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1 Abstract

We examined several 3-3-1 Models containing three unique lepton generations –

each generation has unique quantum numbers and uses the other generations to

fully cancel anomalies. These models have been previously discussed in a paper

published by Marc Sher and David Anderson [2]. Using new data from the LHC

[5], we revisited the Higgs decays presented in these models, and analyzed their

viability. Despite the theoretical possibility for extending the Standard Model,

none of the models proposed by Anderson and Sher in 2005 have survived exper-

imental verification. We will provide background information on the Standard

Model, introduce some of the possible extensions of it, and then show how these

extensions failed in comparison to experimental data.
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2 Motivation

We seek to find the most accurate model of particles that describes our physical

world. The Standard Model of physics describes particles and their interactions

using a 3-2-1 Model. 3 and 2 refer to the matrix groups SU(3) and SU(2) and the

1 refers to the unitary U(1) group of complex numbers with modulus 1. The S in

SU(3) refers to Special – meaning that overall shifts are controlled for by setting

the determinant of the matrices equal to +1 – and the U for Unitary 3x3 matrices

that describe the colored quark interactions of QCD [3]. Left-handed lepton

and quark flavors interact under the SU(2)xU(1) group. The SU(2)xU(1) group

breaks down into the electromagnetic and weak interactions. Singlet right-

handed quarks and leptons, including electrons, interact under the U(1) group.

The spontaneous symmetry breaking of the Higgs, which transforms as an SU(2)

doublet, generates the masses of the SU(2) gauge bossons – the W± and Z0

massive gauge bosons [4]. However, there is nothing restricting these groups to

the minimum dimensions which can describe them. For example, the SU(2), 2x2

matrix group, could actually be a subset of a 3x3 space. There are numerous

hypotheses that describe such an extension of the standard model. Here, we

will examine a few such models in detail and compare with experimental data to

verify the probability that these extensions can accurately describe our physical

world.

3 Introduction

3.1 Basics of the Standard Model

The Standard Model is created by requiring that the Lagrangian describing

particles must be invariant under global and local gauge transformations [3].

The invariance can be thought of in this way: the physical phenomenon which
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you describe must be the same wherever you choose your set of axes to be, even

if you shift the origin of your coordinate system at each point in space.

By saying that the equation must be invariant using an overall phase shift

–global gauge invariance– we find that electric charge must be conserved [3].

Here is an example of a Lagrangian for a free electron (or any free spinor 1
2

field) [4]:

L = i �

µ

@

µ

 �M  (1)

In this equation, M stands for the mass of the particle,  for the wave equa-

tion,  for the antiparticle wave equation, and @
µ

for the space-time derivative.

With this Lagrangian, it is quite simple to show that a global gauge transfor-

mation, which can be thought of as an overall phase shift, will not a↵ect the

Lagrangian at all. The overall phase shift can be written mathematically as [3]:

 ! e

i✓

 (2)

Similarly, for the antiparticle, the phase shift is written as [3]:

 !  e

�i✓ (3)

Plugging those into the Lagrangian above and simplifying, the original La-

grangian is quickly returned [4].

L = i( e�i✓)�µ@
µ

(ei✓ )�M( e�i✓)(ei✓ ) (4)

e

i✓ is a constant in terms of @
µ

so it can be pulled outside the derivative:

L = (e�i✓

e

i✓)i �µ@
µ

 � (e�i✓

e

i✓)M  (5)
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The exponents cancel and the original Lagrangian remains unchanged by

the overall phase shift.

L = i �

µ

@

µ

 �M  (6)

This invariance of the Langrangian under an overall phase shift accurately

depicts that the physics must remain unchanged regardless of the coordinate

system that we choose. Now we can move on to the more complex local gauge

transformation, which mathematically looks like [3]:

 ! e

i✓(x)
 (7)

The phase shift ✓ now has a local, x, dependence. By requiring that the

Lagrangian must be invariant under local transformations that vary based on

spatial coordinates, we need to adjust the Lagrangian and how it transforms.

Because the phase shift of  has spatial (x) dependence, the space-time deriva-

tive of it will produce an extra term in the Lagrangian due to the product rule

of derivatives [4]. This extra term must be accounted for by using a covariant

derivative, D
µ

[4]:

D

µ

= @

µ

� ieA

µ

(8)

In this equation, A
µ

is the field mediator, e is the electric charge, and again,

@

µ

is the space-time derivative [4]. To maintain invariance, this field mediator

(the photon for QED, the gluons for QCD) must transform as well, and for QED

transforms as [4]:

A

µ

! A

µ

+
1

e

@

µ

✓ (9)

These changes will maintain the invariance of the Largrangian under local
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phase transformations. Because this vector field of photons (A
µ

) or gluons

is mediated by particles which have energy, it must also contribute a kinetic

energy term to the Lagrangian equation (the third term in the equation be-

low) [3]. Therefore, the full Lagrangian for QED has two more terms than

the Lagrangians used above with A

µ

transforming as described, and F

µ⌫

=

@

µ

A

⌫

� @

⌫

A

µ

[4]:

L = i �

µ

@

µ

 �M  + [
�1

4
F

µ⌫

F

µ⌫

]� [(q �µ )A
µ

] (10)

By simply requiring that the physical phenomenon described by the La-

grangian remain unchanged by a spatially-dependent shift in coordinate system,

we have obtained the full equation describing all of quantum electrodynamics

(QED).

The extension to higher dimensions, for example the 3x3 space of quantum

chromodynamics, is relatively straightforward, but will include several addi-

tional terms because such a space is non-Abelian [4]. First, the phase shift in

higher dimensions is described by a set of matrices that create a basis for the

space, rather than by a set of real numbers. The phase shift in 3x3 space looks

like [4]:

 ! e

i↵a(x)Ta(x)
 (11)

The T matrices set up a basis for the space, and the ↵ parameters can shift

these basis elements [4]. The subscript “a” runs from 1 to 8, and denotes the 8

matrices necessary to set up a basis for the space [3]. Similarly, the covariant

derivative, D
µ

, now involves these T matrices as well [4]:

D

µ

= @

µ

+ igT

a

G

a

µ

(12)
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For quantum chorodynamics the G

a

µ

represents the field mediators, called

gluons, and g is the gluon’s color charge [4]. There is one more significant

change. For real numbers, a and b 2 R, ab = ba. But for matrices that belong

to a non-Abelian group, AB 6= BA, in other words the matrix group generators

do not all commute. This non-commutator relationship between the matrices

produces an extra term in the Lagrangian that must be controlled for by altering

the way that the gauge bosons transform [3]:

G

a

µ

! G

a

µ

� 1

g

@

µ

↵

µ

� f

abc

↵

b

G

c

µ

(13)

f

abc

are the structure constants of the set of T
↵

matrices [4]. The compelling

result of this transformation of the gauge boson is that the kinetic energy term

for the gluons, Ga

µ⌫

G

µ⌫

a

, will now include self-coupling terms in the transformed

space [3]. These self-coupling terms lead to confinement of quarks, which is a

very exciting and physically accurate result of asserting that local gauge invari-

ance must hold for the QCD Lagrangian.

3.2 The Higgs Mechanism

Correctly describing the transformations of the massless gauge boson fields of

photons and gluons is only part of the picture though. The Electroweak interac-

tion adds an interesting complication because it has the massive field mediators

known as W± and Z0. The masses of these gauge bosons are “hidden” when

we approach the electroweak interaction in the same way as the strong and

electromagnetic interactions; however, a process called spontaneous symmetry

breaking reveals their masses [4].

In spontaneous symmetry breaking, we try to expand a scalar field about a

zero value and find that – in the cases where there are massive fields – the zero

is not a minimum that we can expand around [3]. The true minima are shifted
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at ± a constant value from the origin. Or in higher dimensions, the minima are

at a constant radius from the center of the scalar field [3]. By shifting to these

minima, we can then expand the Lagrangian using a perturbative approach

that describes quantum energy fluctuations [4]. Once shifted to the actual

minima, this expansion will converge and give a realistic answer [4]. Writing

the Lagrangian in terms of these new minima introduces a term consistent with a

mass term for the gauge bosons. Therefore, this spontaneous symmetry breaking

can be used to describe the massive gauge bosons,W± and Z0, of the electroweak

interaction [3]. Additionally, this new expansion point introduces a massive

scalar field. This field is known as the Higgs and is linked to revealing the mass

of the electroweak gauge bosons [3].

In the minimal Standard Model approach, there is only one Higgs boson. To

get to the Higgs boson, we start by evaluating a scalar � field, expressed as a

doublet of complex scalar fields [4]:

� =
1p
2

0

B@
�1 + i�2

�3 + i�4

1

CA (14)

The potential, V, of the scalar field in the Lagrangian could look like [4]:

V = µ

2
�

†
�+ �(�†�)2 (15)

µ represents a constant complex number such that µ

2
< 0 and � is an

arbitrary constant greater than zero [4]. By taking a derivative of V with respect

to �†� and setting it equal to zero, we find that the minimum is at:

�

†
� = �µ

2

2�
(16)

By evaluating �†�, we see that [4]:
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�

†
� =

1

2
(�21 + �

2
2 + �

2
3 + �

2
4) = �µ

2

2�
(17)

Now there is evidently some freedom in our choice of �’s. In the Weinberg-

Salam model, we choose [4]:

�1 = �2 = �4 = 0 and �3 =

r
�µ

2

�

= v (18)

The minimum is often denoted v for simplicity. By plugging equation 18

into equation 14, we now have our minimum value of � in 2x2 space, called the

vacuum expectation value [4]:

�

o

=
1p
2

0

B@
0

v

1

CA (19)

and we can expand about this point to describe fluctuations in the Higgs

field, h(x):

�(x) =
1p
2

0

B@
0

v + h(x)

1

CA (20)

From there, we can obtain the mass terms for the electroweak bosons by

plugging the value of �
o

into the electroweak Lagrangian [4]. The coe�cients

of the terms that are negative and have the gauge boson squared define the

mass of that gauge boson. The W± masses come out fairly easily, but the W3
µ

and B
µ

have o↵-diagonal terms [4]. These bosons help set up the basis for the

electroweak space, but the actual physical entities of A
µ

and Z will diagonalize

these matrices. [4] When diagonalizing, Z will come out with a mass and A
µ

will

come out massless - accurately describing the massless photon field and massive

Z boson.
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The Standard Model also allows for more Higgs fields, such as a Higgs doublet

model, which is analyzed later in this paper.

3.3 Anomaly Cancellation

One way particles can interact with each other is by forming a loop. An-

alyzing these loops illuminates when a theory is non-renormalizable. Non-

renormalizable means having infinities that do not cancel, and as such, the

theory is unmanageable. However, by summing over all species that could move

through the loop or summing over several generations of quarks or leptons, these

anomalies can cancel out; and thus the theory becomes renormalizable again [6].

Anomalies are often presented in tables so that one can add across rows to

check that the relevant sums are zero – in other words, that the anomalies are

cancelling. This set-up will be used throughout the paper.

4 Models and Results

4.1 3-3-1 Models Introduced by Ponce et al.[6]

Ponce et al. presented several 3-3-1 models [6]. They restricted their models to

only include quarks and leptons with non-exotic charges (± 2
3 or ± 1

3 for quarks,

and ± 1 or 0 for leptons) [6]. Their models included single family and three

family models [6]. In single family models, the anomalies individually cancel in

each generation. In three family models, we must sum the anomalies over all

three generations in order to cancel anomalies [6].

Ponce et al. formed their models by combining di↵erent sets of quarks and

leptons. I have reproduced a modified version of their anomaly results in the

table below followed by a description of each set and its quantum numbers [6].

In some of the descriptions, ↵ stands for an arbitrary generation. For example
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⌫

↵

,↵

� could stand for ⌫
e

, e

�, namely an electron neutrino and an electron. The

first quantum number refers to the color; the colored quarks sets have a 3 here,

while the lepton groups - which are colorless - have a 1. The second quantum

number references left-handed triplets with a 3 and singlets with a 1. The third

quantum number gives the hypercharge. The form of the triplets and their

variables will be explained further in the next section.

Anomalies in Ponce et al. 3-3-1 Model fermion sets

Anomalies L1 L2 L3 L4 Q1 Q2

[SU(3)
c

]2U(1)
X

0 0 0 0 0 0

[SU(3)
L

]2U(1)
X

�2
3

�1
3 0 -1 1 0

[grav]2U(1)
X

0 0 0 0 0 0

[U(1)
X

]3 10
9

8
9

6
9

12
9

�12
9

�6
9

L1 =

0

BBBB@

⌫

↵

↵

�

E

�
↵

1

CCCCA

⇣
1, 3,

�2

3

⌘
; ↵

+ (1, 1, 1); E

+
↵

(1, 1, 1) (21)

L2 =

0

BBBB@

↵

�

⌫

↵

N

0
↵

1

CCCCA

⇣
1, 3⇤,

�1

3

⌘
; ↵

+ (1, 1, 1) (22)
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L3 =

0

BBBB@

e

�

⌫

e

N

0
1

1

CCCCA

⇣
1, 3⇤,

�1

3

⌘
;

0

BBBB@

E

�

N

0
2

N

0
3

1

CCCCA

⇣
1, 3⇤,

�1

3

⌘
;

0

BBBB@

N

0
4

E

+

e

+

1

CCCCA

⇣
1, 3⇤,

2

3

⌘

(23)

L4 =

0

BBBB@

⌫

e

e

�

E

�

1

CCCCA

⇣
1, 3,

�2

3

⌘
;

0

BBBB@

E

+
2

N

0
1

N

0
2

1

CCCCA

⇣
1, 3,

1

3

⌘
;

0

BBBB@

N

0
3

E

�
2

E

�
3

1

CCCCA

⇣
1, 3,

�2

3

⌘
;

e

+ (1, 1, 1); E

+
1 (1, 1, 1); E

+
3 (1, 1, 1)

(24)

Q1 =

0

BBBB@

d

u

U

1

CCCCA

⇣
3, 3⇤,

1

3

⌘
; u

c (3⇤, 1,
�2

3
); d

c (3⇤, 1,
1

3
); U

c (3⇤, 1,
�2

3
) (25)

Q2 =

0

BBBB@

u

d

D

1

CCCCA

⇣
3, 3, 0

⌘
; d

c (3⇤, 1,
1

3
); u

c (3⇤, 1,
�2

3
); D

c (3⇤, 1,
1

3
) (26)

An example of a single family model will include one quark (Q) group and

one lepton (L) group. For example, the first model presented in this paper

was created using group Q2 and L3 [6]. If you add columns Q2 and L3, you

will get a sum of 0 in each row – this shows that all of the anomalies have

cancelled [6]. The first anomaly (the first row in the table) represents two

12



gluons and a hypercharge. The second one states that the quantum numbers

for all left handed interactions must sum to zero. The third anomaly says

that the interaction with gravity must produce renormalizable values. Lastly,

the anomalies of three interacting singlets (singlets because they are from the

U(1) group) must sum to zero. The Feynman diagrams for these anomalies are

depicted below.

Feynman Diagrams for Anomalies

Figure 1: The first diagram represents the first two anomalies in the table. For
the first anomaly, the SU(3)’s would be SU(3)

c

and for the second anomaly,
they would be SU(3)

L

. The second diagram shows the third anomaly in the
table (grav stands for gravity). And the last Feynman diagram shows the last
anomaly in the table regarding U(1) singlets.

We can build up other models by choosing quark (Q1 or Q2) and lepton (L1,

L2, L3 or L4) groups that sum to have zero anomalies. For example, another one

family model will be the combination Q1 + L4. Three family models presented

in the paper include 3L1 + 2Q1 + Q2 and 3L2 + Q1 + 2Q2 [6]. The most

complex sets discussed were a model composed of L1 + L2 + Q1 + 2Q2 + L3

and a model of L1 + L2 + 2Q1 + Q2 + L4 [6]. For these last two models, each

family is treated di↵erently [6]. It is simple to check that in all cases, the sum

of each of the four anomalies is zero.

As mentioned in the introduction, the SU(2)
L

group of the Standard Model

relates to the electroweak W± and Z0 massive gauge bosons. Now that we have

expanded the SU(2)
L

group to an SU(3)
L

group, we have introduced new gauge

bosons. Ponce refers to these new gauge bosons as K bosons and D bosons;

13



there are eight of them [6]. And using spontaneous symmetry breaking, we can

find the expected masses of these new gauge bosons.

A few of these models (the last two models mentioned) are explored in more

detail by David Anderson and Marc Sher [2].

4.2 Overview of 3-3-1 Models by Anderson and Sher [2]

Anderson and Sher discuss the phenomenology of models L1 + L2 + Q1 + 2Q2

+ L3 called Model A, and L1 + L2 + 2Q1 + Q2 + L4 called Model B, in which

all three generations are treated separately [2]. This is driven by the three

unique lepton generations. These are the same models mentioned briefly in the

Ponce paper; refer to the Ponce anomaly table to see the related anomalies [6].

Both of these models include exotic leptons. These leptons are not part of the

Standard Model and have yet to be observed experimentally. By spontaneous

symmetry breaking using Higgs triplets, the mass of these exotic leptons can be

discovered. The masses are quite large, explaining why they may not yet have

been discovered experimentally [2].

When extending to the SU(3)
L

sector, the quark and lepton triplets will

have this form [6]:

�

L

=

0

BBBB@

u

d

q

1

CCCCA

L

(27)

 

L

=

0

BBBB@

e

�

v

e

`

1

CCCCA

L

(28)

�

L

stands for the left-handed quark triplets, and  

L

for the left-handed

lepton triplets. The third components, q
L

and `

L

, are the exotic quarks and

14



leptons respectively [6].

The leptons of Model A include the electron and neutrino generations of

the Standard Model, as well as exotic leptons. When creating new models, we

do not know ahead of time what the permutation order of the generations will

be, so instead of writing e, µ, and ⌧, we write e
i

, e
j

, and e
k

and try various

permutations when testing the models. The specific leptons in Model A are

described (with associated quantum numbers) below [2].

 

i

=

0

BBBB@

⌫

i

e

i

E

i

1

CCCCA

L

, (3,
�2

3
); e

c

i

, (1, 1); E

c

i

, (1, 1) (29)

 

j

=

0

BBBB@

e

j

⌫

j

N

o

j

1

CCCCA

L

, (3⇤,
�1

3
); e

c

j

, (1, 1) (30)

 

k

=

0

BBBB@

e

k

⌫

k

N

o

1k

1

CCCCA

L

, (3⇤,
�1

3
); 0

k

=

0

BBBB@

E

k

N

o

2k

N

o

3k

1

CCCCA

L

, (3⇤,
�1

3
); 00

k

=

0

BBBB@

N

o

4k

E

c

k

e

c

k

1

CCCCA

L

, (3⇤,
2

3
);

(31)

The first number in the parenthesis describes whether the particles are in a

triplet or a singlet, and the second quantum number denotes the hypercharge.

E
i

and E
k

are the two new exotic charged leptons [2].

Model B is somewhat similar, but has 4 exotic charged leptons rather than

three (they are E
i

, E1k, E2k and E3k) [2]. All of the leptons in Model B are

shown below [2]:
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i

=

0

BBBB@

⌫

i

e

i

E

i

1

CCCCA

L

, (3,
�2

3
); e

c

i

, (1, 1); E

c

i

, (1, 1) (32)

 

j

=

0

BBBB@

e

j

⌫

j

N

o

j

1

CCCCA

L

, (3⇤,
�1

3
); e

c

j

, (1, 1) (33)

 

k

=

0

BBBB@

⌫

k

e

k

E1k

1

CCCCA

L

, (3,
�2

3
); 0

k

=

0

BBBB@

E

c

2k

N

o

1k

N

o

2k

1

CCCCA

L

, (3,
1

3
); (34)

 

00
k

=

0

BBBB@

N

o

3k

E2k

E3k

1

CCCCA

L

, (3,
�2

3
); e

c

k

, (1, 1); E

c

1k, (1, 1); E

c

3k, (1, 1) (35)

4.3 Mass Matrices and Yukawa Couplings

The Models discussed in this paper have 3 Higgs triplets in their scalar sector.

The vacuum expectation values of these Higgs are shown below [2]:

h�
A

i =

0

BBBB@

0

0

V

1

CCCCA
, h�1i =

0

BBBB@

v1p
2

0

0

1

CCCCA
, h�2i =

0

BBBB@

0

v2p
2

0

1

CCCCA
(36)

h�
A

i breaks the symmetry from SU(3) x SU(3) x SU(1) down to the Stan-

dard Model symmetry of 3 x 2 x 1 and it gives mass to some of the exotic

particles [2]. The h�1i and h�2i Higgs break the Standard Model symmetry

to adjust to the correct vacuum expectation value and also give mass to the

standard model fermions [2]. Because V is much larger than v1 and v2, it will
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also cause parts of the mass matrices in Models A and B to decouple, and leave

only 3x3 mass matrices in both cases [2].

We will use these 3x3 mass matrices to compute the Yukawa couplings of

the Higgs to fermions. We will go through each model separately. The full mass

matrix for the charged leptons (e
i

, e

j

, e

k

, E

i

, E

k

) in model A is shown below,

where the h’s and g’s are arbitrary constants [2]:

M

A

=

0

BBBBBBBBBB@

h1v2 h2v2 0 h3v2 0

h7v1 h8v1 �g1v2 h9v1 g2V

h10v1 h11v1 �g3v2 h12v1 g4V

h4V h5V 0 h6V 0

h13v1 h14v1 �g5v2 h15v1 g6V

1

CCCCCCCCCCA

(37)

As you can see, only the 2 right-most and 2 bottom-most columns involve

V. Since v1 and v2 are much smaller than V, the upper 3x3 matrix has three

zero eigenvalues and completely decouples from the lower region. Non-trivially,

based on a numerical calculation performed by Anderson and Sher, the form of

the upper 3x3 is maintained [2]. This upper 3x3 then breaks up into its Yukawa

Coupling matrices as shown. We changed the numbering system of the h’s to

make it more readable, since they are just arbitrary coe�cients; however, the

v2 ! �2 and v1 ! �1 quality persists when reading o↵ the Yukawa Couplings

below from the upper 3x3 in the mass matrix M
A

above [2]:

0

BBBB@

0 0 0

h3 h4 0

h6 h7 0

1

CCCCA
�1 +

0

BBBB@

h1 h2 0

0 0 h5

0 0 h8

1

CCCCA
�2 (38)

In order to attain Yukawa Couplings with non-arbitrary coe�cients, we need

to diagonalize the mass matrix [2]. Certain permutations are ruled out, and then

we arrive at our usable Yukawa Coupling matrices, as described in Anderson
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and Sher’s paper [2].

Scalar A1 (e, µ, ⌧) A2 (⌧, µ, e)

�1

0

BBBB@

0 �p
m

e

m

µ

�m

µ

q
me
m⌧

0 �m

µ

�m

µ

q
mµ

m⌧

p
m

e

m⌧
p
m

µ

m⌧ m

µ

1

CCCCA

0

BBBB@

0 0
p
m

e

m⌧

�p
m

e

m

µ

�m

µ

p
m

µ

m⌧

�m

µ

q
me
m⌧

�m

µ

q
mµ

m⌧
m

µ

1

CCCCA

�2

0

BBBB@

m

e

p
m

e

m

µ

m

µ

q
me
m⌧

0 0 0

�p
m

e

m⌧ �p
m

µ

m⌧ m⌧ +m

µ

1

CCCCA

0

BBBB@

m

e

0 �p
m

e

m⌧

p
m

e

m

µ

0 �p
m

µ

m⌧

m

µ

q
me
m⌧

0 m⌧ +m

µ

1

CCCCA

m

e

stands for the mass of the electron, m
µ

for the mass of the muon, and

m⌧ for the mass of ⌧. We will pull values from these matrices when computing

the formulas for the decay widths (described in the next section).

The procedure for Model B is the same, but we start with a 7x7 matrix (the

ordering of charged leptons is: e
i

, e

j

, e

k

, E

i

, E1k, E2k, E3k) [2].

M

B

=

0

BBBBBBBBBBBBBBBBB@

h1v2 h2v2 h3v2 h4v2 h5v2 g4V h6v2

h13v1 h14v1 h15v1 h16v1 h17v1 0 h18v1

h19v2 h20v2 h21v2 h22v2 h23v2 g5V h24v2

h7V h8V h9V h10V h11V �g1v2 h12V

h25V h26V h27V h28V h29V �g2v2 h30V

h31v2 h32v2 h33v2 h34v2 h35v2 g6V h36v2

h37V h38V h39V h40V h41V �g3v2 h42V

1

CCCCCCCCCCCCCCCCCA

(39)

Now the lower four rows and right-most four columns contain V’s. Again,

because V is large, the upper 3x3 will decouple from this lower region, and

be used to analyze Standard Model branching ratios and compare them to

experiment in the next sections [2]. Maintaining the v1 ! �1 and v2 ! �2

character in the matrix above, the Yukawa Couplings for Model B for the upper
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3x3 are (with the numbering system of the h’s changed to make it more readable)

[2]:

0

BBBB@

0 0 0

h

0
4 h

0
5 h

0
6

0 0 0

1

CCCCA
�1 +

0

BBBB@

h

0
1 h

0
2 h

0
3

0 0 0

h

0
7 h

0
8 h

0
9

1

CCCCA
�2 (40)

Then, we diagonalize the mass matrix and rewrite the Yukawa Couplings in

the correct basis. Showing only allowed permutations, we have 3 options for

Model B [2]:

Scalar B1 (e, µ, ⌧) B2 (e, ⌧, µ)

�1

0

BBBB@

0 �p
m

e

m

µ

p
m

e

m⌧

0 �m

µ

p
m

µ

m⌧

0 �m

µ

q
mµ

m⌧
m

µ

1

CCCCA

0

BBBB@

0 0 �p
m

e

m⌧

0 0 �p
m

µ

m⌧

0 0 m⌧ +m

µ

1

CCCCA

�2

0

BBBB@

m

e

p
m

e

m

µ

�p
m

e

m⌧

0 0 �p
m

µ

m⌧

0 0 m⌧ +m

µ

1

CCCCA

0

BBBB@

m

e

0 �p
m

e

m⌧

0 �m

µ

p
m

µ

m⌧

0 �m

µ

q
mµ

m⌧
m

µ

1

CCCCA

Scalar B3 (µ, e, ⌧)

�1

0

BBBB@

m

e

p
m

e

m

µ

m

µ

q
me
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0 0 0

0 0 0

1

CCCCA

�2

0

BBBB@

0
p
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e
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q
me
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0 �m

µ

q
mµ

m⌧
m⌧ + 2m

µ

1

CCCCA
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4.4 Widths and Branching Ratios

The Higgs boson can decay into other particles. The branching ratio gives the

probability of a Higgs decaying into a given pair of particles. This probability

is then multiplied by the total decay width to get the width of the decay into

the given pair of particles called �
xx

:

�
xx

= SMBranchingRatio
xx

⇤ �
Total

(41)

The Standard Model branching ratios with error are shown [1]:

Theoretical Standard Model Branching Ratios [1]

Higgs Decay into Branching Ratio (�)

⌧⌧ 6.26 ± 0.35

µµ 0.022 ± 0.001

WW* 22.0 ± 0.9

ZZ* 2.73 ± 0.11

bb 57.1 ± 1.9

gg 8.53 ± 0.85

Using these branching ratios and the total decay width of 4.1 MeV from the

ATLAS experiment [1], I calculated the individual decay widths into ⌧⌧, µµ,

WW, ZZ, bb, and gg; they are:
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Standard Model Decay Widths

�⌧⌧ = 0.2567 MeV

�
µµ

= 0.000902

�ww = 0.902

�zz = 0.1119

�
bb

= 2.3411

�
gg

= 0.3497

In order to find the decay widths of our models, we need to multiply by the

squared Yukawa Coupling. Using the Yukawa Coupling matrices in the previous

section, I found expressions for how strongly the Higgs couples to each particle.

In order to calculate the coupling constants, I wrote the Higgs that breaks the

SM symmetry in the models (called h), in terms of its mixing with the exotic

h�
A

i Higgs. With ↵ as the mixing angle, that equality is:

h = �1sin(↵)� �2cos(↵) (42)

The �1 is then replaced with the particle’s coupling to the �1 from the

Yukawa coupling matrices (and likewise for �2). For example, in model A1,

the �1 coupling to ⌧⌧ would be m

µ

- taken directly from the ⌧⌧ or (3,3) place

in the A1, �1 coupling matrix. Replacing v1 and v2 with vcos(�) and vsin(�)

respectively, I wrote them in terms of the common ratio of SM higgs:

tan(�) =
v2

v1
(43)

After entering the �1 and �2 values into the h equation, I squared it, and

multiplied by the Standard Model width for that particle; this created the ap-

proximate decay widths for each particle in each model. The decay widths are
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shown explicitly for each model in the next section. Within each model, I deter-

mined the branching ratio by putting an individual decay width over the sum

of all other decay widths.

BR

xx

=
�
xx

⌃�
xx

(44)

These Branching Ratios are then compared to experimental values. The

experimental branching ratios are shown in the table below [5]. When graph-

ing the branching ratios, I used twice the error bounds given (two standard

deviations) for upper and lower limits.

Experimental Branching Ratios in percentages (�) [5]

�⌧⌧ = 7.011 ± 1.44

�
µµ

< 0.154

�ww = 23.76 ± 3.74

�zz = 3.522 ± 0.669

�
bb

= 46.822 ± 17.13

4.5 Results: Checking Higgs Decays with Data from the

LHC

I will now compare the experimental decay branching ratios to the branching

ratios predicted by each allowed permutation of model A and B. The branching

ratio is obtained by putting a single decay width over the sum of all decay

widths. Refer to the section above to see how the decay widths below were

obtained. For Model A1 the decay widths are as follows:

�⌧⌧ = (0.2567 MeV)

✓p
2 m⌧

v

◆✓
m

µ

m⌧

sin(↵)

cos(�)
�
✓
m

µ

+m⌧

m⌧

◆
cos(↵)

sin(�)

◆�2
(45)
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�
µµ

= (9.02 x 10�4 MeV)

✓p
2 m

µ

v

◆
sin(↵)

cos(�)

�2
(46)

�ww = (0.902 MeV) sin2(↵� �) (47)

�zz = (0.1119 MeV) sin2(↵� �) (48)

�
bb

= (2.3411 MeV)

✓p
2 m⌧

v

◆✓
m

µ

m⌧

sin(↵)

cos(�)
�
✓
m

µ

+m⌧

m⌧

◆
cos(↵)

sin(�)

◆�2
⇤25 sin2(↵)

(49)

�gg ⇡ 0.3497 MeV (50)

The decay widths for WW, ZZ, and gg are equal to the A1 model values

for all other models discussed in this paper, because these gauge bosons are the

same in all of the models.

For Model A2, the decay width for ⌧⌧ and bb depend on the ratio of the

electron mass over the vacuum expectation value
�p

2 me
v

�
which is 0.5 MeV

over 175 Gev; therefore, these decay widths are approximately zero. Again, the

WW, ZZ, and gg widths are equal to those shown for A1. For Model A2, the

µµ width is equal to that in model A1 as well:

�
µµ

= (9.02 x 10�4 MeV)

✓p
2 m

µ

v

◆
sin(↵)

cos(�)

�2
(51)

In Model B1, the decay widths for ⌧⌧, µµ, WW, ZZ, and gg are all the same

as Model A1; however, the decay width for bb is larger by a factor of 400 over

25:
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�
bb

= (2.3411 MeV)

✓p
2 m⌧

v

◆✓
m

µ

m⌧

sin(↵)

cos(�)
�
✓
m

µ

+m⌧

m⌧

◆
cos(↵)

sin(�)

◆�2
⇤400 sin2(↵)

(52)

For Model B2, WW, ZZ, and gg are the same as Model A1, and the other

decay widths are shown below:

�⌧⌧ = (0.2567 MeV)

✓p
2 m

µ

v

◆
cos(↵)

sin(�)

�2
(53)

�
µµ

= (9.02 x 10�4 MeV)

✓p
2 m⌧

v

◆✓✓
m

µ

+m⌧

m⌧

◆
sin(↵)

cos(�)
� m

µ

m⌧

cos(↵)

sin(�)

◆�2

(54)

�
bb

= (2.3411 MeV)

✓p
2 m

µ

v

◆
cos(↵)

sin(�)

�2
⇤ 25 sin2(↵) (55)

Lastly, for Model B3 - WW, ZZ, and gg are the same as in Model A1. The

µµ decay width is essentially zero, because it depends on the electron mass over

175 GeV. The ⌧⌧ and bb widths are shown below:

�⌧⌧ = (0.2567 MeV)

✓p
2(m⌧ + 2 m

µ

)

v

◆
cos(↵)

sin(�)

�2
(56)

�
bb

= (2.3411 MeV)

✓p
2(m⌧ + 2 m

µ

)

v

◆
cos(↵)

sin(�)

�2
⇤ 1000 sin2(↵) (57)

In each model, I used the expression below to calculate the branching ratios

for each particle:
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BR

xx

=
�
xx

⌃�
xx

(58)

The model branching ratios still have the free parameters of ↵ - mixing angle,

and � - inverse tangent of v2 to v1. I set the model branching ratios equal to

the branching ratios found experimentally ± 2x the error bounds, and plotted

the results to see if any of the models’ branching ratios agreed with experiment.

While there was a range of alpha and beta values that worked for the branch-

ing ratios of Higgs into WW bosons in most models, there often were no ↵ and �

values satisfying ⌧⌧ decay in these models. The real solutions for ⌧⌧ branching

tended to be outside the allowed range. They were either too small, tan(�) < 1,

in which case the perturbation theory no longer applies; or they were too large,

tan(�) > 100, in which case the Higgs would not be able to give the necessary

mass to bottom or top quarks. In each model, the ⌧⌧ decay had no ↵ and �

values in range; therefore, each of the theories were eliminated. A2 was elim-

inated most easily, because it predicted no ⌧⌧ decay, even though that decay

is observed experimentally. I have included some example graphs of the WW

Branching ratios below, which did have some allowed values as shown. (The

code for generating these graphs is shown in Appendix A.)
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WW Branching in Model A1

Figure 2: In terms of cos(↵��) on the horizontal axis and tan(�) on the vertical
axis, this graph shows the ↵ and � angles that satisfy both the branching ratios
of Model A1 and the experimental results about the branching ratio of the Higgs
into the WW bosons. The three lines represent the main solution and the upper
and lower bounds (at two standard deviations of the experimental values). The
graph does not appear exactly symmetric. This may be due to the complex
branching ratio equation only being satisfied by certain values as ↵ runs from
-⇡/2 to ⇡/2 and � runs from 0 to ⇡.
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WW Branching in Model B1

Figure 3: In terms of cos(↵��) and tan(�), this graph shows the ↵ and � angles
that satisfy both the branching ratios of Model B1 and the experimental results
about the branching ratio of the Higgs into the WW bosons. The three lines
represent the main solution and the upper and lower bounds (at two standard
deviations of the experimental values). The graph does not appear exactly
symmetric. This may be due to the complex branching ratio equation only
being satisfied by certain values as ↵ runs from -⇡/2 to ⇡/2 and � runs from 0
to ⇡.
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WW Branching in Model B3

Figure 4: In terms of cos(↵ � �) and tan(�), this graph shows the ↵ and �

angles that satisfy both the branching ratios of Model B3 and the experimental
results about the branching ratio of the Higgs into the WW bosons.

5 Conclusions

We examined a 3-3-1 extension of the SU(2)xU(1) group in the Standard Model.

Our theories involved 3 unique lepton generations, large exotic quark and lepton

masses, and 3 Higgs triplets. The Higgs particles in the models had some

interesting decay states with large branching ratios, but these did not agree

with experimental bounds on the branching ratios for the Higgs Boson. Contrary

to experiment, Model A2 had no ⌧⌧ decay because the Yukawa Coupling was

dependent on the small ratio of m
e

over vp
2
or 0.0000029; so it was discarded. In

Models A1, B1, B2, and B3 the ⌧⌧ decay had no mixing angle ↵ and no vacuum

expectation value ratio tan(�) that were within the range of allowed values and

agreed with experimental data. All the models hypothesized by Anderson and

Sher in 2005 have been disproven using more recent experimental data from
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the LHC [5]. Perhaps other extensions of the Standard Model will hold up to

experimental scrutiny.
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7 Appendix A: Mathematica Code

Note: The code is functional but not e�cient.

Code for Graphing WW: Part 1

Figure 5: This section of the code addresses a troubleshooting issue. The saved
global variables had to be cleared at the beginning of each run in order to not
have leftover (incorrect) variable values.
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Code for Graphing WW: Part 2

Figure 6: The first line is the last clear command from figure 5. The second line
sets up a list, called “fullList” that is filled in the code segment shown in figure
8 to collect all data points. The third line begins a for loop that runs through
possible ↵ values, using a small increment of 0.0001. The q variable will return
the � values that satisfy the branching ratio expression when it is set equal to
the experimental branching ratio. blist makes a list of all the � solutions. I then
stripped o↵ any imaginary numbers in this list, and selected only the allowed
values of � (between 0 and Pi). Next, I removed any values for which tan(�)
was less than 0.5 or greater than 100. From checking the solutions “by hand”
(see figure 9), I knew that there were no more than 3 solutions for � after this
stripping process. In fact, there were sometimes no solutions. Therefore, I used
conditional if statements to check the length of the list of � solutions. If the
list had a value in it, I saved the value (as blistfirst), as well as tangent of the
value, and cos(↵-�), and made a point for the graph (called pfirst). The final
lines of this code segment repeat that process for any possible second and third
solutions.
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Code for Graphing WW: Part 3

Figure 7: This code segment again finds � solutions, makes and cleans a list
of those solutions, and saves points; however, this time, it solves for the lower
experimental bound, and all the variables have an extra l to indicate this lower
bound.
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Code for Graphing WW: Part 4

Figure 8: This code segment again finds � values, makes a list, and saves points
(this time for the upper bound, indicated with an “h” for high). Additionally, in
this code segment, I added any points to a “fullList”, from which Mathematica
could plot all the points. In order to not have empty lists filling up the fullList,
I used conditionals to only add actual solutions to the fullList. The for loop
then closed; and once outside the for loop, I plotted all these solution points to
make the graphs.
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Code for Checking ⌧⌧ “By Hand”

Figure 9: This code is essentially one of the code segments shown above (for
either the main solution, or the upper or lower bound). I could adjust the
bound by hand in this code, to check di↵erent solutions in the error range.
The Print statement is shown here at the end of the selection process, but when
checking by hand, I moved it in between all selection items to check that the code
was performing as desired. (For example I inserted the Print before the Reals
selection and checked that none of the imaginary values were just 0.00000001i,
but actually had a large i component.) As you can see, I also altered the range
of tan(�) up to 150, to make sure that no solutions lay just out of range. For
⌧⌧ graphing, I got only a blank graph, so I used this code to make sure that the
code was working properly and there really were no solutions.
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