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Introduction. 

Antibiofouling: a rock and a hard place. 

 Biofouling, the attachment of organisms to wet surfaces such as ship hulls, pipelines, power 

stations, and oil rigs, costs the global economy an estimated $1 billion per year directly1 and presents 

several environmental and human health consequences.  Underwater surfaces accumulate up to 150 kg 

of biofouling mass per square meter2, and some biofouling organisms employ boring and adhesion 

techniques which cause physical damage and could threaten the structural integrity and functioning of 

submerged infrastructure.3,4  The increased drag and weight on ship hulls can lead to 40-50% increased 

fuel consumption2,4, causing an additional estimated 7.3 million tons of fuel consumed and 23 million tons 

of CO2 and 750,000 tons of SO2 burned per year5 as well as significant increases in time and money spent 

in maintenance, wasted resources, and lost shipping time.2,4,5  As a result, voyage costs can increase by 

77%.5  On stationary infrastructure, biofouling causes structural integrity concerns due to surface 

deterioration and additional weight.  Non-indigenous species also piggyback on ocean liners and threaten 

the biodiversity and stability of distant ecosystems2,4; an estimate of the economic damage done within 

the United States by non-indigenous species was recently calculated as $137 billion per year.6  The 

antibiofouling market was valued at $4 billion in 20097, and the marine coatings market alone was valued 

at $7.67 billion in 2013 with a projection to rise to $11.88 billion by 2020.8  The economic and 

environmental consequences of biofouling are therefore serious international issues.   

Pictures 1-3.  Examples of biofouling and boring.9 

     

Maritime civilizations throughout the ages have employed antibiofouling methods to combat 

these problems, from attaching disposable panels of wood, lead, wax, tar, etc. onto outer hulls in early 

Mediterranean trading vessels in the 700s BCE to copper sheathing in the 18th century British Empire to 

the use of biocide paints in modern times.10  Tributyltin oxides (TBT/TBTO), which kept surfaces biofouling-

free for up to 5 years, were the main active components in biocide paints used by an estimated 70% of 

the international shipping industries and government navies for the past 40 years.2,4  However, the 

universal toxicity and bioaccumulation of organotins leeching out of the paints precipitated 

environmental and economic disasters, in addition to being a mammalian carcinogen2,7, and organotins 

were consequently banned from biocide paints by the United Nations in 2008.11  The global shipping 

industry and UN signatory governments have struggled since the ban to prevent biofouling in a market 

bereft of organotins, and the antifouling industry has scrambled to fill the void with  less toxic alternatives.  

Despite the diversity of avenues being explored, there is not yet a definitive environmentally-benign and 

cost-effective solution to the biofouling problem which is becoming increasingly urgent.1,4,7,10,12  
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Intertanko released a statement in 2016 claiming “Since the entry into force of the [biocide paint ban], 

there has been no single antifouling coating which can meet all the operational conditions for a particular 

vessel”.13  Those currently still in use present environmental and human health concerns and may face 

future bans.7,10,14  As a part of this effort, many natural marine products and synthetic derivatives have 

been developed and tested over the course of the past two decades for antibiofouling.3,15  However, to 

the best of our knowledge, none yet meet the criteria for a successful antibiofouling agent: low toxicity, 

stability in a paint or on specialized surfaces, biodegradable, broad-spectrum activity, and commercially 

producible.15  Barettin, a potent natural antibiofouler, may help fill this need. 

Barettin, the target. 

Barettin (1) was isolated as a secondary metabolite from the cold-water sponge Geodia barretti 

in 1986.16  Geodia barretti sports a fouling-free surface, a characteristic attributed to the production of 1 

which possesses potent antibiofouling activity.17  Barettin was previously misidentified as 3, but its 

structure is now definitively established as 1.17,18,19,20  The antibiofouling properties of 1 against barnacle 

and blue mussel larvae (EC50 = 0.9 μM = 0.4 μg/mL) cause it to inhibit settlement metamorphosis in 

concentrations comparable to TBT (LC50 = 0.09 μg/mL) in the lab and in field conditions.17,21  Crucially, this 

inhibition appears to proceed in a nontoxic, reversible manner: once removed from water containing 1, 

barnacle larvae continue their life cycle.17  Barettin is proposed to be putatively nontoxic22 and, since it is 

a natural product composed of amino acids, biodegradation pathways likely exist in aquatic environments.  

These properties could make barettin a unique antibiofouler since most antibiofoulers are active through 

toxic mechanisms and pose bioaccumulation risks.  Besides immediate environmental concerns, toxic 

mechanisms apply a selective pressure for resistance development whereas a nontoxic antibiofouling 

agent arguably helps combat resistance: susceptible biofoulers are forced to settle elsewhere, compete 

with other (possibly less susceptible) species, and progenerate future generations of susceptible 

organisms.  Barettin is also an antioxidant22, antiinflammatent22, selective serotonin receptor ligand23, and 

AChE enzyme inhibitor24; its ability to behave as a selective serotonin ligand has been proposed as its 

mode of antibiofouling activity.23  Neurotransmitters have been noted as one method by which planktonic 

larvae receive the cue to settle on a surface, so the blockage of a serotonin receptor could prevent those 

cues from being received.  This is especially pertinent for barnacle settlement which has been shown to 

depend strongly on the endogenous amine serotonin25 but also indicates that barettin may be a universal 

anti-biofouler agent across the animal kingdom since serotonin receptors are evolutionarily conserved.  

Isolation of 1 actually produced a 87:13 Z:E isomeric mixture of 1:217, but it should be noted that 

biological studies indicate only the Z isomer and not the E as the subject of their assays.  No one has yet 

determined if there is a difference in the biological activities of the two geometric isomers or if an 

equilibrium exists at relevant aquatic environments.  Additionally, the stereocenter of 1 and 2 was 

identified as S, but no biological differences have yet been specified from the R stereoisomer.  There is 

ample room for investigating barettin to improve potency: only three barettin derivatives with modified 

tryptophan moieties have been tested for antibiofouling activity26, and no literature precedents yet exist 

for derivatives with modified arginine moieties.  Nine analogues of dipodazine have been tested, though, 

which suggest possible alterations to make to barettin’s tryptophan side-arm.26   

Renewed isolation efforts have revealed two additional barettin analogues, dihydrobarettin (4)17 

and bromobenzisoxazolone barettin (5)27, both of which possess significant antibiofouling properties (EC50 

= 7.9 μM and 15 nM, respectively).  Interestingly, barettin and dihydrobarettin have been shown to exert 
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Figure 1.  Barettin analogues and endogenous amines. 

 

a synergistic effect against barnacle larvae.28  It is likely, based on parallel situations and on the lack of a 

shikimic acid biosynthetic pathway in sponges (by which tryptophan is usually produced), that 1, 4, and 5 

were produced by symbiotic/commensalistic microorganisms to combat settlement on the filter-feeder, 

saving the sponge and its microbial allies from starvation.27,29  While 5 is 60 times more potent than 

barettin and also inhibits barnacle settlement in a reversible manner, 5 was isolated in less than 0.1 % 

yield, which likely caused it to be overlooked in earlier isolation efforts and suggests that it is not the 

sponge’s primary mode of defense.27  No synthetic pathway has yet been published for 5.  However, once 

a pathway has been devised, it will be interesting to further investigate its mode of action since it does 

not appear to act as a serotonin receptor ligand like barettin.27  More studies on barettin family members 

are necessary to fully understand their modes of action and suitability as commercial antibiofouling 

agents, but they show promise. 

A synthetic route to 1 via peptide coupling and cyclization (Scheme 1) was published in 200420, 

but, in the author’s own words, it is “labor intensive and far too expensive for large scale production”.30  

Several patents have been filed concerning barettin and derivatives for use as medical preservatives, 

antiinflammation, antioxidation, antirust, and antifouling agents.31,32,33  Barettin derivatives may be 

suitable for several diverse future commercial applications if a commercializable route were devised.  In 

pursuit of such a route, we targeted the diketopiperazine ring as a starting scaffold and used iterative 

aldol condensations to assemble the necessary functionalities (Scheme 2). 
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Scheme 1.  Pre-existing synthetic route to barettin. 

 

Scheme 2.  Proposed retrosynthetic route to barettin using iterative aldol condensations. 

 

Diketopiperazines and the aldol condensation: access to privileged bioactive scaffolds. 

 The diketopiperazine ring (DKP, also called piperazinedione), the cyclic dimer of amino acids, is a 

privileged structural motif shared among numerous natural bioactive compounds and synthetic 

derivatives.  Extensive research and comprehensive reviews over the past several decades have elucidated 

and compiled a host of information on the diversity of DKP structures, drug-like characteristics, natural 

prevalence, biological activities, potential applications, and synthetic routes.  DKPs are abundant in nature 

and display a broad spectrum of potent bioactivities, such as antioxidation, antiinflammatory, anticancer, 

antiviral, antibacterial, antifungal, sexual function regulation, antihypertension, cardiovascular regulation, 

neuroprotection, and antibiofouling properties.34,35,36,37,38  Many bioactive DKPs are not limited to only 

one bioactive property but rather possess a range of such properties.  The ring’s heteroatomic structure 

enables a variety of reactivity, and the DKP family is increasingly recognized to possess multiple favorable 

drug-like characteristics.  The DKP ring is an inherently attractive scaffold for drug discovery due to its 

small size, heterocyclic structure, resistance to proteolysis, and cheap commercial availability.  It is 

amenable to derivatization at six positions (including four proto-chiral carbons) to form chiral, non-planar, 

structurally diverse compounds which maintain rigid, conformationally constrained backbones.  A few 

drugs and potential drug leads derived from this family are represented in Figure 2.  Due to their amino 
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acid-based structures and favorable drug-like characteristics, it is likely that natural DKPs and their 

synthetic analogues will continue to provide interesting targets for biological study and chemical synthesis 

in the future.  As such, the development of techniques for derivatization of DKPs is of interest to improve 

synthetic capabilities and enable biological investigations and scale-up commercialization of interesting 

DKPs. 

Figure 2.  A sampling of potent DKP analogues. 

 

Numerous methods already exist for manipulating the DKP ring which, combined with the low 

cost and commercial availability of simple DKPs, make complex synthetic targets viable through 

derivatization.34,35  The aldol condensation is one well-precedented reaction for derivatizing the 

methylenes in the DKP ring into alkylidenes, beginning from the inexpensive, commercially available bis-

acetoxy DKP 6 and involving simple methodologies.  Several bases and conditions have already been 

extensively explored in the literature for DKP aldol condensations with a variety of aromatic aldehydes†.  

The DKP aldol condensation with aromatic aldehydes is notable for its ease of execution and reliable 

results.  The aliphatic aldol condensation, on the other hand, has received limited attention, as will be 

discussed later.  

†In the context of this paper, “aromatic aldehyde” and “aromatic aldol condensation” refer to aldehydes whose α-

C’s are part of aromatic systems; “aliphatic aldehyde” and “aliphatic aldol condensation”, conversely, refer to those 

with non-aromatic α-C’s, even if the aldehyde contains an aromatic moiety.   

Three downsides accompany the aldol condensation:  

1) Iterative aldol condensations occur unintentionally to produce symmetric bis-condensation 

alkylidenes.  However, the iterative condensations are mostly controllable using exact stoichiometric 

ratios.  The bis-condensation product usually constitutes only a small percentage of the crude product 
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anyway, and it should generally be chemically distinct enough from the mono-condensation product to 

enable separation.   

2) Protection/deprotection rounds are necessary when either the aldehyde or DKP contains 

protons more acidic than the CH2.  The CH2, as the site of enolization, is an integral part of the aldol 

condensation mechanism shown in Scheme 3, and deprotonation elsewhere can interfere with the 

desired pathway.  However, protection/deprotection is not necessary for a single condensation and for 

substrates devoid of acidic protons. 

3) Strong bases like KOtBu and elevated temperatures are commonly utilized to effect the 

transformation.  This limits the aldol condensation’s practicability in the synthesis of delicate or complex 

molecules.  However, the use of acetoxy DKPs facilitates elimination with the acyl transfer shown in 

Scheme 3 and enables the use of mild conditions and bases.   

Scheme 3.  Acetoxy DKP aldol condensation mechanism. 

 

Despite the proliferation of aldol condensation precedents for acetoxy DKPs with aromatic 

aldehydes, few examples of aliphatic aldol condensations are available and fewer still involve acetoxy 

DKPs.  Most DKPs with aliphatic side-arms are constructed via cyclization of glycine derivatives.35  This 

restricts the feasibility of certain targets, requires carefully tailored reaction conditions, and makes the 

production of derivatives laborious.  It is not clear why the aldol condensation has not been used more 

often to introduce aliphatic moieties as it has for aromatics and why strong bases are employed instead 

of acetoxy DKPs and mild conditions.  Our search for literature examples of DKP aldol condensations with 

aliphatic aldehydes yielded 26 unique molecules used by a handful of groups (shown in Figure 3) according 

to SciFinder and Reaxys database searches and self-guided investigation.  The parameters for the database 

searches are shown in Figure 4. 

These substrates possess notably inert hydrocarbon structures with few functional groups among 

them.  The bolded names indicate groups which condensed the aldehydes onto an acetoxy DKP in mild 

conditions (i.e. Cs2CO3, DBU, rt) while the italicized denote acetoxy DKPs in harsh conditions (i.e. KOtBu, 

NaH, heat) and the unaffected names did not use acetoxy DKPs.  Condensations with aliphatic aldehydes 

could provide more direct access to targets and broaden the range of substituents possible, especially if 

they can proceed under mild conditions and preserve pre-existing, delicate functionalities.  To investigate 

this possibility while creating a synthetic route to barettin, we undertook to explore the aliphatic aldol 
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condensation with functionalized aldehydes; we specifically began with an intrinsically unstable aldehyde 

(9) that would enable direct access to barettin to test the limits of the reaction.  If the aliphatic aldol 

condensation with an acetoxy DKP could work with an aldehyde prone to degradation, then it should 

theoretically work for any “tamer” replacement.   

Figure 3.  Aldehydes with non-aromatic α-C’s which have undergone DKP aldol 
condensations.18,39,40,41,42,43,44,45,46,47,48,49,50,51,52 

 

Figure 4.  Reaxys and SciFinder search parameters for DKP aldol condensations. 

 

The successful employment of such a method is discussed herein in the context of a total synthesis 

of barettin which we hope enables large-scale production and rapid development of derivatives both in 

the barettin and in the overall DKP families.  In developing the route, we aimed to address two issues 

simultaneously: improving the synthetic access to barettin in a manner amenable to derivatization and 

validating the feasibility of the aliphatic aldol condensation with a sensitive substrate.   

Results and Discussion. 

 We successfully synthesized (±)-(Z)-barettin with 31 % yield as a mono-TFA salt over seven steps 

with only one chromatographic separation (Scheme 4).  The route utilized two DKP aldol condensations, 

the first with an aliphatic aldehyde and the second with an aromatic aldehyde.  In this route, we were able 

to display the feasibility of using a degradation-prone aldehyde to effect an aldol condensation and to 
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showcase the applicability of the aldol condensation to directly access bioactive scaffolds.  The ability of 

the route to run with a sensitive substrate and with one chromatographic separation over seven steps 

sets it apart from most total syntheses and should improve its scale-up value.  The route is also inherently 

amenable to alteration to conveniently produce derivatives for SAR studies as shown in Scheme 5, not 

including the many additional derivatizations possible outside of this specific route.  Three major 

difficulties were encountered over the development of this route: 1) aldehyde 9 and DKP 10 degrade in 

basic conditions, on silica, and above room temperature; 2) a rearrangement of 12 (Schemes 8 and 9) 

competes with the second aldol condensation; and 3) desired products 12 and 14 and undesired 

byproducts 15 (Scheme 8) and 16 (Scheme 10) are not amenable to separation from each other by flash 

column chromatography. 

Scheme 4.  Synthetic route to barettin. 
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Scheme 5.  Amenability of the DKP aldol condensation to produce barettin derivatives for SAR studies. 

 

 

The first aldol condensation: degradation of 9 and 10. 

At the project’s conception, we anticipated possible degradation of 9 and 10 due to the ability of 

the guanidino group to eliminate.  The position of a π bond three atoms away from the guanidino would 

lower the pKa of the allylic hydrogen and further encourage elimination according to our proposed 

mechanism (Schemes 6 and 7).  Accordingly, serious degradation was encountered on silica gel, in basic 

conditions, and with heat.  When both 9 and 10 were exposed to 60 ⁰C, neither were recovered.  

Surprisingly, both compounds can be dried under reduced pressure in a hot water bath at 40 ⁰C and 

appear stable to store in excess of a week at 0 ⁰C.  We also observed that the aldol condensation’s yields 

suffered when allowed to run overnight and that excess 6 was recovered despite the use of equivalent 

amounts of 6 and 9.  This suggested that 9 and 10 degraded over time in the basic conditions of the aldol 

condensation. 

Scheme 6.  Proposed mechanism for guanidino elimination in basic conditions. 
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Scheme 7.  Proposed mechanism for guanidino elimination in acidic conditions. 

 

Attempted purification of 9 or 10 on silica caused % recovery to plunge (Table 1), and the desired 

products continued to elute off the column in mixed fractions long after the bulk of the pure material had 

been collected.  Due to these difficulties, we decided to subject 10 to the hydrogenation before 

attempting chromatographic purification since the loss of the π bond makes elimination less favorable.  

However, we were unsure how to handle the purification of 9: the aldol condensation produced its highest 

estimated yield when pure 9 was utilized, yet the aldehyde suffered serious recovery losses on silica during 

the purification.  We therefore attempted to optimize the Dess-Martin oxidation to eliminate the need 

for pyridine (which was the only significant impurity after work-up of 9), but attempts at using different 

bases or less pyridine led to impractically impure and low-yielding results.   

Table 1.  Recovery losses from using flash column chromatography to purify 9 and 10 on silica. 

Entry Compound Estimated 9/10 pre-
column† (mg) 

9/10 recovered 
post-column (mg) 

Estimated % recovery 

1 9 55 32 58 

2 9 406 142 35 

3 10 24 12 50. 

4 10 39 14 36 

5 10 115 40 35 

6 10 172 60 35 

7 10 224 23 10. 

8 10 349 206 59 

9 10 1,079 227 21 

†Pre-column amounts of 9 and 10 are inflated by presence of residual pyridine and DMF; however, these 

residual solvents do not account for all the lost mass. 

We therefore determined to subject 9 to the condensation with the residual pyridine because 

purification of 9 on silica led to a worse overall yield than did the “dirty” aldol condensation: we therefore 

ran the alcohol 8 through the Dess-Martin oxidation all the way to the hydrogenation without any 

chromatographic purification.  As predicted, 11 was perfectly amenable to chromatographic separation, 

neither degrading nor trailing on the column.  Serendipitously, however, we found that chromatographic 

purification of 11 was not even necessary as the only remaining impurity was excess 6 from the aldol 

condensation (which is removed in downstream purification and does not participate in subsequent 

reactions).  We propose that either hydrogenation reduced the minor byproducts from the oxidation and 

aldol condensation into volatile species or that the carbon backbone for the palladium catalyst adsorbed 

the impurities and therefore removed them from the mixture during filtration.  Whatever the cause, we 

achieved the route from 8 to 11 in 54 % yield without any chromatographic separation as seen in Scheme 

4.  
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The second aldol condensation: rearrangement of 12 into 15. 

 During the second aldol condensation between DKP 12 and aromatic aldehyde 13, an interesting 

rearrangement of 12 into 15 was observed by 1H NMR spectroscopy.  Contrary to our expectations, the 

sterically hindered methine in the DKP ring underwent enolization when treated to certain bases, resulting 

in a ring contraction that excludes the neighboring amide group from the ring.  We propose that this ring 

contraction proceeds according to the mechanism reported by Farran and co-workers who observed base-

induced ring contractions for doubly-Boc protected DKPs.53  Our proposed analogous mechanism is 

represented in Scheme 9.  This competing rearrangement led to lower yields and separation issues since 

12, 14, and 15 were not amenable to separation by flash column chromatography.  Fortunately, we 

completely bypassed this rearrangement and its associated issues by experimenting with different 

conditions; of the many variations tested, the most efficacious alterations were changes in base and 

temperature, as shown in the abbreviated Table 2.  Using 1.25 equivalents of LiHMDS (Table 2, entry 5), 

we secured very good yields of 14 with complete consumption of 12, no formation of 15, and a reliable 

separation from excess aldehyde 13. 

Scheme 8.  Competition between second aldol condensation and rearrangement. 

 

 

Scheme 9.  Farran & co-worker's TRAL (transannular rearrangement of activated lactams) mechanism 
applied to 12. 

 

Table 2.  Optimization of the second aldol condensation. 

Entry Base Equivalence to 12 Temperature (⁰C) 14 : 15 

1 Cs2CO3 1.1 Rt 0 : 100 

2 DBU 1.0 Rt 14 : 86 

3 DBU 1.0 0 33 : 67 

4 LiHMDS 1.0 -78 -> 0 100 : 0 
Incomplete rxn 

5 LiHMDS 1.25 -78 -> 0 100 : 0 
72 % yield 

6 LiHMDS 2.0 -78 -> 0 No rxn 
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Boc-acylation of 12: a separation issue. 

 Surprisingly, the Boc protection of 11 presented a real challenge, despite the universal practice of 

using Boc anhydride to protect amides.  DMAP is a mild base, yet it appears to enolize the unsubstituted 

methylene of 12 which then attacks the Boc anhydride to produce Boc-acylated 16 (Scheme 10).  The 

presence of 16 is minor, usually less than 10 % of the overall isolated product.  However, it leads to serious 

separation difficulties downstream since all our efforts to develop chromatographic conditions to 

separate 16 from 12 and 14 were ineffective.  We therefore optimized the reaction conditions of the Boc 

protection to minimize formation of 16.  As DMAP, excess Boc anhydride, and time increased, not only 

did the production of 16 increase and the % yield of 12 decrease but the results also became more 

irreproducible.  Using only 0.05 equivalents of DMAP (the smallest amount we could weigh), 1.05 

equivalents of Boc anhydride, and closely monitoring the reaction by TLC gave reproducible results with 

0-2 % formation of 16 and very good yield (85 %) for the desired transformation. 

Scheme 10.  Boc protection of 11 and proposed acylation of 12. 

 

Conclusion. 

 The previous synthesis of (Z)-barettin reported 13 % yield over five steps, with multiple 

chromatographic separations.  We synthesized (±)-(Z)-barettin with 31 % yield as a mono-TFA salt over 

seven steps with only one chromatographic separation.  The route is efficient, proceeds under mild 

conditions, and is optimized to reduce formation of undesired byproducts otherwise seen in the aldol 

condensations and the Boc protection.  Our route enables us to 1) utilize a DKP condensation with an 

unstable aliphatic aldehyde, 2) showcase how the DKP condensation provides direct access to a bioactive 

scaffold, and 3) suggest a simple, higher yielding route to barettin and analogues consisting of only one 

chromatographic separation.   

Future Directions. 

We plan to continue exploring the aliphatic aldol condensation while engaging in bioassay-guided 

derivatization of 1 and while attempting to access other bioactive DKP scaffolds using this methodology.  
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We will test the bioactivity of our racemic barettin to determine if the stereochemistry affects potency; if 

it does, we will alter the route to selectively hydrogenate.  We also plan to generate derivatives for 

biological study as well. 

Due to the difficulties encountered with the guanidino moiety, we are currently subjecting a 

simpler amino aldehyde (7) to the same synthetic route (Scheme 11) and will test its efficacy against 

barnacle settlement to determine whether the guanidino moiety is necessary for activity.  We hope that 

the terminal amino group will possess a reduced potential to eliminate and be more amenable to the 

basic conditions of the aldol condensation as well as the acidic conditions of silica chromatography; one 

precedent exists for this reaction with 7 and tBuOK.50  If a simpler aldehyde like 7 can be used in place of 

the degradation-prone 9, this finding could greatly simplify the production of barettin derivatives.  The 

guanidino moiety, which is positively charged under most physiological conditions, likely helps with 

cellular penetration, but quaternary ammonium compounds are also used as biocides in the food industry 

and comprise essential endogenous amines such as serotonin and dopamine.12  The removal of the 

guanidino group may not alter cellular penetration or activity at all and thus ease synthetic preparation 

of barettin derivatives.   

Scheme 11.  Retrosynthetic plan for modified barettin with amino aldehyde 7. 

 

Contact Information. 

Elizabeth Wells Kelley at ewkelley@email.wm.edu. 

Abbreviations. 

Boc = tert-butyloxycarbonyl 

Boc2O = di-tert-butyl dicarbonate 

DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene 

DKP = diketopiperazine 

DMAP = 4-(dimethylamino)-pyridine 

DMF = dimethylformamide 

DMP = Dess-Martin periodinane 

EtOAc = ethyl acetate 

LiHMDS = hexamethyldisilazane lithium salt 

MeCN = acetonitrile 

Pyr = pyridine 

Rt = room temperature (approximately 23 ⁰C) 

TFA = trifluoroacetic acid 

THF = tetrahydrofuran 

Experimental. 

All reactions were carried out under N2 atmosphere and room temperature with magnetic stirring in dried reaction 

vessels unless otherwise indicated. Acetonitrile and tetrahydrofuran were anhydrous, degassed with argon and 
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purified by passage through a column of molecular sieves and a bed of activated alumina.54  All reagents were used 

as received unless otherwise noted.  Analytical thin layer chromatography was performed on SiliCycle 60Å glass 

plates.  Flash column chromatography was conducted with silica gel (230-400 mesh).55  Visualization was 

accomplished with UV light and a stain, followed by heating.  Melting points were obtained on a Mel-Temp II.  Film 

infrared spectra were recorded using a Shimadzu IRTracer-100 FTIR spectrophotometer and are reported in cm-1.  1H 

NMR spectra were recorded on an Agilent VnmrJ 4 (400 MHz) spectrometer and are reported in ppm using solvent 

as an internal standard (CDCl3 at 7.26 ppm and DMSO at 2.50 ppm) or tetramethylsilane (0.00 ppm) unless otherwise 

noted.  Proton-decoupled 13C NMR spectra were recorded on an Agilent VnmrJ 4 (400 MHz) spectrometer and are 

reported in ppm using solvent as an internal standard (CDCl3 at 77.00 ppm) unless otherwise noted.  All compounds 

were judged to be homogeneous (>95% purity) by 1H NMR spectroscopy unless otherwise noted. 

8.  1,3-bis(Boc)-2-methyl-2-thiopseudourea (4.00 g, 13.78 mmol) was dissolved in DMF (41.7 mL).  3-aminopropanol 

(4.14 g, 55.1 mmol) and DMAP (168 mg, 1.38 mmol) were sequentially added.  After 1.5 hours, the reaction mixture 

was diluted with 0.1 M AcOH (80 mL), and the reaction mixture was extracted using Et2O (3 x 80 mL).  The combined 

organic layers were sequentially washed with saturated NaHCO3 (80 mL), saturated NaCl (80 mL), and H2O (80 mL).  

The organic layer was dried over Na2SO4 and concentrated under reduced atmosphere to afford alcohol 8 as a white 

crystalline solid (4.07 g, 12.8 mmol, 93% yield).  The spectral data of 8 is in agreement with published literature.56 

9.  Alcohol 8 (2.00 g, 6.30 mmol) and pyridine (3.06 mL, 37.8 mmol) were dissolved in CH2Cl2 (11.0 mL).  Dess-Martin 

periodinane (3.48 g, 8.19 mmol) was suspended in CH2Cl2 (30.0 mL) in a separate flask.  The solution of 8 and pyridine 

was added to the DMP solution dropwise using a syringe.  CH2Cl2 (6.0 mL) was used to wash the original 8-pyridine 

flask and syringe and add the residues to the reaction mixture.  After 1 hour, 1 M NaOH (75 mL, 75 mmol) and Et2O 

(30 mL) were added, and the reaction mixture stirred for an additional 10 minutes.  The reaction mixture was 

separated from the aqueous using Et2O (100 mL), washed with H2O (3 x 80 mL), dried over Na2SO4, and concentrated 

under reduced atmosphere to afford unpurified aldehyde 9 as a sticky yellow solid with some residual pyridine (1.86 

g, 5.89 mmol).  The material was used in the subsequent reaction without further purification.  A portion of 9 was 

purified by flash column chromatograph for analytical purposes.  The spectral data of 9 is in agreement with 

published literature.56  

6.  Glycine anhydride (5.00 g, 43.8 mmol) was dissolved in acetic anhydride (20.7 mL, 219 mmol).  The reaction flask 

was fitted with a reflux condenser and heated to 110 ⁰C (bath temperature).  After 27 hours, the reaction mixture 

was concentrated under reduced atmosphere to afford bis-acetoxy DKP 6 as a light brown solid (8.64 g, 43.6 mmol, 

99.5% yield).  The spectral data of 6 is in agreement with published literature.53 

10.  Bis-acetoxy DKP 6 (1.17 g, 5.89 mmol) and aldehyde 9 (1.86 g, 5.89 mmol) were dissolved in DMF (14.2 mL).  

Following addition of Cs2CO3 (2.01 g, 6.18 mmol), the reaction flask was repeatedly evacuated (50 torr) and backfilled 

with N2 to remove ambient O2 from the reaction.  After 2 hours, the reaction mixture was diluted with H2O (150 mL), 

and the reaction mixture was extracted with EtOAc (4 x 40 mL).  A small quantity of saturated NaCl solution was 

added to mitigate emulsions.  The combined organic layers were washed with sat. NaCl, dried over Na2SO4, and 

concentrated under reduced atmosphere to afford mono-condensation DKP 10 as a white solid (2.83 g, 6.23 mmol).  

The material was used in the subsequent reaction without further purification.  A portion of 10 was purified by flash 

column chromatograph for analytical purposes:  TLC in 40% EtOAc/Hex) Rf: 0.46 (UV/CAM); IR (film) 1724, 1685, 

1637, 1319, 1279, 1228, 1052, 1020, 775, 731 cm-1; 1H NMR (400 MHz, CDCl3) 11.48 (s, 1H), 9.10 (s, 1H), 8.52 (t, J = 

5.5 Hz, 1H), 6.30 (t, J = 8.4 Hz, 1H), 4.44 (s, 2H), 3.46 (dt, J = 5.9, 8.6 Hz, 2H), 2.60 (s, 3H), 2.57 (dt, J = 8.2, 8.7, 2H), 

1.50 (s, 9H), 1.48 (s, 9H); 13C NMR (400 MHz, CDCl3) δ 168.5, 159.6, 159.3, 156.0, 152.4, 149.3, 125.4, 115.1, 79.5, 

75.9, 42.1, 35.0, 24.2, 24.1, 23.2, 21.9; Exact mass calc’d for C20H31N5O7Na [M + Na]+ 476.211569, found 476.211476. 

11.  Mono-condensation DKP 10 (1.15 g, 2.54 mmol) was dissolved in EtOAc (10.2 mL), and 10% palladium on 

activated wood carbon (reduced, 50% water wet paste) was added in one portion (500 mg).  The reaction mixture 

was sparged with H2 for a couple minutes and then left under an H2 atmosphere for about 45 minutes.  The reaction 

mixture was flushed with Ar and gravity filtered.  The filter pad was rinsed with several portions of CH2Cl2.  The 
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filtrate was concentrated under reduced atmosphere to afford hydrogenated mono-condensation DKP 11 as an off-

white crystalline solid (834 mg, 1.83 mmol, 54% yield over three steps from alcohol 8): m.p. 203-206 oC; TLC (40% 

EtOAc in hexanes) Rf: 0.19 (UV/CAM); IR (film) 1730, 1708, 1685, 1650, 1364, 1329, 1271, 1225, 1162, 1134, 1099, 

1050, 1024, 980, 740 cm-1; 1H NMR (400 MHz, CDCl3) 11.41 (s, 1H), 8.45 (t, J = 5.9 Hz, 1H), 7.79 (d, J = 2.4 Hz, 1H), 

4.49 (d, J = 18 Hz, 1H), 4.25 (m, 1H), 4.18 (d, J = 18 Hz, 1H), 3.51 (ddt, J = 6.2. 6.7. 7.0 Hz, 1H), 3.31 (ddt, J = 6.2, 6.6, 

6.8 Hz, 1H), 2.56 (s, 3H), 1.84 (m, 4H), 1.47 (s, 18H); 13C NMR (400 MHz, CDCl3) δ 171.9, 169.3, 166.4, 166.3, 163.2, 

156.6, 153.3, 83.5, 79.9, 79.8, 55.7, 45.7, 38.9, 38.8, 29.8, 28.2, 28.1, 27.3, 24.9†; Exact mass calc’d for C20H33N5O7Na 

[M + Na]+ 478.227220, found 478.227006. 

†There were four more carbon peaks observed than expected.  Considering that eight of the peaks had a neighboring 

peak with an extremely similar chemical shift (166.4 vs. 166.3, 79.9 vs. 79.8, 38.9 vs. 38.8, 28.2 vs. 28.1), we propose 

that we observed a rotamer of 11. 

12.  Hydrogenated mono-condensation DKP 11 (100 mg, 0.220 mmol) was dissolved in MeCN (0.88 mL).  Boc2O (49 

μL, 0.23 mmol) was added as a liquid, followed by addition of DMAP (1.3 mg, 0.011 mmol).  After 17 minutes, the 

reaction was complete as judged by TLC, and the reaction mixture was diluted with EtOAc (10 mL) and washed 

sequentially with saturated NH4Cl (5 mL) and saturated NaCl (5 mL).  The organic layer was dried over Na2SO4 and 

concentrated under reduced atmosphere to afford Boc-hydrogenated mono-condensation DKP 12 as a white 

crystalline powder (103 mg, 0.186 mmol, 85% yield): m.p. 53-59 oC; TLC (40% EtOAc in hexanes) Rf: 0.53 (UV/CAM); 

IR (film) 1782, 1714, 1637, 1613, 1574, 1367, 1131, 727 cm-1; 1H NMR (400 MHz, CDCl3) 11.48 (s, 1H), 8.36 (s, 1H), 

5.05 (d, J = 18.8 Hz, 1H), 4.82 (t, J = 7.6 Hz, 1H), 3.97 (d, J = 18.4 Hz, 1H), 3.47 (m, 2H), 2.58 (s, 3H), 1.90 (m, 2H), 1.74 

(m, 2H), 1.54 (s, 9H), 1.48 (s, 18H); 13C NMR (400 MHz, CDCl3) δ 171.3, 167.9, 164.0, 163.7, 156.4, 153.5, 150.1, 85.4, 

83.5, 79.5, 60.1, 46.6, 39.9, 30.1, 28.4, 28.2, 28.0, 27.2, 25.8; Exact mass calc’d for C25H41N5O9Na [M + Na]+ 

578.279649, found 578.279508. 

13.  6-bromo-1H-indole-3-carboxaldehyde (778 mg, 3.47 mmol) was dissolved in MeCN (10 mL).  Boc2O (0.82 mL, 3.8 

mmol) was added as a liquid, followed by addition of DMAP (13 mg, 0.10 mmol).  After half an hour, the reaction 

mixture was concentrated under reduced pressure.  The residue was dissolved in EtOAc (40 mL) and washed 

sequentially with saturated NaHCO3 (3 x 20 mL) and saturated NaCl (2 x 20 mL).  The organic layer was dried over 

Na2SO4 and concentrated under reduced pressure to afford aldehyde 13 as a flaky coral solid (1.11 g, 3.41 mmol, 

98% yield).  The spectral data of 13 is in agreement with published literature.57 

14.  A dry flask was charged with Boc-hydrogenated mono-condensation DKP 12 (50. mg, 0.090 mmol).  The 

atmosphere was flushed with N2, and the flask was kept under an unbroken N2 atmosphere for all subsequent steps.  

In a separate flask, aldehyde 13 (32 mg, 0.099 mmol) was dissolved in THF (0.26 mL) under a N2 atmosphere.  DKP 

12 was dissolved in THF (0.30 mL) and cooled at -78 ⁰C for fifteen minutes, after which 1.0 M LiHMDS (113 μL, 0.113 

mmol) was added.  Five minutes after the addition of LiHMDS, all of the 13 solution was added to the flask containing 

12.  The flask and syringe were rinsed with additional THF (0.23 mL).  Twenty minutes after adding 13, the flask was 

transferred to an ice bath and kept at 0 ⁰C for an hour.  The flask was then allowed to warm to rt overnight.  22 hours 

after beginning the procedure, the reaction was quenched with saturated NH4Cl (15 mL) and extracted with EtOAc 

(2 x 15 mL).  The combined organic layers were washed with saturated NaCl (30 mL), dried over Na2SO4, and 

concentrated under reduced pressure.  The resulting residue was purified by flash column chromatography (0 % -> 

10 % EtOAc/CHCl3) to afford Boc-barettin 14 as a yellow crystalline solid (53 mg, 0.065 mmol, 72% yield): TLC (10% 

EtOAc in CHCl3) Rf: 0.44 (UV/CAM); IR (film) 1714, 1638, 1616, 1366, 1228, 1146, 1131, 726 cm-1; 1H NMR (400 MHz, 

CDCl3) 11.44 (s, 1H), 8.32 (m, 2H), 8.12 (br s, 1H), 7.88 (s, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.41 (dd, J = 1.8, 8.5 Hz, 1H), 

7.22 (d, J = 1.2 Hz, 1H), 4.78 (t, J = 7.1 Hz, 1H), 3.44 (dt, J = 7.1, 13 Hz, 2H), 1.93 (m, 2H), 1.68 (m, 2H), 1.66 (s, 9H), 

1.55 (s, 9H), 1.44 (s, 9H), 1.41 (s, 9H); 13C NMR (400 MHz, CDCl3) δ 166.3, 163.6, 159.1, 156.2, 153.2, 151.0, 148.8, 

135.7, 128.3, 126.9, 125.8, 125.5, 120.4, 119.5, 118.7, 113.4, 110.5, 85.7, 84.7, 83.1, 79.3, 58.6, 40.0, 31.9, 28.3, 28.1, 

28.0, 25.2; Exact mass calc’d for C37H51BrN6O10H [M + H]+ 819.292281, found 819.292415. 
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(±)-1•HO2CCF3 (barettin•HO2CCF3).  Boc-barettin 14 (34 mg, 0.041 mmol) was dissolved in anhydrous CH2Cl2 (0.91 

mL).  The reaction mixture was cooled to 0 ⁰C and sparged with argon.  TFA (0.91 mL, 11 mmol) was added.  After 

stirring for 1 hour at 0 ⁰C, the reaction mixture warmed to rt and was concentrated under reduced pressure to afford 

mono-TFA barettin (±)-1• HO2CCF3 as a flaky yellow solid (22 mg, 0.042 mmol, 100% yield).  The spectral data of (±)-

1 is in agreement with published literature with minor differences (Table 3, entries 1 and 18).19,58 

Figure 5.  Numbering scheme for Table 3. 

 

Table 3.  1H and 13C NMR data of (±)-1• HO2CCF3 in DMSO-d6 compared to Solter and co-workers†.19 

Entry‡ Type 13C δ (ppm) 1H δ (ppm) J (Hz) 

1 NH --- --- 12.12 11.77 d, J = 2.5 s 

2 aromatic 127.45 126.46 7.99 7.95 d, J = 2.5 d, J = 2.4 

3 aromatic 109.87 107.44 --- --- --- --- 

3a aromatic 127.55 127.73 --- --- --- --- 

4 aromatic 120.87 120.44 7.62 7.60 d, J = 8.5 d, J = 8.6 

5 aromatic 224.52* 123.51 7.24 7.23 dd, J = 1.6, 8.5 dd, J = 1.9, 8.6 

6 Br & aromatic 117.03 115.16 --- --- --- --- 

7 aromatic 115.69 114.83 7.67 7.62 d, J = 1.6 d, J = 2.0 

7a aromatic 138.42 137.00 --- --- --- --- 

8 alkene 110.95 108.58 6.99 6.96 s s 

9 alkene 123.35 123.18 --- --- --- --- 

10 NH --- --- 9.63 9.63 s s 

11 C=O 168.61 167.14 --- --- --- --- 

12 CH 56.48 55.11 4.07 4.04 m m 

13 NH --- --- 8.45 8.38 d, J = 2.5 d, J = 2.4 

14 C=O 163.36 161.17 --- --- --- --- 

15 CH2 32.62 31.67 1.76-1.84 1.74 m m 

16 CH2 25.11 24.48 1.50-1.63 1.55 m m 

17 CH2 41.98 obscured 
by DMSO 

3.16-3.20 3.11 m dt, J = 6.7, 12.9  

18 NH --- --- 8.01 7.44 t, J = 6.0 m 

19 C=N 158.61 157.12 --- --- --- --- 

20/21 NH/NH3
+ --- --- 7.00-7.78 7.5-6.4 br br 

†The values on the left in split cells are data reported by Solter and co-workers.  The values on the right in split 
cells are our data. 
‡We are following the numbering scheme outlined by Solter and co-workers. 
*We believe the original paper had a typo and meant to express the 13C chemical shift of C-5 as 124.52 ppm. 
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8 in CDCl3 (400 MHz).   

Full-size 1H NMR: 
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Vertically expanded 1H peaks for clarity: 
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9 in CDCl3 (400 MHz).  

Unpurified full-size 1H NMR: 

 

Unpurified vertically expanded 1H peaks for clarity: 
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Purified full-size 1H NMR: 
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Purified vertically expanded 1H peaks for clarity: 
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6 in CDCl3 (400 MHz).   

Full-size 1H NMR: 
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10 in CDCl3 (400 MHz).  

Full-size 1H NMR: 
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Vertically expanded 1H peaks for clarity: 
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11 in CDCl3 (400MHz).   

Full-size 1H NMR: 

 

Vertically expanded 1H peaks for clarity: 
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----- ----- ----- ----- ----- ----- 

12 in CDCl3 (400 MHz).  

Full-size 1H NMR: 

 

Vertically expanded 1H peaks for clarity: 
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13 in CDCl3 (400 MHz).  

Full-size 1H NMR: 

 

Vertically expanded 1H peaks for clarity: 
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14 in CDCl3 (400 MHz).  

Full-size 1H NMR: 
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Vertically expanded 1H peaks for clarity: 
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Full-size 13C NMR: 

 

Vertically expanded 13C peaks for clarity: 
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----- ----- ----- ----- ----- ----- 

(±)-1• HO2CCF3 in DMSO-d6 (400 MHz). 

Full-size 1H NMR: 
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Vertically expanded 1H peaks for clarity: 
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Full-size 13C NMR: 

 


	Total synthesis of barettin: Model study of specialized aldol condensation to directly access diketopiperazine targets
	Recommended Citation

	Total synthesis of barettin: Model study of specialized aldol condensation to directly access diketopiperazine targets

