
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

4-2017

Characterization of Neural Network Backpropagation on Chiplet-Characterization of Neural Network Backpropagation on Chiplet-

based GPU Architectures based GPU Architectures

Colin A. Weinshenker
College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Weinshenker, Colin A., "Characterization of Neural Network Backpropagation on Chiplet-based GPU
Architectures" (2017). Undergraduate Honors Theses. Paper 1068.
https://scholarworks.wm.edu/honorstheses/1068

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235417978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1068?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Characterization of Neural Network Backpropagation
 on Chiplet-based GPU Architectures

A thesis submitted in partial fulfillment of the requirement

for the degree of Bachelor of Science in Computer Science from
The College of William and Mary

by

Colin Weinshenker

Accepted for ___________________________________
(Honors, High Honors, Highest Honors)

__
Adwait Jog, Director

__
Zhenming Liu

__
Dan Cristol

Williamsburg, VA
April 24, 2017

Abstract

Advances in parallel computing architectures (e.g., Graphics Processing Units (GPUs)) have

had great success in helping meet the performance and energy-efficiency demands of many

high-performance computing (HPC) applications. DRAM bandwidth is generally a criti-

cal performance bottleneck for many of such applications. With the advances in memory

technology, the DRAM bandwidth bottleneck is shifting towards other parts of the system

hierarchy (e.g., interconnects). We identify neural network backpropagation as one appli-

cation where the interconnect network is one of the biggest performance bottlenecks. We

show that the interconnect bottleneck for backpropagation can be significantly alleviated if

computing cores and caching units are carefully tiled (an architecture commonly known as

“chiplet”) and organized on the interconnect fabric.

To simulate a chiplet design, we augment an existing, well-documented GPU simulator,

GPGPU-Sim. Our modifications add an additional level of cache between on-chip L1s and

an interconnect network-on-chip. This additional layer of cache reduces demand on the in-

terconnect by localizing memory traffic to individual chiplets. We show that under a fixed

core budget with additional cache, a chiplet architecture can increase Instruction Per Cycle

(IPC) counts for important CUDA kernels by up to 20% during the training phase.

2

Acknowledgements

I would like to thank my advisor, Dr. Adwait Jog, for his encouragement and patience. His

knowledge of the field shaped the project and taught me a great deal about having patience

with myself. I appreciate Dr. Zhenming Liu’s grounding feedback and the guidance of Dr.

Dan Cristol, who has never failed to speak his mind. Lastly, thanks to Yorick Oden-Plants,

Marissa Messner, and Lydia Boike, all of whom read drafts of this thesis. Yorick in particular

helped keep me honest and optimistic.

3

Contents

1 Introduction 5

1.1 High Performance Computing . 5

1.2 Contributions and Paper Overview . 6

2 Background 6

2.1 Parallel Programming in Brief . 6

2.2 The Graphics Processing Unit (GPU) . 10

2.2.1 SIMT Model . 11

2.2.2 GPU Memory Hierarchy . 12

2.2.3 GPUs from the Programmer’s Perspective 12

2.2.4 GPU Simulator: GPGPU-Sim . 13

2.3 Interconnect Networks . 14

3 Machine Learning 17

3.1 Backpropagation . 17

3.2 Characterization of Neural Network Backpropagation on GPU Architectures 19

4 Chiplet-based Architecures 23

4.1 Simulating a Chiplet-based Architecture in GPGPU-Sim 24

4.1.1 Cache Design . 24

4.1.2 Queuing Mechanism . 25

5 Evaluation and Results 26

5.1 Methodology . 26

5.2 Results . 26

5.2.1 Core Non-Isometric Results . 26

5.2.2 Core Isometric Results . 33

6 Discussion 37

7 Related work 38

8 Conclusion 39

References 39

4

1 Introduction

1.1 High Performance Computing

Over the past several decades, high performance computing (HPC) has become essential to

nearly every field of scientific and commercial computing. Among forms of HPC, including

cluster- and super-computing, none has risen to prominence faster than the graphics pro-

cessing unit (GPU). The massive datasets that have emerged have proven well suited to the

data parallelism GPUs readily exploit. From physics simulations to self-driving cars and

modern gaming, GPUs are now nearly ubiquitous in modern computing.

In particular, GPUs have catalyzed the growth of commercial machine learning (ML). In

the 1970s and 1980s, many academics and industry figures moved away from ML because the

large models required for applications like speech and image recognition were too computa-

tionally expensive for available hardware. With the advent of commercially available GPUs,

broad interest in machine learning awoke from hibernation during these “AI Winters” [10].

GPUs are particularly well-equipped to perform general matrix-matrix multiplication, the

essential computation for machine learning. And GPU cost effectiveness (top-shelf GPUs sell

for a few thousand dollars) has made them the tool of choice for deep learning, the branch

of machine learning based around large neural networks.

In the past ten years, research on the algorithmic side of deep learning has exploded,

producing better algorithms for neural networks and more computationally efficient ways of

training them. Multibillion dollar companies like Baidu and DeepMind now work almost

exclusively on ML research and development. Over the same period, research into the

architectural design of GPUs laid the groundwork for a flourishing multiprocessor industry.

GPU giants like NVIDIA, AMD, and Intel vie for market share with annual releases of new

hardware with ever rising compute power and expanded feature sets. The result is that

GPUs become cheaper and more ubiquitous with each new hardware generation.

Over all of this, developments in material science, electrical engineering, and chemistry

look to disrupt the monolithic computer chip that has been the world’s fundamental compute

unit for nearly forty years. Traditionally, computer chips are produced on silicon disks called

“wafers.” Each wafer contains a “yield” of several functional, fully formed chips. Each chip is

monolithic in that it is produced as several cores that cannot be separated without damaging

the chip.

The new developments in relevant fields allow chip manufactures to cut a silicon wafer

into several hundred self-contained compute components known as “chiplets.” The circuitry

of each chiplet is then “printed” individually [13]. This subdivision allows for “die-stacked”

5

architectures, heterogenous mixtures of individual cores and compute units. Chiplets consti-

tute something of an economic revolution for the processor industry, as small- and mid-size

businesses will at last be able to reenter a processor market closed to all but the largest of

tech giants.

This project examines uses for chiplet architectures in the ML space. We show that

backpropagation, a fundamental algorithm for training neural networks, can achieve per-

formance on chiplet-based GPU architectures that outpaces backpropagation on traditional

GPU architectures.

1.2 Contributions and Paper Overview

In this honors project, we make the following contributions:

• We identify the interconnect network-on-chip as a significant bottleneck to backprop-

agation in fully-connected neural networks.

• We outline the design modifications required to simulate chiplet-based architectures

on an existing GPU simulator.

• We characterize the performance of backpropagation using core-isometric and core

non-isometric variations on a simulated chiplet architecture.

We begin with a brief, informal discussion of some concerns about and uses for parallel

programming. We then describe the basics of GPU architectures and the neural network

algorithm (backpropagation) whose performance we characterize. We describe the design of

our architectural solution and characterize backpropagation performance under the imple-

mented solution.

2 Background

2.1 Parallel Programming in Brief

Before diving into GPUs, we must first have some understanding of parallel programming,

what it offers, and what new problems and concerns it presents. Parallelism is in fact nearly

ubiquitous in programming, and recognizing it is the first step toward making use of it.

With these ideas in mind, we consider a simple program.

6

a = b + c

d = e + f

g = a + d

Four independent integers (b, c, e, f) are summed in pairs. Then the sums are summed.

So simple a program hardly seems worth investigation, but the parallel programmer will

notice that this program can be executed in two steps rather than three. We cannot compute

g until we have computed a and d. But the operands of a and the operands of d are

independent. Provided we have the processing resources, there is no a priori reason not to

compute a and d simultaneously. Our new two-step version of the program looks like this:a = b + c

d = e + f

g = a + d

Serial programmers are accustomed to concerns of time complexity, the quantification of

algorithmic runtime as a function of input size. Algorithms with poor runtime complexity are

generally considered bad practice because they run for too long given large inputs (defining

“too long” is generally a practical matter). Parallel programming introduces programmers

to two new concerns: step complexity and work complexity. Step complexity is the quan-

tification of steps required to complete an algorithm as a function of input size. Informally,

we may consider step complexity the parallel world’s analog to time complexity. So long as

we are forced to perform operations one by one, regardless of data (in-)dependence, time is

a natural measure of algorithmic complexity. But in the world of parallel algorithms, any

number of independent operations may be performed at a time, so a single operation is an

inadequate stand-in for time. In the parallel world, we measure time with steps (dependent

operations) instead.

As an example of step complexity, we consider a variation on our sample program. This

time we compute g as the sum of four intermediary sums: a and d as before, but also h,

defined as the sum of arbitrary integers k and l, and j, the sum of arbitrary integers m and

n. Again, our intermediary sums are computed in parallel.

7

a = b + c

d = e + f

h = k + l

j = m + n

g = a + d + h + j

The new version achieves more than the original, but in two steps as before. No matter

how many independent sums we compute in step 1, the program always terminates in two

steps. We thus say that program step complexity is constant.

Work complexity refers to the amount of computation an algorithm requires as a function

of input size. For an example, we consider a close relative of our original program. Again,

we want to compute a sum reduction of some input integers. This time, though, our input

is an arbitrary length array of random integers.

Algorithm 1: Serial Array Sum Reduction

Data: input: an array of random integers, n: the length of the input array

Result: A sum reduction of input

sum = 0;

foreach i ∈ [0, 1, . . . , n− 1] do
sum += input[i];

return sum;

We must consider every one of the input integers in order to compute the sum, so the time

complexity of serial sum reduction algorithm is O(n). But we can use a parallel algorithm

to perform sum reduce with step complexity of O(log2 n).

8

Algorithm 2: Work-Efficient Parallel Sum Reduce

Data: input: an array of n random integers, n: the length of the input

Result: A sum reduction of input

foreach i ∈ [n
2
, n
4
, . . . , 1] do

foreach j ∈ [0, 1, . . . , i− 1] do in parallel

idx = i + j;

if idx < n− 1 then
input[j] += input[idx];

return input[0];

Time

1 2 3 4 5 6 7 8

6 8 10 12 5 6 7 8

16 20 10 12 5 6 7 8

36 20 10 12 5 6 7 8

Figure 1: Work-efficient parallel sum reduce over integers 1-8

Parallel sum reduce has improved step complexity over serial sum reduce (O(log2 n) vs.

O(n)). This was achieved without increasing the number of additions required or adding

redundant computation. We thus say the the algorithm is work-efficient.

Consider a variant of parallel sum reduce.

Algorithm 3: Work-Inefficient Parallel Sum Reduce

Data: input: an array of n random integers, n: the length of the input

Result: A sum reduction of input

foreach i ∈ [1, 2, 4, . . . , log2 n] do

foreach j ∈ [0, 1, . . . , n− 1] do in parallel

idx = i + j;

if idx < n− 1 then
input[j] += input[idx];

return input[0];

9

Time

1 2 3 4 5 6 7 8

3 5 7 9 11 13 15 8

10 14 18 22 26 13 15 8

36 27 33 22 26 13 15 8

Figure 2: Work-inefficient parallel sum reduce over integers 1-8

The work-inefficient version achieves the same results as the first parallel sum reduce,

but it performs superfluous additions on array elements five through seven. We thus say

that this version is work-inefficient.

With some understanding of the concerns of parallel programming, we are prepared to

address the uses of GPUs and their technical details.

2.2 The Graphics Processing Unit (GPU)

GPUs are massively parallel processors. Whereas the CPU found in the average laptop

consists of several (usually one to four) powerful cores working together at high clock speeds,

GPUs have dozens to thousands of cores executing at much slower clock speeds. This makes

the GPU a poor choice for workloads with lots of serial data dependence but ideal for

workloads that demand thousands or millions of data-independent computations. In Section

2.1 we saw that a parallel algorithm can improve theoretical bounds on runtime. In the case

of parallel sum reduction, for example, using GPUs can have huge performance benefits for

large input sizes.

10

2.2.1 SIMT Model

Figure 3: High Level View of a SIMT Model GPU [16]

For this project, we use a simulated NVIDIA Fermi architecture GPU. NVIDIA’s GPU

architecture is based on the SIMT (Single Instruction Multiple Thread) model. In the

SIMT model, GPU cores dispatch units of work in groups called “warps” (named after loom

warps, the original data parallelism). Each warp contains many “threads,” with each thread

responsible for a single parallel execution context of a program. As an example, consider

a program that multiplies two 5-by-5 matrices. To accomplish this task, we may launch

a single warp of twenty-five threads and make each thread responsible for generating one

element of the output matrix. Each thread computes the dot product of its corresponding

row and column in the input matrices and stores the result in the correct location in the

output matrix. All twenty-five threads finish at nearly the same time, and the matrix

multiplication is complete. A CPU performing the same matrix multiplication has essentially

only one thread (albeit a very fast one). And while we may expect that a CPU may achieve

comparable performance when multiplying two 5x5 matrices, as the size of the matrices

increases a GPU’s runtime will soon outperform a CPU’s.

Within a GPU, thread warps are issued from SIMT cores, which are arranged in clusters of

11

one to several. As shown in Fig. 3, each SIMT core contains several streaming mutiprocessors

(SMs). Each SM has multiple stream processors and access to per-thread memory. SMs

delegate threads to stream processors, each of which manages a single thread and executes

that thread’s instructions in parallel.

SMs handle the problems of race conditions by executing instructions in lockstep. That

is, all threads in a warp finish executing the current instruction before the next one is issued.

Thread execution is masked to account for branching code. For example, a warp of thirty-two

threads may assign each thread a random number, then instruct all threads whose number is

greater than ten to double their numbers. During the doubling instructions, threads whose

numbers are less than ten sit idle until the doubling instructions have finished for all threads.

Then all threads in the warp resume lockstep execution.

2.2.2 GPU Memory Hierarchy

Each SM in a GPU has an attached first-level (L1) cache, as well as thread-specific memory

and memory shared across threads in an SM. Though essential to CPU performance, lower

levels of cache memory are not as common among GPUs. Furthermore, it is far more common

to find two levels of cache among GPUs than the three levels that are par for modern CPUs.

GPUs also sport high bandwidth memory technology. In the first white paper for the

release of Fermi architecture GPUs, it was noted that the Intel Nehalem architecture CPU,

then the most advanced x86 CPU architecture, was capable of 32GB/s, a “commendable

figure for a PC processor” [5]. DRAM bandwidth for an NVIDIA Fermi Architecture GPU

is 144GB/s.

2.2.3 GPUs from the Programmer’s Perspective

Current GPU hardware places the burden of identifying available parallelism on the pro-

grammer. Once a programmer identifies a code segment that would benefit from paral-

lelization, she refactors her code into GPU-usable code segments (known as kernels) using

architecture-provided extensions to common programming languages. On NVIDIA GPUs,

these extensions and their interfaces to NVIDIA hardware are called the Compute Unified

Device Architecture – CUDA for short.

12

Figure 4: CUDA Programming Flow [3]

Fig. 4 depicts the flow of using CUDA-based GPUs. At program runtime, a programmer

interacts with the GPU by first copying requisite memory (e.g., a pair of matrices) from

the “host” CPU onto the “device” GPU. She then executes her kernels on the GPU, copies

output from the device back to the host, and frees device memory.

2.2.4 GPU Simulator: GPGPU-Sim

We use an established GPU simulator, GPGPU-Sim [4], as the starting point for charac-

terizing GPU applications. GPGPU-Sim can simulate several different CUDA architectures

but unfortunately none from NVIDIA’s recent Maxwell or Pascal hardware generations. We

simulate a Fermi architecture GPU for its relative recency and architectural similarity to

GPUs now on the market.

13

Figure 5: Overview of GPGPU-Sim architecture [18]

GPGPU-Sim concurrently simulates three different systems: 1) CUDA-Sim, a behavioral

simulator of the CUDA PTX instruction set architecture, 2) GPGPU-Sim, a GPU architec-

ture simulator, and 3) Intersim, an interconnect network simulator adapted from Jiang et.

al’s BookSim [8].

Combined, these systems form a cycle-by-cycle simulator of GPU hardware capable of

running most CUDA 4 applications. GPGPU-Sim is extremely detailed and logs informa-

tion on hardware performance from per-kernel IPC counts to full cache statistic reports.

GPGPU-Sim is also built for extensibility. Implementing hardware modifications or addi-

tional statistics to track is relatively straightforward.

However, GPGPU-Sim suffers from long simulation times. Running realistically sized

GPU workloads on a CPU, with added overhead for data collection, is simply too much for

most applications, and this affected our study of backpropagation (see Section 3.2).

2.3 Interconnect Networks

Interconnect networks are communication media that make parallel processing possible.

With traditional CPU bus interconnects, only one processor can access the interconnect

at a time. Such restricted access to memory is anathema to parallel architectures’ goal of

latency masking, so more sophisticated interconnect designs are employed to allow parallel

access to memory. In the context of GPUs, the design of an interconnect network determines

14

how SIMT core clusters and memory controllers are spatially arranged and the efficiency

with which they communicate. In measuring that efficiency, we consider both latency and

throughput.

An interconnect network is a graph consisting of routers and links (vertices and edges)

connecting network endpoints, or “nodes.” Data moves along the network via transmission

points (“routers”) connected by signal-bearing wires (“links”) in units of transfer known as

“packets.” Each packet consists of one or more flits, an atomic unit of data flow. In GPGPU’s

implementation of interconnects, each router performs a multiplex operation to determine

which of its links, if any, transmits a flit during every interconnect cycle.

Integral to network design is network topology. Interconnect topology is a rich subject

combining network theory and information theory, and it determines many important the-

oretical and practical features of interconnects. For example, topology partially determines

the hop count (the number of routers a packet must travel) between any two nodes. For our

part, we consider only two commonly used topologies: 2-D mesh and crossbar.

Figure 6: 6x6 Mesh Interconnect for GPGPU-Sim [2]

Fig. 6 represents the layout of the 6x6 2-D mesh we use to simulate neural network

backpropagation. Each orange square represents a router on the network, and each router

has two, three, or four outgoing links (black lines). The green circle connected to each router

not inside a blue circle represents a SIMT core cluster, and the blue-circled routers represent

the locations of memory controllers holding last-level caches and connections to DRAM.

Crossbar topology is even simpler than mesh. A crossbar fully connects n inputs to

m outputs, so the hop count between any two points on the network is 1. Crossbars are

15

typically low-latency, high-bandwidth topologies, but they require mn routers and are poor

choices for large-scale architectures.

Figure 7: Crossbar Interconnect [2]

Flits are routed across the network according to a policy known as the routing algorithm.

A good routing algorithm attempts to balance the load faced by the network over time to

prevent performance bottlenecks or application deadlock. Routing algorithms come in both

deterministic and non-deterministic flavors, and the optimal algorithm for a given use case

varies with application memory access patterns and interconnect topology. For our part, we

consider only two routing algorithms, one for each interconnect type. For crossbar networks,

we use destination tag routing, which determines the target endpoint by a mask on the

packet header. For mesh networks we use XY routing, a deterministic, dimension-order

routing algorithm. Under XY routing, flits arrive at their destination by traveling first along

the X dimension, then the Y dimension. Fig. 8 shows an example of a flit traveling between

two nodes under XY routing.

16

Figure 8: XY Routing [19]

3 Machine Learning

Machine learning refers to a broad range of computer science ideas and techniques that

enable computers to “learn” data models without explicit programming. In today’s ML

landscape, none of these ideas and techniques garners more attention than neural networks.

3.1 Backpropagation

Artificial neural networks are a broad category of machine learning algorithms, all of which

are in some aspect designed to mimic the activity of the brain. Real neural networks consist

of neurons and their connections. Similarly, artificial neurons consist of neurons (really non-

linear functions) with weighted connections (represented by matrices). Backpropagation

(backprop, for short) refers to a set of algorithms for training artificial neural networks to

fit data models. Which form of backpropagation is used varies by the species of neural net

in use, but in all its forms backprop breaks down into two phases: feed-forward and update.

In the feed-forward phase, observations in the form of n-dimensional feature vectors are

passed to the input layer. Each layer multiplies its inputs by the weight matrix connecting

it to the next layer. A non-linear transformation (e.g., a sigmoid or rectified linear unit

function) is applied to the result, and the process is repeated, propagating the input signal

through the network. The transformed signal that reaches the output layer is interpreted as

an encoded output – an image classification, for example.

17

Figure 9: A Multi-layer Perceptron (MLP) network. wk
ij denotes the weight from neuron j

in layer k to neuron i in layer k + 1

Feature #1

Feature #2

Feature #3

Feature #4

Output

w1
11

w1
21

w1
31

w1
41

w1
51

w1
12

w1
22

w1
32

w1
42

w1
52

w1
13

w1
23

w1
33

w1
43

w1
53

w1
14

w1
24

w1
34

w1
44

w1
54

w2
11

w2
12

w2
13

w2
14

w2
15

Hidden
layer
(L2)

Input
layer
(L1)

Output
layer
(L3)

In the weight update phase, the correct output for the given input is used with a loss

function to compute the error of the network’s prediction. A simple squared error function

can suffice.

E =
1

2

n∑
i=0

(ti − yi)
2

Where E is the sum of the network’s prediction error over all n training examples in

the training set, ti is the true label for input sample i, and yi is the network’s predicted

classification for input i.

After determining the prediction error on an observation, the weights of the network are

updated. Since the functions by which the inputs determine the error of the network and

their gradients with respect to the network’s last predicted output are known, the chain rule

18

can be applied to each function in the network to create a map of how network error changes

with respect to any individual weight [9] [14]. Network weights are then updated to improve

network performance for the last seen observation.

To train a neural network practically, one feeds it a labeled “training” dataset (i.e.,

a dataset consisting of input features and known correct outputs). For each input, the

error of the network’s output is computed. After summing the error over a certain number

of observations (referred to as the mini-batch size), the weights are updated. Over many

updates, the weights in a network form a logical structure relating inputs to probabilities for

expected outputs.

Backprop is typically performed in conjunction with an optimization method such as

gradient descent so the network satisfies a local optimum for accuracy given the network

structure, loss function, and training set. A network whose weights have converged on a

local minimum of the loss function is not necessarily field-ready, however, and the design of

neural networks with robustly low error on training, validation, and test sets is the subject

of open research and, to some extent, artistry.

3.2 Characterization of Neural Network Backpropagation on GPU

Architectures

We use a GPU-optimized implementation of backpropagation on fully-connected neural net-

works from the GPUMLib suite [12]. This implementation is broken down into six kernels:

Fire Layer Neurons (FLN), Fire Output Layer (FOL), Root Mean Square Error (RMS), Ro-

bust Learning (RL), Calculate Local Gradients (CLG), and Correct Layer Weights (CLW).

As mentioned in Section 2.2.4, simulation times for GPGPU-Sim applications are a serious

hindrance to our methods of studying GPU applications. We thus simulate neural networks

that are relatively small compared to ones used for commercial applications (see Section 5.1).

The average cycles GPGPU-Sim simulates during each kernel in a training pass, with and

without last-level caches enabled, are shown in Fig. 10.

19

Figure 10: Cycles Simulated for each Kernel of GPUMLib Backpropagation

Table 1: CLW Performance Sensitivity to Minibatch Size

Mini-batch size

32 256

IPC 248 101
Average Memory Fetch Latency 253 518
L1 Data Cache Miss Rate 0.17 0.47
Last-Level Cache Miss Rate 0.01 0.017
Average DRAM Bandwidth Utilization 0.01 0.02

In Fig. 10 we see that the update step (CLW) dominates training time. CLW averages

roughly four times the cycles of next longest running kernel, FLN. Table 1 shows the sensi-

tivity of CLW to increasing the mini-batch size. In GPUMLib’s implementation of backprop,

20

mini-batch size directly corresponds to CUDA grid size (i.e., the number of sets of threads),

so increasing the mini-batch is a way to see how backprop’s memory problems are exacer-

bated by larger input sizes. We observe that kernel performance is low, and increasing the

input size exacerbates the issues. Namely, IPC counts drop by 50% when increasing the

mini-batch size to 8x. We also observe that the mini-batch increase has little impact on the

lower level cache and DRAM performance.

Figure 11: Backpropagation Bottleneck Location in the GPGPU-Sim Architecture [18]

Fig. 11 shows the visual logic of our reasoning around backprop’s poor performance with

respect to GPGPU-Sim’s simulated hardware. As IPC declines, the per-core data cache

(left arrow) miss rate rises. But the last-level cache miss rate (right arrow) stays roughly

constant. This suggests the presence of a memory bottleneck in the communication between

caches. GPGPU-Sim uses Intersim to simulate an interconnect network-on-chip (center

arrow) connecting per-core data caches and the last-level cache banks attached to memory

controllers. We examine this interconnect as a possible application bottleneck.

As was just mentioned, the cache behavior when running backprop on GPGPU-Sim

indicates the presence of a bottleneck in the interconnect during the weight update kernel

(CLW). To confirm this, we measure utilization for each of the 36 routers on the six-by-

six mesh during CLW. Our per-router utilization metric divides the number of interconnect

clock cycles in which any of the router’s links are in use by the total number of interconnect

21

cycles. Fig. 12a shows the router utilization metric for the simulated mesh reply network

during CLW. For reference, Fig. 12b repeats Fig. 6’s arrangement of memory controllers

(circled nodes) and SIMT core clusters (uncircled nodes) on the mesh network.

Figure 12: Reply Network Router Utilization For Weight Update Kernel [2]

(a) Router Activity During Correct Layer Weights

(b) Memory Controller Map

There are clear hotspots above and below the center four core clusters during CLW’s

interconnect clock cycles, indicating that network throughput is insufficient for the memory

traffic during CLW. There is also heavy traffic through all non-corner routers surrounding the

memory controllers. Taking the hotspots and Table 1’s data into account, we conclude that

the interconnect is a legitimate bottleneck. We attempt to alleviate this heavy interconnect

traffic through implementation of a chiplet-based architecture.

22

4 Chiplet-based Architecures

Figure 13: Traditional Computer Architectures vs. Chiplet-based Architectures

(a) CPU Architecture vs. GPU Architecture [1]

(b) Chiplet-based Architecture [20]

Fig.13a shows the differences between traditional CPU and GPU architectures. A CPU

core sports a single control unit with several attached arithmetic logic units (ALUs), which

perform arithmetic and bitwise operations. CPU cores have at least one (and typically

three) levels of caches to exploit spatial and temporal data locality. For our purposes, GPU

architecture can be thought of as CPU architecture scaled up. Each GPU core consists of

many control units and caches (though typically only one level), with each control unit-cache

pair connected to many ALUs (SMs). Both CPUs and GPUs are complete systems on chip

(SOCs). That is to say that each is a fully functional compute unit, with all necessary

23

memory interfaces.

By contrast, chiplets are not in and of themselves complete SOCs. For example, a GPU

chiplet may consist of several GPU cores and their associated caches but no connections

to DRAM or external memory [20]. A chiplet-based architecture, shown in Fig.13b, takes

many CPU and/or GPU chiplets and tiles them on an interconnect network along with

connections to DRAM and external memory. Thus the arrangement of chiplets and DRAM

on the interconnect, the design of the interconnect, and the structure of the chiplet memory

hierarchy all become important to system performance.

A chiplet-based architecture has several benefits not found in architectures based on

monolithic SOCs [20]. First, the methods for producing silicon dies have higher yield rates

than traditional silicon wafers. Second, designing a monolithic SOC architecture to maintain

high performance across a broad range of applications with different demands for task and

data parallelism is exceedingly difficult and expensive; with chiplet architectures, individual

components (e.g., CPU cores and GPU cores) can be optimized to the functions for which

they are best suited and combined. Third, with proper design, heterogenous chiplet-based

architectures can be decomposed into their constituent parts and repackaged for reuse.

4.1 Simulating a Chiplet-based Architecture in GPGPU-Sim

The switch from GPGPU-Sim as a simulator of traditional GPU architectures to chiplet-

based architectures is largely a change of perspective. GPGPU-Sim already comes equipped

with many features required to simulate a chiplet architecture, including a variable number

of SIMT cores per cluster and an interconnect fabric with configurable tiling for memory

controllers and SIMT clusters. In the switch from a simulator of a traditional GPU to a

chiplet-based GPU architecture, we simply decide that the interconnect network now holds

chiplets on its endpoints, rather than SIMT core clusters. (Note that our simulation of a

chiplet-based architecture has GPU chiplets only.) We then consider what modifications to a

standard SIMT core cluster might make it more effective as a chiplet. Interconnect congestion

during backprop’s update phase motivates localizing memory traffic to each chiplet. We thus

add another layer of cache (L2) shared by all cores on each chiplet.

4.1.1 Cache Design

One major caveat is that difficulties with implementation led us to use a write-through cache

as opposed to a likely more-efficient write-back implementation. For each chiplet, misses in

the L2 are coalesced via miss status hit registers before being sent across the interconnect

24

to memory controllers. The L2 itself is also on the core clock cycle.

4.1.2 Queuing Mechanism

Ideally, we would have implemented a second interconnect network between the existing L1

caches and the shared L2 cache. Unfortunately, the Intersim package is not designed to

simulate more than a single global interconnect, and modifying the software to allow for

multiple interconnects was outside the scope of the project. In lieu of an added interconnect,

we use two queues to move memory traffic between the L1 and L2 caches. Fig. 14 depicts

this implementation. One queue passes memory requests from each GPU chiplet’s L1 caches

to its L2 cache. The other passes memory responses from the L2 cache back to the L1

caches. Another pair of queues handles communication between each chiplet’s L2 cache and

the interconnect network.

Since all cores in each cluster share one pair of queues, we were concerned that increasing

the number of cores per cluster would degrade cache bandwidth between the L2 cache and

the L1 caches, perhaps to the point where the queues themselves could become a bottleneck.

Fortunately, this fear has not been borne out. There are likely still advantages to imple-

menting a second interconnect, but the queue-based mechanism yields performance benefits

for backprop provided there is sufficient budget for the L2 cache (see Section 5).

L
2

C
ac

h
e

L2-L1 Response Queue

L2-L1 Request Queue

In
te

rc
on

n
ec

t

Interconnect Response Queue

Interconnect Request Queue

L
1

C
ac

h
e

Figure 14: Implemented Chiplet Memory Hierarchy

25

5 Evaluation and Results

5.1 Methodology

We evaluate backpropagation performance on core-isometric and core non-isometric varia-

tions on a chiplet design. For all experiments we run backprop on a three-layer multilayer

perceptron (MLP) network trained on the MNIST dataset [11]. The MLP layer dimensions

are 784 (input) – 100 (hidden) – 10 (output), and we use a mini-batch size of 32 images.

We then vary the compute power available (total number of SIMT cores), number of SIMT

cores per cluster, and the sizes of L2 and L3 caches. For each training pass, we measure

total IPC, memory fetch latency, L2 cache performance and L3 cache performance. In ad-

dition, we measure DRAM bandwidth utilization and interconnect utilization during just

the weight update kernels. Finally, we consider the possibility that lower-level caches may

be detrimental to GPU performance for neural network backprop by conducting trials with

neither an L2 nor an L3 present.

5.2 Results

5.2.1 Core Non-Isometric Results

By allowing the total SIMT core count to increase with the density of cores per cluster, we

hope to show scalability in our design. When we increase the number of cores per chiplet on

the mesh interconnect, we allow the total number of cores to increase. Recall that we use

a 6x6 mesh with 8 memory controllers. So a 2-cores-per-chiplet-configuration, for example,

has 56 total cores, while a 1-core-per-chiplet configuration has 28 cores. We use variations

on L2 and L3 cache sizes up to 128kB each, but we do not fix the total available global cache

size. That is, we use four configurations for the total size of available lower-level cache:

• 0 L2 and 128kB L3. Total lower-level cache = 8 ∗ 128kB = 1024kB.

• 64kB L2 and 64kB L3. Total lower-level cache = 36 ∗ 64kB = 2304kB.

• 128KB L2 and 0kB L3. Total lower-level cache = 28 ∗ 128kB = 3584kB.

• 0 L2 and 0 L3. Total lower-level cache = 0 kB.

26

Figure 15: Backprop IPC Sensitivity to Core Density and Cache Distribution

1 2 4

0.5

1

1.5

2

2.5

Cores per clusterT
ot

al
IP

C
(N

or
m

al
iz

ed
to

1
co

re
n
o

L
2) Training Pass Total IPC

0 L2 128kB L3 64kB L2 64kB L3 128kB L2 0 L3 0 L2 0 L3

To show that the chiplet architecture improves the utilization of GPU compute power,

we measure the total IPC over one backpropagation training pass, normalized to the case of

using a 128kB L3, no L2, and one core per chiplet. Fig. 15 shows the number of instructions

per cycle executed (y axis) during the training pass varies with changes in the number of

SIMT cores per chiplet (x axis) and distribution of cache (bar color). In Fig. 14 we see clear

performance benefits to the added L2 cache, and these benefits increase with the density of

SIMT cores per chiplet and the size of the L2. However, we observe that there is a point

at which increasing the density of cores per cluster washes out the benefits of an amount of

added cache. For instance, between densities of 2 and 4 SIMT cores per chiplet, IPC under

the 64kB L2 64kB L3 configuration declines slightly.

Conversely, increasing the density of SIMT cores per chiplet is detrimental to GPU

performance when no L2 is present. In both the 0 L2 128kB L3 configuration and the 0

L2 0 L3 configuration, IPC decreases even as the total available compute power (number of

cores) increases.

27

Figure 16: Backprop Memory Fetch Latency to Core Density and Cache Distribution

1 2 4
0

2

4

6

Cores per chipletC
or

e
C

y
cl

es
(N

or
m

al
iz

ed
to

1
co

re
n
o

L
2) Average Memory Fetch Latency

0 L2 128kB L3 64kB L2 64kB L3 128kB L2 0 L3 0 L2 0 L3

To show the impact of the chiplet architecture on the latency of memory requests during

backprop, we study how the latency of the average memory fetch (y axis) varies with the

number of SIMT cores per chiplet (x axis) and the distribution of cache (bar color). We nor-

malize all latencies to the case of 0 L2 128kB L3 with 1 core per chiplet. We expected that,

as a general rule, memory fetch latency would increase with the density of SIMT cores per

chiplet and decrease with the size of L2 cache across core-isometric configurations. As with

Fig. 14, Fig. 15 shows the performance benefits of the added L2. With 128kB L2 caches and

no L3 caches, backpropagation simulated with 4 cores per chiplet has lower memory fetch

latency than backpropagation simulated with just one core per cluster and 128kB L3 caches

and no L2 caches.

28

Figure 17: L2 and L3 Cache Miss Rate Sensitivity to Core Density and Cache Distribution

1 2 4

0.1

0.2

0.3

0.4

0.5

Cores per chiplet

M
is

s
R

at
e

L2 Miss Rate

64kB L2 64kB L3 128kB L2 0 L3

1 2 4

1

1.2

1.4

1.6

1.8

2

·10−2

Cores per chiplet

M
is

s
R

at
e

L3 Miss Rate

0 L2 128kB L3 64kB L2 64kB L3

Figure 18: L2 Cache Access and Miss Sensitivity to Core Density and Cache Distribution

1 2 4

2

4

6

8
·105

Cores per chiplet

M
is

se
s

L2 Cache Misses

64kB L2 64kB L3 128kB L2 0 L3

1 2 4

1

1.5

2

2.5
·106

Cores per chiplet

A
cc

es
se

s

L2 Cache Accesses

64kB L2 64kB L3 128kB L2 0 L3

29

Figure 19: L3 Cache Access and Miss Sensitivity to Core Density and Cache Distribution

1 2 4

1.3

1.4

1.5

1.6

1.7

·104

Cores per chiplet

M
is

se
s

L3 Cache Misses

64kB L2 64kB L3 0 L2 128kB L3

1 2 4

1

1.2

1.4

1.6

1.8

·106

Cores per chiplet

A
cc

es
se

s

L3 Cache Accesses

64kB L2 64kB L3 0 L2 128kB L3

We study the L2 and L3 miss rates to ensure that varying the cache sizes (particularly

the L3) does not change the performance of the lower memory hierarchy or create new bot-

tlenecks. Cache miss and cache access statistics are collected to place the effects of the cache

size in context of their respective magnitudes. Figs. 17, 18, and 19 show these statistics.

Our goal in adding L2 caches is to significantly reduce the number of L3 accesses while

maintaining low L2 miss rates. We observe that L3 miss rates are very low with or without

L2 caches (see Table 1). In Fig. 17, the miss rate rate for L2 caches under the 64kB L2 64kB

L3, 2 cores per chiplet configuration is under 40%, while the number of L3 cache accesses is

nearly 60% of the number of L3 cache accesses when no L2 caches are present. As we noted

with total IPC, there is a point at which the density of SIMT cores per chiplet overtaxes

the available cache and performance no longer significantly improves. For example, between

the 64kB L2 64kB L3 with 2 cores per chiplet configuration and the 64kB L2 64kB L3 with

4 cores per chiplet configuration, L2 miss rate decreases by just 3%, and the corresponding

IPC improvement is marginal despite doubling the total number of available cores (Fig. 18,

Fig.17).

30

Figure 20: CLW DRAM Utilization Sensitivity to Core Density and Cache Distribution

1 2 4

0

0.2

0.4

0.6

Cores per chiplet

B
an

d
w

id
th

U
ti

li
za

ti
on

Average DRAM Bandwidth Utilization

0 L2 128kB L3 64kB L2 64kB L3 128kB L2 0 L3 0 L2 0 L3

As we shrink memory controllers’ L3 caches and grow chiplets’ L2 caches, we do not

want to reduce the total available L3 cache to the point that DRAM bandwidth becomes a

bottleneck. We thus study the memory controllers’ average DRAM bandwidth utilization

during the weight update kernel as a function of cache distribution and cores per chiplet. Fig.

20 shows that DRAM utilization was not a problem under our configurations, except when

L3 caches were removed entirely. Without L3 caches, DRAM bandwidth spikes significantly

and increases with the density of cores per chiplet. Under our run parameters, however,

64kB of L3 cache per memory controller is sufficient to hold DRAM bandwidth utilization

at just over 2%, even with 4 cores per chiplet.

31

Figure 21: Mesh Interconnect Reply Network Router Utilization During Weight Update

(a) 128 kB L3 1 core/ chiplet(b) 128 kB L3 2 cores/chiplet (c) 128kB L3 4 cores/chiplet

(d) 64kB L2 1 core/chiplet (e) 64kB L2 2 cores/chiplet (f) 64kB L2 4 cores/chiplet

(g) 128kB L2 1 core/chiplet (h) 128kB L2 2 cores/chiplet (i) 128kB L2 4 cores/chiplet

(j) No last level cache 1
core/chiplet

(k) No last level cache 2
cores/chiplet

(l) No last level cache 4
cores/chiplet

Since alleviating the interconnect memory bottleneck was our original motivation for

adding L2 cache, we measure router utilization for each of our configurations using the heat

map format from Section 3.2. Each row of heat maps shows the effect on the mesh intercon-

nect utilization as the number of cores per chiplet increases between cache-isometric config-

urations. Each column shows the change in interconnect utilization as the cache distribution

changes between core-isometric configurations. We observe that, across all configurations,

increasing the size of L2 caches alleviates the interconnect bottleneck. The heat maps in Figs.

32

21j, 21k, and 21l give the impression that removing all lower-level caches somehow clears the

interconnect bottleneck, but the poor performance numbers (IPC and memory fetch latency)

for these configurations suggest that removing last-level caches shifts the memory bottleneck

from the interconnect to DRAM.

5.2.2 Core Isometric Results

In the core non-isometric experiments, we allowed total core counts to increase with the

density of cores per cluster. Because of this, we could keep a 6x6 mesh topology for our

interconnect. To isolate the per-core benefits of the chiplet architecture, we must fix the

global numbers of memory controllers and SIMT cores (8 and 28, respectively). We must then

adapt our interconnect to work around those numbers. Maintaining a square interconnect

with 28 SIMT cores, 8 memory controllers, and multiple cores per cluster is not possible

without creating mesh nodes with no cores attached. We thus use crossbar interconnects

for point-to-point communication between arbitrary numbers of memory controllers and

SIMT clusters. This allows for core-isometric evaluations but prevents us from creating

interconnect utilization heatmaps. In all other respects, our motivations and processes for

collecting core-isometric data are the same as in Section 5.2.1. We find the conclusions

from the core-isometric results to be in direct agreement with the conclusions from the core

non-isometric results.

33

Figure 22: Backprop IPC Sensitivity to Core Density and Cache Distribution

1 2 4

0.8

0.9

1

1.1

1.2

Cores per chipletT
ot

al
IP

C
(N

or
m

al
iz

ed
to

1
co

re
n
o

L
2) Training Pass IPC

0kB L2 128kB L3 64kB L2 64kB L3 128kB L2 0 L3 0 L2 0L3

In Fig. 22 we see that the 64kB L2 64kB L3, 2 cores per chiplet configuration has roughly

20% higher IPC than the default 0 L2 128kB L3, 1 core per cluster configuration. Further-

more, significant additional L2 cache (as in the 128kB L2 0 L3 configurations) has minimal

added benefit.

34

Figure 23: Backprop Memory Fetch Latency to Core Density and Cache Distribution

1 2 4

0.5

1

1.5

Cores per chipletC
or

e
C

y
cl

es
(N

or
m

al
iz

ed
to

1
co

re
n
o

L
2) Average Memory Fetch Latency

0L2 128kB L3 64kB L2 64kB L3 128kB L2 0 L3 0 L2 0 L3

As in Fig. 16, our core isometric results show significant decreases in average memory

fetch latencies with the addition of L2 cache.

Figure 24: L2 and L3 Cache Miss Rate Sensitivity to Core Density and Cache Distribution

1 2 4

0.1

0.2

0.3

0.4

0.5

Cores per chiplet

M
is

s
R

at
e

L2 Miss Rate

64kB L2 64kB L3 128kB L2 0 L3

1 2 4

1

2

3

4

·10−2

Cores per chiplet

M
is

s
R

at
e

L3 Miss Rate

0 L2 128kB L3 64kB L2 64kB L3

35

Figure 25: L2 Cache Access and Miss Sensitivity to Core Density and Cache Distribution

1 2 4

2

4

6

·105

Cores per chiplet

M
is

se
s

L2 Cache Misses

64kB L2 64kB L3 128kB L2 0 L3

1 2 4

1.2

1.4

1.6

·106

Cores per chiplet

A
cc

es
se

s

L2 Cache Accesses

64kB L2 64kB L3 128kB L2 0 L3

Figure 26: L3 Cache Access and Miss Sensitivity to Core Density and Cache Distribution

1 2 4

1.3

1.35

1.4

1.45

·104

Cores per chiplet

M
is

se
s

L3 Cache Misses

64kB L2 64kB L3 128kB L2 0 L3

1 2 4

0.9

1

1.1

1.2

1.3

·106

Cores per chiplet

A
cc

es
se

s

L3 Cache Accesses

64kB L2 64kB L3 0 L2 128kB L3

36

Figure 27: CLW DRAM Utilization Sensitivity to Core Density and Cache Distribution

1 2 4

0

0.1

0.2

0.3

0.4

Cores per chiplet

B
an

d
w

id
th

U
ti

li
za

ti
on

Average DRAM Bandwidth Utilization

0 L2 128kB L3 64kB L2 64kB L3 128kB L2 0 L3 0 L2 0 L3

CLW DRAM utilization is lower in the core-isometric results than in the corresponding

core non-isometric results from Fig. 20, but this is expected given the lower total compute

power available in the core-isometric configurations. As in the core non-isometric configura-

tions, removing L3 caches caused DRAM bandwidth utilization to spike.

6 Discussion

In implementing chiplets we sought to show that interconnect bottlenecks in neural network

backpropagation could be alleviated through the use of an additional layer of cache.

Based on our data, we make the following major observations:

• Neural net backpropagation for fully-connected neural networks can derive significant

performance benefits from chiplet architectures with additional levels of on-chip cache

(L2). However, the size of the added cache must scale with the number of cores per

chiplet.

• Chiplet architectures with sufficient cache can alleviate interconnect hotspots we saw

while running backprop. Comparing the reply interconnect utilization without L2

caches to corresponding interconnect utilization with L2 caches, we see that large

37

increases in IPC can be achieved with relatively small decreases in interconnect uti-

lization.

• There is reason to be concerned that redistributing cache from memory controllers’ L3

caches to L2 caches will force GPUs to make heavier use of DRAM during backprop.

The MLP used in our experiments are very small compared to the real world networks

used for important classification tasks, so it is plausible that training larger MLP

without L3 caches would result in DRAM bottlenecks.

• We see no evidence that removing lower-level caches benefits performance for back-

propagation on fully-connected neural networks. In our experiments, IPC for trials

without lower-level caches was consistently lower than IPC for comparable trials with

lower level caches. Without a lower-level cache present, backprop’s interconnect bot-

tleneck drained to DRAM and IPC continuously declined with an increase in core per

cluster density even as the total core count increased.

From all of this, we conclude that there is use for chiplets in the ML space. However,

it must be noted that among ML applications, backpropagation for fully-connected neural

networks is far from state of the art. It has become a common pedagogical tool for teaching

ML, but precisely because it is an unsophisticated version of more useful neural networks it

is not the focus of current study and commercial applications. This is to say that our results

cannot broadly justify the use of chiplets in ML. They do, however, establish a jumping-off

point for a much wider characterization of other machine learning applications on chiplet

architectures.

On the other hand, some neural network variations make use of the fully-connected layers

which make up MLP networks. Convolutional neural networks (CNNs) used for commercial

image classification, for example, typically use fully-connected layers near the end of the

forward-pass. Indeed, operations on these layers often constitute a significant amount of

training time for CNNs. So we do see some practical applications for which our results have

immediate implications.

7 Related work

Other researchers have had success in alleviating GPU memory bottlenecks. Jia et.al demon-

strate that GPU caches can be detrimental to the performance of many GPU applications and

characterize the impact of L1 caches on the performance of the Rodinia suite benchmarks.

38

However, they also show that fully-connected neural network backpropagation benefits sig-

nificantly from added cache [7]. Tian et. al propose techniques for having memory that is

unlikely to benefit from temporal locality bypass GPU cache [17]. Singh et.al and Wang et.

al pursue better cache performance through cache coherence policies [6, 15].

Vijayaranghavan et. al present a vision for Exascale Heterogenous Processors (EHPs) via

chiplet-based architectures [20]. Their vision for EHPs balances CPU and GPU chiplets 3D-

stacked on an interposer network-on-chip (NOC). To handle the enormous memory demands

of such a system, the chiplet architecture is integrated with a network of 3D DRAM tech-

nology and external non-volatile memory. Memory overhead is further ameliorated by way

of through-silicon via (TSV) connections, electrical connections that pass directly through

silicon dies to enable vertical stacking of compute components. The advantages of this

chiplet-based vision over previous heterogeneous architectures are described in Section 4.

8 Conclusion

We found that when training MLP neural networks via backpropagation on GPUs a sig-

nificant memory bottleneck exists at the interconnect network. We simulated a computer

architecture based on tiled heterogeneous compute units (chiplets) in an attempt to alleviate

this bottleneck. We augmented an existing GPU simulator to achieve a chiplet design and

characterize backpropagation under the new architecture. We found that under a chiplet ar-

chitecture, an appropriately placed and sized second-level cache can have significant impact

on the interconnect utilization and application performance of backpropagation for MLPs.

References

[1] “CPU v/s GPU,” [Online; accessed 4-10-2017]. [Online]. Available: http:

//www.e2matrix.com/blog/cpu-vs-gpu/

[2] “Multiprocessor Interconnection Networks,” 2013. [Online]. Available: http:

//15418.courses.cs.cmu.edu/spring2013/article/30

[3] “CUDA,” https://en.wikipedia.org/wiki/CUDA, n.d., accessed Mar. 20, 2017.

[4] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing

CUDA Workloads Using a Detailed GPU Simulator,” IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), 4 2009.

39

[5] P. K. Glaskowsky, “NVIDIA Fermi: The First Complete GPU Architec-

ture,” http://www.nvidia.com/content/pdf/fermi white papers/p.glaskowsky nvidia’s

fermi-the first complete gpu architecture.pdf, Sept. 2009.

[6] Hao Wang and Vijay Sathish and Ripudaman Singh and Michael Schulte and Nam Sung

Kim, “Workload and Power Budget Partitioning for Single-Chip Heterogenous Proces-

sors,” in IEEE/ACM Int. Conf. on Parallel Architecture and Compilation Techniques

(PACT), Sept 2012.

[7] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and Improving the Use

of Demand-fetched Caches in GPUs,” in Proceedings of the 26th ACM International

Conference on Supercomputing, ser. ICS ’12. New York, NY, USA: ACM, 2012, pp.

15–24. [Online]. Available: http://doi.acm.org/10.1145/2304576.2304582

[8] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, and

J. Kim, “A detailed and flexible cycle-accurate network-on-chip simulator,” in Perfor-

mance Analysis of Systems and Software (ISPASS), 2013 IEEE International Sympo-

sium on. IEEE, 2013, pp. 86–96.

[9] A. Karpathy, “Hacker’s Guide to Neural Networks,” http://karpathy.github.io/

neuralnets/.

[10] W. Knight, “AI Winter Isn’t Coming,” Dec. 2016. [Online]. Available: https:

//www.technologyreview.com/s/603062/ai-winter-isnt-coming/

[11] Y. Lecun, C. Cortes, and C. J. Burges, The MNIST Database, accessed Dec. 1, 2016.

[Online]. Available: http://yann.lecun.com/exdb/mnist/

[12] N. Lopes and B. Ribeiro, “An Evaluation of Multiple Feed-Forward Networks on GPUs,”

International Journal of Neural Systems (IJNS), vol. 21, pp. 31–47, 2011.

[13] D. Reisinger, “Chiplets: The future of circuitry?” April 9 2013.

[14] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler, “Virtualiz-

ing deep neural networks for memory-efficient neural network design,” arXiv preprint

arXiv:1602.08124, 2016.

[15] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt, “Cache

coherence for gpu architectures,” in 2013 IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA), Feb 2013, pp. 578–590.

40

[16] A. Tatourian, “NVIDIA GPU Architecture & CUDA Programming Environment,”

9 2013. [Online]. Available: https://code.msdn.microsoft.com/windowsdesktop/

NVIDIA-GPU-Architecture-45c11e6d

[17] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A. Jiménez,

“Adaptive gpu cache bypassing,” in Proceedings of the 8th Workshop on General

Purpose Processing Using GPUs, ser. GPGPU-8. New York, NY, USA: ACM, 2015,

pp. 25–35. [Online]. Available: http://doi.acm.org/10.1145/2716282.2716283

[18] Tor M. Aamodt and Wilson W.L. Fung and Tayler H. Hetherington, GPGPU-

Sim Manual, 2009, [Online; accessed 3-20-2017]. [Online]. Available: http:

//gpgpu-sim.org/manual/images/2/21/Overall-arch.png

[19] P. Tvrdik, “Routing Algorithms and Switching Techniques,” http://pages.cs.wisc.edu/

∼tvrdik/7/html/Section7.html, Dept. of Computer Science, Madison, WI, spring 1999.

[20] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Ignatowski, B. M.

Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang, A. Karunanithi et al., “Design

and Analysis of an APU for Exascale Computing,” in The 23rd IEEE Symposium on

High Performance Computer Architecture. AMD, Dept. of Electrical and Computer

Engineering, University of Wisconsin-Madison, Feb. 2017. [Online]. Available:

http://www.computermachines.org/joe/publications/pdfs/hpca2017 exascale apu.pdf

41

	Characterization of Neural Network Backpropagation on Chiplet-based GPU Architectures
	Recommended Citation

	tmp.1494206833.pdf.89zi5

