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Abstract  
 

Orexins are excitatory neuropeptides that come in two isoforms, Orexin A 

and Orexin B, and serve as ligands for the G-protein coupled orexin 1 and orexin 2 

receptors (Ox1R and Ox2R, respectively).  Changes in orexinergic transmission are 

thought to contribute to attentional processing. While several studies have 

examined the role of Ox1Rs in attention, less research has assessed the contribution 

of Ox2Rs. Moreover, several lines of evidence suggest that the right medial 

prefrontal cortex is particularly critical for visual attentional performance. Taking 

all of this into consideration, the goal of the present experiment was to test the 

effects Ox2R blockade, via administration of TCS-OX2-29, in the left or right medial 

prefrontal cortex on visual attention.  The results suggest that low dose 

administration of TCS-OX2-29 into the right, but not into the left, medial prefrontal 

cortex enhanced attentional performance. We speculate that relatively mild 

antagonism of Ox2Rs may have increased the sensitivity of these receptors to 

subsequent orexin transmission, thereby enhancing attentional performance. 

Ongoing projects in our laboratory are assessing whether these effects are observed 

when TCS-OX2-29 is infused into other brain regions known to be critical for 

attentional performance. 
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Introduction 
 
 

The orexin/hypocretin family of neuropeptides, discovered in the late 1990s, 

impacts a variety of physiological phenomena (de Lecea et al., 1998, 2002; Sakurai 

et al., 1998).  The cell bodies orexin/hypocretin neurons project are relatively 

confined to the lateral hypothalamus (LH) and contiguous perifornical area 

(CPA)(Peyron et al, 1998).  These neurons project to the cortex, thalamus, 

brainstem, and the spinal cord (Peyron et al, 1998; Broberger et al., 1998; Elias et 

al., 1998; Nambu et al., 1999; van den Pol, 1999; Cluderay et al., 2002).  The 

neuropeptides, Orexin A (OxA) and Orexin B (OxB), are produced by orexin neurons, 

which are translated from a 131-residue mRNA sequence known as preproorexin.  

Preproorexin mRNA is transcribed from the preproorexin gene, which consists of 

two exons and one intron distributed over 1432 base pairs (Heifetz et al., 2013).  A 

3.2-kb promoter region has been utilized with the preproorexin cDNA sequence to 

direct orexin expression in Escherichia coli.  Orexin A has an identical sequence in 

humans and rodents, while Orexin B has two amino acid substitutions between 

species (Sakurai et al., 1999; Heifetz et al., 2013).   

Orexins act on two G protein-coupled receptors: the orexin/hypocretin 1 

receptor (Ox1R/HcrtR1) and the orexin/hypocretin 2 receptor (Ox2R/HcrtR2).  

These receptors bind orexin A/hypocretin 1 (OxA/HCRT-1) and orexin 

B/hypocretin 2 (OxB/HCRT-2) with relatively varied affinities depending on the 

receptor. The Ox1R is favorably selective for OxA, a 33-residue peptide with two 

intra-molecular disulfide bridges.  Orexin B, a 28-residue peptide, has a 10 to 100-

fold higher relative potency for the Ox2R binding compared to the Ox1R (Hirose et 
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al., 2003; Ammoun et al., 2003; Sakurai et al., 1998).  Orexin B application has been 

shown to induce depolarization in orexin neurons of Ox1R knock-out mice at 

comparable levels to wild-type mice, but failed to depolarize orexin neurons in the 

Ox2R knock-out mice, providing further evidence that Ox2R is a primary receptor 

for orexin B neuropeptides (Yamanaka et al. 2010).  The differences in binding may 

be due to a notable feature of the Ox1R structure not observed in Ox2R, an N-

terminal extension before the first transmembrane domain that contains a linker 

and a two-turn α-helix (Yin et al., 2016).  Specifically, Ox2R binding is believed to 

occur in a way that the residue L11 forms a nonpolar interaction with F346, L14 

interacts with W214, and H350 forms a hydrophobic interaction with L15 of OxB.  In 

this model, D211 is in the proximity of L14 and could potentially form a nonclassical 

hydrogen bond, and a potential salt bridge may form between R15 and D203. Unlike 

in the interactions with Ox1R, Y223 does not interact with N20 (Heifetz et al., 2013).  

 

Neuropsychopharmacology of Orexins 

Orexin/hypocretins are thought to regulate attention and arousal through 

interactions with a variety of ascending neuromodulatory systems (Fadel and 

Deutch, 2002).    Specifically, the lateral hypothalamic region is crucial for the 

coordination of behavioral responses to interoceptive cues, and lateral 

hypothalamus projections to the midbrain may be critical for a number of 

behavioral states, ranging from appetite to arousal (Fadel and Deutch, 2002).  It has 

been shown that more complex behaviors require the integration of interoceptive 

cues with activation of the forebrain via the reticular core (Fadel and Deutch, 2002).   
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Other studies have suggested the lateral hypothalamus is a conduit for information 

from corticolimbic sites such as the prefrontal cortex, nucleus accumbens, amygdala 

and brainstem, thus, lateral hypothalamus orexin projections into the ventral 

tegmental area likely play a key role in attention (Fadel and Deutch, 2002; Borgland 

et al., 2006).    The wide innervation of hypothalamic orexin neurons suggest that 

these orexin neurons are “a locus wherein humoral and interoceptive cues gain 

access to and influence over mesocorticolimbic dopamine neurons”, whose terminal 

fields are most dense in orexin innervation at the prefrontal cortex (Fadel and 

Deutch, 2002).  Along with this well-established innervation, orexin fibers and 

receptors are located within a variety of brainstem and basal forebrain regions, 

including the locus coeruleus, media septal area, medial preoptic area, and 

substantain innominat (Espana et al., 2005; Peyron et al., 1998; Sakurai et al., 1998; 

Date et al., 1999; Nambu et al., 1999; Taheri et al., 1999; Bourgin et al., 2000; Marcus 

et al., 2001; Hervieu et al., 2001; Cluderay et al., 2002).  The large variety of 

innervations suggest implications of orexin neurons’ role for a wide range of 

processes including appetite, arousal, sleep/wakefulness, circadian rhythm, and, 

especially, attention.   

 

Attentional processing: importance of the medial prefrontal cortex 

The prefrontal cortex (PFC) is essential for a variety of functions in the brain 

including attention, motor control, spatial orientation, short-term memory, 

temporal and source memory, metamemory, associative learning, creativity, 

perseveration and reasoning (Stuss and Benson, 1984; Fuster, 1988; Wise et al., 
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1996; Roberts, et al. 1998; Engle and Kane, 2002).  Findings from several studies 

highlight the importance of the prefrontal cortex in blocking the effects of 

distractors, and a strong positive correlation between working memory and the 

capacity for executive attention (Engle et al. 1999; Engle, 2001; Engle, 2002).   

Deficits in attention may be produced by right prefrontal cortex 

abnormalities, which prevent inhibitory control over the anterior cingulate 

(Rothbart et al., 2011).  The prefrontal cortex is also known to be the “first to 

malfunction in normal aging” and the cognitive abilities it supports decline at a 

greater degree than those supported by other cortical and noncortical structures 

(Fuster, 1988).  When encountering novel information, reduced prefrontal cortex 

performance can lead to the inability to integrate temporal and contextual 

information into discrete memory traces (West, 1996).  The ability to remain 

focused for an extended period of time in a resource-demanding task is vulnerable 

to the effects of increasing age, especially in the right-prefrontal region (Rothbart et 

al., 2011).  The medial PFC (mPFC) tends to be more active during expectant spatial 

attention tasks, when internally generated expectations rather than ambient extra 

personal targets must regulate the distribution of attention.  Studies of patients with 

mPFC damage suggest that the mPFC mediates the use of environmental cues to 

prepare for action and may interfere with the ability to benefit from spatial cues in 

target detection tasks as well as tasks that demand attentional shifting (Small et al., 

2002).  It is apparent that the prefrontal cortex is crucial for attention and a loss of 

neurons that project into the prefrontal cortex to provide support for its various 

cognitive functions is detrimental to attentional capabilities.  
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Orexin systems affect on attention 

Orexins play a distinct role in sleep and wakefulness and are necessary for 

arousal and attention, because of their importance within the cholinergic system, 

which receives significant orexin innervation (Marcus et al., 2001).  Orexin neuron’s 

activity varies with the degree of arousal and is linked to heightened attentional 

states (Villano et al., 2017).  Studies suggest that these orexin neurons form a 

positive feedback circuit through direct pathways, resulting in the preservation of 

the orexin neuron networks at high activity levels and for longer periods (Yamanaka 

et al. 2010).  Application of OxB to orexin producing neurons significantly 

depolarized membrane potential, increased firing frequency, and induced 

depolarization even in the presence of tetrodotoxin, suggesting that orexin directly 

activates orexin neurons. This positive feedback circuit activation of orexin neurons 

through Ox2R suggests an important role in the maintenance of arousal and arousal 

systems.  Most often, orexin neurons exposed to orexin show burst-type firing, in 

either clusters or repetitive bursts. Orexin neurons may also be indirectly activated 

through glutamatergic neurons within the lateral hypothalamus (Yamanaka et al. 

2010).   

 

Narcolepsy and orexin systems 

Narcolepsy is a sleep-wake disorder characterized by excessive daytime 

sleepiness, cataplexy, REM sleep dysregulation, sleep paralysis and hypnagogic 

hallucinations (Kilduff 2001; Overeem et al., 2001; Rechtschaffen et al., 1963).  

Narcolepsy is believed to be caused by a general loss of orexins, as orexin knockout 
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mice have show behavior reminiscent of narcoleptic attacks.  Narcoleptic 

phenotypes have been created in rats, dogs, and humans through dual oral OX1/Ox2 

antagonist administration, and OxR2 mutations in dogs result in narcolepsy (de 

Lecea et al, 2002; Kilduff 2001).  It has been demonstrated that human narcoleptics 

also have at least 85-95% reduction in the number of orexin neuron innervations to 

the cholinergic brainstem (Thannickal et al., 2000).  Orexin-releasing neurons also 

innervate the locus coeruleus (Cluderay et al., 2002; Brisbare-Roch et al., 2007; 

Dugovic et al., 2009; de Lecea et al., 2002; Fadel and Fredrick-Duus., 2008).  Lateral 

hypothalamic orexin-2 projections increase spike frequency to and are crucial for 

appropriate function of the locus coeruleus.  Therefore, a loss of orexin 2 projections 

may result in dysregulation of the locus coeruleus.  Densely innervated orexin 

projections distribute to regions of the brain including to the locus coeruleus, basal 

forebrain, and other arousal related structures. Without the presence of OxR2 

systems, almost all behaviors related to sleep-wakefulness malfunction across 

multiple species.  Loss of proper sleep-wakefulness regulation leads to cognitive 

decline and difficulties in attention tasks because compensatory processes and task-

specific processing engage the same neuronal systems.  Narcoleptics have deficits on 

most attentional tasks that assess attention and other tasks related to executive 

functions (Naumann et al. 2006).  Despite the known role about Ox2Rs in 

subcortical regions, such as the locus coeruleus, much less is known about the role 

of these receptors in the mPFC. 
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Orexins and Alzheimer’s Disease 

Alzheimer’s disease (AD), characterized by cognitive decline, also includes 

irregular sleep/wake patterns as major feature of the disease.  Irregular 

sleep/wakefulness cycles tend to correlate with severity of dementia being suffered 

by the patient (Witting et al., 1990; Mirmiran et al., 1992).  Along with disturbances 

in sleep, Alzheimer’s patients also suffer from narcolepsy-like symptoms such as 

excessive napping in the daytime, daytime sleepiness, rapid eye movement 

dysregulation and circadian rhythm disturbances (Fronczek et al., 2012).  Many of 

these symptoms may be due to failure of the locus coeruleus.  The coexistence of 

narcolepsy, caused by a loss of orexins, and Alzheimer’s disease progression is 

interrelated, shown by up to a 40% loss of orexin producing neurons and 

significantly lower levels of orexins in the cerebrospinal fluid of patients with AD  

(Scammell et al. 2012; Baldo et al., 2003; Horvath et al., 1999; Fronczek et al., 2012).  

Alzheimer’s disease, sleep and circadian rhythm physiology display intricate 

relationships, where AD pathology may lead to sleep/circadian rhythm disturbances 

while sleep and circadian regulating systems may exert and influence on AD 

pathology. There is also significant evidence that orexins modulate AD 

pathophysiology and may influence sleep and circadian rhythm deterioration (Slats 

et al. 2013).   

 

Current Study 

Numerous neuropsychiatric disorders, such as Alzheimer’s disease, 

schizophrenia and drug addiction are associated with disruptions of cholinergic 
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system function (Brousseau et al., 2007; Field and Cox, 2008; Sarter et al. 2005).  In 

addition to the monoaminergic system, orexins also activate cholinergic neurons 

through both Ox1R and Ox2R (Fadel and Frederick-Duus, 2008).  Taking the 

previous sections together, it can be hypothesized that orexin 2 projections are 

needed for proper function of the PFC and attentional tasks, as they are densely 

innervated at this region and related to arousal and appropriate cholinergic system 

function of the cortex.  The study of this experiment is to determine if blocking of 

the orexin 2 receptors in the mPFC, which is crucial for visual attention, in either the 

right or the left hemisphere will result in a loss of attentional performance.  The 

effects of administering the Ox2R antagonist, TCS-OX2-29, in the left or right mPFC 

on visual attention were tested in the present experiment.  It was hypothesized that 

at low dose administration of TCS-OX2-29 into the right, but not into the left, medial 

prefrontal cortex attentional performance would be enhanced. Furthermore, at 

higher doses, the ORx2 antagonist would reduce attentional performance, 

suggesting a cognitive loss analogous to the deficits that narcolepsy patients 

experience, and provide strong implications that as AD progresses, resulting in a 

narcoleptic phenotype due to a lack of OxR2, attentional performance degradation 

also occurs due, in part, to a loss of orexin innervation to a variety of brain regions.    

 

Methods  
 
 
Subjects 
 

Male FBNFI hybrid rats, 150-175 g at the beginning of the experiment were 

used (National Institute of Aging colony).  The rats were individually housed in a 
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vivarium which was temperature and humidity controlled and operated on a 14:10 

hour light/dark cycle (lights on 0600). All rats were water restricted throughout the 

experiment, receiving water during behavioral testing and for 10-15 minutes after 

each testing session.  

 
Apparatus 
 

Rats were trained five to seven days a week, and received at least twenty 

minutes of water access on days when no behavioral testing occurred. Rats were 

trained in one of 16 chambers, each located within a sound-attenuating box (Med 

Associates, Inc.).  Each chamber contained a water port positioned with a dipper 

that could be raised to provide water access (0.01 ml tap water). Two retractable 

levers were located on either side of the water port. A panel light was located above 

each lever and above the water port. A house light was positioned on the opposite 

side of each chamber. Illumination levels of these chambers have been described 

(Burk, 2004). Behavioral testing programs and data collection was controlled by a 

personal computer using the Med-PC version IV software.   

 
Presurgical Attention Task Training 

 
Training occurred between 9:00 a.m. and 2:00 p.m. daily. Food was provided 

ad libitum throughout the experiment. Animals were treated in accordance with the 

guidelines of the Animal Care and Use Committee at the College of William and 

Mary.  In the initial shaping procedure, rats were trained to press an extended lever 

using an FR-1 schedule of reinforcement, with the rule, to prevent a side bias, that if 

one lever was pressed five consecutive times, the other lever had to be pressed to 
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receive water access. Once animals received 120 rewards in a session for three 

sessions, they were moved to the next training stage, where there were two trial 

types, signal (1-s illumination of the central panel light) and nonsignal (no 

illumination of the central panel light) trials. On seconds following a signal or no 

signal, the rats were cued to respond by extension of the levers into the chamber. 

Rules for training were counterbalanced, such that half of the rats were reinforced 

(3-s access to 0.01ml tap water) for pressing the left lever following a signal, which 

was recorded as a hit. A miss was recorded for right lever presses after a signal. For 

nonsignal trials, a right lever press was considered a correct rejection and water 

access was provided, while a press of the left lever on these trials was recorded as a 

false alarm. The rules of the task were reversed for the other half of the rats such 

that a right lever press was considered a hit following a signal presentation whereas 

the left lever was considered a correct response on a nonsignal trial. The inter-trial 

interval (ITI) was 12-s and the houselight was illuminated throughout the session 

during this stage of training. An incorrect response during this training phase would 

be followed by a correction trial, which was the same trial type as that in which the 

error occurred. If the rat responded incorrectly for three consecutive trials, a forced 

trial occurred in which only the correct lever was extended into the chamber for 90-

s or until the rat responded. If the errors occurred on signal trials, the central panel 

light was illuminated while the lever was extended. Each session lasted for 45 min 

and rats were trained with this task until reaching a criterion of >70% accuracy on 

signal and nonsignal trials for three consecutive sessions. After reaching criterion, 

rats were moved to the final stage of training prior to surgery. In the final task, the 



 14 

signal durations (500, 100, 25 ms) and ITI (9 ± 3 s) were shorter and varied in order 

to increase explicit attentional demands (Parasuraman et al., 1987; Koelega et al. 

1990).  Manipulating the signal duration and causing signal variability requires a 

greater cumulative demand of subject’s attentional capacity and vigilance when 

performing the task (Parasuraman et al., 1987).  Each training session was 

comprised of 162 total trials (81 signal, 81 non-signal). For the signal trials, each of 

the three signal durations was presented for 27 trials within a session. Trials were 

presented in blocks of 18 (9 non-signal, 9 signal, with 3 of each signal duration) and 

trial types were selected randomly without replacement. Rats were considered 

trained for surgery when a criterion of >70% accuracy on trials when the 500-ms 

signal was presented and on nonsignal trials for three consecutive sessions.   

 
 
Surgical Procedures 

 

On the night prior to surgery, rats were provided with 2.7 mg/ml 

acetaminophen in their drinking water. Rats were anesthetized via intraperitoneal 

(IP) injections of 90.0 mg/kg ketamine combined with 9.0 mg/kg xylazine. Once the 

rats were sufficiently anesthetized, the surgical area was shaved and rats were 

positioned in a stereotaxic device with the incisor bar set at 3.3 mm below the 

interaural line. All surgical procedures were conducted under aseptic conditions.  

A group of five rats received unilateral implantation of guide cannulae into 

the right medial prefrontal cortex.  For these subjects, 8-mm guide cannulae (22 

gauge) were implanted at +3.0mm anterior-posterior (AP) and +0.7mm medial-

lateral (ML) from bregma and -2.8mm from dura.  
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In addition to the first five, five different rats received unilateral implantation 

of 8-mm guide cannulae into the left medial prefrontal cortex at +3.0mm anterior-

posterior (AP) and -0.7 mm medial-lateral (ML) from bregma and -2.8mm from 

dura.   

Three stainless steel screws and dental cement were used to secure the 

cannulae; bone wax was applied above the skull holes to prevent the dental cement 

from entering these holes. Dummy cannulae were inserted to prevent blockage 

within the guide cannulae. Following surgery, animals were given a one-week 

recovery period in which food and water were available ad libitum. Rats were then 

returned to water restriction and began to retrain on the attention task.  Rats were 

retrained in the same attention task as before surgery.  

 
Postsurgical behavioral testing procedures prior to TCS-Ox2-29 administration 

 
After re-establishing criterion performance rats were then exposed to a form 

of the attention task where the houselight was flashed (1-s on/1-s off) during the 

middle block of trials within a testing session (trials 55-108).  

 
 
Drug Administration Procedures 

 
Infusions were made through the insertion of an internal cannula (28 guage), 

which was attached to a Hamilton syringe by polyethylene tubing. A total volume of 

1 μl solution was infused through the cannula at a rate of 0.5 μl/min. The internal 

cannula was left in place for one minute following the completion of each infusion to 

allow for drug diffusion. Animals were then immediately loaded into the chambers 

to begin behavioral testing.  At least one day of training was allowed between each 
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testing session to re-establish baseline performance. TCS-Ox2-29 (Tocris, Inc.) was 

dissolved in dimethyl sulfoxide (DMSO) and alliquotted into small vials that were 

stored at -20º until being used for an infusion. Each vial was used only once on an 

infusion day and thus, TCS-0x2-29 was not repeatedly thawed and frozen. Rats with 

both right and left cannula received 0nM (DMSO only), 1nM, 10nM, and 20nm of 

TCS-0x2-29 via the internal cannulae that extended 1.0 mm beyond the guide 

cannulae, with each dose being administered one time prior to task performance in 

an order that was randomized for each rat (Haghparast, et al. 2013). On drug 

infusion sessions, rats were tested in a version of the attention task with the flashing 

houselight distracter presented during the second block of trials (trials 55-108) 

within the session.  

 
Histological procedures and analysis  

 
After being deeply anesthetized via an IP injection of 100.0 mg/kg ketamine 

and 10.0 mg/kg xylazine, rats were transcardially perfused with 10% sucrose 

followed by 4% paraformaldehyde at a pressure of 300mmHg using a Perfusion One 

apparatus. The brains were then removed and placed in the same fixative for 48 

hours before being put into a 30% sucrose solution in phosphate buffered saline for 

at least three days.  The tissue was then sectioned in 50 µM slices using a freezing 

microtome.  Sections near the medial prefrontal cortex will be stained with cresyl 

violet in order to confirm cannula location.  
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Behavioral Measures and Statistical Analyses  
 
The number of hits (H), misses (M), correct rejections (CR), false alarms (FA) 

and omissions were recorded for each animal during each testing session. To assess 

accuracy separately on signal and nonsignal trials, the percentage of hits and correct 

rejections were calculated. During TCS-OX2-29 (or vehicle) infusion sessions, the 

baseline version of the task, with the houselight consistently illuminated, occurred 

for the first 54 trials and then, for the next 54 trials, the houselight was flashed as a 

distracter. To determine the effect of the distracter for each rat, for each measure 

the difference between block 1 (standard task with no distracter) and block 2 

(distracter presentation) was calculated as a distracter score. Positive values 

indicate greater accuracy during block 1 and that the distracter decreased 

performance. Omissions were analyzed separately from measures of accuracy.  Data 

were analyzed with mixed factor ANOVAs, which included factors dose, lesion and 

signal duration (where appropriate). Data were analyzed with SPSS 19.0 for 

Windows (SPSS, Chicago, IL, USA). A level of α=0.05 was used as the criterion for 

statistical significance.  

 
 
Results  
 
 

Overall ANOVA.  ANOVAs including hemisphere, dose, block and (for hits) 

signal duration, were conducted. There were no significant effects for correct 

rejections. There was a dose x block x hemisphere interaction significant at F(6,48) 

= 3.502, p=0.006 for hits.  This three-way interaction was further assessed by 

conducting separate dose X hemisphere ANOVAs at each block.  
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Standard task (Block 1).  TCS-Ox2-29 did not affect performance on the 

standard task without the distracter task (Block 1).  A dose (0, 1, 10, and 20nM TCS-

Ox2-29) x hemisphere ANOVA for hits yielded no significant effects of drug 

treatment during block 1.  

 

Distracter task (Block 2).  TCS-Ox2-29 did not affect performance during the 

second block of trials when a visual distracter was presented.  A dose (0, 1, 10, and 

20nM TCS-Ox2-29) x hemisphere duration ANOVA for hits yielded no significant 

effects of drug treatment during block 2. 

 

Recovery from distracter task (Block 3).  In block 3, a dose x hemisphere 

ANOVA showed there was a significant dose x hemisphere interaction for hits F 

(3,24) = 3.898 (p = 0.021).  A t-test confirmed that the 1 nM dose administration 

improved the performance of rats with their right hemispheres cannulated when 

compared to the left hemisphere t (8) = 3.290, p = .011. 

 
Discussion 
 
 

The present experiments tested whether TCS-Ox2-29 infusion could inhibit 

attentional performance via direct infusions into the medial prefrontal cortex, 

particularly in the right hemisphere.  The present results extend previous findings 

by showing that the right medial prefrontal cortex plays a crucial role in attention- 

demanding aspects of task performance.  Right hemisphere cannulated subjects, 

who had some damage to the right medial prefrontal cortex due to cannula 
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implantation, tended to perform worse than subjects with left hemisphere cannulae 

(Fig. 1, Fig. 4).  Surprisingly, improvement of attentional performance was seen in 

hits during the recovery block after low dose administration of TCS-Ox2-29 into the 

right medial prefrontal cortex (Fig. 2).  Selectivity of hit improvement may show 

that the drug is helping in recovery from the distracter, which suggests that it is not 

motivation or motor effects that are leading to improvement (Fig. 5).  The effects of 

Ox2R blockade on attentional performance tended to follow an inverted “U” shaped 

curve (Fig. 4).  Specifically, low doses of TCS-Ox2-29 enhanced performance when 

attentional demands were augmented by a visual distracter, while high doses 

diminished performance.  The benefits of low dose TCS-Ox2-29 were observed 

during the final block of trials, when subjects are recovering from the effects of the 

distracter.   

The mPFC, specifically the right hemisphere, appears to be one brain 

structure that mediates attentional performance, thus, the right mPFC was chosen 

as a target of this attentional performance study (Small et al 2002).  The mPFC 

contains a significant number of cholinergic projections, which are believed to be 

mediated by orexin producing neurons.  These projections to the mPFC are thought 

to be important for the proper functionality of the mPFC especially with regard to 

attention (Small et al., 2002).    

Aside from impacts on a particular brain region, orexins are needed for 

general arousal and attention and play distinct roles in sleep and wakefulness 

because of their importance within the cholinergic system (Marcus et al., 2001; 

Villano et al., 2017).   Within this system, and others, it is suggested that orexins 
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directly activate orexin neurons, creating positive feedback circuit activation and 

suggesting an important role of orexins in the maintenance of arousal (Yamanaka et 

al. 2010).  This arousal system is thought to be maintained through orexin neurons 

that have specific types of firing or neurons that may be indirectly activated through 

glutamatergic neurons within the lateral hypothalamus (Yamanaka et al. 2010).  The 

lateral hypothalamic region, which is densely filled with orexin producing neurons, 

provides innervations to corticolimbic sites (Peyron et al, 1998).    Included within 

these sites is the prefrontal cortex, an area necessary for attention (Cluderay et al., 

2002).  This suggests that lateral hypothalamus orexin projections area likely to 

play a key role in attention and events that require attentional processing power.   

Narcolepsy, Alzheimer’s disease, and drug addiction are diseases related to 

the malfunction of the orexinergic systems (de Lecea et al, 2002; Kilduff 2001; 

Witting et al., 1990; Mirmiran et al., 1992).  It seems that many of these diseases 

occur, in part, due to improper function of OxR2 systems.  The OxR2 systems assist 

in modulating behaviors related to sleep-wakefulness in many species.  Irregular 

sleep/wakefulness cycles due to a loss of orexin receptors within the locus 

coeruleus tend to cause Alzheimer’s patients to suffer from narcolepsy-like 

symptoms (Fronczek et al., 2012).  These symptoms of sleep irregularities also 

correlate with the severity of dementia being suffered by AD patients and suggest 

sleep and circadian regulating systems controlled by orexins may exert and 

influence AD pathology.  Because orexin 2 projections are critical for appropriate 

functionality of the PFC and attentional tasks, the blocking or disruption of the 
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orexin 2 receptors in the mPFC, especially within the right mPFC, is associated with 

reduced attentional performance (Rothbart et al., 2011).  

The present study found that low dose administration of TCS-OX2-29 into the 

right, but not into the left, medial prefrontal cortex somewhat enhanced attentional 

performance.  Based on prior studies it is speculated that relatively mild antagonism 

of Ox2Rs may have increased the sensitivity of these receptors to subsequent orexin 

transmission, thereby improving attentional performance.  Other forms of 

sensitivity are commonly seen in nicotine receptors, particularly during the use of 

drugs that bind allosterically (Maelicke, et al., 2001).  Recent studies using 

cholinesterase inhibitors, considered allosterically potentiating ligands, sensitize 

nicotinic receptors by increasing the probability of channel opening induced by 

acetylcholine and nicotinic agonists, and by slowing down receptor desensitization 

through directly interacting with nicotinic acetylcholine receptors (Maelicke, et al., 

2001). In the present study, the beneficial effects of low dose TCS-Ox2-29 were 

primarily observed on signal trials during block 3, which potentially support the 

conclusion that the effects of orexin release by orexin neuron innervation in the 

medial prefrontal cortex improves attentional performance when exposed to a 

similar sensitization mechanism.  That mechanism may be the result of orexin 

antagonists sitting on the orthosteric site of the receptor, and, when the antagonists 

release, generating a greater binding affinity for natural orexin agonists.  Further 

investigation of the neural basis of the beneficial effects of low dose TCS-Ox2-29 is 

needed.  
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These results add to the growing literature about the potential beneficial 

cognitive effects of targeting orexinergic neurotransmission (Piantadosi et al., 

2015). One caveat in interpreting these data is that the data set would benefit from a 

larger sample size; the current size is two groups, left and right hemisphere 

cannulated subjects, of 5.  Also, the histological processing is not complete and, thus, 

cannula locations have not been verified.  Collectively, these findings support the 

conclusion that orexin 2 receptor systems are a potential target for future research 

into treatments for disorders characterized by attentional deficits. 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  The figure depicts the differences between left (n=5) and right  
(n=5) hemisphere cannula implantation groups on percentage hits 
related to varied dose administration of TCS-Ox2-29.   

Fig. 2  The figure depicts the differences of dose administration and 
percentage hits for subjects with right hemisphere cannula implantation 
during the three blocks of the distracter task (Block 1 – Baseline, Block 2 – 
Distracter, Block 3 – Post-Distracter/Recovery).  
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Fig. 3  The figure depicts the differences of dose administration and 
percentage hits for subjects with left hemisphere cannula implantation 
during the three blocks of the distracter task (Block 1 – Baseline, Block 2 – 
Distracter, Block 3 – Post-Distracter/Recovery). 

Fig. 4  The figure depicts the differences between left (n=5) and right  
(n=5) hemisphere cannula implantation groups on correct rejections 
related to varied dose administration of TCS-Ox2-29.   
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Fig. 6  The figure depicts the differences of dose administration and 
correct rejections for subjects with left hemisphere cannula implantation 
during the three blocks of the distracter task (Block 1 – Baseline, Block 2 – 
Distracter, Block 3 – Post-Distracter/Recovery). 

Fig. 5  The figure depicts the differences of dose administration and 
correct rejections for subjects with right hemisphere cannula implantation 
during the three blocks of the distracter task (Block 1 – Baseline, Block 2 – 
Distracter, Block 3 – Post-Distracter/Recovery). 
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