark color depict times a baby was
ventilated and light colors indicate when the baby was not ventilated. Lastly, the black
horizontal line gives the average HRC value across all half hours of all babies for comparison
purposes. For further examples of individual time series figures, see Appendix A where we
have included examples where the baby was always unventilated, examples where the baby
was always ventilated, and examples where the baby is missing data at certain times. The
documentation of multiple event figures_caller.m provides more information about
these figures.

After we create the time series graphs for each baby who had an event, we can then
average these time series across all babies. Figure 4.2 shows the results of this averaging.
To better understand the average time series, consider the data point right before the event
on the variance subplot of Figure 4.2. This data point was the result of averaging all the
variances at the half hour right before the event for each baby. However, since not all babies
have data for this half hour, this data point was calculated using only the subset of the
babies who had data at this half hour. We then repeat this process for every half hour
relative to the event, noting that each average was calculated using a different amount of
half hours depending on how much data we have. To get a sense about how many babies

21

were used for the averages, we average the number of babies used to calculate each half
hour across all the average time series. This number is reported in the legend of Figure 4.2.

Asymmetry 1 Asymmetry 2
Patient ID Number: 2471 10 1 10 } 1
Site Code: 0d
D: fAge: 6
Gesta(mr\zay\sAuge (?.’:eeks) 2 0.5 10.5
Total Age (Weeks): 25
Organism Numer: 1 |
Ventilation at Event 0 5 —~ 0 5] 10
Blue: Raw, Green: 10th, Purple: 50th,
Orange: 90th, Red: Slope Q -0.5 -0.5
Dark: Veniltaed, Ligth: Nonventilaed
0 L -1 0 -1
-300 -200 -100 0 100 -300 -200 -100 0 100
Asymmetry Ratio Decelerations Mean RR
10 1 20 1 20
500
0.5 15 0.5 10
~
5 0 10 Wy 0 400 o 0
1-0.5 5 |-0.5 -10
s | ! | 300
0 -1 o maad o T -20
-300 -200 -100 0 100 -300 -200 -100 0 100 -300 -200 -100 0 100
Sample Entro Variance
15 P 34 1 5 1
; 05 4 \/ 05
|
3 '
"\——\ 0 1/ 4 1 0
0s 2 ﬁ
-0.5 1 -0.5
|
0 -1 0 -1
-300 -200 -100 0 100 -300 -200 -100 0 100
All x-axes show the half hour index. Thus, there are 482 half hours representing the 10 day window.
Figure 4.1: Individual Time Series Figure Example
Asymmetry 1 Asymmetry 2
‘Organism Number. ail 10 4 i 1 10 4 i 1
ean Num of Vent Half Hours Used: 4215688 05 05
Mean Num of Nonvent Half Hours Used: 396.6497
Blue: Raw, Green: 101h, Purple: 501, 5 =0 5 [—-— 0
Orange: 90th, Red: Slope —
Dark Veniltaed, Ligth: Nonventilaed -0.5 -0.5
0 -1 0 -1
-300 -200 -100 0 100 -300 -200 -100 0 100
Asymmetry Ratio Decelerations Mean RR
10 1 20 1 20
500
0.5 156 0.5 10
§ =t 10 S~ 0 400 S
N — —
0.5 5 05 -10
— S Ta— 1 ——— R 300
_ —_—
0 -1 0 — —_— 20
-300 -200 -100 0 100 -300 -200 -100 o] 100 -300 200 100 0 100
Sample Entro Variance
15 P Py 1 5 1
05 4 05
1
3
—_——— 1y = —
05 2
= - = 0.5 1 -0.5
0 -1 0 1
-300 -200 -100 0 100 -300 -200 -100 o] 100

All x-axes show the half hour index. Thus, there are 482 half hours representing the 10 day window.

Figure 4.2: Average Time Series Figure

4.2 Time Series Discussion

The major result from Figure 4.2 is that all of the average time series are relatively
flat. We notice slight changes in the HRCs before an event, but nothing that gives us a
strong indication that an HRC is very predictive. The individual plots can help explain this

22

result. Most seem to fluctuate quite a bit, with some babies having very low HRCs and
some babies having very high HRCs.

While the time series plots are useful references to visualize the data for a particular
baby, they do not provide an adequate method for predicting sepsis. We therefore must
resort to more sophisticated techniques, which we will discuss in the next section.

23

Chapter 5

Univariate Probability Density
Functions

We can now use the CSV files to make probability density functions (PDFs) of the
HRCs. By comparing PDFs from different groups of half hours, we can gain insight into
which HRCs are more predictive. For example, recall that we have now separated the half
hours into a sick category and healthy category. Using methods we will describe below, we
can create a PDF for a particular HRC using only the sick half hours and a PDF for the
same HRC using only the healthy half hours. If the two PDF's look significantly different,
we can conclude that the HRC in question is a predictor of sepsis. We then repeat this
process for every other HRC.

The naive approach for analyzing any data set is to first make a histogram. The most
basic form of this approach is a histogram for one variable. However, since all our HRCs are
continuous (with the exception of decelerations), we really want PDFs and not histograms.
One approach for making PDF's is to assume an underlying distribution and then calculate
point estimators for the parameters of that distribution using the data set. Unfortunately,
we do not believe we can model our HRCs with any known distribution. Therefore, we
resort to nonparametric methods for creating the PDFs. The method we use is called kernel
density estimation. We will explain how this method works, the results of this method, and
the conclusions from our PDFs in the following sections.

5.1 Kernel Density Estimation Definition

All our PDFs in this report are generated using kernel density estimation. In this
section, we will explain how kernel density estimation works. Accordingly, first assume we
have an independent and identically distributed sample x1,x2,...,x,. The kernel density
estimator fx(z) for the PDF of X is then

fX(x)_nlhg;KG;xi) (5.1)

The function K (+) in Equation 5.1 is the kernel. For our report, we use the Epanechnikov
kernel which is given below:

3 2

2(1— <1

K(u) = all—w), Jul < ‘ (5.2)
0 , otherwise

24

One can think of the kernel density estimator (KDE) as a smoothed histogram. Consider
Figure 5.1: the left panel shows a histogram for a data set, and the right panel shows the
KDE for that same data set. In this data set, there are six data points represented by the
ticks on the x-axis. The kernels in red are then calculate for each data point. Summing all
the kernels together yields the solid blue KDE curve. Note that the author of this figure
uses a normal kernel [10)].

v v
(=] (=]
T = T =
3° R
= =
B B
Eg_ EE
=] =]
g g
= | 1 I ; p=
5 0 5 10

Figure 5.1: Comparison of Histogram and Corresponding KDE [10)]

The kernel density estimation method is implemented in Matlab using the function
ksdensity(). The two important choices we have to make are the kernel K(-) and the
bandwidth h. We chose the Epanechnikov kernel because it is “optimal in the mean square
error sense” [10]. The parameter h acts a smoothing parameter. Typically, we use Matlab’s
default bandwidth. However, for reasons we will explain later, sometimes we must set the
bandwidth ourselves. We use the Freedman-Diaconis method for choosing the bin width of
a histogram to generate the bandwidth of our KDEs [3]. This method is given below:

bin width = 2 IQR n™3 (5.3)

Here, IQR stands for interquartile range and n is the number of observations. While
Matlab uses a similar procedure to calculate the bandwidth, we may want to use a uniform
bin width across various PDFs where the number of observations differ. Typically, we use
the n and IQ R from the unventilated organism 3 group because this is the smallest subgroup
we analyze. Therefore, whenever we compare subgroups, we are limited by the observations
of our smallest category.

5.2 Univariate PDF Figures

Univariate PDF Figures: multiple univariate_pdf figures —
one_univariate_pdf_figure

25

We can now generate univariate PDF figures using the kernel density estimation method.
Figure 5.2 depicts an example of one of these figures. In Figure 5.2, we plot the raw HRCs
for the group of sick half hours across all babies and the group of healthy half hours across
all babies. Note that the healthy PDFs were generated using more half hours than the sick
PDFs as indicated by the legend in the top left corner.

>06 >06
S o4 S04
Q Q
< S
o A o A
0 0
0 5 10 0 5 10
Asymmetry 1 Asymmetry 2
0.4 0.02
24 2z 2
g g g
g, To02 € 0.01
< < Q
B K * *
0 0 0
0 1 2 3 0 5 10 300 400 500
Asymmetry Ratio Decelerations Mean RR
6 1.5
= =
=4 = 1
el el
[[
Q Q
92 S05 A
o o
0 0

0.5 1 1 2 3 4 5
Sample Entropy Variance

o
o

Figure 5.2: Univariate PDF Example

Appendix A contains more univariate PDF figures. Figure A.4 shows the PDF's for the
raw HRCs from all the unventilated sick half hours separated by each organism. We also
plot the PDF for the raw HRCs across all half hours for comparison. The next five figures
correspond to the group of half hours from babies who experienced a septic event caused by
organism 1 while they were in the NICU. There are five figures for this group for the five
HRC subcategories (raw HRC, 10th percentile, 50th percentile, 90th percentile, and slope).
Thus, we collectively have 35 subplots amongst the five figures for our 35 HRCs. On each
subplot of each figure, we plot a PDF for the subgroups within the main group of organism
1 of sick ventilated, sick unventilated, healthy ventilated, and healthy unventilated. We can
then repeat this process for every other organism. We can also repeat this process for any
groups of half hours we wish to compare. However, the litany of additional PDF figures
have been omitted from this report. For more information on the creation of these figures,
see the documentation of multiple univariate pdf figures.m.

5.3 Univariate PDF Discussion

When comparing healthy PDFs to sick PDFs using all relevant figures, we notice signifi-
cant difference across all HRCs and HRC subcategories with the exception of decelerations.
Consequently, we have our first major piece of support that the majority of the HRCs can
distinguish between healthy and sick half hours. We also see significant differences when

26

comparing ventilated PDFs with unventilated PDFs for figures that display this informa-
tion. This result leads us to separate the analysis of ventilated and unventilated half hours
in the later chapters. Another result we find is that there is little difference in the PDFs of
the five organisms. We thus conclude that it is much more difficult to determine the type
of organism that caused the illness if we know a baby is ill when compared to determining
if a baby is sick or healthy. At this point in the report, we will stop separating half hours
by organism. Rather, we will focus on separating groups by healthy or sick and ventilated
or unventilated.

27

Chapter 6

Univariate Risks

In the previous section, we plotted the PDF's of two groups in order to compare them.
While this method provides a good visual way of comparing two groups, we cannot take
away any quantitative information. Ideally, we want to define a measure, which we will call
the risk, that relates the two PDFs. In this section, we will define and analyze the risk.

6.1 Risk Definition

The risk gives us a number indicating if a half hour is more likely to be in the sick group
or healthy group. Accordingly, let us first define the probability of a half hour being sick or
P(sick):

number of sick hal f hours
number of sick hal f hours + number of healthy half hours

P(sick) = (6.1)

Note that the number of sick/healthy half hours changes depending on the subgroup we
are concerned with. For example, if we are calculating a risk for unventilated half hours,
the number of sick/healthy half hours must be calculated using only this group. Next, we
will define the probability of a half hour being sick given an HRC signal or P(sick|signal):

P(signal|sick)P(sick)
P(signal|healthy)P(healthy) + P(signal|sick)P(sick)

P(sick|signal) = (6.2)

Since we are dealing with univariate risks, the variable “signal” will refer to one HRC
(e.g. P(sicklvariance = x)). When we discuss bivariate risks in Chapter 8, signal will
refer to HRC 1 and HRC 2 (e.g. P(sick|variance = = and sample entropy = y)).
Next, we can calculate the terms P(signal|sick) and P(signal|lhealthy) using the PDFs
generated in Chapter 5. Because those terms are probabilities, we integrate the PDFs over
the signal’s respective bin width centered around the value of the signal to get those two
terms. Moreover, integrating the PDF allows us to find the probability between two points.
We therefore estimate to probability terms by integrating over a small area defined by the
bin width. Finally, our definition of risk is

(6.3)

Plsicklsi
Risk = In < (szck\szgnal))

P(sick)

28

Since we take the natural logarithm of this fraction, any number above 0 indicates that
the half hour is more likely to be sick given the signal. In the next section, we will create
figures that plot the risk over typical values of each HRC signal.

6.2 Univariate Risk Figures

Univariate Risk Figures: multiple_ univariate_risk figures —
one_univariate risk_figure — one_risk matrix — one_prob_matrix

Figure 6.1 gives an example of what one of the univariate risk figures looks like. This
figure illustrates the risk of a half hour being sick across all half hours (ventilated and
unventilated). The figure shows seven subplots for the seven HRCs. On each subplot, we
have five curves for the five HRC subcategories. Accordingly, this figure gives the risk for
all 35 HRCs. If the probability of a certain HRC is very small, we do not plot the risk. For
example, a variance value of 4.5 is so rare that we cut off the curve before this point.

N

@
L VA N Il ¥ B e
2 2
0 5 10 0 5 10
Asymmetry 1 Asymmetry 2
2 L _ 2 2 ,
\
B gl O A auERTECEEEREREES %o \JA—_\ ------------ % g ’\/. ----------------- N
14 \ x
V.
-2 -2 - -2
-1 0 1 2 3 4 -10 0 10 20 30 0 200 400
Asymmetry Ratio Mean RR

Risk

o N
§//
)

3

\

Risk

o N

-2
0.5 0 0.5 1 0 2 4
Sample Entropy Variance

Figure 6.1: Univariate Risk Example

Appendix A contains two more risk figures: one for only unventilated half hours and
another for only ventilated half hours. Again, we are not separating the half hours by
organism anymore. However, if we were to separate half hours this way, the risk of organism
x compared to organism y would be very flat and around 0 across all HRCs, indicating that
the HRCs do not do a very good job at distinguishing between two organisms. For more
information about how we create the univariate risk figures, please see the documentation
of multiple univariate risk figures.m.

6.3 Univariate Risk Discussion

When looking at the univariate risk figures, we hope to find curves that are significantly

29

above the dotted 0 line in each subplot. Effectively, such a scenario would indicate that
these HRC values would be very predictive of sepsis. However, the figures can be misleading.
For example, consider a variance value of 4 in Figure 6.1. From the figure, a half hour with
a variance of 4 would indicate that the half hour is e? times more likely than the typical half
hour to be sick. We would thus conclude that variance is a very strong predictor of sepsis.
The problem with this analysis is that a variance of 4 is very unlikely, so such a value holds
little predictive power. What one really must do is look at the univariate risk figures with
the univariate PDF's of each HRC in mind. The most useful HRCs would then be ones whose
risk is relatively large in areas where the sick PDF is also large. To reiterate this point one
more time, if the P(sick|variance = 4) = 0.002 and P(healthy|variance = 4) = 0.001, we
would conclude a baby is e? times as more likely to be sick than healthy when the variance
is 4. However, since the sick probability is so small, the risk is not extremely useful.

If we ignore the distributions of the HRCs for a moment, Figure 6.1 demonstrates
that the following values are predictive of sepsis: low asymmetry 1 values, low and high
asymmetry 2 values, high asymmetry ratio values, low mean RR values, low sample entropy
values, and low and high variance values. Furthermore, low and high values for all slopes
seem to predict sepsis as well.

Ideally, we would plot the sick and healthy PDFs of each HRC on the risk plots. However,
with five risks on each subplot, adding ten more PDFs would become quite cumbersome.
Fortunately, the figures in Chapter 9 will give a similar illustration of such a figure.

30

Chapter 7

Bivariate Probability Density
Functions

After developing methods to calculate the probability of illness given one HRC, we can
extend these methods to two HRCs. We will still use the kernel density estimation method
to generate PDFs. However, now we will sum over bivariate Epanechnikov kernels instead
of univariate ones. Because Matlab’s default bandwidth smooths the bivariate PDFs too
much, we set our own bandwidths for the bivariate PDFs. We use bandwidths that are half
of the bin widths calculated by Equation 5.3. While our choice for halving the bandwidths
is empirical, the bandwidths of the HRCs for a bivariate PDF must be smaller than the
bandwidths for a univariate PDF so that the rectangle we smooth over in the bivariate case
is somewhat proportional to the line segment we smooth over in the univariate case.

Again, we use Matlab’s ksdensity () function to generate the bivariate KDEs. The rest
of the chapter will describe the resulting bivariate figures and analyze their meaning.

7.1 Bivariate PDF Figures

Bivariate PDF Figures: multiple bivariate pdf figures —
one_bivariate_pdf_figure

Similar to the univariate case, we will create bivariate PDFs for different combinations
of HRCs. However, with 35 HRCs, we would end up with 595 bivariate PDFs. Therefore,
we will only analyze the six bivariate PDFs which we empirically flagged as the most useful:
raw variance vs. raw sample entropy, raw variance vs. raw asymmetry ratio, raw variance
vs. raw decelerations, raw sample entropy vs. raw asymmetry ratio, raw sample entropy
vs. raw decelerations, and raw asymmetry ratio vs. raw deceleration.

Figure 7.1 provides an example of a figure with these six bivariate PDFs. The figure
compares the sick half hours across all babies against the healthy half hours across all babies.
Appendix A provides two more examples of these figures: one comparing unventilated sick
and healthy half hours and one comparing ventilated sick and healthy half hours. The
documentation of multiple bivariate pdf_figures.m contains more info on these figures.

31

Bivariate Probability Densities: hrc healthy org all vent all and hrc sick org all vent all

blue = hrc healthy org all vent all; red = hrc sick org all vent all

Probability
N N
/

Probability
o

o = N oW

1

Sample Entropy Variance Asymmetry Ratio

Probability

0.5

Decelerations Variance Asymmetry Ratio Sample Entropy

/

0.5~

Probability
Probability

25

- o h
co v = o
/ /

5 " os

15 2

—
0o o 05
Decelerations Sample Entropy Decelerations Asymmetry Ratio

Figure 7.1: Bivariate PDF Example

7.2 Bivariate PDF Discussion

Parallel to the analysis for the univariate PDFs, we are looking for disparate sick and
healthy bivariate PDF's for one set of HRCs. Figure 7.1 illustrates that the combination of
variance and sample entropy is a very good predictor of sepsis. Any set with deceleration,
alternatively, produces very similar sick and healthy PDFs. Overall, Figure 7.1 shows strong
support for the combinations of raw variance with raw sample entropy, raw variance with
raw asymmetry ratio, and raw sample entropy with raw asymmetry as good predictors.
Other HRCs, however, might be more useful for different groups and needs to be looked
into further.

Theoretically, with an infinite number of observations, we could calculate the probability
of illness given n HRCs using an n-variate PDF. However, we believe with our data set,
the best we will be able to calculate is probabilities using two HRCs. Visualizing the
probabilities given more than two HRCs would also be quite a challenge. Therefore, we will
have to resort to different statistical techniques in the later chapters which will allow us to
incorporate more than two HRCs. However, first we will analyze the bivariate risks in the

next chapter.

32

Chapter 8

Bivariate Risks

The bivariate risks mirror Equation 6.3 except this time signal refers to two HRC
signals. Furthermore, we calculate the terms P(signal|healthy) and P(signal|sick) by
integrating the bivariate PDFs over a small rectangle around the value in question. The
dimensions of the rectangle are given by the bin widths of the two HRCs. The next step is
to make bivariate risk figures similar to the univariate ones.

8.1 Bivariate Risk Figures

Bivariate Risk Figures: multiple_bivariate_risk figures —
one_bivariate_risk figure — one_bivariate_risk plot — one_risk matrix —
one_prob_matrix

Figure 8.1 depicts the bivariate risks corresponding to the bivariate PDF's in Figure 7.1.
Furthermore, Appendix A gives the bivariate risk figures for the bivariate PDF figures in
the appendix. The function multiple bivariate risk figures.m creates these figures.

Relative risk plots: hrc sick org all vent all vs hrc healthy org all vent all

Values above 0 mean more likely to be hrc sick org all vent all

RN
5o 77 RS
1o iy 5 N
g 7 E \
H LA e
w w

T
L7

Elevated Risk
°
Elevated Risk

05-
100 TT— o 25

Decelerations Variance Asymmetry Ratio Sample Entropy

AR
TR
nnkermes
MM N
S N

77
L
I
11

Elevated Risk
°
Elevated Risk

Z

T s

Decelerations Sample Entropy Decelerations Asymmetry Ratio

Figure 8.1: Bivariate Risk Example

33

8.2 Bivariate Risk Discussion

As with the univariate risks, one must keep the corresponding bivariate PDFs in mind
when analyzing the bivariate risks. While high risks show the HRC set is useful at predicting
sepsis, the set’s predictive power is diminished if there is limited data in the high risk area.
Any risk above the z = 0 plane in Figure 8.1 indicates the half hour is more likely to be
sick given that set of HRCs. The analysis of Figure 8.1 provides the same conclusions that
we found in Chapter 7, i.e, low and high variance are useful, low sample entropy is useful,
etc.

34

Chapter 9

Single Variable Logistic Regression

As stated at the end of Chapter 7, we cannot simply continue calculating n-variate
PDFs. Instead, we will resort to logistic regression in order to calculate the probability of
illness given n HRCs. Before we can build up to logistic regression with n HRCs, we will
start with a single HRC. The rest of this section details the mathematics of single variable
logistic regression as well as the resulting figures and analysis.

9.1 Single Variable Logistic Regression Definition

Consider a response vector [y1,%2,...,yn]? drawn from a binomial distribution with
support y; = {0,1}. Now consider a set of explanatory variables [z1, 2, ...,2,7. Using a
logistic regression model, the probability that ¥; = 1 is then

ePx
CoePx 41
where x is the vector of explanatory variables and 3 is the vector of coefficients for the
explanatory variables. The coefficients are calculated using a least squares method which
requires the response vector and the matrix of associate explanatory variables. Moreover,
each response variable y; has an associated x; for a total of n x-vectors. The it x-vector
becomes one row in the matrix of explanatory variables [11].

For our single variable logistic regression models, x will have two or three terms de-
pending on whether we use a linear or quadratic model. In order to explain the terms in
the vector, consider the example of predicting sepsis using the single HRC of raw variance.
The two possibilities for x are given below:

P(Y;=1) (9.1)

Linear : x = [1 variance]’

Quadratic : x = [1 variance variance®]”

Note that the 1 in each vector represents the y —intercept. The term variance is simply the
raw variance for that half hour and the term variance?® is the square of the raw variance.

For this report, our response vector is 1 if the half hour is sick and 0 if the half hour is
healthy. We can then use the Matlab function fitglm() to calculate the coefficients for our
model using the response vector and the matrix of explanatory variables, i.e., the HRCs.
Next, we will construct figures for the probability of illness given various values of a single
HRC.

35

9.2 Single Variable Logistic Regression Figures

Single Variable Logistic Regression Figures: multiple univariate logistic_figures —
one_univariate_logistic_figure — one_risk matrix — one_prob_matrix

We can now run our single variable logistic regression on all 35 HRCs. Figure 9.1 gives
the results of the regression for the raw HRCs using all the healthy and all the sick half
hours. The logistic regression probabilities are given by the blue curve. We use a quadratic
model for each of these figures. The red curve on each subplot, which we call the Bayesian
probability, is simply the P(sick|signal) term from the univariate risks. Finally, the red
and blue areas are the distributions of the HRCs where the blue region represents healthy
half hours and the red region represents the sick half hours. Note that the shaded regions
are stacked on top of one another, i.e., no region is being hidden. One can interpret the
entire shaded regions as the joint distribution of healthy and sick half hours. The scale for
the joint distribution is given by the right y-axis.

hre_all_org_all_vent_all: Raw HRC © ©
0.02 ® 0.02 ©
Probability from Healthy (0) to Sick (1) Z a 2 o
Red Line = Bayesian Probability 3 5 B S
Blue Line = Logistic Probability 8 05 ¢ & 05 ¢
3 0.01 S 5001 S
Fraction from No Data (0) to All Data (1) o S a S
Red Area = Sick Fraction T T
Blue Area = Healthy Fraction
0 0 0 ——eese——)
0 2 4 6 8 0 2 4 6 8
Asymmetry 1 Asymmetry 2
1 1 1
s i} £
30.02 8 2‘0.02 g 20'02 8
= - = - = et
? 052 8 05 ¢ 8 los 2
c 5 ¢ c
8 0.01 S B0t S goo ke
o g o g o 8
s _— Iy I
0 0 0 0 0 0
0 1 2 3 4 0 10 20 30 40 300 400 500
Asymmetry Ratio Decelerations Mean RR
1 1
s B}
= 0.02 8 > 0.02 8
= - = =
] 0.5 c 8 0.5 g
c X
8 0.01 S §oo1 S
o g o ®
e Iy
0 0 0 0
0 0.5 1 0 1 2 3 4
Sample Entropy Variance

All red and blue areas are additive, i.e., no areas are hidden behind one another.

Figure 9.1: Single Variable Logistic Regression Example

Appendix A gives the corresponding figure for the 10th percentile, 50th percentile, 90th
percentile, and Slope HRCs. Furthermore, one could calculate the logistic probabilities for
all 35 HRCs using a different group of healthy and sick half hours such as only the ventilated
or only the unventilated half hours. For more information on these figures, please see the
documentation of multiple univariate_logistic_figures.m.

9.3 Single Variable Logistic Regression Discussion

The analysis of the single variable logistic regression follows closely to the analysis the
univariate risks. First, recall that the red curves are the P(sick|signal) terms from the
univariate risk calculations. One can then think of the red curves as the empirical results

36

and the blue curves as our fitted model. Likewise, as we addressed for the univariate risks,
the most predictive HRCs are the ones who have large sick probabilities/risks in areas with
large sick PDFs. The PDFs on the logistic figures, therefore, serve a very useful purpose.

We start with single variable logistic regression to first check our empirical results. We
also start with one variable to try to cut down on the number of HRCs before we move to
the n-variable logistic regression. If we use all 35 HRCs for the logistic regression, we would
have 666 terms in our x-vector for a quadratic model. However, a model with so many
terms would severely over-fit our data. The single variable logistic regression can, therefore,
provide one method to hand pick a few HRCs we think are the most predictive.

Looking at Figure 9.1, we see a lot of HRCs with high probabilities for low values and
high values of the HRCs. This phenomenon gives us strong evidence that we should use a
quadratic model over a linear model. For example, the variance subplot in Figure 9.1 shows
high probabilities on both tails. A linear fit would only capture one extreme. Therefore,
we need a reaction term, which gives us a quadratic model, to capture both sides of the
distribution.

Not shown in this report are the single variable logistic figure for only the ventilated
group and only the unventilated group. The important result from these sets of figures is
that the ventilated probabilities whether sick or healthy are about six times greater than the
unventilated probabilities. From this finding, one might want to include ventilation status as
an additional HRC. However, we do not include ventilation status because different NICUs
might have different standards for ventilating babies. Despite this concern, babies who are
ventilated do seem to be more likely to be sick. Therefore, we continue to separate half
hours into ventilated and unventilated because there may be different optimal parameters
and thresholds for each group when determining if a baby is sick or healthy.

37

Chapter 10

HeRO Score

The groundwork has now been set to conduct n-variable logistic regression which we call
the HeRO score. This section will describe various HeRO score models we have developed
and the findings from these models.

10.1 HeRO Score Definition

In general, the HeRO score is an n-variable logistic regression model. The formula for
the HeRO score is given below:

eBx 1

HeRO Score = —4/——— - —
ePx + 1 pg

(10.1)

In this formula, we multiply the logistic regression model by the parameter p ! where
1o represents the probability of a half hour being sick. Multiplying by this coefficient means
that a HeRO score of 1 indicates that the half hour is just as likely to be sick as any half
hour. A HeRO score of 2 would mean the half hour is twice as likely to be sick compared
to the typical half hour.

Our explanatory variables vector x can take on many forms. Below gives three models
we will analyze in this section:

Hrch:x = [1 varyy (asym2 — asym1)io)”

Hreg : x = [1 varsg sampeniy asymlsg asym250]T

Dienstman : x = [1 asymly asymlgope asymgp asymgope asym_ratiosy asym_ratiosiope
decelsgy sampeniy sampengope Var1g VAT9y VAT gope
asymlig * asymlgope asymlio * asym2qg ... asymlig * vargepe - - -

2 20T
asymlio” ... varsepe”]

Note that the Hrch and Hrcg models are linear models while the Dienstman model is a
quadratic model. The Hrch and Hrcg model were developed by Prof. Douglas Lake while
the Dienstman model was developed for this report. As a result, the coefficients for the
Hrch and Hreg model were calculated using a different data set and with a slightly different
implementation than the coefficients for the Dienstman model. In total, the Dienstman
model contains 91 coefficients and contains every reaction term of the 12 initial HRCs. We

38

picked the HRCs for the Dienstman model based on the single variable logistic probabilities
that we thought to be the most predictive. We tried not to include too many HRCs for
fear of over-fitting. For more information about how to calculate the coefficients for the
Dienstman model, please see the documentation of csv_logistic_coeffs.m.

All HeRO scores use percentiles and slopes instead of the raw HRCs in order to reduce
noise when we plot a time series of the HeRO scores in the next section. If HeRO scores only
used information from the current half hour, then one outlier would cause the HeRO score
to fluctuate considerably, and because the babies are frequently disturbed by the nurses,
we can get a significant number of outliers. Therefore, if we look at varyy for example, the
second lowest variance value over the previous 24 half hours would go into the HeRO score
and not the lowest, reducing outliers and noise (10th percentile usually translates to the
second lowest value for a 24 half hour window).

10.2 HeRO Score Figures

HeRO Score Figures: multiple hero_score_figures — one_hero_score_figure

After we calculate the coefficients for all the HeRO score models, we can make time
series of the HeRO scores for every baby who had an event as we did for the time series in
Chapter 4. Figure 10.2 provides an example of one of these figures. The vertical black line
represents the time of the septic event and the four curves represent four different HeRO
scores. The green line, which we call the legacy HeRO score or just HeRO score, is the
maximum between the Hrch and Hrcg models, which are indicated on the figure by the
plus makers and circle markers, respectively. The gray line is the Dienstman HeRO score
discussed previously. Finally, the Dienstman Vent and Dienstman Nonvent HeRO scores
are the Dienstman model, but instead of using all the half hours to calculate the coefficients,
we only use the ventilated or unventilated half hours. We plot Dienstman Vent on the
figure only when the baby is ventilated, and otherwise we plot plot Dienstman Nonvent.
Appendix A provides more examples of these figures for other events. All HeRO score
figures were developed using multiple_hero_score_figures.m.

0 Moving HeRO Score (ID: 2600, Site: 1a)
r 1
== Dienstman Hero
Dienstman Vent Hero
===Dienstman Nonvent Hero
Legacy Hero
“ Hreh Sore
Hrcg Score

50 -

Heart Rate Characteristic Value
w S
o o
T T

N
=)
T

v

e sk gl

2 3 4 5
Time of HeRO Score (Days)

n
T (e
\6 |
Figure 10.1: HeRO Score Figure Example

39

After we have created these figures for all events, we can take the average HeRO score
leading up the the event in the same manner as we took the average HRC for the time series
figures. Figure 10.2 presents the resulting figure for the average HeRO score. Recall that not
every baby will have data for every half hour leading up to an event. Subsequently, we record
how many half hours we use for each half hour relative to the event and record the average
of these numbers in the title of the figure. It should also be noted that Dienstman Vent
and Dienstman Nonvent use about half as many observations as the number noted in the
title since a baby can never be ventilated and unventilated at the same time.

Average HeRO Score: Mean Babies Used Per Half Hour - 733.5042

—Dienstman Hero Score
Dienstman Hero Score Vent
4.5 Dienstman Hero Score Nonvent

—Hrch Sore

Hrcg Score
||~ Hero Score

Hero Score

l [yt \ i
N J v M‘\V\/\/

0.5 | L L L L L L L |
-350 -300 -250 -200 -150 -100 -50 0 50 100 150

Time of HeRO Score

Figure 10.2: Average HeRO Score Figure

10.3 HeRO Score Discussion

The first major feature of the individual HeRO figures is that the Dienstman model
seems to over fit the data. HeRO scores are either extremely high or extremely low, which
is a classic sign of over fitting. The individual figures are also very noisy and do not always
provide a clear indication that a high HeRO score will indicate the baby is sick.

The average figure, on the other hand, does show us that the HeRO scores are predicting
sepsis. Unlike the time series figures, the HeRO scores increase right before an event on
average. Thus, while no individual HRC showed significant predictive power in the average
time series, a combination of multiple HRCs certainly provides warning for the onset of sep-
sis. The legacy HeRO score also provides a very smooth average. This feature is extremely
useful because it gives medical professionals more confidence that a high HeRO score is a
true indication of illness and not a false positive. However, the individual legacy HeRO
scores are still noisy, so the average in this case may be deceiving. We hypothesize that the
noise for the average Dienstman models comes from over-fitting as one large score at half
hour z will skew the average. However, one interesting feature is that the Dienstman Vent
and Dienstman Nonvent scores are significantly different, giving us more support that we
should treat the ventilated and unventilated half hours separately.

40

In general, we hope to see an increase in the HeRO leading up to the event. However,
at present, we have not implemented any method for ranking the HeRO scores apart from
just looking to see if they increase smoothly before the event. A gradual increase might be
useful as it could give early warning that the baby is ill. Conversely, a sharp spike right
before the event also has merit as it provides a clear threshold for the moment the baby
requires attention. Accordingly, more work needs to be done in order to determine which
model performs the best. This will be especially important for testing the performance of
any future HeRO score against current ones.

Lastly, note that we used all the half hours to calculate the coefficients for the
Dienstman scores. Ideally, we should separate the half hours into a learning set and
testing set. We would then calculate the coefficients using only the learning set and pro-
duce figures for the testing set based off these coefficients. Since we did not take this step,
this area could be another cause for noise and over-fitting. Also note that we have many
more healthy half hours than sick half hours. Thus, it might also be necessary to randomly
select a subgroup of the healthy half hours so we use the same number of healthy and sick
half hours to calculate the coefficients. Accordingly, we need to look into this issue more
carefully.

41

Chapter 11

Conclusion

After rigorously analyzing the predictive power of our 35 HRCs, there are many impor-
tant results to summarize. Most of these findings also lead to more questions and further
areas to investigate. We will address both topics in the following sections.

11.1 Discussion

Recall that one of our early goals was to try to distinguish between the types of invading
organisms that cause illness. Our original hypothesis was that low variability, or variance,
is predictive of gram-positive bacteria and decelerations are predictive of gram-negative
bacteria. By analyzing the univariate PDFs, we saw that no HRC performed particularly
well in identifying the invading organism. Therefore, we would either need to develop new
HRCs to accomplish this goal or analyze the current HRCs using a different method.

We were, however, able to show substantial difference in the PDF's of sick and healthy
half hours. The HRCs of variance, sample entropy, and asymmetry ratio were particularly
useful in this respect. These three HRCs had univariate and bivariate PDF's that differed
significantly between their respective sick and healthy PDFs. The univariate and bivariate
risks also demonstrated this discovery.

We also repeatedly saw that ventilated and unventilated half hours behave very differ-
ently. The HRCs for these two groups gave very distinct distributions, risks, and HeRO
scores. Subsequently, we have given strong evidence for the use of separate parameters,
thresholds, and baselines for these two groups in any future work.

Lastly, the HeRO scores showed promising signs for the ability to predict illness using
many HRCs. We are limited in the analysis we could do through Bayesian methods by the
size of our data. Thus, a logistic regression based model proved to be a viable way to predict
illness using multiple HRCs. However, the HeRO scores were very noisy for the individual
HeRO score figures, and the Dienstman scores seemed to over-fit that data. Thus, we need
to address these issues in future work.

11.2 Future Work

A significant portion of the future work involves improving the HeRO score. As men-
tioned at the end of Chapter 10, we need to reduce the noise in some of the scores. One
possible solution is to reduce the number terms in the explanatory vector. We could remove
some reaction terms so we have a mix of a pure linear and pure quadratic model. We could

42

also remove some HRCs entirely. We also need to separate data into a learning set and
testing set as well as investigate whether we need to use the same number of healthy half
hours as sick half hours for calculating the coefficients.

We also want to try to create the best HeRO score possible for predicting sepsis. Such a
goal might require adding more HRCs to a model. We could also have HeRO scores for other
groups beyond just ventilated and unventilated. These groups may be based on gestational
age, post-menstrual age, gender, and race. The HeRO scores for these groups might also
require different HRCs as opposed to just different coefficients for the same HRCs. We
would also need a reasonable way to compare the performance of all these different HeRO
scores in order to determine which one we would prefer the most. Such a test should consider
how many false positives and negatives the score gives and how early of a warning does the
score give.

Finally, we could also try to look towards other statistical techniques for predicting
sepsis beyond logistic regression. Possibly models include support vector machines or neural
networks.

43

Appendix A

Additional Figures

This appendix contains additional figures not in the chapters above. Note that this
appendix is not a complete list of figures produced from the research. Because of the large
number of figures, we have elected to only give a few more examples of the types of figures
we discussed. However, we can produce more figures upon request.

A.1 Time Series Figures

Asymmetry 1 Asymmetry 2
Paiient ID Number. 2370 10 1 10 1
Site Code: 0d
ays of Age: 16
Gestational Age (Weeks): 25 0.5 05

Total Age (Wesks): 27

Organism Number: 2 i Lk

Ventlation at Event 1 5 0 5 T 0

Blue: Raw, Green: 10th, Purple: 50th,
Orange: 90th, Red: Slope -0.5 -0.5

Dark Veniltaed, Ligth: Nonventiaed

0 -1 0 -1
-300 -200 -100 0 100 -300 -200 -100 0 100
Asymmetry Ratio Decelerations Mean RR
10 1 20 1 20
500
0.5 15 0.5 10
5 /”/\/\,J 0 10 M 0 400 0
I 0.5 5 0.5 J -10
v e) o N 300 i
oo = S . v
0 -1 0 A -1 -20
-300 -200 -100 0 100 -300 -200 -100 0 100 -300 -200 -100 0 100
Sample Entro Variance
15 P Y 1 5 1
; 05 4 05
3
w 0 0
05 2
-05 1 -0.5
0 -1 0 -1
-300 -200 -100 0 100 -300 -200 -100 0 100

All x-axes show the half hour index. Thus, there are 482 half hours representing the 10 day window.

Figure A.1

44

Patient ID Number: 3274
Site Code: 0f
Days of Age: 95
Gestational Age (Weeks): 28
Total Age (Weeks): 41
Organism Number: 3
Ventilation atEvent 0

Blue: Raw, Green: 10th, Purple: 50th,
Orange: 90th, Red: Slope

Dark Veniltasd, Ligth: Nonventiaed

Asymmetry Ratio

0
-300 -200 -100 0 100

Sample Entropy

0.5

-0.5

05

0
-300 -200 -100 0

Pafient D Number. 2254
Site Code: 17
Days of Age: 11
Gestational Age (Weeks): 22
Total Age (Weeks). 23
Organism Numger &
Ventilation at Event 1

Blug: Raw, Green: 10h, Purple: 50th,
Orange: 90th, Red: Slope

Dark Veniltasd, Ligth: Nonventiaed

Asymmetry Ratio

5 "l Wan

e

0
-300 -200 -100 0 100
Sample Entropy
15
1

0
-300 -200 -100 0 100

05 I

Asymmetry 1

10 1
0.5
5 0
0.5
0 -1
-300 -200 -100 0 100
Decelerations
20 1
15 05
10 0
5 ‘ -0.5
0 Ly
-300 -200 -100 0 100
Variance
5] 1
4 05
3
0
2
1 -0.5
-1
-300 -200 -100 0 100

Al x-axes show the half hour index. Thus, there are 482 half hours representing the 10 day window.

0.5

-0.5

Figure A.2

Asymmetry 1
10 4 i 1
™
5 Ao 0
-0.5
0 -1
-300 -200 -100 0 100
Decelerations
20 1
15 0.5
10 0
|
5 [-0.5
TN A A Aaem Al
-300 -200 -100 0 100
Variance
5
4
3
2
1

0
-300

-200

-100 0

Asymmetry 2
10 4 i 1
los
5 0
05
0 -1
-300 -200 -100 0 100
Mean RR
20
500
10
400 0
-10
300
-20
-300 -200 -100 0 100
Asymmetry 2

-300

-200 100 0

Mean RR

-300

-200 -100 0

Al x-ax2s show the half hour index. Thus, thers are 482 half hours representing the 10 day window.

Figure A.3

45

A.2

Univariate PDF Figures

Trvarae Pronanity Darsies Faw FRC
>06 >06
§o4 S04
Q Q
< Q
a 0.2 a 0.2
0 0 =
0 5 10 0 5 10
Asymmetry 1 Asymmetry 2
0.4 0.02
24 z z
% % 0.2 é 0.01
52 %\ s 2
o o o
0 — 0 0
0 1 2 3 0 5 10 300 400 500
Asymmetry Ratio Decelerations Mean RR
6 1.5
z z
=4 = 1
e e
® ®
Q Q
Q2 205
o o
0 0
0 0.5 1 0 1 2 3 4 5
Sample Entropy Variance
Figure A.4
Trvvanat Frabamy Dansis Fan 7RG
206 06
% 0.4 '(.; 0.4
8 i« g :
iy o= 1 o s - 250 @02 x 02 {
0 ’ 0 g
0 5 10 0 5 10
Asymmetry 1 Asymmetry 2
0.4 0.02
24 z z
3 3 3
g, 027\ go01 ﬁ\
<} <} o
- /\ \ ® k * / \¥
0 ,4_‘¥\ , 0 0l /
0 1 2 3 0 5 10 300 400 500
Asymmetry Ratio Decelerations Mean RR
6 1.5
=z =z
=4 =1
el el
© ©
82 Sos ~
X
0 0 -
0 0.5 1 0 1 2 3 4 5
Sample Entropy Variance
Figure A.5

46

Urivanate Probabilty Densities. 101 Percentle

Light Red = hrc_ _vent_1
Baby Count = 171, Msan Hall Hours = 26,60

>4
§ \
<} 2
o
0 ‘
0 1 2 3
Asymmetry Ratio
6
2
=4
el
®
Q
Q2
o \
0 ——
0 0.5 1
Sample Entropy
Tt Frooaoity Domaes, 0% Feroertis
>4
=
2
<] 2
o
0
0
Asymmetry Ratio
6
2
=4
e
©
Q
Q2
o /
NZ
0

N _
0.5

Sample Entropy

>06
804 ~
Qo
: /4
o 0.2 /
0 S
0 5 10
Asymmetry 1
0.4
Pl N
%
To2
<}
o
ol ,
0 5 10
Decelerations
1.5
2
= 1
e
©
Q -
205 ?i ;
o \
0 —
0 1 2 3 4 5
Variance
Figure A.6
>06
804 ~
Q
o
a 0.2) i
0 o — "
0 5 10
Asymmetry 1
0.4
2
3~
To2
<}
o
0 -
0 5 10
Decelerations
1.5
2
= 1
e
@©
Q /
205 /\
o %
N
0 1 2 3
Variance
Figure A.7

47

. Probability

o o o o

N o N » (2]
Oy

Probability
o
2

. Probability

o o o o

N o N S (2]
o

Probability
o
2

Asymmetry 2

4\

500
Mean RR

Asymmetry 2

J N\

300 400 500
Mean RR

o

Probability
N

o
o

S (=]

Probability
N

o

Probability
N S (o2}

o

o

Probability
S

Trwvanate ooy Gereiios G0% Parcomle
aliny_org_1_vent >06 >06
% 0.4 % 0.4
Q Q /
< o
o 0.2 a 0.2 \
0 ——= ‘ 0 ‘
0 5 10 0 5 10
Asymmetry 1 Asymmetry 2
0.4 0.02
2 2
3 5
To2 T o001
<) = o \
& /\\ &
0 —
1 2 3 0 5 10 400 500
Asymmetry Ratio Decelerations Mean RR
1.5
2
= 1
e
s /
/ 205
o
/ ~— 0 AN ,
0.5 1 0 1 2 3 4 5
Sample Entropy Variance
Figure A.8: Univariate PDF 5
2 2
Trvvanats Praaoty Densites TRC Siope
z z
3 3
Q 1 Q 1
[2 2
By o 71 o < 2890 o “ T \&
0 —= — 0 = = ‘
-2 -1 0 1 2 -2 -1 0 1 2
Asymmetry 1 Asymmetry 2
1 [0.1
z A z
3 5
%05 \ €0.05 ﬁ
\ o o
a“ / o A
L 7‘J¥ S 0 - ol _Z N
-0.5 0 0.5 -5 0 5 -50 0 50
Asymmetry Ratio Decelerations Mean RR
4
2
3
82
<] y
o , i ﬁ
I .

Sample Entropy

Variance

Figure A.9

48

A.3 Univariate Risk Figures

Univariats Risks
hre_sick_org_all_vert_0vs.re_healhy_org_ail_vent_0
Blue = Raw, Green = 10, Re Cyan =50, Wagents = Slope

org_sll_vent 0

hre_s
Baby Count = 396, Mean Half Hours = 27,14

hre_heaty_org_al_vert_0

Baby Count = 3320, Méan Half Hours = 1680

-2
-0.5 0 0.5 1
Sample Entropy
T
ro_sick_org_alLyert_1vs. _hesiy_org_alLven_{
Bl = Raw, Green = 10, Red = 50, Cyan = 80, Magona = Siope
o ol vent_
Baby Count = 558, Man Half Holrs = 26.46
neaty_org_allvert 1
Saby ot - 1767, Mean il Fous = 7707
2

0 0.5 1
Sample Entropy

Risk
o

Risk
o

Risk
o

Risk

Risk
o

2
0 0 10 20 30 0 200 400
Mean RR
0 2 4
Variance
Figure A.10
2

Asymmetry 1

V\’ézﬁ/‘ _______________

-1

Risk
o

0 0 10 20 30

Decelerations

Mean RR

Variance

Figure A.11

49

A.4 Bivariate PDF Figures

Bivariate Probability Densities: hrc healthy org all vent 0 and hrc sick org all vent 0

blue = hre healthy org all vent 0; red = hrc sick org all vent 0

3 2+
2 =
Z2- z
© ® 1+
Q 1 e
<) [
a (1) L

= 5 5
o o 1 2) o 1 2
Sample Entropy Variance Asymmetry Ratio Variance

10~
= 2
3 3
© [
Q Qo
<) <
a o
5 0.5
Decelerations Variance Asymmetry Ratio Sample Entropy

1.5~ 15
= 2
5 1 3
8 3
<] 0.5+ S
a 18 [

— 1
0.5
0 0
Decelerations Sample Entropy Decelerations Asymmetry Ratio
Figure A.12
Bivariate Probability Densities: hrc healthy org all vent 1 and hrc sick org all vent 1
blue = hre healthy org all vent 1; red = hrc sick org all vent 1
3 2~

= =y

52~ 3

[©

Qo 1 e

<} <)

a ? a

= 5
- 2
oo
Sample Entropy Variance Asymmetry Ratio Variance

Probability
Probability

0.5

5

Decelerations Variance Asymmetry Ratio Sample Entropy

o =
o = o
AR

Probability
Probability

e 1

— 05

Decelerations Sample Entropy Decelerations Asymmetry Ratio

Figure A.13

20

A.5

Elevated Risk

Elevated Risk

Elevated Risk

Elevated Risk

Elevated Risk

Elevated Risk

Bivariate Risk Figures

05-
08

0.5
10

0.5
0.8

0.5 -

10

Relative risk plots: hrc sick org all vent O vs hrc healthy org all vent 0

Values above 0 mean more likely to be hrc sick org all vent 0.

Elevated Risk

Elevated Risk

Elevated Risk

05 -
4
05 -
25 T—
2 —
15
Asymmetry Ratio Variance
05
0-
05
25 T— —L
2 ?\\ s 08
. — i .
T e o2 o4
) 0
Asymmetry Ratio Sample Entropy
05
o
05-
100 T — 1
B T 0 2 25
4 — 15
) 0 o0s
Decelerations Asymmetry Ratio

Figure A.14

Relative risk plots: hrc sick org all vent 1 vs hrc healthy org all vent 1

Values above 0 mean more likely to be hrc sick org all vent 1

NN 7
CRANSZZRIAY L7
R
06
Sample Entropy Variance
—
Decelerations Variance
A
N
N
Tl
\\ AN
\ \\\\\\,\\\\\\\\\\\
Decelerations Sample Entropy
SRR
SR OO
—
Osﬁ&\ s
— — 25
0.2 05«—1/"_'(15 2
Sample Entropy Variance
— =L
T — a5 4
ST 25 3
X 0 1 1.5
Decelerations Variance
N\
Nk

Decelerations

NS,
——

Sample Entropy

Figure

o1

Elevated Risk

Elevated Risk

Elevated Risk

05
0
05
2 — -
15 — - 35 *
1 — 25
05 5
Asymmetry Ratio Variance
05
0
05 -
25~
Asymmetry Ratio Sample Entropy
05
0
05
0 o o
8 5\?\\ —— > 25
T ——— 15
) [
Decelerations Asymmetry Ratio

A15

A.6 Single Variable Logistic Figures

Probability

Probability

Probability

Probability

o
=3
N}

o
2

=4
Q
]

o
2

=4
Q
]

o
2

=4
Q
[N

o
=4

hrc_all_org_all_vent_all: 10th Percentile ©
0.02 ® 0.02
Probability from Healthy (0) to Sick (1) E‘ a E
Red Line = Bayesian Probability 3 5 B
Blue Line = Logistic Probability g 05 ¢ g
S 0.01 S oot
Fraction from No Data (0) to All Data (1) o g o
Red Area = Sick Fraction T
Blue Area = Healthy Fraction
0 0 0
0 2 4 6 8 0 2 4 6
Asymmetry 1 Asymmetry 2
1 1
£ _o002 g _oom
3 =z 3z
0.5 s .‘E“ 0.5 s g
c 5 ¢
S goo1 S goot
g« g °
w 4_— w
: : . : 0 0 . : 0 0o— . .
0 1 2 3 4 0 10 20 30 40 300 400 500
Asymmetry Ratio Decelerations Mean RR
1 1
£ 8
8 ? 0.02 S
5 1 k]
05 ¢c & 05 ¢
S goo S
g ° &
[[y
0 0 0
0 0.5 1 0 1 2 3 4
Sample Entropy Variance
All red and blue areas are additive, i.e., no areas are hidden behind one another.
Figure A.16
1
hrc_all_org_all_vent_all: 50th Percentile ©
0.02 © 0.02
Probability from Healthy (0) to Sick (1) = o 2
Red Line = Bayesian Probability 3 s B
Blue Line = Logistic Probability g 05 ¢ g
S 0.01 S oot
Fraction from No Data (0) to All Data (1) o g o
Red Area = Sick Fraction T
Blue Area = Healthy Fraction
0 0 0
0 2 4 6 8 0 2 4 6
Asymmetry 1 Asymmetry 2
1 1
2 0.02 5 0.02
8 =z 3z
0.5 s .‘E“ 0.5 s %
c .5 ¢
S §oo1 S oo
g = g °
[[y
. . : : 0 0 : : . : 0 0o— . :
0 1 2 3 4 0 10 20 30 40 300 400 500
Asymmetry Ratio Decelerations Mean RR
1 1
& Y
8 ? 0.02 S
5 1 k]
05¢ 8 05 ¢
S goo S
g o &
[[y
0 0 0
0 0.5 1 0 1 2 3 4
Sample Entropy Variance

All red and blue areas are additive, i.e., no areas are hidden behind one another.

Figure A.17

52

10.5

10.5

10.5

10.5

Fraction of Data

Fraction of Data

Fraction of Data

Fraction of Data

Probability

Probability

Probability

Probability

o
o
[N}

o
2

o
Q
]

o
2

=4
Q
N}

o
2

=4
Q
]

o
=4

0.5

0.5

0.5

0.5

0.5

0.5

Fraction of Data Fraction of Data

Fraction of Data

Fraction of Data Fraction of Data

Fraction of Data

o
Q
[N)

Probability
o
<

e
=3
S}

Probability
I3
=

o
Q
[N)

Probability
o
<

o
Q
S)

Probability
o
<

10.5

2 4 6 8
Asymmetry 2

10.5

400 500
Mean RR

300

10.5

-4 -2 0 2 4

Asymmetry 2

10.5

-20 0 20 40

Mean RR

-40

hrc_all_org_all_vent_all: 90th Percentile
0.02
Probability from Healthy (0) to Sick (1) E‘
Red Line = Bayesian Probability =
Blue Line = Logistic Probability g
3 0.01
Fraction from No Data (0) to All Data (1) o
ed Area = Sick Fraction
Blue Area = Healthy Fraction 0
0 2 4 6 8
Asymmetry 1
1 1
jol
8 E>‘ 0.02
0.5 s .‘E“
. =t
S goo1
E o
w \—6/
. . . 0 0 n . . .
0 1 2 3 4 0 10 20 30 40
Asymmetry Ratio Decelerations
1
£
8 2 0.02
0.5 ° %
B =
S g0
E o
[
L : . 0 0 y .
0 0.5 1 0 1 2 3 4
Sample Entropy Variance
All red and blue areas are additive, i.e., no areas are hidden behind one another.
Figure A.18
hrc_all_org_all_vent_all: HRC Slope
0.02
Probability from Healthy (0) to Sick (1) g‘
Red Line = Bayesian Probability =
Blue Line = Logistic Probability g
S 0.01
Fraction from No Data (0) to All Data (1) o
Red Area = Sick Fraction
Blue Area = Healthy Fraction 0
-4 -2 0 2
Asymmetry 1
1
g o0
3z
0.5 s .‘E“
. <
S §oo1
E o
[
. = . 0 0 . . .
-0.5 0 0.5 0 10 20
Asymmetry Ratio Decelerations
1 I
s
8 ? 0.02
0.5 ° %
. <
S goo1
E o
[
0 0
-0.5 0 0.5 -1 0 1
Sample Entropy Variance

All red and blue areas are additive, i.e., no areas are hidden behind one another.

Figure A.19

93

0

Fraction of Data

Fraction of Data

Fraction of Data

Fraction of Data

A.7

50

45

Heart Rate Characteristic Value

Heart Rate Characteristic Value

HeRO Score Figures

(%)
(o]
T

w
o
T

N
134
T

N
o
T

N
o
T

60—

50 -

40 -

30

n
o

Moving HeRO Score (ID: 2471, Site: 0d)

8 10
Time of HeRO Score (Days)

Figure A.20

Moving HeRO Score (ID: 3274, Site: 0f)

===Dienstman Hero
Dienstman Vent Hero
==Dienstman Nonvent Hero
===Legacy Hero
+ Hrch Sore
Hrcg Score

===Dienstman Hero
Dienstman Vent Hero
=== Djienstman Nonvent Hero
===| egacy Hero
-+ Hrch Sore
Hrcg Score

Rl

Time of HeRO Score (Days)

Figure A.21

o4

100

120

Heart Rate Characteristic Value

60 Moving HeRO Score (ID: 4214, Site: UVA)

50—

N
o
T

Time of HeRO Score (Days)

Figure A.22

95

===Dienstman Hero
Dienstman Vent Hero
==Dienstman Nonvent Hero
==L egacy Hero
- Hrch Sore
0 Hrcg Score

OOk WN ~

OO~k WN ~

Appendix B

Matlab Programs

B.1 Result Files

Listing B.1: Dienstman_submit_paralle.txt

#!/bin/tcsh

Check for right number of arguments

if ($# != 2) then
echo ”"Usage: Dienstman_submit_parallel begin end”
exit 1

endif

if ($1 > $2) then
echo ”Error: Beginning value is larger than ending value.”
exit 1

endif

Generate an array of jobs

gsub —N Dienstman_parallel —t $1—-$2 <<EOF
#!/bin/tcsh

#PBS —1 nodes=1:¢c9:ppn=1

#PBS —1 walltime=180:00:00

#PBS —j oe

#PBS —q matlab

cd /sciclone/home00/eddienst/datal0/Dienstman_Files

matlab —nojvm —nodisplay —r "multiple_result_files (\$PBS_ARRAYID)” >\$PBS_ARRAYID.

EOF

exit

out

Listing B.2: multiple result files.m

function multiple_-result_files (num)

Author: Evan Dienstman

Last Update: 2/24/2017

Email: eddienstman@email.wm.edu

> Note: Feel free to email me with questions! If something doesn’t
» make sense, it might be because I haven’t updated the code yet.

AT

This program takes one batch number and computes the heart
rate characteristics (HRCs) for each half hour of e
% that batch. Batches consits of 20 ID numbers. This architecture was
created in order to run jobs in parallel most efficently that also

v comply with the rules for W&M’s SciClone HPCs. If an ID does not
exist , another function will print ”Failed: ID” and continue to the
next ID number. Half hours associated with one ID are saved in a file

% ch ID number in

corresponding to the site and ID. For more info about what each file
looks like, see the documentation for one_result_file.m. All files

6 with the same site are saved in a folder corresponding to that site.
If the folder has already been created, the patient files will

© automatically be saved there. The information used to calculate the
% HRCs comes from the HRC and storm files corresponding to the same

% site and ID.
Yo
Yo

SO SISO SISO SN

7% Arguments :
% 1. num — the batch number where the IDs in each batch are defined
% within the code below

7% Precondtions:
% 1. Make sure ”preprocessing is set correctly in this function.
% 2. Make sure the directories in this function are set correctly.

o6

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117

% 3. Make sure the file one_result_file.m is in the working

% directory .

%

% Returns:

% 1. This function returns all files for existing IDs in the batch
% saved to the appropriate folder.

% Change this with the propoer preprocessing and site.
preprocessing = ’'Abby’;

% preprocessing = ’Doug’;

% Here, we define which IDs go into which batch.
sites = {};

step = 20;

indices_0d
indices_0Of
indices_17

2153:step:3287;
2810:step:3981;
2261:step:2512;
indices_-18 2309:step:2486;
indices_-la 2044:step:2637;
indices_-1b = 2220:step:3078;
indices-le = 2231:step:3315;
indices_.UVA = 4102:step:7651;

start_indices = [indices-0d indices_-0f indices-17 indices-18 indices_-la indices_1b

indices_.UVA];

for j = l:length(indices_0d)
sites = [sites '0d’]; %#ok<+AGROW>

Jun

for j = 1l:length(indices_0f)
sites = [sites '0f];

for j = 1l:length(indices_17)
sites = [sites "177];

for j = 1l:length(indices_18)
sites = [sites “187];

for j = 1l:length(indices_la)
sites = [sites ’la’];

for j = 1l:length(indices_1b)
sites = [sites '1b’];

for j = 1l:length(indices_le)
sites = [sites ’le’];

for j = 1l:length (indices_.UVA)
sites = [sites 'UVA’];

N = length(start_-indices);

% After defining the batches, we call the function that will calculate

% the HRCs for each ID number in the batch.
if num <= N

site = sites{num};

start_index = start_indices (num);

% Now we start looping through the IDs and call one_result_file ()

% to calculate the HRCs for each ID. The HRB and storm file
% contain the information needed to calculate the HRCs.

for id = start_index:start_index+4step—1
hrc_directory = [pwd '/Data_Files/Dienstman_Results_.’ preprocessing '_PP/’ site];
if “exist(hrc_directory , ’dir’)
mkdir (hrc_directory);
end
if strcmp(site, 'UVA’)
hrb_file = [pwd ’/Data_Files/HRB_Files/’ site ’//UVA_.id’ num2str(id) ’_vchl.hrb’
else
hrb_file = [pwd ’/Data_Files/HRB_Files/’ site ’//_id’ num2str(id) ’_vchl.hrb’];
end
storm_file = [pwd ’/Data_Files/Coleman_Results/’ site ’//storm_results_’ site ’~_id’
num2str (id) ’.mat’];
save_file = [hrc_directory ’'//Dienstman_hrc_results.’ site num2str (id) ’.mat’];
one_result_file(hrb_file , storm_file, save_file, id, site, preprocessing)
end
end
end

indices_-le

1;

Listing B.3: one_result_file.m

57

© WU A WN -

function one-result_file(hrb_file, storm_file

, save_file , id, site,

% Author: Evan Dienstman
% Last Update: 2/24/2017
% Email: eddienstman@email.wm.edu
% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.
%
% This function computes the heart rate characteristics (HRCs) for each
% half hour of one patient. Patients are indentified by their site and
% ID number. The half hours are saved in one MATLAB file. Each file is
% a struct where each field correspond to one HRC. Each row contains
% the HRCs for one half hour. More information about the individual
% HRCs can be found throughout the code. Parts of this function were
% taken from Abigail Flower and Douglas Lake.
%
% Arguments:
% 1. hrb_file — the name of the HRB file which contains the RR
% intervals used for calulating the HRCs. More info about the HRB
% files and RR intervals can be found within the code.
% 2. storm_file — the name of the storm file which contains the
% deceleration HRC. More info on the decelerations can be found
% within the code.
% 3. save_file — the name of file the struct is saved to where the
% name also contains the complete pathway to the file
% 4. id — the ID number of the patient
% 5. site — the string of the site for use in the saven file
% 6. preprocessing — a string specifying the type of processing the
% raw data goes through. Descriptions of the processing can be
% found below.
%
% Preconditions:
% 1. The complete pathway to the HRB, storm, and save file must be
% included in respective input variables.
% 2. Make sure all the functions this program calls are in the same
% directory .
%
% Returns:
% 1. This function returns a MATLAB file containing the HRCs for
% one baby.
% We first check multiple exception cases before making the save file.
if “exist(hrb_file, ’file);
disp ([’Failed: 7, num2str(id), hrb file does not exist.’ char(10)])
else
% Here, we extract the RR intervals from the HRB file. An RR
% interval is the time between each heart beat. RR interval time
% is measure in miliseconds. All HRCs are calculated from the
% RR intervals. For example, the variance is the variance of the
% RR intervals .

[rr,rrt ,drop,info] = gethrb(hrb_file ,inf,
start_-ind-pre = find(rr < 1000);

if isempty(start_ind_-pre)
disp (['Failed: ’, num2str(id), hrb
else

if Texist(’rrt’, ‘var’)
disp ([’Failed: ’, num2str(id),

else

% Here we create a blank struct

where we will

1)

file is empty.’ char(10)])

hrb file has no time variable

store the

% HRCs. Note thathe variable max_num_intervals is ued to
% preallocate the struct. If there are big jumps in the
times of the file , then the number of intervals
(half hours) containing data will be less than the

maximum number of intervals.
intervals will only be equal to

NN

The actual

number of
the max number of

intervals if the time is fairly continuos (no big jumps).
The way this function deals with jumps in the time is by
taking the start time and end time of the HRB file and
% creating enough half hours to fill that entite period of
% time. However, since there are usually times with no data,
% there are usually rows in the struct left unfilled. This
% way is a bit unnecessary but keeps the format coherant

% with other files
% to preallocate the struct. It
% of how many jumps in the time ¢t
% intervals with data to the
% the structure.

start_ind = start_ind_pre(1);
k = start_-ind;

end_file_time =
start_file_time =
length_file =
max_-num-intervals =
save.variable =

already

rrt (end) *24x60;

% The purpose of these eval
% personalize
% This way, we can pull
% different files and not get

% belongs to which patient.

S

created and provides
also provides

total

[’Dienstman_hrc_results_

statements is
the name of the variable
up multiple
confused as

an easy way
a good
here are by comparing

number of intervals in

measure

rrt (start_ind) *24%60;
end_file_time —start_file_time;
ceil(length_file /30);

s s

site ’_° num2str(id)];
so we can

for each patient.
variables from

to which variable

28

rrt .’

preprocessing)

char (10)])

95

96

97

98

99

101

102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

145
146
147
148

149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173

eval ([save_variable ’(1:’ num2str(max_-num_intervals) ') = struct(’’Start_Time’ ", [],
>

’ ’Asymmetry_1’°, [], >’ Asymmetry_1.10°’, [], ’’Asymmetry_-1.50"", [], 7~
Asymmetry_-1.90°’, [], ’’Asymmetry_-1_Slope’’, [], ~ ...
’Asymmetry_-2°°, [], ’’Asymmetry_-2.10°", [], ’’Asymmetry_-2.50"°, [],
Asymmetry-2_90""° [1, ’Asymmetry-2_Slope’’, [], ~ ...
>?Asymmetry_Ratio’’, [], >’ Asymmetry_-Ratio-10’’, [], ’’Asymmetry_-Ratio-50"", [],
>’ Asymmetry_-Ratio-90°°, [], >’ Asymmetry_-Ratio_Slope’’, T
>’Decelerations’’, [], ’’Decelerations_10’’, [], ’’Decelerations_50"", [], ’~
Decelerations_90°’, [], ’’Decelerations_Slope’’, [], ’ ...
>’Mean.RR’’, [], ’>’Mean_.RR_10"’, [], ’’Mean.RR.50"’, [], ’’Mean.RR_90°’, [], ’~
Mean_-RR_Slope’’, [], = ...
>’Sample_Entropy’’, [], ’’Sample_Entropy-10’’, [], ’’Sample_Entropy-50"°, [], ’~
Sample_Entropy-90’’, [], ’’Sample_Entropy_Slope’’, [], ’ ...
? ’Variance’’, [], ’'’Variance_10'’, [], ’’Variance.50’’, [], ’’Variance_-90’’, [],
’’Variance_Slope’’, [], ~’
> ?’Good_Frac’’, [], ~ ...
> 7 Extra_Info’’, []):7])

% Now we loop through every half hour and calculate the
HRCs for that half hour. We use k to index the RR
interval vector and then find the index closest to
one half hour from k. This gives us the RR intervals
within the current half hour. We then use these RR
intervals to calclulate the HRCs for the current half
hour. Note that each half hour will have a different
number of intervals for many reasons.

for halfhour = l:max_num_intervals

3

NN

if k < length(rrt)
start_time = rrt(k);
end_time = rrt (k)+(30%(1/60)=*(1/24));

% Here, there are two types of preprocessing (for
% the RR intervals) to choose from. The the first
% one (preprocess) was used by Abigail Flower and
% the second one was used by Prof. Lake. Abigail ’s
% replaces bad intervals with interpolated ones and
% Lake’s simply removes them and concatenates the
% vector.
if strcmp(preprocessing, 'Abby’)

end_ind_pre = find (abs(end_-time—rrt) == min(abs(end_-time—rrt)));

end-ind = end-ind_-pre(1);

half_hour_indices = k:min(end_ind ,length(rrt));

else
half_hour_indices = find(rrt > start_time & rrt <= end_time);
end_.ind = half_hour_indices (end);

end

raw_rr_interval_times = rrt(half_hour_indices);

raw._rr_intervals = rr(half_hour_indices);

raw_drop-rr_intervals = drop(half_hour_indices);

good_frac = 1 — sum(raw_drop-rr_intervals)/length(raw_rr_intervals);

if strcmp(preprocessing, 'Abby’)
[processed_rr_intervals , ignorel, ignore2, processed_rr_interval_times] =
preprocess (raw_rr_intervals , raw_drop-rr_intervals); %#ok<*ASGLU>
processed_rr_interval_times = processed_rr_interval_times ./
(1000%60%60%24) + start_time;

else
processed_rr_intervals = raw_rr_intervals(raw_drop_rr_intervals == 0);
processed._rr_interval_times = raw_rr_interval_times(raw_drop_rr_intervals

== 0);

end

extra_-info = struct(’info’, info, ’'raw_rr_intervals’, raw_rr_intervals ,6
raw_rr_interval_times’, raw._rr_interval_times , ’'processed_rr_intervals’,
processed_rr_intervals , ’'processed_rr_interval_times’,

processed_rr_interval_times);

% This is where the HRC’s for good half hours are
% created. Note note that we have already completed
% all the preprocessing so the variable

% processed_-drop-rr_-interval is all zero indicating
% nothing will be dropped in the call to

% calchrcx. For more info about each HRCs

% calculated in calchrcx (), see the documentation
% for calchrex ().

if length(processed_rr_intervals)>300

cflag = [1,1,1,1,0];

filter = 1;

processed_drop-rr_intervals = zeros(1l,length(processed_rr_intervals));
hrc_values = calchrcx(processed_rr_intervals , processed_drop._rr_intervals ,

cflag , filter);

% Here we extract the HRCs calculated in

% calchrxc (). Note that varaince and sample
% asymmetry measurements are recorded on a
% mnatural log scale.

3

variance = num-_check(hrc_values (1));
sampen = num-_check(hrc_values (2));
asyml = num-_check(hrc_values (3));

29

174 asym2 = num._check(hrc_values (4));

175 asym_ratio = asym2/asyml;
176 mean_rr = num-_check (mean(processed_rr_intervals));
177
178 % Here we get the deceleration HRC from the
179 % storm file .
180 if exist(storm-_file, ’*file’)
181 load_variable = load(storm-_file);
182 storm_results = load_variable.storm_results;
183 height_list = storm_results(halfhour).final_height;
184 decels = 0;
185
186 % The variable rl is the sample asymmetry
187 % measurement for accelerations. In
188 % symbols, rl = sum[(beat < mediean —
189 % median) "2] / total_beats.
190 rl = exp(hrc_values (3));
191
192 for height = height_list .’
193 % We only include decelerations above a
194 % 5xrl in height. In other words, we
195 % only include delerations that are 5
196 % times greater than the average
197 % acceleration .
198 if height > 5 % sqrt(rl)
199 decels = decels + 1;
200 end
201 end
202
203 else
204 decels = NaNj;
205 end
206
207 % The next set of HRCs to calculate are the
208 % slopes and percentiles of the HRCs over a
209 % window in the past for the HRCS already
210 % calculated above. Note that we first need to
211 % enter the current HRCs into the struct so
212 % the current values are used when calculating
213 % the slopes and percentiles.
214 hrc_fields = {’Start_-Time’, ’Good-Frac’, ’Extra_-Info’, ’Asymmetry.-1’,
Asymmetry-2’, ’Asymmetry_-Ratio’, ’'Decelerations’, 'Mean-RR’, ’
Sample_-Entropy’, ’Variance’};
215 hrc_vector = {start_time good_frac extra_info asyml asym2 asym_ratio
decels mean_rr sampen variance };
216
217 for i = 1l:length(hrc_fields)
218 if i = 3
219 eval ([save_variable ’'(’ num2str(halfhour) ’).’ hrc_fields{i} * =
extra_info;’])
220 else
221 eval ([save_variable ’'(’ num2str(halfhour)).’ hrc_fields{i} = =
num?2str (hrc_vector{i}) ’:~
222 end
223 end
224
225 eval (["time_vector = [’ save_variable ’(:).Start_-Time]; '])
226
227 % Now that we have entered the current HRCs
228 % into the struct, we can now calculate the
229 % slopes and percentiles of the HRCs. Once we
230 % calculate these additional measurements,
231 % we end by adding these measurements into the
232 % struct as yet another HRC.
233 for i = 4:length(hrc_fields)
234 eval ([hrc_fields{i} ’'_Vector = [’ save_variable ’(:).’ hrc_fields{i}
1571)
235 slope_end_time = start_-time;
236 slope_start_-time = slope_end_time — 2;
237 percentile_end_time = start_time;
238 percentile_start_time = percentile_end_time — 0.5;
239
240 eval (["slope_vector = ’ hrc_fields{i} ’_Vector(time_vector >=
slope_start_time & time_vector <= slope_end_time);’])
241 slope_time_vector = time_vector(time_vector >= slope_start_time &
time_vector <= slope_end_time);
242 eval (["percentile_vector = ’ hrec_fields{i} ’_-Vector(time_-vector >=
percentile_start_time & time_vector <= percentile_end_time);’])
243 percentile_time_vector = time_vector(time_vector >=
percentile_start_time & time_vector <= percentile_end_time); %#ok
<*NASGU>
244
245 if “isempty(slope_vector) && “isempty(percentile_vector)
246 slope = slope_calculator(slope_time_vector.’, slope_vector.’);
247 percentilel0 = num_check(prctilel (percentile_vector ,10));
248 percentile50 = num_check(prctilel (percentile_vector ,50));
249 percentile90 = num_check(prctilel (percentile_vector ,90));
250
251 else
252 slope = NalNj;
253 percentilel0 = NaNj;
254 percentile50 = NaNj;
255 percentile90 = NaN;
256 end

60

257

258 eval ([save_variable ’'(’ num2str(halfhour)).’ hrc_fields{i} ’'_Slope
’ num?2str(slope) 1)

259 eval ([save_variable ’'(’ num2str(halfhour)).’ hrc_fields{i} *_-10 =~
num?2str (percentilel0) ' ;°

260 eval ([save_variable ’'(’ num2str(halfhour)).’ hrc_fields{i} *_-50 =~
num2str (percentile50) ' ;°

261 eval ([save_variable ’'(’ num2str(halfhour)).’ hrc-fields{i} *_-90 =’
num2str (percentile90) ';'])

262 end

263

264 else

265 % This is where blank values are created for

266 % bad half hours. Note NaN indicates bad

267 % HRC’s as opposed to [] which indicates empty

268 % HRC slots created from preallocating the

269 % struct that we never ended up using.

270 eval ([save_variable ’(’ num2str(halfhour) ') = struct(’’Start_Time’

start_time , ' ...

271 > 77 Asymmetry-1’’, NaN, ’’Asymmetry-1.10’’, NaN, ’’Asymmetry-1.50"",
NaN, ’’Asymmetry-1.90’’, NaN, ’’Asymmetry_-1_Slope’’, NaN, ’ ...

272 > 7?7 Asymmetry-2’’, NaN, ’’Asymmetry-2.10°’, NaN, ’’Asymmetry-2_.50"",
NaN, ’’Asymmetry-2.90’’, NaN, ’’Asymmetry_-2_Slope’’, NaN, .

273 > 7?7 Asymmetry_-Ratio’’, NaN, ’’Asymmetry_-Ratio-10’’, NaN, ’~
Asymmetry_-Ratio-50’’, NaN, ’’Asymmetry-Ratio-90’’, NaN, ’~’
Asymmetry_Ratio_Slope’’, NaN, ’ ...

274 > "’?’Decelerations’’, NaN, ’’Decelerations_10’’, NaN, ’’
Decelerations_50’’, NaN, ’’Decelerations_90’’, NaN, '’
Decelerations_Slope’’, NaN, ’ ...

275 > ?’Mean_RR’’, NaN, ’’Mean_RR_10’’, NaN, ’’Mean_RR_50"", NaN,
Mean_RR_90’’, NaN, ’'’Mean_RR_Slope’’, NaN,

276 > ?’’Sample_Entropy’’, NaN, ’’Sample_Entropy-10’’, NaN, 7’
Sample_Entropy-50’’, NaN, ’’Sample_Entropy-90°’’, NaN, ’~’
Sample_Entropy_-Slope’’, NaN, ’ ...

277 > ?’Variance’’, NaN, ’’Variance_10’’, NaN, ’’Variance_-50’’, NaN, '’
Variance_-90’’, NaN, ’’Variance_Slope’’, NaN, ~’ .

278 ’ ">Good_Frac’’, NaN, ’ ...

279 ’ 7’ Extra_Info’’, extra_info);’])

280 end

281 end

282

283 k = end-ind + 1;

284 end

285

286 % Finally , we save the struct using the site and id in

287 % the file name.

288 eval ([’save ’ save_file ’ ’ save_variable ’;’])

289 end

290 end

291 || end

292 || end

293

294

295

296

297

298 || function xnew = num-_check(x)

299 || % This function turns any HRC that is negative, —inf, or inf to NaN

300 | % because an HRC should never be any of these values. Occurances like
301 || % those may happen due to bad data, so we simply mark them as NaN.
302
303 || xnew = x;
304
305 || if isempty (xnew)

306 xnew = NalN;

307 || elseif xnew < O || xnew == inf || xnew == —inf
308 xnew = NalN;

309 || end

310
311 || end
312
313
314
315
316
317 || function slope = slope-calculator(x,y)

318 [| % This function calculates the slope for any HRC. Our method of

319 (| % calculating the slope is to find a linear fit for the HRC data over
320 [| % a window in the past and then map the slope of that linear fit as
321 || % the HRC slope for the current half hour.

322
323 || if length(x) < 48
324 slope = NaN;
325
326 || else
327 X = [ones(length(x),1) x];
328 coeff = v
329 slope = coeff(2);
330 || end
331
332 || end
A

61

OO U R WN -

0o~ U kA WN -

47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

B.2 CSV Files

Listing B.4: Dienstman_submit_batch.txt

#!/bin/tcsh

#PBS —1 nodes=1:c16:ppn=1

#PBS —1 walltime=48:00:00

#PBS —j oe

#PBS —N Dienstman_batch

#PBS —q matlab

cd /sciclone/home2/eddienst/datal0/Dienstman_Files

module load matlab/R2016b

matlab —nodisplay <multiple_event_figures_caller .m >output-file.out

Listing B.5: csv_files.m

% Author: Evan Dienstman

% Last Update: 3/3/2016

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.

% This script takes all the information from the Dienstman_result

% files and organizes them into csv files. Each row in the csv file

% corresponds to one half hour from one baby. For the information

% that goes into each column, see the header variable in the script

% below. The script first creates a CSV file containg all the sick and
% healthy half hours from every baby. Note that a healthy half hour is
% any half hours that occurs 7 days before an event or 3 days after an
% event, and a sick half hour is any half hour that occurs within 12
% hours before an event. Additional CSV files are then created for

% specific groups. For example, one CSV file may contain only

% nonventilated sick half hours from oragnism 1. The CSV files are

% then saved to the appropriate directory. Meta info about the CSV

% files are also saved at the end.
%
%

Preconditions:

% 1. Make sure the Dienstman_result files are in the approriate
% directory .

% 2. Makes sure event_-matrix.m, demographic_.matrix.m,

% vent-matrix.m, csv_master_file.m, csv_splitter .m,

% csv_avg_hrcs.m, csv_bin_widths.m, csv_indices.m, and

% csv_logistic_coeffs.m are in the current working directory.
%

% Returns:

% 1. This script creates many CSV files correspondsing to

% different groups of half hours. CSV files are saved to the
% Data_Files/Dienstman_CSV_Files directory .

% 2. This script also saves meta info about the CSV files

% (averages , bin widths, indices, and logicitic coefficients)
% to the current working directory.

clear

cle

% Change this with the propoer preprocessing and site.
preprocessing = ’'Abby’;
%preprocessing = ’'Doug’;

% Here, we create the header for the CSV file. You can use the header
% to see what info goes into the CSV file.

header = {’Site’ ’ID’ ’Half_Hour_-Time’ ’Event_-Time’ ’Gender’ ’Gestational_Age’ ’'Good_Frac’
Health_Status’ ’Organism’ ’Study’ ’Ventilated’ ’'Vent_Switched’ ’Vent_Copies’ ’Weight’};
hrcs = {’Asymmetry_1’ ’Asymmetry_2’ ’Asymmetry_Ratio’ ’'Decelerations’ 'Mean.RR’ ’Sample_Entropy’
Variance ' };
hrc_types = {’7, .10, .50, .90, ’_Slope’};
for i = 1l:length(hrcs)
for j = 1l:length(hrc_types)
header = [header, [hrcs{i} hrc_types{j}]]; Y#ok<AGROW>
end

end

% Now we create the directory where we will save the CSV file.
save_dir = [pwd ’'/Data_Files/Dienstman_CSV_Files.’ preprocessing '_PP’];

if “exist(save_dir, ’dir’)
mkdir(save_dir)
end

% Here, we create the master CSV file containing all the sick and
% healthy half hours.
master_csv_matrix = csv_master_file(preprocessing , save_dir, header, hrcs, hrc_types);

% Below, we index the master matrix by different qualifiers and write
% the various matrices to CSV files. Thus, we will have many CSV

% files for different groups of half hours. Creating these smaller

% CSV files helps future scripts because we won’t have to read in the
% master CSV file every time.

62

s

72
73
74
75
76
7
78
79
80
81

© WU A WN -

61
62
63
64
65

66
67
68
69
70
71

72
73
74
75
76

csv_splitter (header, save_dir, master_csv_matrix)

% Finally , we call some functions that create some meta info for the
% CSV files that we will use later in other scripts.
csv_avg_-hrcs(preprocessing)

csv_bin_widths (preprocessing)

csv_indices (preprocessing)

csv_logistic_coeffs (preprocessing , ’vent’)

csv_logistic_coeffs (preprocessing , ’nonvent’)

csv_logistic_coeffs (preprocessing , ’all’)

Listing B.6: csv_splitter.m

function csv_splitter (header, save_dir, master_csv_matrix)

% Author: Evan Dienstman

% Last Update: 3/24/2016

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.

%

% This function function takes the master csv matrix which contains
% all the healthy and sick half hours and creates multiple CSV files
% from that matrix. Each CSV corresponds to one particular group.

% For example, one CSV file may contain only sick, unventilated ,

% organism 3 half hours. Seperating half hours in mutliple files

% helps run future programs faster because it takes a very long

% time each time we have to load the master CSV file.

%

% Arguments:

% 1. header — the header of the CSV files

% 2. save_dir — the directory to save all the SCV files

% 3. master_csv_matrix — the matrix containing all the healthy

% and sick half hours that we want to split into many CSV files
%o

% Precondtions:

% 1. Make sure the variable master_csv_matrix is a matrix and not
% a CSV file .

%

% Returns:

% 1. This function saves many CSV files where each file contains
% half hours for one specific category. CSV files are saved to
% the driectory specified by the variable save_dir.

% First , we define some variables.
health_col = find (strcmp(header, ’Health_Status’));

org_col = find (strecmp (header, ’Organism’));
vent_col = find (strcmp (header, ’Ventilated));
sick_strs = {’ healthy’, ’sick’};

% Now we will loop through every category we want to divided the
% master CSV matrix into. For every category, we index the appropraite
% half hours from the master CSV matrix and save those half hours as
% one CSV file .
for sick = 0:1
sick_str = sick_strs{sick+1};
file_name = [save_dir ’'//hrc.’ sick_str ’_org_all_vent_all.csv’];
file_-id = fopen(file_name, 'w’) ;
fprintf(file_id , '%s,’, header{l,l:end—1}) ;
fprintf(file_-id , '%s\n’, header{l,end}) ;
fclose (file_id);

indices = find (master_csv_matrix (:, health_col) == sick);
one_csv_matrix = master_csv_matrix (indices ,:); %#ok<+«FNDSB>
dlmwrite (file_name , one_csv_matrix, ’—append’)
for ventilated = 0:1
file_name = [save_dir ’//hrc.’ sick_.str ’_org_all_vent. ' num2str(ventilated) ’.csv’];
file_.id = fopen(file_name, 'w’) ;
fprintf(file_id , '%s,’, header{l,l:end—1}) ;
fprintf(file_id , '%s\n’, header{l,end}) ;
fclose (file_id);
indices = find (master_csv_matrix (:, health_col) == sick & master_csv_matrix (:,vent_col) ==
ventilated);
one_csv_matrix = master_csv_matrix (indices ,:);
dlmwrite (file_name , one_csv_matrix, ’—append’)
for organism = 1:5
file_name = [save_dir °//hrc.’ sick_str ’_org.’ num2str(organism) ’'_vent-’ num2str(
ventilated) ’.csv’];
file_id = fopen(file_name, 'w’) ;
fprintf(file_id , '%s,’, header{1l,l:end—1}) ;
fprintf(file_id , "%s\n’, header{l,end}) ;
fclose (file_id);
indices = find (master_csv_matrix (:, health_col) == sick & master_csv_matrix (:,org_col)
== organism & master_csv_matrix (:,vent_col) == ventilated);
one_csv_matrix = master_csv_matrix (indices ,:);
dlmwrite (file_name , one_csv_matrix, ’—append’)

end

63

s
78 || end

Listing B.7: csv_avg hrcs.m

function csv_avg_hrcs(preprocessing)

% Author: Evan Dienstman

% Last Update: 3/3/2016

% Email: eddienstman@email .wm.edu

Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.

% This function takes the average of each column in the master CSV file
% hrc-all_org_-all_-vent_all.csv and saves the info to the current

10 || % working directory. Becuase the master CSV file is relatively large,
%
%

© 00O U WN R
X

11 it is helpful to calculate the averages once and save the info

12 instead of having to load the CSV file each time we need the average.

13 || %

14 || % Arguments:

15 || % 1. preprocessing — the preprocessing method used when determining

16 || % which csv file to use

17 || %

18 || % Precondtions:

19 || % 1. Make sure the file hrc_all_org_all_vent_all.csv is in the

20 || % approriate directory.

21 || %

22 || % Returns:

23 || % 1. This function saves the column averages of the master CSV

24 || % file as a Matlab file called avg_-hrc_values to the current

25 || % working directory .

26

27 || csv_file = [pwd ’'/Data_Files/Dienstman_-CSV_Files. preprocessing ’_PP//hrc_all_org_all_vent_all.
csv’];

28 || raw_data = dlmread(csv_file ,’, ,1,0

)
29 || avg-hrc_-values = nanmean(raw-data); %#ok<«NASGU>
30 || save ([pwd '//avg_-hrc_values_.’ preprocessing ~_PP’],
31 || end

’avg_hrc_values’)

Listing B.8: csv_bin_widths.m

function csv_bin_widths(preprocessing)

% Author: Evan Dienstman

% Last Update: 3/24/2016

% Email: eddienstman@email.wm.edu

Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.

% This function creates the bin widths used for smoothing and
% integrating our probability density functions (PDFs) of each heart
10|| % rate characteristic (HRC). We use the Freedman—Diaconis method to get
11| % a bin width for each HRC. The Freedman—Diaconis method is bin_width =
12 | % 2+«IQR*n"(—1/3), where IQR stands for inter—quartile range and n is
13 || % the number of observations. When calculating our bin widths for each
14 || % HRC, we use the file hrc_sick_org_-3_vent_0.csv. We then use these bin
15 || % widths to smooth or integrate a PDF regardless of what CSV file the
16 || % PDF came from. Our thought process is that we want to be consistent
17 || % with our choice of bin widths when making calculations amongst various
18 || % groups. We use the file hrc_sick_-org_-3_vent_0.csv because it is our
% smallest sizeable category. However, if the size of the groups are
20 || % relatively close, it might sometimes be better to use a bin widths
% calculated from the szie of the group we are looking at. In short,
22 || % sometimes we will use these bin widths and sometimes we won’t. The
23 || % same bin widths can also be used for bivariate PDFs. Originally , we
24 [| % thought we needed to change the IQR (which goes from the 25th
25 || % percentile to the 75th percentile) to the 15th percentile and
26 || % 85th percentile for bivariate PDFs. Our thought process was that in
27 || % two—dimensions, we are smoothing and intergrating over a box and we
28 [| % need to keep the area of that box proportional to the entire area.
29 [| % However, the Matlab function ksdensity already handles this issue if
30 || % you simply pass the univariate bin widths as arguments.

©00 oA WN -
N

31 || %

32 || % Arguments:

33 || % 1. preprocessing — the preprocessing method used when determining
34 || % which csv file to use

35 || %

36 || % Preconditions:

37 || % 1. Make sure the directories and file names used in the scripts
38 || % are the right ones for the computer you are using.

39 || % 2. Make sure the csv file for sick_her_org_-3_vent_0 exists.

40 || %

41 || % Returns:

42 || % 1. This function creartes a file called bin_widths.mat that saves
43 || % all the HRC bin widths. Note that the width for decels will be
44 || % 1 and is not saved in the file.

45

46 || % Makes sure the name of the csv file used to make the bin widths

47 || % matched the csv file you’ll use on your computer.

48 || load (" hrc_indices ”)

49 csv_dir = [pwd '/Data_Files/Dienstman_CSV_Files.’ preprocessing '_PP’];

64

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

©WOTDU A WN -

1
2

csv_file = [csv_dir ’'/hrc_sick_org_-3_vent_0.csv’];

csv_matrix = dlmread(csv_file, ~, , 1, 0);

% Here, we determine how many HRCs we have.
[T, N] = size(csv_matrix);
bin_widths = zeros(1,N);

% Next, we iterate through every HRC and make the bin width for that
% HRC. Note that some HRCs are category info (e.g. id number) and

% will never be used for integrating or smoothing.

for i = 1:N

% All deceleration widths are 1.
if i >= decelerations_index && i <= decelerations_90_index
bin_widths (i) = 1;

else
% Here, we extract the HRC vector from the csv file.
csv_vector = csv_matrix (:,1);

% Using the Freedman—Diaconis method, we now calculate the bin
% width using the vector of HRC values for the specific
% HRC we are on.
n = length (csv_vector);
ql = quantile(csv_vector, .25);
q3 = quantile(csv_vector, .75);
bin.IQR = g3 — ql;
bin_widths (i) = 2+bin IQR*(n"(—1/3));
end
end

% Finally , we save the bin width vector.
save ([pwd ’/bin_widths_.’ preprocessing ’_PP’], ’'bin_widths)
end

Listing B.9: csv_indices.m

function csv_indices(preprocessing)
% Author: Evan Dienstman

% Last Update: 3/2/2016

% Email: eddienstman@email.wm.edu

% Note: Feel free to email me with uestions! If somethin doesn ' t
q g
% make sense it might be because I haven’t updated the code et .
s g y
%

% This function saves the column index of every HRC in the CSV file.

% Saving the column indices helps future functions because we only

% have to load the index variables instead of having to load a CSV file
% and search the header.
%
%

Arguments:

% 1. preprocessing — the preprocessing method used when determining
% which csv file to use

%

% Precondtions:

% 1. Make sure the variable csv_file is the appopriate directory
% for the computer.

%

% Returns:

% 1. This function saves the column index of every HRC in a file
% called hrc_indices.mat. Every index has a unique variable
% name taken from the header of the CSV files .

% First , we load a CSV file that we can use to look up the column
% indices .

csv_dir = [pwd '/Data_Files/Dienstman_CSV_Files.’ preprocessing ’'_PP’];
csv_file = [csv_dir '//hrc_all_org_all_vent_all.csv’];
[T, col_labels] = xlsread (csv_file, '1:17);

% Next, we loop through every column and save the index number with
% a unique variable name corresponding to the HRC of that column.
for i = 1l:length(col_labels)

save_variable = [lower(col_labels{i}) ’_index’];
eval ([save_variable =~ = i;’
if i == 1
save(’ hrc_indices’, save_variable)
else
save(hrc_indices’, save_variable, ’'—append’)
end
end
end

Listing B.10: csv_logistic_coeffs.m

I

function csv_logistic_coeffs(preprocessing, type_str)
% Author: Evan Dienstman

65

% Last Update: 4/12/2017
Email: eddienstman@email.wm.edu
Note: Feel free to email me with questions! If something doesn’t
make sense, it might be because I haven’t updated the code yet.

This function creates the coefficients used in the logistic HeRO
score model. We have three sets of coefficients: all coeffs, vent
coeffs , and nonvent coeffs. Since we use a quadratic model, we would
have 666 coefficients from our 35 HRCs. However, we have hand picked
% a subset of the HRCs for the HeRO score.

%

% Arguments:

% 1. preprocessing — the preprocessing method used when determining
% which csv file to use

% 2. type_.str — a string indicating if we are calculating the

% coefficients for vent, nonvent, or all half hours

%

% Precondtions:

% 1. Make sure the file hrc_indices.mat is in the current working
% directory .

%

% Returns:

% 1. This functions saves all the coefficients in the file

% Dienstman_coeffs .mat. The file contains three vectors for the
% three sets of coefficents, three u0 values, and three

% coefficient name cells.

% First, we define some constants and variables used later. Note we are

% only picking 12 HRCs.

load ("hrc_indices .mat’)

variables = [asymmetry_1_10_.index asymmetry_1l_slope_index ...
asymmetry_2_90_index asymmetry_2_slope_index ...
asymmetry_ratio_50_index asymmetry_ratio_slope_index ...
decelerations_90_index ...
sample_entropy-10_index sample_entropy_-slope_index ...
variance_10_index variance_90_.index variance_slope_index];

model = “quadratic ’;

% Here, load the appropriate CSV file .

csv_dir = [pwd '/Data_Files/Dienstman_CSV_Files.’ preprocessing ’_PP’];
csv_file = [csv_dir ’'//hrc_all_org_-all_vent_all.csv’];
csv_matrix = dlmread(csv_file, ', , 1, 0);

% Here, we load the header and define some variables. We use the
% smallest file since all the headers are the same.

[T, variable_names] = xlsread ([csv_dir ’'//hrc_sick_org_5_vent_0.csv’'], 71:17);
% Now we create the coefficients for nonventilated , ventilated , or all
% half hours.
if strcmp(type-str, ’vent’)
csv_matrix = csv_matrix(csv_matrix (:,ventilated_index) == 1,:);
elseif strcmp(type_str, ’nonvent’)
csv_matrix = csv_matrix(csv_matrix (:, ventilated_index) == 0,:);

end

% Here, we calculate some variables we will use later. The order of
% these lines are very important because I reuse variable names. I
% do this to save memory since the matrices are very large.

N = length (variables);

sick-half_hours = csv_matrix (csv_matrix (:, health_status_index) == 1,:);
[num_sick, 7] = size(sick_half_hours);
[num_all, 7] = size(csv_matrix);
u0 = num_sick/nume_all;
healthy_half_hours = csv_matrix(csv_matrix (:,health_status_index) == 0,:);
csv_matrix = [sick_-half_hours; healthy_half_hours];
response_vector = csv_matrix (:, health_status_index);
csv_matrix = csv_matrix (:, variables);
% Before we calculate the probabilities, we remove outliers from the
% data. For the Bayesian method, removing outliers will not affect
% the results becuase outliers will have very low probabilities.
% However, we want to remove outliers for the logistic probability
% becuase we don’t want to over fit the data at the tails. For
% decelerations , we define the high_fence as 30 becuase the outlier
% method removes too much data. This procedure is strictly empircal
% and needs to be analyzied further.
for j = 1:N

variable = variables(j);

temp_data = csv_matrix (:,]);

ql = quantile (temp_data, .25);

g3 = quantile (temp_data, .75);

IQR = g3 — q1l;
low_fence = ql — 1.5xIQR;
high_fence = g3 + 1.5*%xIQR;

if variable >= decelerations_index && variable <= decelerations_90_index

temp_data(temp_data < low_fence | temp._data > 30) = NaN;

response_vector (temp_data < low_fence | temp_data > 30) = NaN;
else

temp_-data(temp_-data < low_fence | temp.data > high_fence) = NaN;

response_vector (temp_-data < low_fence | temp_-data > high_fence) = NaN;

end

csv_matrix (:,j) = temp-data;

66

97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

© WU R WN -

end

% Now we calculate the probability of illness using logistic
% regression. We use the Matlab function fitglm to calculate the

% probability. For more information, please see the Matlab

% documentation of this function.

fit = fitglm (csv_matrix, response_vector , model, ’distribution’, ’binomial’, ’VarNames’ , [
variable_names (variables), 'Health_Status’']);

coeffs = fit.Coefficients.Estimate;

coeff_names = fit.CoefficientNames ;

% Lastly , we save all the variables we need.
if strcmp(type-_str, ’vent’)
vent_coeffs = coeffs; %#Hok<«NASGU>

vent_u0 = ul;

vent_coeff_names = coeff_names;

save(’Dienstman_coeffs_vent.mat’, ’vent_coeffs’, ’'vent_u0’, ’vent_coeff_names’)
elseif strcmp(type_str, ’nonvent’)

nonvent_coeffs = coeffs;

nonvent_-u0 = ul;

nonvent_coeff_names = coeff_names;

save(’Dienstman_coeffs_nonvent.mat’, 'nonvent_coeffs’, ’nonvent_-u0’, ’nonvent_coeff_names’)
elseif strcmp(type-str, ’all’)

all_coeffs = coeffs;

all_u0 = ul;

all_coeff_names = coeff_names;

save(’Dienstman_coeffs_all .mat’, ’all_coeffs’, ’all_u0’, ’all_coeff_names’)
end
end

B.3 Time Series Figures

Listing B.11: multiple_event_fiugres caller.m

% Author: Evan Dienstman

% Date: 3/30/2016

% Email: eddienstman@email.wm.edu
%

%

> Note: Feel free to email me with questions! If something doesn’t

o make sense, it might be because I haven’t updated the code yet.
%
% This script calls the function multiple_event_figures for various
% combinations of input arguments. For each call to the function, the
% function creates a figure for the average HRC at each half hour seven
% days before an event and three days after. The figure also contains

% the average of the moving slope as well as the average 10th, 50th,
% and 90th percentiles of the HRCs. If the argument plot_str is ’yes’
% the function will also produce the same figure for each individual
% event. Only events that match the arguments target_org are used in
% the average. See the documentation of multiple_event_figures

% for more detail.

%

%

Precondtions:

% 1. Make sure the Dienstman files and storm files are

% all in their proper directories.

% 2. Make sure the files avg_hrc_values.m, event_matrix.mat,

% vent_matrix.m, one_event_hrc.m, hrc_indices .m,

% one_event_plot.m, and multiple_event_figures.m are in the

% working directory .

%

% Returns:

% 1. The script returns a figure plotting the average of each HRC
% for each half hour. The half hours plotted are ones 7 days
% before an event and 3 days after.

% 2. If plot_str is ’yes’, the function will return the same figure
% for each indiviudal event.

clear

cle

% Change the preprocessing to the one you want to use.
preprocessing = 'Abby’;
%preprocessing = ’'Doug’;

% Now we cell multiple_event_figures for different combinations of
% paramters.

multiple_event_figures (1, ’yes’ preprocessing)

s
multiple_event_figures (2, ’'yes’, preprocessing)
multiple_event_figures (3, ’'yes’, preprocessing)
multiple_event_figures (4, ’'yes’, preprocessing)
multiple_event_figures (5, ’yes’, preprocessing)
multiple_event_figures(’all’, ’yes’, preprocessing)

Listing B.12: multiple_event _fiugres.m

67

00O U R WN -

40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

78

79
80
81
82
83
84
85
86
87
88
89
90

function multiple_event_figures(target_org ,

plot_str , preprocessing)

% Author: Evan Dienstman

% Date: 3/30/2017

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t

% make sense, it might be because I haven’t updated the code yet.

%

% This function creates a figure of the average HRC at each half hour
% seven days before an event and three days after. The figure also

% contains the average of the moving slope as well as the average 10th,
% 50th, and 90th percentiles of the HRCs. If plot_str is ’yes’, the

% function will also produce the same figure for each individual event.
% Only events that match the target_org are used in the average.

%

% Arguments :

% 1. target_org — the organism number the user wants to find the

% average of (can be ’ALL’ for all orgnaisms)

% 2. plot_str — a string indicating if the user want to plot the

% indiviudal event plots

% 3. preprocessing — the preprocessing method used when determining
% which result files to use

%

% Precondtions:

% 1. Make sure the Dienstman files and storm files are

% all in their proper directories.

% 2. Make sure the files avg_hrc_vaules.m, event_matrix.mat,

% vent_matrix.m, one_event_hrc.m, hrc_indices.m, and

% one_event_plot.m are in the working directory.

%

% Returns:

% 1. The function returns a figure plotting the average of each HRC
% for each half hour. The half hours plotted are ones 7 days

% before an event and 3 days after.

% 2. If plot_str is ’yes’, the function will return the same figure
% for each indiviudal event as well.

% We first check that the save file for the average figure doesn’t

% already exist.

avg_figure_directory = [pwd ’/Figure_Files/Dienstman_Event_Figures_’ preprocessing

i

if “exist(avg-figure_-directory , ’dir’)
mkdir(avg_figure_directory)
end
avg_save_file_str = [avg_figure_directory ’'//Dienstman_figure_org_’ num2str(target_org)
if exist(avg-save_file_str , ’'file’)
disp(’Error: A file already exists with the save file name. The program stopped because
running the program would overwrite the existing file.’)
return
end
% Next, we load some files and define some variables.
load (’event_matrix.mat’);
load ('vent_matrix.mat’);
site_map_keys = {11, 13, 15, 23, 24, 26, 27, 30};
site_map_values = {'UVA’, '0d’, '0f’, *17°, ’187, ’la’, ’1b’, ’le’};
site_map = containers.Map(site_map_-keys, site_map_values);
load (["avg-hrc_values_.’ preprocessing '_PP’])
field_names = {’Asymmetry_1’, ’Asymmetry_2’, ’Asymmetry_Ratio’ ,...
’Decelerations’, Mean-RR’, ’Sample_Entropy’, ’Variance’};
hrc_types = {’’, '_10°, *_50°, .90, ’_Slope’};
vent_strs = { ’vent’, ’'nonvent’};
reverse_vent_strs = { nonvent’, ’‘vent’ }; %#Hok<«NASGU>
% Next, we preallocate some empty structures which we will use to store
% the average HRCs.
avg_hrc_struct_vent (1:482) = struct(’Ventilated’, NaN);
avg_hrc_struct_nonvent (1:482) = struct(’Ventilated’, NaN);
count_hrc_struct_vent (1:482) = struct(’ Ventilated’, NaN);
count_hrc_struct_-nonvent (1:482) = struct(’ Ventilated ’, NaN);

for i = 1l:length(field_names)
for j = 1l:length(vent_strs)
for k = 1l:length(hrc_types)
eval ([’[avg_-hrc_struct_’
NaN) ; ’
eval ([’[count_hrc_struct_’
(0):7 1)
end
end
end
% Next, we iterate through every event
for i = 1l:length(event_matrix)
id = event_matrix(i,1);
site_num = event_-matrix(i,2);
site = site_map (site-num);
gest_age = event_-matrix(i,4);

event_time
total_age

event_matrix (i,7);

vent_strs{j}

in

TON
O

field_names{i} hrc_types{k} 7]

field_names{i} hrc_types{k}

vent_strs{j}

7]

the event_matrix file.

floor (event_time /7) + gest_age;

68

’_PP/Averages’

T fig]

deal (

deal

91
92
93
94

95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

140
141

142
143

144

145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165

166
167

(\

organism = event_matrix (i,6);

ventilated = event_matrix(i,11);

birth_weight = event_matrix(i,3);

baby_info = struct(’'ID’, id, ’Site’, site, ’Event_-Time’, event_-time, 'Gest_Age’, gest_age,
Total_Age’, total_age, 'Organism’, organism, ’Ventilated , ventilated , 'Birth_-Weight ',

birth_weight);

vent_-indices = find(vent-matrix(:,1) == site_num & vent_-matrix (:,2) == id); %#ok<NODEF>
baby_vent_info = vent_matrix(vent_indices ,3:4); %#ok<+«FNDSB>

% Here, we continue only if the event matches our target organism.

if
end
end
% Here ,
% index
for i =
for
end
end

stremp (num2str (target_org), num2str(organism)) || strcmp(target_org, ’all’)
Dienstman_file = [pwd ’/Data_Files/Dienstman_Results.’ preprocessing PP/’ site ’//
Dienstman_hrc_results_.’ site ’_’ num2str(id) ’.mat’];
% Here, we stop the entire function if a file is missing.
if “exist(Dienstman_file, ’“file)
disp (['Failed: ’, site, ’ 7, num2str(id), ° files or directories do not exist.’])
continue
end
% Otherwise, we extract the info for this event.
one_hrc_struct = one_event_hrc(baby_info, baby_vent_info, Dienstman_file);
% 1f plot-str is ’yes’, we create a figure for this individual
% event .
if strcmp(plot_str, ’yes’)
one_event_figure = one_event_plot(avg_hrc_values, baby_info, one_hrc_struct);
figure_directory = [pwd '/Figure_Files/Dienstman_Event_Figures_. preprocessing ’'_PP/’
site];
if “exist(figure_directory , ’dir’)
mkdir (figure_directory)
end
save_file_str = [figure_directory ’'//Dienstman_figure_’ site ’_’ num2str(id) ’_~
num2str (round (event_time)) ’.fig '];
hgsave(one_event_figure , save_file_str , —v7.3"7)
end
% Here, we update the avg-structs. This is very dense code,
% so I apologize that it’s hard to read.
one_nonvent_indices = find ([one_hrc_struct (:).Ventilated] == 0);
one_vent_indices = find ([one_hrc_struct (:).Ventilated] == 1);
for x = 1l:length(field_names)
for y = 1l:length(vent_strs)
for z = 1l:length (hrc_types)
eval (["temp_vector = [one_hrc_struct (:). field_.names{x} hrc_types{z} ']:’])
eval (["temp_vector(one_.’ reverse_vent_strs{y} ’_indices) = NaN;'])
eval (["temp_vector = num2cell (nansum ([[avg_-hrc_struct-’ vent_strs{y} ' (:).~
field_-names{x} hrc_types{z} ’]; temp_vector]));’])
eval (["[avg_-hrc_struct_-’ vent_strs{y} ’(:).’ field_.names{x} hrc_types{z} ’'| =
deal (temp_vector{:});’])
eval (["temp_vector = +7isnan ([one_hrc_struct (:) .’ field_names{x} hrc_-types{z}
eval (["temp_vector(one_-’ reverse_vent-strs{y} ’_indices) = NaN;])
eval (["temp_vector = num2cell (nansum ([[count_hrc_struct_-’ vent_strs{y} ’(:).’
field_.names{x} hrc_types{z} ’]; temp_vector]));’])
eval (["[count_hrc_struct-’ vent_strs{y} ’(:). field_names{x} hrc_types{z} ']
= deal(temp_vector{:});’])
end
end
end
we divide by the total number of half hours used for each

to get the average.
l:length(field_-names)

j = l:length(vent_strs)

for k = 1l:length(hrc_types)

eval (["temp_avg_vector = num?2cell ([avg_hrc_struct_-’ vent_strs{j} ’(:). field_names{i}
hrc_types{k} '] ./ [count_hrc_struct-’ vent_strs{j} ’'(:). field_names{i}
hrc_types{k} '1):'])

eval (["[avg_hrc_struct_-’ vent_strs{j} ’(:).’ field_.names{i} hrc_types{k} '] = deal(
temp-avg_vector{:});’])

% Lastly , we plot and save the average figure.

avg_event_figure = one_event_plot(avg_hrc_values, count_hrc_struct_vent , avg_hrc_struct_vent ,
count_hrc_struct_nonvent , avg_hrc_struct_nonvent , target_org);

hgsave(avg_event_figure , avg_save_file_str , '—v7.3")

end

69

OO U WN -

52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73

74
75
76
s
78
79
80

Listing B.13: one_event hrc.m

function hrc_fig_struct = one_event_hrc(baby_info, baby_vent_info, Dienstman_file)
% Author: Evan Dienstman

Date: 3/30/2017

Email: eddienstman@email .wm.edu

Note: Feel free to email me with questions! If something doesn’t

make sense, it might be because I haven’t updated the code yet.

3

HRCs in each half hour seven days before and three days after a
septic event. This function also determines if each half hour is
ventilated or not ventilated. All this information is then stored

%
%
%
%
%
% This function takes a Dienstman_hrc_results file and find the
%
%
%
% in a struct.

%

%

> Arguments :
% 1. baby_.info — a struct containing the id, site, event time,
% gestational age, total age, organism, and ventilation of the
% patient
% 2. baby_vent_.info — a matrix containg the start and end times
% of each period the baby was ventilated
% 3. Dienstman_file — the Dienstman_hrc_results file containing the
% HRCs for each half hour
%
% Returns:
% 1. hrc-fig_struct — a structure containing the HRCs and
% ventilation status of each half hour seven days before the
% event and three days after the event.

% First , we define some variables.
id = baby_info.ID;

site = baby_info. Site;

event_time = baby_info.Event_Time;

num_half_hours = 482;

field_names = {’Asymmetry_1’, ’Asymmetry_-2’, ’Asymmetry_Ratio’ ,...
’Decelerations’, 'Mean.RR’, ’Sample_Entropy’, ’'Variance’};

hrc_types = {’°, .10, .50, .90, ’_Slope’};

% Next, we preallocate a struct where we wil store all the HRC info
% for seven days before the event and 3 days after the event.

hrc_fig_struct (l:num_half_hours) = struct(’ Ventilated’, NaN);
for i = 1l:length(field_names)
for j = 1l:length(hrc_types)
eval (["[hrec_fig_struct (:). field-names{i} hrc_types{j} ’| = deal(NaN);])
end

end

% Here, we calculate the time window and load in the corresponding

% result file.

event_window = (event_time —7):(1/48):(event_time+2/48+3);

load_variable = load (Dienstman_file); %#ok<NASGU>

eval_string = [hrc_results_struct = load_variable.Dienstman_hrc_.results_.’ site ’_’ num2str(id)

3
eval (eval_string);

% We now loop through every half hour in the time window and record the
% HRCs for each half hour in a struct.
for i = 1l:length(hrc_results_struct)

hrc_entry = hrc_results_struct (i);

% 1f the half hour falls within the time window, we look up the

% corresoonding half hour index and record the HRCs associated

% with that index.

if “isempty(hrc_entry.Start_-Time) && event_window (1) < hrc_entry.Start_Time && hrc_entry.
Start_Time < event_window (end)
index = find (event_window <= hrc_entry.Start_-Time, 1, ’last’);

for j = 1l:length(field_names)
for k = 1l:length(hrc_types)
variable = [field_.names{j} hrc_types{k}];
eval (["hre_fig_struct (index).’ variable ' = hrc_entry.’ variable ';’'])
end
end

% Lastly , we find the ventilation status for the half hour.
if T“isempty(find(hrc_entry.Start_-Time > baby_vent_info(:,1) & hrc_entry.Start_Time <
baby_vent_info (:,2), 1))

.

hrc_fig_struct (index). Ventilated = 1;
else
hrc_-fig_-struct (index). Ventilated = 0;
end
end
end
end
Listing B.14: one_event_plot.m
function [baby_figure] = one_event_plot(avg_hrc_values, baby_info_1, hrc_struct_-1, baby_info_-2,

hrc_struct-2 , organism) %#ok<+xINUSL>
% Author: Evan Dienstman
% Date: 3/30/2016

70

% Email :
Note:

make

3

to email
might be

free
it

Feel
sense ,

me w

This function creates a nice
three days after a septic
one for each HRC. Each
subcategory. If the figure
curve changes from dark to
ventilated , respectively.
contains a
% curves per subplot.
% representing the
% all babies for comparison.
line representing the time
used for the slope.

is

Each subp

of

Arguments:

% 1. avg_hrc_values —
sick and healthy
baby_-info_1 — a
gestational age,
patient (for
ventilated counts
hrc_strcut_-1 — a

% 2.
total

(for

or a strucute
average)

baby-info_2 — a
% counts (for
. hrc_struct_-2 —
% average HRCs (for
organism — the number

an

an

Returns:

% 1. baby_figure — a Matlab
for each HRC seven
event

% First , we load the hrc
load ("hrc_indices .mat’)
field_names = {’ Asymmetry_1~,

"Decelerations’, 'Mean-RR’,
hrc_types = {~° ’_10°, .50,

left_ylim_vector = {[0 101, [0 10], [0 10],
(-1 1],

right_ylim_vector =

{[-1 1],

nonvent_color_vector = {[135/255,

[221/255, 160/255, 221/255]
vent_color_vector = {[0, O,
[255/255, 140/255, 0],
window = 5; %#Hok <«NASGU>
avg_type = s’
index_vector = —336:145;
some information
% figure. For one event, we get
% get info on the average
if isfield (baby-info_-1, ’'ID’)
id baby-info_1.ID;
site = baby_info_1.Site;
event_time
gest_age =
total_age =
organism =
ventilated =
vent =

% Next, we get

baby_info_1.Tot

else
temp_vent_count_1 0;
temp_vent_count_2 0;
temp_-nonvent_count-1 =
temp_-nonvent_count_-2 =

0;
03
This loop calculates
calculating the
In short, we add together
across all HRCs and then
across all HRRCs. This
of how many half hours
if you don’t
for

we
i =

for j =

variable =

temp_-vent_count_-1 =
temp_-vent_count_2

eval (['nonvent_half

temp_-nonvent_count_1
temp_-nonvent_count_2

end

because I
plot
event
subplot
light
If the

light and dark curve

average HRC for
Lastly ,

the average value
half hours

structure
one event) or a
structure
before the event and three days
containing the
structure

average)
a strucute

days

indices

’Asymmetry-2 7,

128/255],
[128/255,

number

the average number
average HRC for

divide by the
number

completely undertand this
l:length (field_names)

~hour_vector =

eddienstman@email .wm. edu

ith If something doesn’t

the code yet.

questions!
haven’t updated

before and
subplots ,
each HRC
of the

or not
each plot
of ten

of the HRCs seven
for. The plot

days
contains seven
contains five curves, one for
for a single event, the color
if the baby is ventilated
figure is for an average,
for each HRC, giving a total
also contains a horizontal line

all healthy and sick half hours from
each subplot contains a vertical
the event. Note that the left y

lot

axis is

of the seven HRCs for all

event time,
of the

containing the id, site,
organism, and ventilation
structure containing the
an average)

containing the HRCs seven days

after the event (for one event)
ventilated average HRCs (for an

age ,

containing the non—ventilated

containing the non—ventilated

average)
of

the organism (for an average)

seven subplots
after a septic

figure containing the
before and three days

and define some variables.
’Asymmetry_Ratio’ ,...
>Sample_Entropy’, ’Variance’};
.90, ’_Slope’};
[0 20], [250 550], [0 1.5], [0 5]};
(-1 1], [-1 1], [-20 20], [=1 1], [=1 1]};
206/255, 250/255], [0/255, 250/255, 154/255],...
, [240/255, 230/255, 140/255], [240/255, 128/255, 128/255]};
[0, 128/255, 0], [148/255, 0, 211/255],...

0, 0]};

of the
we

for the legend in the top left
info on the baby. For averages,

of half hours used.

baby_info_1.Event_Time;
baby_info_1.Gest_Age;

al_Age;

baby_info_1.Organism;
baby_info_1.Ventilated;
[hrc_struct_1(:).Ventilated];

of half hours used when

each HRC index relative to the event.
half hours used for each index

total number of indices

just gives us a rough understanding

re used for the average so don’t worry
part .

the

l:length (hrc_types)
[field_-names{i} hrc_-types{j}];
eval ([’vent_half_hour_vector =

[baby_info_1(:).’ variable ’];])
temp_vent_count_-1 4+ sum(vent_half_hour_vector);
temp_vent_count_-2 4 length(vent_half_hour_vector);

[baby_info_2(:) .’ wvariable ']:’])
temp_nonvent_count_-1 4+ sum(nonvent_half_hour_vector);
temp_nonvent_count-2 + length(nonvent_half_hour_vector);

71

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

124
125
126
127
128

129

130
131
132
133
134
135
136

137

138
139
140
141
142

143

144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181

vent_mean_half_hours = temp_vent_count_1 / temp_vent_count_2;
nonvent_mean_half_hours = temp_nonvent_count_1 / temp_nonvent_count_2;
end

% We now start creating the figure.
baby_figure = figure(Position’, [560,50,1600,900]);
set (baby_figure , 'color ', w’);

% Here, we loop through all the subplots. Each subplot corresponds to
% one HRC and contains fives curves for each of the HRC subcategories.
% For one event, the curves will change from dark to light to
% represent ventilated and nonventilated , respectively. For an
% average, we plot ventilated and nonventilated separately for a
% total of 10 curves per subplot.
for i = 1l:length(field_names)

subplot (3,3,i+1)

hold on

for j = 1l:length(hrc_types)

variable = [field_names{i} hrc_types{j}];

% We extract the vectors for plotting here. Note that we
% smooth the vectors for plotting purposes only.
if isfield (baby-info_-1, ’'ID’)

eval ([’vent_plot_-vector = tsmovavg ([hrc_struct-1(:).’ variable ’], avg-type, window);’
eval (['nonvent_plot_vector = tsmovavg ([hrc_struct_1(:).’ variable '], avg_type, window
)i
vent_plot_vector (vent == 0) = NaN; %#ok <+AGROW>
nonvent_plot_vector(vent == 1) = NaNj;
else
eval ([’vent_plot_vector = tsmovavg([hrc_struct_1(:).’ variable '], avg_-type, window);’
eval (['nonvent_plot_vector = tsmovavg ([hrc_struct_-2 (:).’ wvariable '], avg_type, window
end
% 1f we are ploting the slope subcategory, we use a different
% y axis.
if j =5
yyaxis(left)
plot (index-vector , vent_plot_-vector, ’'—’, ’LineWidth’, 2, ’'Color’, vent-color_vector{j
plot (index_vector , nonvent_plot_vector, ’'—’, ’LineWidth’, 2, ’Color’,

nonvent_color_vector{j})

% Else, we plot all the other subcategories on the right y axis.

else
yyaxis(’ right)
plot (index_vector , vent_plot_-vector, ’'—', ’'LineWidth’, 2, *Color’, vent_color_vector{]j
plot (index_vector , nonvent_plot_vector, ’'—’, ’LineWidth’, 2, ’Color’,
nonvent_color_vector{j})
ylim(right_ylim_vector{i})
end
end
% Finally , we add more info to the subplots including a horizontal

% line for the average HRC across all half hours from all babies and
% a vertical line for the time of the event.

yyaxis(left)

ylim(left_ylim_vector{i})

hrc_index = lower ([field_.names{i} ’_index’]);

eval ([’plot (index_vector , ones(1l,length(index_vector))xavg_hrc_values(’ hrc_index),
"LineWidth’ ', 2, ’’Color’’, [0, 0, 0])'])

line ([0 0], left_ylim_vector{i}, 'Color’, [0,0,0], ’'LineWidth’, 2);

title (regexprep(field_names{i}, -7, ° ’), ’FontSize’ , 13)

xlim ([—336 145])
set (gca, 'FontSize’ , 14)
hold off

end

% Finally , we create the legend at the top left of the figure.

title_-frame = uicontrol(’'style’, ’“frame’);
set (title-frame , ’'Position’, [208, 635, 320, 195], ’BackgroundColor’, [0 0 0])
if isfield (baby_info_1, ’'ID’)
round_time = round(event_time);
baby_title_string = [~ Patient ID Number: ’ num2str(id) char(10) ...
’ Site Code: ’ site char(10) ...
Days of Age: ’ num2str(round_time) char(10) ...
Gestational Age (Weeks): ’ num?2str(gest_age) char(10) ...
Total Age (Weeks): '~ num2str(total_age) char(10)...
Organism Number: ° num2str(organism) char(10) ...
Ventilation at Event: ' num2str(ventilated) char(10) char(10) ...

’Blue: Raw, Green: 10th, Purple: 50th,’ char(10) ...
’ Orange: 90th, Red: Slope’ char(10) char(10) ...

Dark: Veniltaed , Ligth: Nonventilaed’];
else
baby_title_string = [~ Organism Number: ° num2str(organism) char(10) char(10)
(10) ...
’ Mean Num of Vent Half Hours Used: ° num2str(vent-mean_half_hours) char(10) ...

72

char

182

183
184
185
186
187
188
189

190
191

192
193

194

OO U R WN -

33

34
35
36
37
38
39
40
41
42

43

44

45

46

47

48
49
50
51
52
53
54
55

"Mean Num of Nonvent Half Hours Used: ' num2str(nonvent_mean_half_hours) char(10) char(10)

Blue: Raw, Green: 10th, Purple: 50th,’ char(10) ...

’ Orange: 90th, Red: Slope’ char(10) char(10) ...
’ Dark: Veniltaed, Ligth: Nonventilaed ’];

end

baby_-title = uicontrol(’style’, ’'text’);

set (baby_title, 'String’, baby_title_string , ’Position’, [211, 638, 314, 189], ’FontSize’ ', 9,
BackgroundColor’, [1 1 1])

axes_note_string = *All x—axes show the half hour index. Thus, there are 482 half hours
representing the 10 day window.’;
axes_note = uicontrol(’'style’, “text’);

set (axes_note , ’String’, axes_note_string, 'Position’, [520,—20,600, 50], ’'FontSize’ ', 10,
BackgroundColor’, [1 1 1])
end

B.4 Univariate PDF Figures

Listing B.15: multiple univariate pdf _figures.m

% Author: Evan Dienstman

% Last Update: 3/23/2017

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t
make sense, it might be because I haven’t updated the code yet.

%

%

% This script creates figures for the univariate PDFs of HRCs from
% various categories. For more information about the figures, please
%
%
%

see the documentation for one_univariate_pdf_figure .m.

Preconditions:

% 1. Make sure the files in file list have the correct name.

% 2. Make sure the color_list , color_name_list, and file_list

% used in one call to one_univariate_pdf_figure have the same
% length .

% 3. Make sure the file one_univariate_pdf_figure.m is in the

% current working directory .

%

% Returns:

% 1. This script will create five figures for each call to

% one_bivariate_pdf_figure. For info about where the files are
% saved , see the documentation for one_bivariate_pdf_figure.
clear

cle

% Change the preprocessing to the one you want to use.
preprocessing = 'Abby’;
% preprocessing = ’Doug’;

% First , we define the colors of the PDFs in our figure.

color_list_1 = {[0, O, 128/255], [135/255, 206/255, 250/255], [128/255, 0, O], [240/255, 128/255,
128/255]};

color_list_2 = {[0,
0], [0, 0, 0]};

color_list_-3 = 0, 0, 128/255], [128/255, 0, 0]};

o, 1], [1, 0, 0], [0, 100/255, 0], [128/255, 0, 128/255], [255/255, 165/255,

color_name_list_1 {’Dark Blue’, ’Light Blue’, ’'Dark Red’, ’'Light Red’};
color_name_list_2 {’ Blue’, ~’ Red’, 7’ Green’, ’ Purple’, ’ Orange’, ~’ Black ’ };
color_name_list_-3 = { Dark Blue’, ’Dark Red’};

% Next, we create lists of CSV files that we want to plot to the
% same figure.

file_list_-1 = { hrc_healthy_org_-1_vent_0.csv’, ’'hrc_healthy_org_l_vent_-1.csv’,
hrc_sick_-org-l_vent_0O.csv’, ’'hrc_sick_org_-l_vent_-1.csv’};

file_list_-2 = { hrc_healthy_org-2_vent_0.csv’, ’'hrc_-healthy_org_-2_vent_-1.csv’,
hrc_sick_org_2_vent_0.csv’ "hrc_sick_org_2_vent_1.csv’};

file_list_3 = { hrc_healthy_org_-3_vent_0.csv’, 'hrc_healthy_org_3_vent_1.csv’,
hrc_sick_org_3_vent_0.csv’ "hrc_sick_org_3_vent_1.csv’};

file_list_4 = { hrc_healthy_org_-4_vent_0.csv’, 'hrc_healthy_org_4_vent_1.csv’,
hrc_sick_org_-4_vent_0.csv’, ’hrc_sick_org_-4_vent_1.csv’};

file_list_5 = { hrc_healthy_org_5_vent_0.csv’, ’hrc_healthy_org_5_vent_1.csv’,
hrc_sick_.org_5_vent_0.csv’, "hrc_sick_org_5_vent_1.csv’};

file_list_6 = { hrc_sick_org_l_vent_0O.csv’, ’hrc_sick_org_-2_vent_0.c ’, ’"hrc_sick_org_-3_vent_0.

csv’, “hrc.sick_org_-4_vent_0O.csv’, ’"hrc_sick_org_5_vent_0O.csv’, "hrc_all_org_all_vent_all.csv
b

file_list_7 = { hrc_healthy_org_all_vent_0.csv’, ’hrc_sick_org_all_vent_0.csv’};

file_list_8 = { hrc_healthy_org_all_vent_1.csv’, ’hrc_sick_org_all_vent_1.csv’};

file_list_-9 = { hrc_healthy_org_-all_vent_all.csv’, ’“hrc_sick_org_-all_vent_all.csv’};

% Finally , we call one_univariate_pdf_figure for each file_list.
% Every call to one_univatiate_pdf_-figure will create five figures
% (one for each HRC subcategory). Each of the five figures will

% contain PDFs from the files in file_list.

73

’

56

57

58

59

60

61

62

63

64

one_univariate_pdf_figure(hrc_all_org_l_vent_all’, file_list_1 color_list_1

preprocessing)

color_name_list_1

one_univariate_pdf_figure(hrc_all_org_-2_vent_all’, file_list_2 , color_list_-1, color_name_list_1,
preprocessing)

one_univariate_pdf_figure(hrc_all_org_-3_vent_all’, file_list_-3 , color_list_-1, color_name_list_1,
preprocessing)

one_univariate_pdf_figure(hrc_all_org_-4_vent_all’, file_-list_-4 , color_list_-1, color_name_list_1,
preprocessing)

one_univariate_pdf_figure(hrc_all_org_5_vent_all’, file_list_5 , color_list_1, color_name_list_1,
preprocessing)

one_univariate_pdf_figure(hrc_sick_org_all_vent_0’, file_list_6 , color_list_2 , color_name_list_2 ,
preprocessing)

one_univariate_pdf_figure(hrc_all_org_all_vent_0 ', file_list_7 , color_list_-3 , color_name_list_3 ,
preprocessing)

one_univariate_pdf_figure(hrc_all_org_all_vent_1', file_list_8 , color_list_-3 , color_name_list_3 ,
preprocessing)

one_univariate_pdf_figure(hrc_all_org_all_vent_all’, file_list_9 , color_list_3 , color_name_list_3
, preprocessing)

Listing B.16: one_univariate_pdf_figure.m

function one_univariate_pdf_figure(save_file_str , file_list , color_list , color_name_list ,
preprocessing)

% Author: Evan Dienstman

% Last Update: 3/23/2017

% Email: eddienstman@email.wm.edu

% Note: Feel free to email me with questions! If something doesn’t

% make sense, it might be because I haven’t updated the code yet.

%

% This function creates univariate probability density functions (PDFs)

% for each heart rate characteristics (HRC) of each csv file given in

% the variable file_list. The PDFs are then all plotted onto one

% of five figures. Each of the five figures contains the PDFs for one

% HRC subtype (raw, 10th, 50th, 90th, and slope). One each figure,

% there are seven subplots that corresponds to the seven HRCs. Each

% subplot contains a PDF for every CSV in the variable file_list .

% There is also a text box at the top of the figrue that acts as a

% legend for each subplot. This text box also contains information

% on how many babies and half hours were used for each PDF. Note that

% for any sick categroy, we take any half hour within 24 half hours

% of an event. For any healthy cateogry, we take any half hour

% 7 days before an event or 3 days after event. If a baby never had an

% event , then all half hours are healthy. The PDFs were created using

% kernel density estimation. For more details about this method, see

% the comments in the code. Each row in the csv files corresponds to

% one half hour. Each column contains an HRC or info about the half

% hour. Different csv files contain half hours that fall into different

% cateogries from the informaiton in the category columns. If the user

% wants to graph the PDFs from differnt categories of half hours, they

% can do so by adding, removing, or changing the corresponding csv

% files in the varibale file_list .

%

% Arguments :

% 1. save_file_str — the name of the save files

% 2. file_list — the CSV files wused to make the PFDs

% 3. color_list — the RGB colors of the PDFs

% 4. color_name_list — the color names of the PDFs

% 5. preprocessing — a string indicating which preprocessing method

% to use

%

% Preconditions:

% 1. Make sure the directories and file names used in the scripts

% are the right ones for the computer you are using.

% 2. Make sure file_list , color_list , and color_name_list contain

% the same number of elements.

% 3. This script will not overwrite any existing files with the

% same name. Change the variable save_file to a name that does

% not alreadcy exist or delete the existing file with the same

% name before running this script.

%

% Returns:

% 1. This function creates five figures saved with the name given

% by the variable save_file and with the appropriate subcategory

% string at the end. The figures are saved to the directory

% given by the variable save_dir below.

% Change the directory names to match the directories on your

% computer.

csv_dir = [pwd '/Data_Files/Dienstman_CSV_Files.’ preprocessing ’'_PP’];

save_dir = [pwd ’'/Figure_Files/Dienstman_Univariate_.PDFs_’ preprocessing ’_PP’];

save_file = [save_dir ’//’ save_file_str ’.png’];

% 1f the save_dir doesn’t already exist, we make the save_dir here.

if “exist(save_dir, ’dir’)
mkdir (save_dir)

end

% If the save file already exists, we stop the program so we don’t

% overwrite the file .

if exist(save_file, “file’”)
disp (’Error: A file already exists with the save file name. The program stopped because

running the program would overwrite the existing file.’)

74

70 return
71 || end

72
73 || % Here, we define the edges used for plotting.

74N = 1e3;

75 || asyml_edges = linspace (0,10,N);

76 || asym2_edges = linspace (0,10,N);

77 || asym_-ratio_edges = linspace (0,5,N);

78 || decel_edges = linspace (0,50,N);

79 || mean_rr_edges = linspace (250,550 ,N);

80 || sampen_edges = linspace (0,1.25,N);

81 || variance_edges = linspace (0,5,N);

82 || edge_-vector = {asyml_edges, asym2_edges, asym_ratio_edges, decel_edges, mean_rr_edges,
sampen_edges, variance_edges };

83
84 || asyml_edges_slope = linspace(—5,5,N);

85 || asym2_edges_slope = linspace(—5,5,N);

86 || asym_ratio_edges_slope = linspace(—1,1,N);

87 || decel_edges_slope = linspace(—10,10,N);

88 || mean_rr_edges_slope = linspace(—50,50,N);

89 || sampen_edges_slope = linspace(—1,1,N);

90 || variance_edges_slope = linspace(—2,2,N);

91 || edge-vector_slope = {asyml_edges_slope, asym2_edges_slope, asym_ratio_edges_slope ,
decel_edges_slope , mean_rr_edges_slope, sampen_edges_slope, variance_-edges_slope};
92
93 || % These vectors are used to create the information in the boxes at
94 || % the top of the figures.

95 || baby_-count_vector = zeros(1l,length(file_list));

96 || mean_half_hour_vector = zeros(1l,length(file_list));

97

98 || % These cells are used to create the HRC names.

99 || hrc.names = {’Asymmetry_1’, ’Asymmetry_-2’, ’Asymmetry_Ratio’, ’'Decelerations’, ’Mean.RR’,
Sample_Entropy’, ’Variance’};

100 || hrc_types = {’°, *_10’, *_.50°, .90, ’_Slope’};

101

102 || % Here, we load the header. We use the smallest file since all the

103 || % headers are the same.

104 || [T, header_names] = xlsread ([csv_dir ’//hrc_sick_org_-5_vent_0.csv’'], 71:17);
105
106 || % Next, we loop through every file in file_list and make the PDFs for
107 || % each HRC of that file.

108 || for i = 1l:length(file_list)

109 csv_file = [csv_dir '//’ file_list{i}];

110 raw_data = dlmread(csv_file ,’,’,1,0);

111

112 % Next, we calculate the info that goes into the box at the top

113 % of the figure for this csv file.

114 site_.index = find (strcmp (header_names, ’Site));

115 id_index = find (strcmp (header_names, ’'ID’));

116 unique_matrix = unique(raw_data (:,[site_.index id_-index]), ’'rows’);

117 baby_count_vector(i) = length (unique_matrix);

118 mean_half_hour_vector (i) = length(raw_data)/length (unique_matrix);

119

120 % Now we can loop through every HRC and make the PDF for that

121 % HRC with the half hours of the current CSV file.

122 for j = 1l:length(hrc_names)

123

124 for k = 1l:length(hrc_types)

125 variable_name = [hrc_names{j} hrc_types{k}];

126

127 if k =5

128 edge = edge_vector_slope{j}; Y#ok<«NASGU>

129 else

130 edge = edge_vector{j};

131 end

132

133 % Next, we extrct the HRC information from the csv file.

134 column_data = raw_data (:, strcmp(header_names, variable_name));

135

136 % Here, we create the PDFs for each HRC of this file.

137 % We create PDFs using the Matlab function ksdensity ,

138 % which uses the kernel density estimation method to

139 % create the PDFs. For the kernel density estimation,

140 % we use an Epanechnikov keernel. We also allow the

141 % function to calculate the optimal bandwidth except for

142 % decelerations where we use a width of 1. At first ,

143 % we used the width the Freeman—Diaconis method produced

144 % from the organism 3 file so all the PDFs would have a

145 % consistent width. However, we believe this isn’t a

146 % propblem if all our n’s are relatively close. The

147 % input for ksdensity is a vector of one spefic type of

148 % HRC values corresponding to every half hour in the

149 % csv file. Note that since we are creating PDFs, the

150 % area underneath each curve is 1. Consequently, all

151 % the PDFs are normalized and values of the PDF can be

152 % greater than 1. For more information about the kernel

153 % density estimation, Epanechnikov kermnel function , and

154 % PDFs, see their respective wikipedia pages.

155 if “strcmp (hrc_names{j}, ’'Decelerations’) || k =5

156 eval ([variable_name ’_Prob(:,i) = ksdensity (column_data, edge, ’’kernel’’,
epanechnikov’’);’])

157 else

158 eval ([variable_name ’_Prob(:,i) = ksdensity (column_data, edge, ’’kernel’’,
epanechnikov’’, ’’width’’, 1);°

5

159
160
161
162
163
164
165
166
167
168
169

170
171
172

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224
225
226
227
228

229
230
231
232
233

W N =

end

end
end
end
% Here, we define some variables sed for plotting.
x_axis_list = {[0 10], [0 10], [0 3], [0 10], [250 550], [0 1], [0 5]};
y_axis_list = {[0 0.75], [0 0.75], [0 5], [0 0.4], [0 0.02], [0 6], [0 1.5]};
x_.axis_list_slope = {[—-2 2], [-2 2], [—-.756 .75], [-5 5], [-50 50], [—.5 .5], [—1 1]};
y-axis_list_slope = {[0 2], [0 2], [0 7.5], [0 1], [0 O0.1], [0 15], [0 4]};
title_list = { Raw HRC >, 710th Percentile ’, ’50th Percentile’, ’90th Percentile’, 'HRC Slope
s
% Finally , we plot the PDFs. We will create five figures. Each figure
% contains the PDFs of one subcategory. The subcategories are raw HRC,
10th percentile , 50th percentile, 90th percentile, and slope. Each
% figure contains seven subplots that corresponds to one specific HRC.
% On each subplot, there is a PDF for each CSV file in the variable
% file_list .
for i = 1l:length(hrc_types)
probability_figure = figure(’ Position’, [50,50,1600,900]);
set (probability_figure , 'color’,’w’);
for j = 1l:length(hrc_names)
subplot (3,3,j+1)
hold on
if i =25
x = edge_vector_slope{j}.";
else
x = edge_vector{j}.’;
end
variable_name = [hrc.names{j} hrc_types{i}];
% Here, we plot the PDFs.
for k = 1l:length(file_list)
eval (['y = ’ variable.name ’_Prob (:,k);’])
plot (x, y, ’LineWidth’, 2, ’"Color’, color_list{k})
end
if i == 5
xlim (x-axis-list_-slope{j})
ylim(y-axis_list_slope{j})
else
xlim(x_axis_list{j})
ylim(y-axis_list{j})
end
xlabel (regexprep (hrc_names{j}, -, '), 'FontSize’, 16)
ylabel ("Probability ', "FontSize’, 16)
set (gca, 'FontSize ', 16)
hold off
end
% Here, we plot the box at the top of the figure.
if length(file_list) == 6
baby_-title_string = [~ Univariate Probability Densities: ’ title_list{i}];
else
baby-title_string = [~ Univariate Probability Densities: ° title_list{i} char(10)];
end
for n = 1l:length(file_list)
file_str = file_list{n};
baby_title_string = [baby_title_string char(10) ~ ’ color_name_list{n} =~ = ~
file_str (l:end—4) char(10) ° Baby Count = ° num2str(baby_count_vector(n)) Mean
Half Hours = ’ num2str(mean_half_hour_vector(n), 4)]; %#ok<AGROW>
end
title_-frame = wuicontrol(’'style’, ’“frame’);
set (title_frame , ’Position’, [208, 635, 345, 195], ’'BackgroundColor’, [0 0 0])
baby_title = uicontrol(’style’, ’'text’);
set (baby_title, “String’, baby_title_string , ’Position’, [211, 638, 339, 189], ’'FontSize ', 8,

"BackgroundColor’, [1 1 1])

% Lastly , we save the figure.

print (probability_figure , [save_file (l:end—4) lower (hrc_-types{i}) ’.png’'], ’—dpng’)
end
end

B.5 Univariate Risk Figures

Listing B.17: multiple univariate risk figures.m

% Author: Evan Dienstman
% Last Update: 3/31/2017
% Email: eddienstman@email.wm.edu

76

35

36

37

38

39

40

41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

© O TR WN -

% Note: Feel free to email me with questions! If something doesn’t

% make sense, it might be because I haven’t updated the code yet.

%

% This script creates figures for the univariate risks of HRCs from

% various categories. For more information about the figures , please
% see the documentation for one_univariate_-risk_figure .m.

%

% Preconditions:

% 1. Make sure the files in file list have the correct names.

% 2. Make sure the file one_univariate_risk_figure.m is in the

% current working directory .

% 3. Make sure to select the appropriate preprocessing below.

%

% Returns:

% 1. This script will create one figure for each call to

% one_bivariate_pdf_figure. For info about where the files are
% saved , see the documentation for one_univariate_risk_figure.
clear

cle

% Change the

preprocessing to the one you

want to use.

preprocessing = 'Abby’;

% preprocessing = ’Doug’;

% First , we define different lists of CSV files.

file_list_0 = { hrc_sick_org_all_vent_all.csv’, "hrc_healthy_org_all_vent_all.csv’};

file_list_1 = { hrc_sick_org_all_vent_0.csv’, ’hrc_healthy_org_all_vent_0.csv’};

file_list_2 = { hrc_sick_org_all_vent_1.csv’, ’hrc_healthy_org_all_vent_1.csv’};

file_list_3 = { hrc_sick_org_-1l_vent_0.csv’, 'hrc_sick_org_-2_vent_0.csv’, ’'hrc_sick_org_ALL_vent_0.
csv '}

file_list_4 = { hrc_sick_org_l_vent_0O.csv’, ’hrc_sick_org_-3_vent_O.csv’, ’hrc_sick_org_.ALL_vent_0.
csv '}

file_list_5 = { hrc_sick_org_-l_vent_0O.csv’, ’hrc_sick_org_-4_vent_O.csv’, ’hrc_sick_org-ALL_vent_0.
csv '}

file_list_6 = { hrc_sick_org_-l_vent_0O.csv’, "hrc_sick_org_5_vent_0.csv’, ’"hrc_sick_org_ALL_vent_0.
csv '}

file_list_-7 = { hrc_sick_org_-2_vent_0.csv’, ’“hrc_sick_org_-3_vent_-0.csv’, ’"hrc_sick_org_ALL_vent_0.
csv '}

file_list_-8 = { hrc.sick_org-2_vent_0.csv’, “hrc_sick_org_-4_vent_-0.csv’, ’hrc_sick_org-ALL_vent_0.
csv '}

file_list-9 = { hrc-sick_-org-2_vent_0.csv’, ’“hrc_sick_org_-5_vent_-0.csv’, ’hrc_sick_org-ALL_vent_0.
csv '}

file_list_10 = { hrc_sick_org_3_vent_0.csv’, ’hrc_sick_org_-4_vent_0.csv’ >hre_sick_org_ALL_vent_0
.csv '}

file_list_11 = { hrc_sick_org_3_vent_0.csv’, ’hrc_sick_org_5_vent_0.csv’ >hrec_sick_org_ALL_vent_0
.csv '}

file_list_12 = { hrc_sick_org_4_vent_0.csv’, ’"hrc_sick_org_5_vent_0.csv’ "hrc_sick_org_ALL_vent_0
.csv '}

% Next, we call one_univariate_risk_figure for eacg file_list above.

one_univariate_risk_figure (file_list_0 ,
one_univariate_risk_figure (file_list_1
one_univariate_risk_figure (file_list_2
one_univariate_risk_figure (file_list_3
one_univariate_risk_figure (file_list_4
one_-univariate_risk_figure (file_list_5 ,
one_-univariate_risk_figure (file_-list_6 ,
one-univariate_risk_figure (file_-list_7 ,

>

,

s
s
s
s

one_-univariate_risk_figure (file_list_8
one_univariate_risk_figure (file_list_9
one_univariate_risk_figure (file_list_10
one_univariate_risk_figure (file_list_11
one_univariate_risk_figure (file_list_12

preprocessing)
preprocessing)
preprocessing)
preprocessing)
preprocessing)
preprocessing)
preprocessing)
preprocessing)
preprocessing)
preprocessing)
, preprocessing)
, preprocessing)
, preprocessing)

Listing B.18: one_univariate_risk_figure.m

function one_univariate_risk_figure(file_list ,

% Author: Evan Dienstman

preprocessing)

% Last Update: 3/31/2017

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t

% make sense, it might be because I haven’t updated the code yet.

%

% This script creates univariate risk figures for each heart rate

% characteristics (HRC) using the CSV files in file_list. If there are
% two files in file_list then the risk is defined as risk of file_1
% relative to file_-2. If there are three files in file_list , then the
% risk is defined as file_1 relative to file_3 divided by file_2

% relative to file_3. For a further explanation of how we define risk,
% see the documentation of one_risk_matrix. The risks are then all

% plotted onto one figure. There are seven subplots in the figure ,

% one for each HRC category, and each subplot has a curve that

% corresponds to one of the risks for that HRC category. For example,
% one subplot will have the risk curves for variance, variance_slope,
% variance_10, etc. There is also a text box at the top of the figrue
% that acts as a legend for each subplot. This text box also contains
% information on how many babies and half hours were used when

% calculating the risks. Note that for any sick categroy, we take any
% half hour within 24 half hours of an event. For any healthy cateogry,
% we take any half hour 7 days before an event or 3 days after event.
% 1f a baby never had an event, then all half hours are healthy.

7

26 || %
27 || % Arguments:

28 || % 1. file_list — the list of csv_files for calculating the risk

29 || % 2. preprocessing — a string indicating which preprocessing method
30 || % to use

31 || %

32 || % Preconditions:

33 || % 1. Make sure the directories and file names used in the scripts
34 || % are the right ones for the computer you are using.

35 || % 2. Make sure the files one_risk_matrix.m, one_porb_matrix.m,

36 || % and bin_width_maker.m are in the working directory.

37 || % 3. The variable file_list can only contain 2 or 3 files.

38 || % 4. This script will not overwrite any existing files with the
39 || % same name. Change the variable save_file to a name that does
40 || % not alreadcy exist, or delete the existing file with the same
41 || % name before running this script.

42 || %

43 || % Returns:

44 | % 1. This function returns a figure saved with the name given by
45 || % the variable save_file that shows the univariate risks

46 || % relative to the files in wvariable file_list for each HRC.

47

48 || % Change the directory names to match the directories on your

49 || % computer. Furthermore, change the save file name to the name you want
50 [| % the save file to be.

51 || save_file_str = [file_list {1}(l:end—4) *_vs_’ file_list {2}(1l:end—4)];

52 || csv_dir = [pwd ’/Data_Files/Dienstman_CSV_Files.’ preprocessing '_PP’];

53 save_dir = [pwd ’'/Figure_Files/Dienstman_Univariate_Risks_’ preprocessing '_PP’];
54 || save_file = [save_dir ’// save_file_str ' .png’];

55

56 || % If the save_dir doesn’t already exist, we make the save_dir here.

57 || if “exist(save_dir, ’dir’)

58 mkdir (save_dir)

59 || end

60

61 || % If the save file already exists, we stop the program so we don’t
62 || % overwrite the file.

63 || if exist(save_file, “file’)

64 disp (’Error: A file already exists with the save file name. The program stopped because
running the program would overwrite the existing file.’)

65 return

66 || end

67

68 || % These vectors are used to create the information in the boxes at
69 || % the top of the figures.
70 ||N = length(file_list);

71 || baby_count_vector = zeros(l, N);

72 || mean_half_hour_vector = zeros(1l, N);

73

74 || % Here, we define the HRC names.

75 || hrc.names = {’Asymmetry_1’, ’Asymmetry_-2’, ’Asymmetry_Ratio’, ’'Decelerations’, ’Mean.RR’,
Sample_Entropy’, ’Variance’};

76 || hrc_types = {7, *_10°, *_50", "_.90°, ’~_Slope’};

77| x-axis_list = {[0 10], [0 10], [0 5], [0 50], [250 600], [0 1.5], [0 5]};

78 || x-axis_list_slope = {[-5 5], [-5 5], [-1 1], [—10 10], [—=50 50], [—1 1], [—2 2]};

79 || x-axis_plot = {[—-2.5 10], [—-2.5 10], [—-1 4], [—10 35], [—-60 560], [—0.5 1.25], [—1 4.5]};

80

81 || % We take the header of one CSV file so we can look up the index of
82 || % each HRC based on the string name.

83 || [T, header_-names] = xlsread ([csv_dir ’// file-list {1}], *1:17);
84 || site_index = find (strcmp (header_names, ’'Site’));

85 || id_index = find (strcmp (header_names, 'ID’));

86

87 || % Next, we loop through every file in file_list and extract the
88 || % necessary info.
89 || for i = 1:N

90 csv_file = [ecsv_dir '//’ file_list{i}];

91 raw_data = dlmread(csv_file ,’,’,1,0);

92 unique_matrix = unique(raw_data (:,[site_.index id-index]), ’'rows’);
93 baby_count_vector(i) = length (unique_matrix);

94 mean_half_hour_vector (i) = length(raw_data)/length (unique_matrix);
95 eval (['raw_data_’ num2str(i) ’ = raw_data;’])

96 || end

97

98 [| % Next, for each HRC, we calculate the risk. For a complete explanation
99 || % on row to calculate the risk, see the documetation for

100 || % one-risk_-matrix .m.
101 || for i = 1:length (hrc_.names)

102

103 for j = 1l:length(hrc_types)

104 variable_name = [hrc.names{i} hrc_types{j}];

105 variable_index = find (strcmp(header_.names, variable_name)); %#ok<#+NASGU>
106

107 it j =5

108 xmin = x_axis-list{i}(1);

109 xmax = x-axis-list{i}(2);

110 else

111 xmin = x_axis_list_slope{i}(1);

112 xmax = x-axis_list_slope{i}(2);

113 end

114

115 if N ==

116 eval (['[’ variable_name ’_Risk ’ variable_name ’'_Points]| = one_risk_matrix(

preprocessing , variable_index , xmin, xmax, raw.data_-1l, raw_-data-2);’])

78

117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188

189
190
191
192

Ut W N

else
eval ([’[’ variable_name ’_Risk ° variable_name ’'_Points]| = one_risk_matrix(

preprocessing , variable_index , xmin, xmax, raw._data_l, raw_data_-2, raw._data_-3);’])

end
end
end

% Lastly , we graph the risks.

color_list = {[0 O 1], [0 1 O], [1 O O], [0 1 1], [1 O 1]};
color_name_list = {'Blue’, 'Green’, 'Red’, ’'Cyan’, ’Magenta’};
title_str = {’Raw’, '10°, ’'50°, ’'90°, ’Slope’};
probability_figure = figure(’ Position’, [50,50,1600,900]);

set (probability_figure , "color’,’'w’);

% Each subplot corresponds to one specific HRC type. On each subplot,
% there are five curves representing the ricsk for each type of HRC
% (raw, slope, 10, 50, and 90).

for i = 1l:length(hrc_names)
subplot (3,3,i+1)
hold on
for j = 1l:length(hrc_types)
variable_name = [hrc_names{i} hrc_types{j}];
eval (['x = ° variable_name ’'_Points;])
eval (['y = ' variable_name ’_Risk;’])
plot(x, y, ’LineWidth’, 2, ’'Color’, color_list{j})
end

xlim (x_axis_plot{i})
vliim([-2 2])

plot (linspace (x_-axis_plot{i}(1), x-axis_plot{i}(2), 100), zeros(1,100), '— , ’Color’,
[0,0,0], ’LineWidth ', 1);

xlabel (regexprep (hrc_names{i}, -, '), "FontSize’, 16)

ylabel ("Risk’, ’"FontSize’, 16)

set (gca, 'FontSize’ ', 16)

hold off

end

% Here, we plot the box at the top of the figure.

if stremp(file_list {1}, "hrc_sick_org_all_vent_all.csv’)
baby_title_string = [~ Univariate Risks: ° char(10) ...
’ > file-list {1}(l:end—4) ° vs. ° file_list {2}(l:end—4) char(10) ° '];
for n = 1l:length(hrc_types)
baby_title_string = [baby_title_string color_name_list{n} ° = °~ title_str{n} ’; ’]; %#Hok<x
AGROW>
end
for n = 1l:length(file_list)
file_str = file_list{n};
baby_title_string = [baby_title_string char(10) char(10) ...
! file_str (1:end—4) char (10) ...
Baby Count = ° num2str(baby_count_vector(n)) ’, Mean Half Hours =
num2str(mean_half_hour_vector(n), 4)];
end
else
baby_title_string = [~ Univariate Risks: ° char(10) ...
’ > file-list {1}(l:end—4) ° vs. ° file_list {2}(l:end—4) char(10) ° '];
for n = 1l:length(hrc_types)
baby_title_string = [baby_title_string color_name_list{n} ° = ° title_str{n} ’; ’];
end
for n = 1l:length(file_list)
file_str = file_list{n};
baby_title_string = [baby_title_string char(10) char(10) ...
! file_str (1:end—4) char(10) ...
Baby Count = ' num2str(baby_count_vector(n)) ’, Mean Half Hours =
num2str(mean_half_hour_vector(n), 4)];
end
end
title_-frame = wuicontrol('style’, ’“frame’);
set (title-frame , ’'Position’, [208, 635, 345, 195], ’BackgroundColor’, [0 0 0])
baby_-title = uicontrol(’style’, ’'text’);
set (baby_title, 'String’, baby-title-string , ’Position’, [211, 638, 339, 189], ’FontSize’ ', 8,
BackgroundColor’, [1 1 1])
% Finally , we save the figure.
print (probability_figure , save_file, ’'—dpng’)
end
Listing B.19: one_risk matrix.m
function [risk, points, P_sigs_given_group-1, P_sigs_given_group-2] = one_risk_matrix (
preprocessing , variables, xmin, xmax, half_hours_group_-1, half_hours_group-2,
half_hours_group-3)
% Author: Evan Dienstman
% Last Update: 3/31/2016
% Email: eddienstman@email .wm.edu
% Note: Feel free to email me with questions! If something doesn’t

79

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

make sense, it might be because I haven’t updated the code yet.

%

%

% This function calculates the risk of being in different groups given
% one or two HRC signals. The function calcualtes the risk over many

% differnt values of the signals. The exact definition of risk is

% defined in the function. We calculate the risk using the data

% provided in the ”half_hours_group” arguments. The specific HRC values
% in question are determined by the argument ”variables”. The function
% determines which HRC values used for the risk calculation.

% Thus, the user cannot query specific values to get their risks.

%

% Arguments:

% 1. preprocessing — a string indicating which preprocessing method
% to use

% 2. variables — a vector of number(s) that indicate which HRC

% signal(s) to use when calculating the risk

% 3. xmin — the minimum HRC value to evaluate the risk at

% 4. xmax — the maximum HRC value to evaluate the risk at

% 5. half_hours_group-1 — the HRC data for group 1 (most likely the
% sick hlaf hours or sick organism x half hours)

% 6. half_hours_group-2 — the HRC data for group 2 (most likely the
% healthy half hour group)

% 7. half_hours_group-3 — the HRC data for group 3 (most likely the
% sick organism y group)

%

% Precondtions:

% 1. Make sure the files one_porb_matrix.m hrc_indices.m, and

% bin_width_ma.m are in the working directory.

%

% Returns:

% 1. risk — the risk at each value in the meshgrid (or vector for
% for one signal) of the vairbale ”points”

% 2. points — the matrix (or vector for one signal) of various

% HRC values for the signal(s) specified where the meshgrid of
% the rows in ”points” correspond to the location of each ”"risk”
% value

% 3. P_sigs_given_group-1 — the probability at each value in the

% meshgrid of the vairbale ”points” for the signal(s) given

% group 1

% 4. P_sigs_given_group-2 — the probability at each value in the

% meshgrid of the vairbale ”"points” for the signal(s) given

% group 2

% Frist , we calculate the number of half hours we have.
num_half_hours_group_-1 = length(half_hours_group-1);
num_half_hours_group-2 = length(half_hours_group-2);

total_half_hours = num_half_hours_group-1 + num_half_hours_group-2;

% Next, we find the probability of being in group 1, probability of

% being in group 2, probability of getting various signals given

% group 1, probability of getting various signals given group 2, and

% probability of getting various signals. Notice that P_group-1 and
% P_group-2 are numbers while the other probabilities are matrices.
% The mesh grid of the rows in ”points” indicate the signal values(s)

% of the probability matrices.

P_group-1 = num_half_hours_group-1/total_half_hours;

P_group-2 = num_half_hours_group-2/total_half_hours;

[P_sigs_given_group-1, points] = one_prob_matrix(variables, half_hours_group-1,
preprocessing) ;

xmin, xmax,

P_sigs_given_group-2 = one_prob_matrix(variables, half_hours_group-2, xmin, xmax, preprocessing);

P_sigs = P_sigs_given_group-1 .x P_group-1 4+ P_sigs_given_group-2 .x P_group.-2;

% We define the risk in two different ways depending on if we are
% comparing sick to healthy half hours or sick organism x to sick
% organism y half hours.

if “exist(’half_hours_group-3’, ’var’)

% Here, we define the risk for comparing sick half hours to

% healthy half hours. Note that the sick half hours can be either

% group 1 or group 2, but generally we will use group 1 for the

sick half hours. Therefore, values above 0 indicates the patient

is more likely to be sick. We also remove any risks at points

where the probabilites used to calculate the risk is very small

% (corresponding to little data).

risk = log(P_sigs_given_group-1 ./ P_sigs);

risk (P_sigs_given_group-1 < 0.001 & P_sigs_given_group-2 < 0.001) = NaN;

N

AR

else

% Here, we define the risk for comparing sick organism x to sick

% organism y. In short, we first calcualte the risk of sick

% organism x to healthy and sick organism y to healthy. Afterwards,
% we take the ratio of these two risks to get a new risk. Thus, we
% can interpret values above 0 as more likely to be sick from

% organism x and values below zero as more likely to be sick from

% organism y. Again, we remove risks at points where the

% probabilites are very small.

num_half_hours_group-3 = length (half_hours_group-3);

total_half_hours_.new = num_half_hours_group-3 + num_half_hours_group-2;

P_group-3 = num_half_hours_group-3/total_half_hours_new;

P_group-2_new = num-_half_hours_group-2/total_half_hours_new ;

P_sigs_given_group-3 = one_prob_matrix(variables, half_hours_group-3, xmin, xmax,
preprocessing) ;

P_sigs_given_group-2_new = one_prob_matrix(variables, half_hours_group-2, xmin, xmax,

80

98
99
100
101
102
103

104
105

© WU A WN -

preprocessing);

P_sigs_.new = P_sigs_given_group-3 * P_group-3 + P_sigs_given_group-2_new x P_group-2_new;

riskl = P_sigs_given_group-1./P_sigs;
risk3 = P_sigs_given_group-3./P_sigs_new;
risk = log(riskl./risk3);

risk((P_sigs_given_group-1 < 0.001 & P_sigs_given_group-2 < 0.001) | (P_sigs_given_group-3 <

0.001 & P_sigs_given_group-2_new < 0.001)) = NaNj;

end
end
Listing B.20: one_prob_matrix.m
function [prob, points] = one_prob_matrix(variables , data_matrix, xmin, xmax, preprocessing)

% Author: Evan Dienstman

% Last Update: 3/31/2016

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions!

%

% This function calculates the probability of getting various HRC

% values using the data provided in ”"data_-matrix”. The function
% determines which HRC values used for the probability calculation.
% Thus, the user cannot query specific values to get their probability.
%

%

The specific HRCs in question are determined by the argument

» » »

variables The argument variables” can only contain one or two

% numbers corresponding to the probability of HRC X or the bivariate
% probability of HRC X and HRC Y. To calculate the probability , we use
% kernel density esimation to get a PDF, and then we integrate the PDF
% over a binwidth to get the probability.

%

% Arguments:

% 1. variables — a vector of number(s) that indicate which HRC

% signal(s) to use from data_matrix

% 2. data_matrix — the data used to calculate the probabiliy of
% various values of the HRC signal(s) specified

% 3. xmin — the minimum HRC value to evaluate the probability at
% 4. xmax — the maximum HRC value to evaluate the probability at
% 5. preprocessing — a string indicating which preprocessing method
% to use

%

% Precondtions:

% 1. The Matlab function ksdensity for bivaraite PDFs only works
% on Matlab 2016 or later.

% 2. Make sure the file hrc_.indices.m and bin_widths.m are in the
% working directory .

%

% Returns:

% 1. prob — the probability at each value in vairbale ”points”

% 2. points — the matrix (or vector from one signal) of various HRC
% values for the signal(s) specified where the meshgrid of the
% rows in ”points” correspond to the location of each ”prob”
% value

% First, we load the binwidths we use for the bandwidth of ksdensity and
% when intergrating the PDF to calculate the probabilitty. For more

% information of how we calculate the binwidth, please see the

% documentation for csv_bin_widths.m.

load (["bin_widths_’ preprocessing ’'_PP.mat’]);

load ("hrc_indices .mat’)

% We must split up the function into two cases: 1) when we want the
% probability given two signals and 2) when we want the probability
% given one signal.

if length(variables) == 2
% Here, we find the probability for a matrix of (x,y)—points given
% two HRC signals. We use N = 32 because a 32x32 matrix gives us a
% good plot for not too much computation time.
N = 32;
% Next, we prepare the data for the ksdensity function.
varl = variables (1);
var2 = variables (2);
x-points = linspace (xmin(1), xmax(1l), N);
y-points = linspace (xmin(2), xmax(2), N);
points = [x_points; y_points];
[X, Y] = meshgrid(x-points, y-points);
datal = data_matrix (:,varl);
data2 = data_matrix (:,var2);

prob = zeros (N,N);

% Here, we visit each point the the matrix one by one and the
% calculate the probability around that point.
for i = 1:N

for j = 1:N
x = X(i,j);
y =Y(i,j);
local_x_points = [x—0.5%bin_widths(varl) x+40.5%*bin_widths(varl)];

81

80
81
82
83
84
85
86
87
88
89
90
91
92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

© WD U A WN -

local_y_points = [y—0.5%bin_widths(var2) y+4+0.5%*bin_widths(var2)];
[local_-X , local_-Y] = meshgrid(local_x_points , local_y_points);

% Next, we calculate the bivariate PDF using the Matlab

% function ksdensity. We do not let ksdensity pick an

% optimal bandwidth because the bandwith for

% decelerations should be 1. Since there is no way to set

% the bandwidth for decelerations as 1 and generate the

% other bandwith automatically , we simply use our binwidths

% as the bandwidth. We also use the Epanechnikov kernel.

% For more information on kernel density estimation, please

7 refer to its Wikipedia page.

p = ksdensity ([datal data2], [local_X (:) local_Y (:)], ’'kernel’, ’epanechnikov
’, [0.5%bin_widths(varl) 0.5xbin_widths(var2)]);

p = reshape(p, size(local_-X));

X

Finally , we integrat the PDF to get the probability in a

% certain area. Notice that we use our binwidth for the

% local_x_points and local_y_points. Thus, when we

integrate , we expect a value close to the true

probability in that area.

prob(i,j) = trapz(local_y_points , trapz(local_x_points ,p,2));

3

X

end
end

else

% Here, we find the probability for a vector of x—points given one
% HRC signal. The x—point vector is defined below. Note that each
% x—point is one ”"width” apart. The importance of this feature

% is explained below.

data = data_matrix (:,variables);

x_points = (xmin:bin_widths(variables):xmax) . ;

points = x_points (2:end) — 0.5*bin_widths(variables);

N = (length(x_-points)—1);

prob = zeros (N,1);

% Next, we calculate the PDF using the Matlab function ksdensity.

% Here, we let ksdensity chose the optimal bandwidth except for the

% case of decelerartions where the width should be 1. We also use

% the Epanechnikov kernel. For more information on kernel

% density estimation, please refer to its Wikipedia page.

if variables >= decelerations_index && variables <= decelerations_90_.index
p = ksdensity (data, x_points, ’'kernel’, ’epanechnikov’, ’“width’, 1);

else
p = ksdensity (data, x_points, ’kernel’, ’epanechnikov’);

% Next, we intergrate the PDF over a standrad bandwidth to get the
% probabilities around certain points. We use a slightly
% different width then what ksdensity chose above so all the
% vectors for like HRC’s contain the same number of points.
% In this manner, we can add these vectors later in
% one_risk_matrix (). Also, since we step by a ”width” in the
% x—points vector, integrating between consecutive points will give
% us a probability around the points close to the true value.
for i = 1:N
prob(i) = trapz ([x-points (i) x-points(i+1)], [p(i) p(i+1)]);

end
end

i

>width

B.6 Bivariate PDF Figures

Listing B.21: multiple bivariate_pdf figures.m

% Author: Evan Dienstman

% Last Update: 3/31/2016

% Email: eddienstman@email.wm.edu

% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.
%

% This script calls the function one_bivariate_pdf_maker using

% different combinations of csv files. Each call to the function is
% responsible for one figure found in the folder

% Dienstman_Bivariate_.PDFs. For more information on what is in these
% figures and how they were created, see the documentations for

% one_bivariate_pdf_maker.

%
% Preconditions:

% 1. Make sure the files one_bivariate_pdf_figure.m, hrc_indces,
% and bin_width.m are in the working directory .

% 2. Make sure to select the proper preprocessing method below.
%

%

Returns:

% 1. This function creates one figure for every call to
% one_bivariate_pdf_figure saved in the folder

82

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48

49

50

51

52

53

54

55

56

57

58

OO0~ U WN -

% Dienstman_bivariate_PDFs.

clear
cle

% Change the variable
% used to make the CSV files
% bivariate PDFs.

preprocessing =
© preprocessing =

% These are the column
% making different bivariate PDFs.
% different HRC. Change these
% Note that we only
% would create too many bivariate
% asymmetry 1, and asymmetry 2 for
load (' hrc_indices .mat’)

variables = [variance_index

% Here, we call
% of CSV files .
% figures saved in the folder
% CSV files you pass into the
one_bivariate_pdf_figure(variables ,
.csv’, preprocessing)
one_bivariate_pdf_figure(variables ,
', preprocessing)
one_bivariate_pdf_figure(variables ,
', preprocessing)
one_bivariate_pdf_figure(variables ,
preprocessing)
one_bivariate_pdf_figure(variables ,
preprocessing)
one_bivariate_pdf_figure(variables ,
preprocessing)
one_bivariate_pdf_figure(variables ,
preprocessing)
one_bivariate_pdf_figure(variables ,
preprocessing)
one_bivariate_pdf_figure(variables ,
preprocessing)
one_bivariate_pdf_figure (variables ,
preprocessing)
one_bivariate_pdf_figure(variables,
preprocessing)
one_bivariate_pdf_figure(variables,
preprocessing)
one_bivariate_pdf_figure(variables ,
preprocessing)

preprocessing to match the
that you will

numbers of the CSV files
Each column
numbers
use the raw HRCs because
PDFs.
the same

one_bivariate_pdf_maker
The function one_bivariate_pdf_-maker
Dienstman_Bivariate .-PDFs
function .

’hrc_healthy_org-all_vent_all.csv’

preprocessing method

use below to create the

we will use when
corresponds to a
wish to use other HRCs.
including all
also don’t use mean RR,
reason .

if you

We

different combinaitons
will create the
using the two

with

hrc_healthy_org_all_vent_1.
’hrc_healthy_org_all_vent_0.

>hrc_sick_org_-1l_vent_0.csv’,

subcategories

’

hrc_sick_org_all_vent_1

’hrc_sick_org_all_vent_O .

sample_entropy-index asymmetry_ratio_index decelerations_index];

’hrc-sick_-org_-all_vent_all

.csv

"hrc_sick_org_-2_vent_0.csv’,

’hrc_sick_org_-1l_vent_0.csv’, ’hrc_sick_org_-3_vent_0.csv’,
’hrc_sick_-org_-1l_vent_0.csv’, ’hrc_sick_org_-4_vent_0.csv’,
"hrc_sick_-org-1l_vent_-0.csv’, ’hrc_.sick_org_-5_vent_0.csv’,
"hrec-sick-org-2_vent_-0.csv’, ’hrc_.sick_-org_-3_vent_-0.csv’,
>hrec-sick-org-2_vent-0.csv’, ’hrc_.sick_-org-4_vent_-0.csv’,
’hrc_sick-org-2_vent_-0.csv’, ’hrc_.sick_org_-5_-vent_0.csv’,
’hrc_sick_org_-3_vent_0.csv’, ’hrc_sick_org_4_vent_0.csv’,
’hrc_sick_org_-3_vent_0.csv’, ’hrc_sick_org_5_vent_0.csv’,
’hrc_sick_org_-4_vent_0.csv’, ’hrc_sick_org_5_vent_0.csv’,

Listing B.22: one_bivariate_pdf_figure.m

function one_bivariate_pdf_figure(variables ,

Author: Evan Dienstman
Last Update: 3/31/2016
Email: eddienstman@email .wm.edu
Note: Feel free to email
% make sense, it might be because

% This function creates bivariate
% for certain combinations
% The PDFs are then all
% in the figure , one for
% ”variables”, and each
% and file2. Note that
% four indices (making
% only up to make
% of the figrue that
% any sick categroy ,
% and for any healthy
% event or 3 days after an event.
% density estimation. For more
% comments in the code.
%
%

each
subplot

six

set six subplots.
acts as
we take

cateogry ,

Arguments:
% 1. variables — the
% when making the
filel — the first file to
% each combination of the
file2 — the
% each combination of the
. preprocessing — the
% which CSV files to use
% Preconditions:

% 1. The Matlab function
% on Matlab 2016 or later.
% 2. Make sure the directories
% are the right ones for
This script will
% same name.

me with questions! If
I haven’t updated the code yet.

probability density functions
of two heart
plotted onto one
combination of HRCs
two PDFs that

»

has
the argument
combinations) becuase
There is
a legend for
a period
we take a preriod of 7 days
The PDFs
details

six column numbers
bivariate PDFs

calculate
indices
calculate
indices
preprocessing

second file to

ksdensity

and file
the computer
not overwrite any existing
Change the wvariable

filel , file2 ,

something doesn’t

rate characteristics
figure. There are
in the
corresponds to
must contain exactly
that the figure is
subtitle
Note that for
from an event
before
using kernel
method, see the

(HRCs) .

six

variables”

also a
each subplot.
of 24 half hours
are created
about this

from the CSV files to use
the
in variables

the bivariate PDFs of
in variables
method used when

for bivaraite PDFs only works
names used in the
you are using.
files with the
to a name that does

scripts

save_file

83

(PDFs)

and

bivariate PDFs of for

subplots
input argument
filel

at the top

for

determining

preprocessing)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129
130

% not already exist, or delete the existing file with the same

% name before running this script.

% 4. Make sure the file bin_widths.m is in the working

% directory .

% 5. The input argument ”variables” must contain exactyl four

% indices .

%

% Returns:

% 1. This function returns a figure saved with the name given by
% the variable save_file that shows the bivariate PDFs for each
% combination of HRCs in variables for filel and file2.

% Change the directory names to match the directories on your

% computer. Furthermore, change the bin width file name to the name of
% the file already on your computer and change the save file name to
% the name you want the save file to be.

csv_dir = [pwd '/Data_Files/Dienstman_CSV_Files.’ preprocessing ~_PP’];
save_dir = [pwd ’'/Figure_Files/Dienstman_Bivariate.PDFs_’ preprocessing '_PP’];
save_file = [save_dir ’//’ filel (l:end—4) ’'_vs_.’ file2 (l:end—4) ’~.png’];
bin_width_file = [’bin_widths_.’ preprocessing ’'_PP.mat’];

% 1f the save_dir doesn’t already exist, we make the save_dir here.
if “exist(save_dir, ’dir’)

mkdir (save_dir)
end

% 1f the save file already exists, we stop the program so we don’t
% overwrite the file .

if exist(save_file, ’file’)
disp(’Error: A file already exists with the save file name. The program stopped because
running the program would overwrite the existing file.’)
return
end

% Here, we prepare the title for our figure by using the names from
% the csv files given.

title_name_1 = filel (1l:end—4);

title_name_-1 = regexprep (title_name_1, °~_’, s

title_name_-2 = file2 (l:end—4);
title_name_-2 = regexprep (title_name_-2, °~_’,)

% Here, we open up the CSV files. Change the file name to match the
% location of the file on your computer.

raw_data_l = dlmread ([csv_dir *//’° filel], ', , 1, 0);

raw_data_2 = dlmread ([csv_dir ’//’ file2], ', , 1, 0);

% Next, we load in the bivariate bin widths used for smoothing and
% creating the edges for the PDFs.
load (bin_width_file)

% Here, we load the header. We use the smallest file since all the
% headers are the same.

[T, variable_names] = xlsread ([csv_dir ’'//hrc_sick_org_5_vent_0.csv’'], 71:17);
% We use N = 32 because a 32x32 matrix gives us a good plot for not too

% much computation time.

N = 32;

% Next, we loop through each plot for each file (six plots for two

% files for a total of 12 plots) and create the bivariate PDFs for each
% plot .

for i = 1:12

% If i <= 6, we are plotting the first file s PDFs. Else, we are

% plottting the second file ’s PDFs.

if i <=6
raw_data
plot_num

raw_data_1;
i;

else
raw_data = raw_data_-2;
plot-num = i — 6;
end
% 1f i == 1, we create the figure and the title for the figure.
if i =1
hist_fig = figure(’ Position’, [50,50,1600,900]);
set (hist_fig , "color’, 'w’);
title_string = [’Bivariate Probability Densities: ’ title_name_1 ' and ’ title_name_2];
sub_title_string = ['blue = ’ title_name_-1 ’: red = ’ title_name_2];
figure_title = uicontrol(’style’, ’text’');
figure_sub_title = uicontrol(’style’, ’text’);
set (figure_title , ’String’, title_string , 'Position’, [325, 860, 1000, 40], ’FontSize ,
18, ’BackgroundColor’, [1 1 1])
set (figure_sub_title , ’String’, sub_title_string , 'Position’, [590, 830, 500, 30],
FontSize’, 12, ’BackgroundColor’, [1 1 1])
end

% Below, we check which iteration we are on to determine which
subplot we are at. For each subplot, we must determine the HRC
for the x_-edge and y_-dge of the bivariate PDF. Looking at the
code below, the variables x_edge and y-edge can be any number in
% ”variables” corresponding to an HRC column in the data file.

if plot-num <= 3

XN

84

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

end

x-.edge = variables (1);
x_-plot_edge = linspace (0,5,N);
y-edge = variables(plot_num + 1);

% Change the axes for the HRCs you are using.

if y_edge == variables (2)
y-plot_edge = linspace (0,1,N);
z_axis = [0 3];

elseif y_edge == variables (3)
y-plot_edge = linspace (0,2.5,N);
z_axis = [0 2];

elseif y_edge == variables (4)
y-plot_edge = linspace (0,10,N);
z_axis = [0 0.5];

end

elseif plot_num <= 5

x-.edge = variables (2);
x_-plot_edge = linspace (0,1,N);
y-edge = variables(plot_num — 1);

% Change the axes for the HRCs you are using.
if y_edge == variables (3)

y-plot_edge = linspace (0,2.5,N);

z_axis = [0 10];
elseif y_edge == variables (4)

y-plot_edge = linspace (0,10,N);

z_axis = [0 1.5];

end
elseif plot_num == 6
x_edge = variables (3);

x_-plot_edge = linspace (0,2.5,N);
y-edge = variables (4);

% Change the axes for the HRCs you are using.
y-plot_edge = linspace (0,10,N);
z_axis = [0 1];

end

% The variables x_.data and y-data are the two data vecotrs used to
% make the PDFs. Once we have selected the two data vectors, we can

% create the bivariate PDFs. We create PDFs using the Matlab
% function ksdensity , which uses the kernel density estimation

% method to create the PDFs. For the kernel density estimation ,
use an Epanechnikov kernel and band widths equal to the bin widths

we

P

% of each HRC. We use the bin widths we calculated earlir so all

% the PDFs are consistent with the band widths used. We feel we can
% more justly compare PDFs in this manner. For more information
Yo
Yo
Yo

about our choice of bin widths, see the documenation for
bin_width_maker. We also evaluate the PDFs at the edges
© calculated earlier. The input for ksdensity is a two column

% matrix with each column corresponding to one spefic type of HRC

% values. Each row in the matrix corresponds to every half hour in
% the csv file in question. Note that since we are creating PDFs,
% the volume underneath each surface is 1. Consequently, all the

% PDFs are normalized and values of the PDF can be greater than 1.

% For more information about the kernel density estimation,

% Epanechnikov kernel function, and PDFs, see their respective
% wikipedia pages.

x-data = raw_data (:,x_edge);

y-data = raw_data (:,y_edge);

[X, Y] = meshgrid(x_plot_edge , y-plot_edge);

Z = ksdensity ([x-data y_-data], [X(:) Y(:)], ’'kernel’, ’epanechnikov’

(x-edge) 0.5xbin_widths(y-edge)]);
Z = reshape(Z, size (X));

% Lastly , we can plot the bivariate PDFs. We plot the first
% file 's PDFs in blue and the second file ’s PDFs in red.
hold on

subplot (3,2 ,plot_-num)

if i <=6
surf (X, Y, Z, ’facealpha’, .5, ’Facecolor’, ’b’)
else
surf (X, Y, Z, ’facealpha’, .5, ’Facecolor’, 'r’)
end
xlabel (regexprep (variable_names{x_edge}, '_-’, ° '), 'FontSize’
yvlabel (regexprep (variable_.names{y_edge}, '_-’, ° ’), ’FontSize ,
zlabel (' Probability ’, ’FontSize’, 14)
set (gca, ’'FontSize’ ', 14)

xlim ([x-plot_edge (1) x_plot_edge(end)])
ylim ([y-plot_edge (1) y-plot_edge(end)])
zlim (z_axis)

caxis(z-axis)

hold off

% Finally , we save the figure.
print (hist_fig , save_file , '—dpng’)

end

, 14)
14)

, ‘width’

’

[0.5%bin_widths

85

OO U R WN -

50

51

52

53

54

55

56

57

58

59

60

WU A WN

B.7 Bivariate Risk Figures

Listing B.23: multiple_bivariate_risk figures.m

% Author: Evan Dienstman

% Last Update: 3/31/2016

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.

%

% This script creates multiple bivariate risk figures. Each figure
% calculates the risk associated with different half hour groups for
% many different combination of two HRCs. For more information about

% the figures , individual plots, and how we define the risk, please see
% the documentation for one_bivariate_risk_figure .m,
% one_bivariate_risk_plot.m, and one_risk_matrix.m.

%

% Precondtions:

% 1. Make sure the files one_bivariate_risk_figure.m,

% one_bivariate_risk_plot.m, one_risk_matrix.m,

% one_porb_matrix.m, bin_widths.m, and hrc_indices.m are in the
% working directory .

% 2. Make sure to select the proper preprocessing method below.

%

% Returns:

% 1. This function returns one bivariate risk figure for every call
% to one_bivariate_risk_figure.m. For info on where the figures
% are saved, see the documentation of one_bivariate_risk .m.
clear

cle

% Here, we select the preprocessing method.

preprocessing = ’'Abby’;

% preprocessing = ’Doug’;

% These are the column numbers of the CSV files we will use when
% making different bivariate risks. Each column corresponds to a

% different HRC. Change these numbers if you wish to use other HRCs.

% Note that we only use the raw HRCs because including all subcategories
% would create too many bivariate risks. We also don’t use mean

% RR, asymmetry 1, and asymmetry 2 for the same reason.

load ("hrc_indices .mat’)

N

variables = [variance_index sample_entropy-index asymmetry_ratio_-index decelerations_index];

% Here we define the xmins and xmaxs for plotting.
xmin_vector = {[1 0], [1 0.5], [1 0], [0 0.5], [0 O], [0.5 0]};
xmax_vector = {[4 0.8], [4 2.5], [4 10], [0.8 2.5], [0.8 10], [2.5 10]};

% Next, we call the procedure to create each figure. Each figure
% uses a different combination of half hour groups.

% one_bivariate_risk_figure (preprocessing , variables, xmin_vector, xmax_vector,
hrc_sick_org_all_vent_all.csv’, ’hrc_healthy_org_all_vent_all.csv’)

% one_bivariate_risk_figure (preprocessing, variables, xmin_vector, xmax_vector,’
hrc_sick_org_all_vent_1.csv’ "hrc_healthy_org_all_vent_1.csv’)

% one_bivariate_risk_figure (preprocessing, variables, xmin_vector, xmax_vector,’
hrc_sick_org_all_vent_0.csv’, "hrc_-healthy_org_all_vent_0.csv’)

% one_bivariate_risk_figure (preprocessing, variables, xmin_vector, xmax_vector,’
hrc_sick_-org_-l_-vent_0.csv’, ’"hrc_sick_org-all_vent_0.csv’, ’hrc_sick_-org_-2_vent_0.csv’)

% one_bivariate_risk_figure (preprocessing, variables, xmin_vector, xmax_vector,’
hrc_sick_org_-l_vent_O.csv’, ’'hrc_sick_org_all_vent_0.csv’, ’"hrc_sick_org_3_vent_0.csv’)

% one_bivariate_risk_figure (preprocessing , variables, xmin_vector, xmax_vector,’
hrc_sick_org_-1l_vent_0O.csv’, ’'hrc_sick_org_all_-vent_0.csv’, ’"hrc_sick_org_-4_vent_-0.csv’)

% one_bivariate_risk_figure (preprocessing , variables, xmin_vector, xmax_vector,’
hrc_sick_-org-l_vent_-0.csv’, ’hrc_sick_org-all_vent_-0.csv’, ’hrc.sick_org_-5_vent_-0.csv’)

% one_-bivariate_risk_figure (preprocessing , variables, xmin_vector, xmax-vector,’
hrc_sick_org_2_vent_0.csv’, ’hrc_sick_org_all_vent_O.csv’, ’hrc_sick_org_3_vent_0.csv’)

% one_bivariate_risk_figure (preprocessing , variables, xmin_vector, xmax_vector,’
hrc_sick_org_2_vent_-0.csv’, ’hrc_sick_org_all_vent_O.csv’, ’hrc_sick_org_-4_vent_0.csv’)

% one_bivariate_risk_figure (preprocessing , variables, xmin_vector, xmax_vector,’
hrc_sick_org_-2_vent_0.csv’, ’hrc_sick_org_all_vent_0.csv’, ’"hrc_sick_org_5_vent_0.csv’)

% one_bivariate_risk_figure (preprocessing, variables, xmin_vector, xmax_vector,’
hrc_sick_org_3_vent_0.csv’, ’hrc_sick_org_all_vent_0.csv’, ’hrc_sick_org_4_vent_0.csv’)

% one_bivariate_risk_figure (preprocessing, variables, xmin_vector, xmax_vector,’
hrc_sick_org_-3_vent_-0.csv’, ’hrc_sick_org_all_vent_0.csv’, ’hrc_sick_org_5_vent_0.csv’)

one_bivariate_risk_figure (preprocessing , variables, xmin_vector, xmax_vector,
s

>

hrc_sick_org_4_vent_0.csv’, ’hrc_sick_org_all_vent_0.csv’, "hrc_sick_org_5_vent_0.csv’)

Listing B.24: one_bivariate risk figure.m

function one_bivariate_risk_figure(preprocessing, variables, xmin_vector, xmax_vector, filel ,

file2 , file3)
% Author: Evan Dienstman
% Last Update: 4/5/2016
% Email: eddienstman@email .wm.edu
% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.

% This function creates a figure containing multiple risk plots.

86

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74

75
76
7
78
79

80

81
82
83
84
85
86

87
88

89
90

91
92

93
94

%

3

Each figure contins six subplots corresponding to six differnt
combinations of the four input HRCs. Note that the input argument
”variables” must contain exactly four HRCs becuase the figure is only
set up for four. Each subplot then contains the appropriate risk plot
for those two HRCs. The subplots are created by
one_bivariate_risk_plot.m. For more information about the subplots
and how we define the risk, please see the documentation for
one_bivariate_risk_plot .m.

%
% Arguments:
% 1. preprocessing — a string indicating which preprocessing method
% to use
% 2. variables — the column indices from the CSV files of the four
% HRCS we want to use for the bivariate risks
% 3. xmin_vector — the minimum x—values for the subplots
% 4. xmax._vector — the maximum x—values for the subplots
% 5. filel — the file containing the half hours for group 1
% 6. file2 — the file containing the half hours for group 2
% 7. file3 — the file containing the half hours for group 3
%
% Precondtions:
% 1. Make sure the files one_bivariate_risk_plot.m,
% one_risk_matrix.m., one_porb_matrix.m, and bin_-width_-maker .m
% are in the working directory .
% 2. Make sure there are exactly four indices in the input argument
% ”variables?”
% 3. Make sure xmin_vector and xmax_vector are of the form
% {[x1 y1], ..., [x4 y4]}.
% 4. This script will not overwrite any existing files with the
% same name. Change the variable save_file_str to a name that
% does not already exist, or delete the existing file with the
% same name before running this script.
%
% Returns:
% 1. This function returns a figure containing the six subplots
% produced by one_bivariate_risk_plot.m. Each plot represents
% the risk associate with a different combination of two HRCs
% relative to the two groups in question.
% First , we create the save directory.
save_dir = [pwd ’'/Figure_Files/Dienstman_Bivariate_Risks_. ' preprocessing ’_PP’];
% 1f the save_dir doesn’t already exist, we make the save_dir here.
if “exist(save_dir, ’dir’)
mkdir (save_dir)
end
% Next, we create the save file.
if exist(’file3’, ’var’)
save_file_str_short = [filel (1:end—4) ~_vs_’ file3 (l:end—4)];
save_file_str = [save_dir ’// filel (l:end—4) ’_vs_.’' file3 (l:end—4) ’.png’];
else
save_file_str_short = [filel (l:end—4) ’_vs_’' file2 (1l:end—4)];
save_file_str = [save_dir ’//’ filel (l:end—4) ’_vs_’' file2 (l:end—4) ’.png’];
end
% I1f the save file already exists, we stop the program so we don’t
% overwrite the file .
if exist(save_file_str , ’'file’)
disp(’Error: A file already exists with the save file name. The program stopped because
running the program would overwrite the existing file.’)
return
end
% Next, we do all the formatting for the figure.
title_str = [Relative risk plots: ' regexprep(save_file_str_short , ., ~ ~ H
sub_title_.str = [’Values above 0 mean more likely to be ' regexprep(filel (l:end—4), "_’, =) ?

I
plot_fig = figure(Position’, [50,50,1600,900]);

set (plot_fig , color’ ,’w’);

figure_title = uicontrol(’'style’, ’text ');

figure_sub_title = uicontrol(’style’, “text’);

set (figure_title , ’String’ ', title_str , 'Position’, [410, 845, 800, 40], 'FontSize ', 18, ~’
BackgroundColor’, [1 1 1])

set (figure_sub_title , 'String’, sub_title_str , 'Position’, [540, 830, 575, 20], ’FontSize ', 12, ~

%
%
if

BackgroundColor’, [1 1 1])

Here, we call one_bivariate_risk_plot.m with each combination of
the HRCs to make the six subplots.
exist (’file3 ', ’var’)
subplot (3,2,1)
one_bivariate_risk_plot (preprocessing , variables(l), variables(2), xmin_vector{l}, xmax_vector
{1}, filel , file2 , file3)
subplot (3,2,2)
one_bivariate_risk_plot (preprocessing , variables (1), variables(3), xmin_vector{2}, xmax_vector
{2}, filel , file2 , file3)
subplot (3,2,3)
one_bivariate_risk_plot (preprocessing , variables (1), variables(4), xmin_vector{3}, xmax_vector
{3}, filel , file2 , file3)
subplot (3,2,4)
one_bivariate_risk_plot (preprocessing , variables(2), variables(3), xmin_vector{4}, xmax_vector
{4}, filel , file2 , file3)
subplot (3,2,5)
one_-bivariate_risk_plot (preprocessing , variables(2), variables(4), xmin_vector{5}, xmax_vector

87

95
96

97
98
99
100

101
102

103
104

105
106

107
108

109
110

111
112
113
114
115

© O U s WN =

52
53

54
55
56
57
58

{5}, filel ,
subplot (3,2,6)
one_bivariate_risk_plot (preprocessing ,

{6}, filel , file2 , file3)

file2 , file3)

variables (3), variables(4),

else

subplot (3,2,1)

one_-bivariate_risk_plot (preprocessing ,
{1}, filel , file2)

subplot (3,2,2)

one_bivariate_risk_plot (preprocessing ,
{2}, filel , file2)

subplot (3,2,3)

one_bivariate_risk_plot (preprocessing ,
{3}, filel, file2)

subplot (3,2,4)

one_bivariate_risk_plot (preprocessing ,
{4}, filel , file2)

subplot (3,2,5)

one_bivariate_risk_plot (preprocessing ,
{5}, filel , file2)

subplot (3,2,6)

one_bivariate_risk_plot (preprocessing ,
{6}, filel , file2)

variables (1), variables(2),

variables (1), variables(3),

variables (1), variables(4),

variables (2), variables (3),

variables (2), variables(4),

variables (3), variables(4),

end
% Finally , we save the

print (plot_fig ,
end

figure .

save_file_str , '—dpng’)

xmin_vector {6},

xmin_vector {1},

xmin_vector {2},

xmin_vector {3},

xmin_vector {4},

xmin_vector {5},

xmin_vector {6},

xmax-vector

xmax-vector

xmax_vector

xmax_vector

xmax_vector

xmax-vector

xmax-vector

Listing B.25: one_bivariate_risk_plot.m

function one_bivariate_risk_plot(preprocessing , varl, var2, xmin, xmax,
% Author: Evan Dienstman

% Last Update: 3/31/2016

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t

% make sense, it might be because I haven’t updated the code yet.

%

% This function plots the risk of group 1 compared to group 2/3 for

% for many different values of two HRC’s indicated by varl and var2.

% The data for the groups are located in filel , file2 , and file3 . If

% file3 does not exist, the risk is defined as group 1 compared to

% group 2. If file3 exists, the risk is defined as the ratio of group 1
% compared to group 2 divided by group 3 comapred to group 2. For more
% information about how we calculate the risk, please see the

% documnetation for one_risk_matrix.m.

% Arguments :

% 1. preprocessing — a string indicating which preprocessing method
% to use

% 2. varl — a number indicating the first HRC

% 3. var2 — a number indicating the second HRC

% 4. xmin — the minimum value for both HRCs

% 5. xmax — the maximum value for both HRCs

% 6. filel — the file containing the half hours for group 1

% 7. file2 — the file containing the half hours for group 2

% 8. file3 — the file containing the half hours for group 3

%

% Precondtions:

% 1. Make sure the files one_risk_matrix.m., one_porb_matrix.m,

% hrc_indices.m, and bin_widths.m are in the working directory .
%

% Returns:

% 1. This function returns a 3D plot of the risks of group 1

% compared to group 2/3 for many differenct values of the two

% HRCs.

% First , we read in the data.

csv_dir = [pwd '/Data_Files/Dienstman_CSV_Files.’ preprocessing '_PP//’
half_hours_group-1 = dlmread ([csv_dir filel], ',’, 1, 0);
half_hours_group-2 = dlmread ([csv_dir file2], ",’, 1, 0);

if exist(’file3’, “var’)

organism = str2double(filel (15));
half_hours_group-2

half_hours_group-2 (half_hours_group-2(:,10) "=

half_hours_group-3 = dlmread ([csv_-dir file3], ', , 1, 0);
end
% Next, we calculte the risk for different HRC values.
if exist(’file3’, ’var’)
[risk_-matrix , points] = one_risk_matrix(preprocessing, [varl var2],

half_hours_group-1, half_hours_group-2, half_hours_group-3);

else
[risk_matrix , points] = one_risk_matrix (preprocessing, [varl var2],
half_hours_group_-1, half_hours_group-2);
end
% Finally , we plot the risks. Note that we use a log scale. Thus, any
% risk over 0 indicates the HRC values are more likely to be in
% group 1. Any risk below 0 indicates the HRC values are more likely to

88

filel , file2 ,

1

organism ,

)5

xmin ,

Xmax ,

xmin, xmax,

file3)

59
60
61
62
63
64
65
66
67
68

© WU A WN -

OO0~ U WK~

=

% be in group 2/3.

[T, axes_labels] = xlsread ([csv_dir filel], “1:17);
[X, Y] = meshgrid(points (1,:), points(2,:));
surf (X, Y, risk_matrix)

xlabel (regexprep (axes_labels{varl}, -, =)
yvlabel (regexprep (axes_-labels{var2}, "_’, =)
zlabel (" Elevated Risk’)

zlim ([log (.5) log(2)])

caxis ([log (.5) log(2)])

end

——

B.8 Single Variable Logistic Figures

Listing B.26: multiple univariate_logistic_figures.m

% Author: Evan Dienstman

% Last Update: 3/31/2017

% Email: eddienstman@email.wm.edu

% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.

% This script makes multiple figures that plot the probaility of

% illness for various values of each HRC. We first start off by making
% figures for on specific category of half hours. For example, we might
% only use the nonventilated half hours. Next, we make five figures for
% each of these half hour categories corresponding to the five HRC

% subcategories. Each figure then contains seven subplots corresponding
% to the seven HRCs. On each subplot, we graph the probability of

% illness calculated from single variable logistic regression and from
% bayesian methods. We also graph the univariate PDFs for the HRCs on
% the subplot to give a sense of where most of the data lies. For

% example, the PDF of variance from 0—1 is very small. Therefore,

% even though a variance between 0—1 indicates an increased

% probability of being ill , we also want to note that these values are
% very rare to begin with. For extremely rare values, we do not even

% plot the probability of illness. For more info about the figures,

% see the documentation of one_univariate_logistic_plot .m.

% Precondtions:

% 1. Make sure the files one_univariate_logistic_figure ,

% one_risk_matrix.m, one_porb_matix.m, hrc_.indices.m, and

% hrc_bin_widths .m are in the current working directory.

% 2. Make sure all the CSV files are in the appropriate directory.
% 3. Make sure to select the proper preprocessing method below.

%

% Returns:

% 1. This script returns multiple single variable logistic figures
% saved to the directory indicated in

% one_univariate-logistic_-figure.m with the file name given

% in the call to one_univariate_logistic_-figure .m.

clear

clc

% Here, we select the preprocessing method.
preprocessing = 'Abby’;
% preprocessing = ’Doug’;

% Next, we define the CSV files we want to use for the figures. Note
% that we don’t consider and specific organism categories because the
% PDF and risk figures told us that the HRCs are not useful for

% distinguishing amongst different organisms.

file_list_-1 = { hrc_sick_org_-all_vent_all.csv’, "hrc_healthy_org_all_vent_all

file_list_-2 = { hrec

file_list_-3 = { hrc_sick_org_all_vent_-1.csv’, ’hrc_healthy_org_-all_vent_-1.csv

% Finally , we call one_univariate_logistic_-figure to make the
g
% figures for each group of CSV files.

.csv '}
ick_org_-all_vent_-0.csv’, “hrc_healthy_org_-all_vent_0.csv’};

ks

one_univariate_logisitc_figure (preprocessing, file_list_1 , 'hrc_all_org_all_vent_all’)
one_univariate_logisitc_figure (preprocessing, file_list_2 , ’hrc_all_org_all_vent_0")
one_univariate_logisitc_figure (preprocessing, file_list_3 , ’hrc_all_org_all_vent_1")

Listing B.27: one_univariate_logistic_figure.m

function one_univariate_logisitc_figure(preprocessing, file_list , save_str)
% Author: Evan Dienstman

% Last Update: 3/31/2017

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t
% make sense, it might be because I haven’t updated the code yet.
%

% This script makes fives figures that plot the probaility of
% illness for various values of each HRC using the CSV files in
% file_list . Each of the five figures corresponds to one of the five

89

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

HRC subcategories (raw, 10th, 50th, 90th, and slope). Each figure
then contains seven subplots corresponding to the seven HRCs. On each
subplot , we graph the probability of illness calculated from single
variable logistic regression and from bayesian methods. We also

graph the univariate PDFs for the HRCs on the subplot to give a sense
of where most of the data lies. For example, the PDF of variance
from 0—1 is very small. Therefore, even though a variance between 0—1
indicates an increased probability of being ill , we also want to note
% that these values are very rare to begin with. For extremely rare

% values, we do not even plot the probability of illness. For more info

% about the figures, see the comments below.

%

% Arguments :

% 1. preprocessing — the type of preprocessing used to create the
% CSV files

% 2. file_list — the list of CSV files used to make the figure

% 3. save_file — the name of the file the figure is saved to

%

% Precondtions:

% 1. Make sure the files one_risk_matrix.m, one_porb_matix.m,

% hrc_indices .m, and hrc_bin_widths.m are in the current working
% directory .

% 2. Make sure all the CSV files are in the appropriate directory.
% 3. This script will not overwrite any existing files with the

% same name. Change the variable save_str to a name that does
% not alreadcy exist, or delete the existing file with the same
% name before running this script.

%

% Returns:

% 1. This function returns five figures corresponding to the five
% HRC subcategories. The figures are saved to the directory

% indicated by the variable save_dir with the file name given
% by the variable save_file.

% Frist, load hrc_indices.mat and define some constants and variables

% used later.
load ("hrc_indices .mat’)

model = "quadratic ’;

hrc_names = {’Asymmetry_-1’, ’Asymmetry_-2’, ’'Asymmetry_Ratio’, ’Decelerations’, 'MeanRR’,
Sample_Entropy’, ’Variance’};

hrc_types = {’’, "_10°, 50", *_.90°, ’_Slope’};

title_strs = {’Raw HRC’, ’10th Percentile’, ’50th Percentile’, ’90th Percentile’, 'HRC Slope’};

x-axis-list = {[0 10], [0 10], [0 5], [0 50], [250 600], [0 1.5], [0 5]};

x_.axis_list_slope = {[-5 5], [-5 5], [—-1 1], [—10 10], [—-50 50], [—1 1], [—2 2]};

% Next, we read in the data from the CSV files.

csv_dir = [pwd '/Data_Files/Dienstman_CSV_Files.’ preprocessing ’'_PP’];

csv_matrix_1 = dlmread ([csv_dir '//’ file_list {1}], ~,", 1, 0);

csv_matrix_-2 = dlmread ([csv_dir '//’ file_list {2}], ", , 1, 0);

csv_matrix = [csv_matrix_1; csv_matrix_2];

healthy_half_hours = csv_matrix(csv_matrix (:, health_status_index) == 0,:); %#Hok<«NASGU>

sick_half_hours = csv_matrix(csv_matrix (:, health_status_index) == 1,:);

p-sick = length(sick_half_hours)/length(csv_matrix);
% We now loop through all five HRC subcategories and create a figure
% for each one.

for i = 1l:length(hrc_types)

% Here, we create the save directory and save file for the figure.

save_-dir = [pwd ’'/Figure_Files/Dienstman_Logistic_.Figures_.’ preprocessing '_PP’];
save_file = [save_dir ’//’ save_str hrc_types{i} ’.png’'];
% 1f the save_dir doesn’t already exist, we make the save_dir here.
if “exist(save_dir, ’dir’)
mkdir (save_dir)
end

% If the save file already exists, we stop the program so we don’t
% overwrite the file.

if exist(save_file, “file’)
disp(’Error: A file already exists with the save file name. The program stopped because
running the program would overwrite the existing file.’)
continue
end
% Here, we create the figure, info box in the top left corner, and

% the annotation at the bottom of the figure.
probability_figure = figure(’ Position’, [50,50,1600,900]);
set (probability_figure , 'color’, 'w’

;
title_-frame = uicontrol(’'style’, ’“frame’);
if 1 >=2 && i <=4

baby_title_string = [save_str ’': ’ title_strs{i} char(10) char(10)];
else

baby_title_string = [’ ' save_str ’: ' title_strs{i} char(10) char(10)];
end
baby_-title_string = [baby_title_string

Probability from Healthy (0) to Sick (1)’ char(10)...
Red Line = Bayesian Probability’ char(10) ...
’ Blue Line = Logistic Probability’ char(10) char(10) ...
’Fraction from No Data (0) to All Data (1)’ char(10)...
’ Red Area = Sick Fraction’ char(10) ...

’ Blue Area = Healthy Fraction’]; %#ok <«AGROW>
set (title-frame , ’'Position’, [210, 635, 340, 195], ’BackgroundColor’, [0 0 0])
baby_-title = uicontrol(’style’, ’'text’);

90

103

104

105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159

160
161

162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

set (baby_title, 'String’, baby_title_string , ’'Position’, [213, 638, 334, 189], ’'FontSize’, 13,

’BackgroundColor’, [1 1 1])

axes_note_string = ’All red and blue areas are additive, i.e., no areas are hidden behind one
another. ’;
axes_note = uicontrol(’'style’, “text);
set (axes_note, ’String’ , axes_note_string, ’Position’, [5630,—20,600, 50], ’FontSize’ , 12,
BackgroundColor’, [1 1 1])
% Here, we iterate through all seven HRCs and create the
corresponding probability plot for that HRC.
for j = 1l:length(hrc_names)
% First , we specify the subplot.
subplot (3,3,j+1)
var_name = [hrc_.names{j} hrc_types{i}];
var_index = [lower(var_name) ’_index’];
% Next, we separate the data into the HRC values (data_vector)
% and health status (response_vector).
eval (["data_vector = csv_matrix (:,’ var_index ’);’])
response_vector = csv_matrix (:,health_status_index);
[data_vector , sorted-indices] = sort(data_vector);
response_vector = response_vector(sorted-indices);
% Before we calculate the probabilities, we remove outliers
% from the data. For the Bayesian method, removing outliers
% will not affectthe results becuase outliers will have very
% low probabilities. However, we want to remove outliers for
% the logistic probability becuase over fitting will
% considerably change the tails if we keep the outliers. For
% decelerations , we define the high_fence as 30 becuase the
% outlier method removes too much data. This procedure is
% strictly empircal and needs to be analyzed further.
ql = quantile(data_vector , .25);
q3 = quantile(data_vector, .75);
IQR = g3 — ql;
low_fence = ql — 1.5xIQR;
high_fence = g3 + 1.5xIQR;
if strcmp(hrc_names{j}, ’'Decelerations’)
data_vector(data_vector < low_fence | data_vector > 30) = NaN;
response_vector (data_vector < low_fence | data_-vector > 30) = NaN;
else
data_vector(data_vector < low_fence | data_vector > high_fence) = NaN;
response_vector (data_vector < low_fence | data_vector > high_fence) = NaN;
end
% Now we calculate the probability of illness using logistic
% regression. We use the Matlab function fitglm to calculate the
% probability. For more information, please see the Matlab
% documentation of this function.
fit = fitglm (data_vector, response_vector , model, ’“distribution’, ’'binomial’, *VarNames’,
{var_name, *Health_Status’});
log-prob = fit.Fitted.Probability;
% Now we calculate the probability of illness using the Bayesian
% probability. We use the function one_rish_matrix to
% calculate the probability. For more information, please see
% the documentation of this function.
if strcmp(title_strs{i}, 'HRC Slope’)
eval ([’[risk , x_points, p_sigs_given_sick , p_sigs_given_healthy] = one_risk_matrix(
preprocessing ,’ var_index ’, x_axis_list_slope{j}(1), x_axis_list_slope{j}(2),
sick_half_hours, healthy_half_hours);’])
else
eval ([’ [risk , x_points, p_sigs_given_sick , p.sigs_given_healthy] = one_risk_matrix(
preprocessing ,’ var_index ’, x_axis_list{j}(1), x_axis_list{j}(2), sick_half_hours
, healthy_half_hours);’])
end
bayesian_prob = p_sick .x exp(risk);

% In each subplot, we also include a PDF for the sick and

% healthy half hours. With this information, we can visualize
% how much data we have at each HRC value. We want this

% information because we are more confident in probabilities at
% values with more data.

hold on

yyaxis right

myarea = area(x_points, [p_sigs_given_sick + p_sigs_given_healthy , p_sigs_given_healthy],
’FaceAlpha’, 0.25, ’LineStyle’, ’'none’);

myarea(1l).FaceColor = 'B’;

myarea(2).FaceColor = 'R’;

ylim ([0 1])

ylabel (' Fraction of Data’)

yyaxis left

plot (data_vector , log_prob , ’'LineWidth’, 2, ’"Color’, 'B’)

plot (x_points , bayesian_prob, ’'—’, ’LineWidth’, 2, ’"Color’, 'R’")
ylabel (" Probability)

ylim ([0 0.025])

% Lastly , we set and label the axes for the subplot.

if strcmp(hrc_names{j}, 'Mean.RR’) || strcmp(title_strs{i}, '"HRC Slope’)
xmin = min ([data_vector; x_points]);

else
xmin = 0;

91

188
189
190
191
192
193
194
195
196
197
198
199
200

OO U A WN -

56
57
58
59
60
61
62
63
64
65
66
67
68

end

xmax = max([data_vector; x_points]);

xlim ([xmin xmax])

xlabel (regexprep (hrc_names{j}, "-', = 7))
set (gca, 'FontSize ', 14)

hold off

end

% Finally , we save the figure.

print (probability_figure , save_file, ’'—dpng’)
end
end

B.9 HeRO Score Figures

Listing B.28: multiple_hero_score_figures.m

% Author: Evan Dienstman
% Last Update: 4/7/2017
% Email: eddienstman@email.wm.edu

% Note: Feel free to email me with uestions! If somethin doesn 't
q g
% make sense it might be because I haven’t updated the code et .
s g y
%

% This script creates a hero score figure for every septic events.
% Each hero score figure shows six hero scores at each half hour of

% the Dienstman_results file associated with the event in question.

% The six hero scores are Dienstman_all, Dienstman_vent,

% Dienstman_nonvent, Hrch, Hrcg, and Hero. Each hero score is calculted
% using the half hours in the Dienstman_results files. Starting from

% the half hour in question, the hero score looks at the prior 24 half
% hours when considering what heart rate characteristics (HRCs) to use

% in the score. Thus, the first hero score in the figure looks at half
% hours 1—24 in the Dienstman_results file , the second hero score looks
% at half hours 2—25, and so on. The verticle black line in the figure
% represents the time of the event. For more information about how to
% calculate the hero score, see the documentations for

% one_hero_score_figure. This function then creates a figure containg
% the average hero scores calculated from all the individual figures.

% Preconditions:

% 1. Make sure the directories and file names used in the script
% are the right ones for the computer you are using.

% 2. Make sure the files event_-matrix.mat, Doug-coeffs.mat,

% Dienstman_coeffs .mat, prctilel .m, logistic.m, and

% one_hero_score_figure.m are in the working directory.

% 3. This function will not overwrite the average figure that

% already exists. Delete the old figure or change the name of
% save_file below.

%

% Returns:

% 1. This script returns a hero score figures for every septic event
% and an average figure for all the events.

clear

clc

% Change the reprocessin to the one you want to use.
g prep g y
preprocessing = 'Abby’;
% preprocessing = ’Doug’;
I I g g3

% First , we create the save_sir and save_file.
save_dir = [pwd ’'/Figure_Files/Dienstman_Hero_Scores_.’ preprocessing '_PP/Average’];
save_file = [save_dir ’//average_hero_figure.fig '];

if “exist(save_dir, ’dir’)
mkdir (save_dir)
end

% 1f the save file already exists, we stop the program so we don’t
% overwrite the file .

if exist(save_file, ’file)
disp (["Error: File ’ save_file ’ already exists. Did not execute because program would
existing file.’])
return
end

% Here, we create the container that let ’s us translate between the

% site codes and the site numbers. The site refers to the hospitals of
% the babies.

site_map_keys = {11, 13, 15, 23, 24, 26, 27, 30};

site_map_values = {'UVA’, ’0d’, "0f’, 717, ’18°, ’la’, ’'1b’, ’le’};
site_map = containers.Map(site_map_keys , site_map_values);
plot_str = ’yes’;

% Here, we load in the variable event-matrix and hrc-indices. The
% variable event_info contains the site, ID, time, organism, and

92

alter

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117

118

119

120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

% other demographic info for each spetic event. The variable
% hrc_indices contains the column indices of the CSV files for
% each HRC.

load (’event_matrix.mat’)

load ("hrc_indices .mat’)

% Next, we define some variables to use later

index_-vector = —335:144;
mean_dienstman_hero_vector_all = zeros(1,480);
mean_dienstman_hero_vector_vent = zeros (1,480);
mean_dienstman_hero_vector_nonvent = zeros(1,480);
mean_hrch_vector = zeros(1,480);
mean_hrcg_vector = zeros(1,480);
mean_hero_score_vector = zeros (1,480);
all_count_vector = zeros(1,480);
vent_count_vector = zeros(1,480);
nonvent_count_vector = zeros (1,480);
count = 1;
% Next, we interate through every index in rand-indices and create
% a figure for the event corresponding to that index in event_-matrix.
for rand_-index = 1l:length(event_matrix)
id = event_matrix(rand_index ,1);
site_num = event_-matrix(rand-index ,2) ;
site = site-map (site_num);
event_time = event_matrix(rand_index ,7);
save_dir = [pwd '/Figure_Files/Dienstman_Hero_Scores_’ preprocessing PP/’ site];
Dienstman_dir = [pwd ’/Data_Files/Dienstman_Results.’ preprocessing ’'_PP/’ site];
Dienstman_file = [Dienstman_dir '//Dienstman_hrc_results_’ site ’_’ num2str(id) ’.mat’];
% If the save directory doesn’t exist, we make it here.
if “exist(save_dir, ’dir’)
mkdir (save_dir)
end
% Lastly , we call one_hero_score_figure with the information
% for this event to create the hero score figure.
[one_dienstman_hero_vector_all , one_dienstman_hero_vector_vent ,

one_dienstman_hero_vector_nonvent , one_hrch_vector, one_hrcg_vector, time_vector] =
one_hero_score_figure (id, site_.num, event_-time, save_dir, Dienstman_file, plot_str);

% After we create the individual figure, we update the average
% vectors.
for i = 1:480

start_time = (event_time — 7) 4 i/48;
end_time = (event_time — 7) 4+ (i+41)/48;
index = find (time_vector > start_time & time_vector < end_time);
if length(index) == 1 && Tisnan(one_dienstman_hero_vector_all(index))
mean_dienstman_hero_vector_all(i) = nansum ([mean_dienstman_hero_vector_all(i),
one_dienstman_hero_vector_all (index)]);
mean_dienstman_hero_vector_vent (i) = nansum ([mean_dienstman_hero_vector_vent (i),
one_dienstman_hero_vector_vent (index)]) ;
mean_dienstman_hero_vector_nonvent (i) = nansum ([mean_dienstman_hero_vector_nonvent (i),
one_dienstman_hero_vector_nonvent (index)]) ;
mean_hrch_vector (i) = nansum ([mean_hrch_vector (i), one_hrch_vector (index)]);
mean_hrcg_vector (i) = nansum ([mean_hrcg_-vector (i), one_hrcg-vector (index)]);
mean_hero_score_vector (i) = nansum ([mean_hero_score_vector (i), max(one_-hrch_vector (
index), one_hrcg_-vector (index))]);
all_count_vector (i) = all_count_vector (i) + 1;

if “isnan(one_dienstman_hero_vector_vent (index))
vent_count_vector(i) = vent_count_vector (i) + 1;
end

if “isnan(one_dienstman_hero_vector_nonvent (index))

nonvent_count_vector(i) = nonvent_count_vector (i) + 1;
end
end
end
count = count 4+ 1;
end
% Here, we calculate the average vectors.
mean_dienstman_hero_vector_all = mean_dienstman_hero_vector_all./all_count_vector;
mean_dienstman_hero_vector_.vent = mean_dienstman_hero_vector_vent./vent_count_vector;
mean_dienstman_hero_vector_nonvent = mean_dienstman_hero_vector_nonvent./nonvent_count_vector;
mean_hrch_vector = mean_hrch_vector./all_count_vector;
mean_hrcg_vector = mean_hrcg_vector./all_count_vector;
mean_hero_score_vector = mean_hero_score_vector./all_count_vector;
% Finally , we plot the average vectors.
figure_handle = figure (' Position’, [50,50,1600,900]);
set (figure_handle , color’,’w’);
hold on
plot (index_vector , mean_dienstman_hero_vector_all, ’'LineWidth’, 2, *Color’, 'R’)
plot (index_vector , mean_dienstman_hero_vector_vent , ’'LineWidth’, 2, ’Color’, [1 1 0])
plot (index_vector , mean_dienstman_hero_vector_nonvent , ’'LineWidth’, 2, *Color’, [0 1 1])
plot (index_vector , mean_hrch_vector, ’LineWidth ', 2, ’"Color’, 'B’")
plot (index_vector , mean_hrcg_vector, ’LineWidth ', 2, ’"Color’, 'G’)
plot (index_vector , mean_hero_score_vector, ’LineWidth’, 2, "Color’, [1 0 1])

line ([0 0], ylim, ’Color’, [0,0,0], ’LineWidth’, 3);

93

157

158

159
160
161
162
163
164
165

66
67
68
69
70

71
72
73
74

legend (’Dienstman Hero Score’, ’Dienstman Hero Score Vent’, ’Dienstman Hero Score Nonvent’, ’Hrch
Sore’, ’Hrcg Score’, ’Hero Score’)

title (["Average HeRO Score: Mean Babies Used Per Half Hour — ° num2str(mean(all_count_vector))], ~
FontSize’, 24)

xlabel (’Time of HeRO Score’, ’FontSize’, 16)

ylabel (’Hero Score’, ’FontSize’, 16)

set (gca, fontsize’ ,16)

hold off

% Lastly , we save the average figure.
hgsave(figure_handle, save_file, —v7.37);

Listing B.29: one_hero_score_figure.m

function [dienstman_hero_vector_all, dienstman_hero_vector_vent , dienstman_hero_vector_nonvent ,
hrch_vector , hrcg_vector, plot_time_vector] = one_hero_score_figure(id, site_num , event_time,

save_dir , Dienstman_file, plot_str)

% Author: Evan Dienstman

% Last Update: 4/7/2017

% Email: eddienstman@email .wm.edu

% Note: Feel free to email me with questions! If something doesn’t

% make sense, it might be because I haven’t updated the code yet.

%

% This function creates a HeRO score figure for one septic event. We
% save the figure to the directory Dienstman_Hero_-Scores. Each figure

% contains the multiple HeRO scores calculated at each half hour The

% HeRO scores include Dienstman_Hero_All, Dienstman_Hero_Vent ,

% Dienstman_Hero_Nonvent, Hero, Hrch, and Hrcg. For more info on these
% six HeRO scores, please see the code below. We calculate the HeRO

% scores using the heart rate characteristics (HRCs) for each half hour.
% The HRCs for each half hour are stored in the Dienstman_results files.
% The HeRO score looks over a window of half hours in the past given by
% the variable half_hour_window_length found in the code below. The

% HeRO score then takes a certain percentile value for each HRC to

% calculate the HeRO score. Since we are looking at a window into the

% past, the time of the first HeRO score in the figure is the time of
% the half hour in the Dienstman_file with an index equal to the number
% half_hour_-window_-length. Note that the percentiles of the HRCs have
% already been calculated in the Dienstman_result files. Thus, we do

% mnot need to calculate them in this file. The black verticle line

% represents the time of the event.

%

%

Arguments:
% 1. id — the id number of the baby
% 2. site — the site of the baby
% 3. event_time — the time of the septic event for the baby
% 4. save_dir — the directory where we will save the figure
% 5. Dienstman_file — the Dienstman_file that corresponds to the
% event that we will calculate the HeRO scores for
%
% Preconditions:
% 1. Make sure the directories and file names used in the scripts
% are the right ones for the computer you are using.
% 2. Make sure the files Dienstman_coeffs.mat, Doug_coeffs.mat,
% prctilel .m, and logistic.m, are in the working directory.
% 3. Make sure the variable half_hour_window_length matches the
% time window you want the HeRO score to calculate.
% 4. This function will not overwrite any figure that already
% exists. Delete the old figure or change the name of save_file
% below .
%
% Returns:
% 1. dienstman_hero_vector_all — the vector containing the
% Dienstman_Hero_All HeRO score
% 2. dienstman_hero_vector_vent — the vector containing the
% Dienstman_Hero_Vent HeRO score
% 3. dienstman_hero_vector_nonvent — the vector containing the
% Dienstman_Hero_Nonvent HeRO score
% 4. hrch_vector — the vector containing the Hrch HeRO score
% 5. hrcg-vector — the vector containing the Hrcg HeRO score
% 6. plot_time_vector — the vector containing the start times
% of the half hours
% 7. This function also returns a figure with all six HeRO scores at
% every half hour of the file Dienstman_file.

% First, we define some variables that we will use later.
site-map.keys = {11, 13, 15, 23, 24, 26, 27, 30};

site_map_values = {'UVA’, °0d’, ’0f’, ’17’, *18°, ’la’, ’'1b’, ’'le’};

site_map = containers.Map(site_map_keys, site_map_values);

site = site_map (site_num);

save_file = [save_dir ’//hero_figure_.’ site ’_’ num2str(id) ’- num2str(round(event_time))

13

% If the save file already exists, we stop the program so we don’t
% overwrite the file.
if exist(save_file, ’file)
disp ([’Error: File ’ save_file ’ already exists. Did not execute because program would
existing file.’])
hrch_vector = NaN;
hrcg-vector = NaN;
dienstman_hero_vector_all = NaNj;
dienstman_hero_vector_vent = NalN;

94

fig

alter

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155
156
157
158
159

160
161
162
163
164
165

dienstman_hero_vector_-nonvent = NaN;
plot_time_vector = NaNj;
return
end
% We then load in the Dienstman file containg the half hours needed
% to calculate the hero scores for this event. If the Dienstman-_file
% doesn’t exists, we return to the calling function.
if exist(Dienstman_file, ’file)
load_variable = load (Dienstman_file);
struct_.name = fieldnames (load_variable);
struct_name = struct_name (1);
eval_str = ['Dienstman_struct = load_variable.’ char(struct_name)
eval(eval_str)
else
hrch_vector = NalN;
hrcg_-vector = NaN;
dienstman_hero_vector_all = NaNj;
dienstman_hero_vector_vent = NalN;
dienstman_hero_vector_-nonvent = NaN;
plot_time_vector = NaNj;
return
end
% Here, we load in variables needed to calculate the hero score. Each
% one of the variables is a coefficient in the hero score model that
% has been optimized to give the best results.
load Doug-coeffs cg ch u0
load (’Dienstman_coeffs_all.mat’)
load (’Dienstman_coeffs_vent.mat’)
load (’Dienstman_coeffs_nonvent.mat’)
load ('vent_matrix.mat’)
% Change this number if you want the HeRO score to encompass more or
% less half hours in the past. Currently, it is set to 24 to encompass
% 24 half hours in the past.
half_hour_window = 24;
% Using the Dienstman_file we loaded, we create the time_vector each
% hero score will be calculated at. Note that we start the time
% starting at half_hour_-window_length because the first score will

% look at that number of half hours in the past. We then prealocate
% the vectors below that we will plot later.

L

time_vector = [Dienstman_struct (:).Start_Time]; %#ok<«NODEF>

plot_time_vector = time_vector(half_hour_window:end);

num_of_hero_scores = length(time_vector) — half_hour_window + 1;

hero_score_vector = zeros(l, num_of_hero_scores);

hrch_vector = zeros(l, num_of_hero_scores);

hrcg_vector = zeros(l, num_of_hero_scores);

dienstman_hero_vector_all = zeros(l, num_of_hero_scores);

dienstman_hero_vector_vent = zeros(l, num_of_hero_scores).xNaN;
dienstman_hero_vector_nonvent = zeros(l, num_of_hero_scores).xNaN;

vent_indices = find(vent_matrix (:,1) == site_num & vent_matrix (:,2) == id); %#ok<+NODEF>

baby_vent_info = vent_matrix(vent_indices ,3:4); %#ok<«FNDSB>

% Now we iterate through every half hour, calculating the hero score
% each time. Again, we start at the half hour with index

% half_hour-window_-length becuase the hero score looks at that

% number of half hours in the past.

for

i = half_hour_-window:(num-_of_hero_scores + half_hour_window — 1)
hrc_entry = Dienstman_struct(i);
indices = find(time_vector <= hrc_entry.Start_Time & time_vector >= (hrc_entry.Start_Time —

half_hour_window /48));

if "isempty(hrc_entry.Start_-Time) && “isempty (indices)
hrc_struct = Dienstman_struct(indices);

% First , we calculate the Hrch, Hrcg, and Hero scores. The

% components of these HeRO scores are contained in the vector

% hero_score_nums_1. These HeRO scores look at different
% percentiles of HRCs over the half_hour_-window . The

% coefficients for these HeRO scores are contained in

% Doug-_coeffs.mat
hero_score_nums_1 = zeros (1,6);

hero_score_nums_1(1) = hrc_entry.Variance_-10;
hero_score-nums_1(2) = hrc-entry.Sample_Entropy-10;
hero_score_nums_1(3) = hrc_entry.Asymmetry-1.50;
hero_score_nums_1(4) = hrc_entry.Asymmetry_2_50;
hero_score_nums_1(5) = prctilel ([hrc_struct (:).Asymmetry_2]

50);
hero_score_nums_1(6) = hrc_entry.Variance_50;
hrch = logistic(ch, hero_score_nums_1([1 5])) / u0;
hrcg = logistic(cg, hero_score_nums_1([6 2 3 4])) / u0;
hero_score = max(hrch, hrcg);
% Next, we determine if the half hour is ventilated.

[hrc_struct (:) . Asymmetry_1],

if “isempty (find (hrc_entry.Start_-Time > baby_vent_info (:,1) & hrc_entry.Start_Time <

baby_vent_info (:,2), 1))

ventilated = ’yes’;
else

ventilated = 'no’;
end

% Now we calculate the Dienstman_Hero_-Vent or

95

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

255
256
257

% Dienstman_Hero_Nonvent HeRO score depending on the

% ventilation status of the half hour as well as the
% Dienstman_Hero_-All s e .
variables = { Asymmetry_1.10’, ’Asymmetry_1_Slope’ ,...

>Asymmetry-2.90’, ’Asymmetry-2_Slope’ ,...
>Asymmetry_Ratio_50" ’Asymmetry_Ratio_Slope’ ,......
’Decelerations_90° ,
’Sample_Entropy-10’, ’Sample_Entropy-Slope’ ,...
Variance_10’, ’Variance_-90°’, ’Variance_Slope’};
N = length(variables);

num_of_coeffs = sum(1:N) + N;

hero_score_.nums_2 = zeros (1,N);

hero_score_.nums.3 = zeros (1,N);

if stremp(ventilated , 'no’)
coeffs2 = nonvent_coeffs;
else
coeffs2 = vent_coeffs;
end

% Here, we set the components of the Dienstman_Hero_Vent/Nonvent
% and Dienstman_Hero_-All HeRO scores.
for j = 1:N
eval (["hero_score_nums_2 (
eval (["hero_score_nums_3 (

= hrc_entry.’ variables{j}
= hrc_entry.’ variables{j}

i) D
i) D

end

Since we have a quadratic model, we now calculate all the
cross products from the HRC components. We save these new

7% components in Dienstman_hero_score_nums_2. Note that the

% order we save these components is important because they

7% must match the coefficients in Dienstman_coeffs_vent/nonvent
% and Dienstman_coeffs_all.
Dienstman_hero_score_.nums_2
Dienstman_hero_score_.nums_3
count = 1;

zeros (1, num_of_coeffs);
zeros (1, num_of_coeffs);

for j = 1:N

Dienstman_hero_score_nums_2 (count) = hero_score_nums_2(j);
Dienstman_hero_score_nums_3 (count) = hero_score-nums_3(j);
count = count 4+ 1;
end
for j = 1:N
for k = j+1:N
Dienstman_hero_score_nums_2 (count) = hero_score_.nums_2(j) * hero_score_nums_2(k);
Dienstman_hero_score_nums_3 (count) = hero_score_.nums_3(j) * hero_score_nums_3(k);
count = count 4+ 1;
end
end
for j = 1:N
Dienstman_hero_score_nums_2 (count) = hero_score_nums_2(j) " 2;
Dienstman_hero_score_nums_3 (count) = hero_score_nums_3(j) "~ 2;
count = count 4+ 1;
end
% Finally , we calculate the hero score for
% Dienstman_Hero_Vent/Nonvent and Dienstman_Hero-all.
if sum(isnan(Dienstman_hero_score_nums-2)) == 0 && sum(isnan (Dienstman_hero_score_nums_3))
== 0
Dienstman_hero_score.2 = logistic (coeffs2, Dienstman_hero_score_.nums_2) / u0;
Dienstman_hero_score_.3 = logistic(all_coeffs , Dienstman_hero_score_nums_3) / u0;
else
Dienstman_hero_score_2 = NaN;
Dienstman_hero_score_.3 = NaN;
end

% We then save the all the HeRO scores for plotting later.
hero_score_vector (i—half_hour_window+1) = hero_score;
hrch_vector (i—half_hour_window+1) = hrch;

hrcg_vector (i—half_hour_window+1) = hrcg;

dienstman_hero_vector_all(i—half_hour_window+1) = Dienstman_hero_score_3;
if strcmp(ventilated, ’'no’)
dienstman_hero_vector_nonvent (i—half_hour_-window+1) = Dienstman_hero_score_2;
else
dienstman_hero_vector_vent (i—half_hour_window+1) = Dienstman_hero_score_2;
end
end
end
% Finally , we plot the HeRO scores at the time of each half hour.
if stremp(plot_str, ’'yes’)
figure_handle = figure (' Position’, [50,50,1600,900]);
set (figure_handle , "color’,’w’);
hold on
plot_step = ceil(num_of_hero_scores * .01);
plot (plot_time_vector , dienstman_hero_vector_all, ’LineWidth’, 4, "Color’, [.5 .5 .5])
plot (plot_time_vector , dienstman_hero_vector_vent, ’LineWidth’, 4, ’Color’, [135/255 206/255
250/255])
plot (plot_-time_vector , dienstman_hero_vector_nonvent, ’'LineWidth’, 4, ’Color’, [0 0 205/255])
plot (plot-time_vector , hero_score_vector , ’'LineWidth’, 4, ’*Color’, 'G’)
plot (plot_-time_vector (1: plot_-step:end), hrch_vector (1l:plot_-step:end), '+, 'MarkerSize ', 10)

96

258
259
260

261
262
263
264
265
266
267
268

end
end

plot (plot_time_vector (1: plot_step:end), hrcg_vector (l:plot_step:end), ’o’, "MarkerSize’

line ([event_time event_time], ylim, ’Color’, [0,0,0], ’'LineWidth’, 3);

legend (’Dienstman Hero’, ’Dienstman Vent Hero’, ’Dienstman Nonvent Hero’, ’Legacy Hero’
Sore’, ’Hrcg Score’)

title (["Moving HeRO Score (ID: ° num2str(id) , Site: ’ site ’)’], ’FontSize’, 24)

xlabel (’Time of HeRO Score (Days)’, ’'FontSize’, 16)

ylabel (’"HeRO Score Value’, ’'FontSize’, 16)

set (gca, fontsize’ ,16)

hold off

hgsave(figure_handle, save_file, '—v7.37);

)

)

10)

’Hrch

97

Bibliography

1]
2]

8]
[9]
[10]
[11]

M.-K. ENCYCLOPEDIA, electrocardiogram, November 2003.

A. A. FLOWER, J. R. MOORMAN, D. E. LAKE, AND J. B. DELOS, Periodic heart rate
decelerations in premature infants, Experimental Biology and Medicine, 235 (2010),
pp- 531-538.

D. FREEDMAN AND P. DIACONIS, On the histogram as a density estimator:12 theory,
Wahrscheinlichkeitstheorie verw Gebiete, 57 (1980), pp. 453-476.

M. P. E. A. GRIFFIN, Abnormal heart rate characteristics preceding neonatal sepsis
and sepsis-like illness, Pediatric Research, 53 (2003), pp. 920-926.

B. P. E. A. KOVATCHEV, Sample asymmetry analysis of heart rate characteristics with
application to neonatal sepsis and systemic inflammatory response syndrome, Pediatric
Research, 54 (2003), pp. 892-898.

J. R. E. A. MOORMAN, Mortality reduction by heart rate characteristic monitoring
in very low birth weight neonates: a randomized trial, The Journal of pediatrics, 159
(2011), pp. 900-906.

J. S. RiIcHMAN AND J. R. MOORMAN, Physiological time-series analysis using ap-

proximate entropy and sample entropy, American Journal of Physiology-Heart and
Circulatory Physiology, 278 (2000), pp. H2039-H2049.

M. C. STAFF, Diseases and conditions: Sepsis, July 2014.
A. THOMPSON, The electrocardiogram - part v, 2010.
WIKIPEDIA, Kernel density estimation, March 2017.

— Logistic regression, April 2017.

98

	Saving Babies Using Big Data
	Recommended Citation

	tmp.1494436083.pdf.aYSRJ

