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Abstract

I present numerical methods for the computation of stable and unstable manifolds in au-
tonomous dynamical systems. Through differentiation of the Lyapunov-Perron operator in
[1], we find that the stable and unstable manifolds are boundary value problems on the orig-
inal set of differential equation. This allows us to create a forward-backward approach for
manifold computation, where we iteratively integrate one set of variables forward in time,
and one set of variables backward in time. Error and stability of these methods is discussed.
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1. Introduction & Background

Here I present algorithms for the computation of structures known as stable and unstable
manifolds, which arise in systems of differential equations [2]. Differential equations, in the
simplest sense, deal with relationships of how functions vary in time. For instance, the equa-
tions of motion for physical objects are most easily described as differential equations. The
solutions to the differential equation would then give the particle trajectory and velocity as
a function of time. The dynamics described by differential equations is by no means limited
to particle trajectories. In general, any equation relating functions and their derivatives con-
stitutes a system of differential equations. Functions which satisfy the system of differential
equations are then called the solutions of the system differential equation.

Often of greater interest than the actual solution of a system of differential equations is its
trajectory in phase space, which is the space of the solutions of the differential equation. For
instance, if the functions x(t) and y(t) are solutions to some system of differential equations,
the relevant phase space would be the xy-plane. Within a phase space, there may exist
multiple objects of interest. The understanding of phase space structures is crucial for a full
understanding of a given differential equation. For example, fixed points are points in phase
space such that any trajectory which begins on a fixed point will remain on that fixed point
(i.e. the solutions would be constant functions). More complicatedly, we have invariant sets,
which are sets of phase space points such that a trajectory beginning in one of these points
will remain in the invariant set.

The stable and unstable manifolds of a fixed point are special cases of invariant sets. In
particular, the stable manifold is the set of all initial conditions whose trajectories asymp-
totically approach a given fixed point forward in time, and the unstable manifold is the set
of all initial conditions whose trajectories asymptotically approach a given fixed point back-
wards in time. If a system is well-behaved, other phase space trajectories will asymptotically
approach the stable and unstable manifolds backwards and forwards in time, allowing for
them to be used to approximate the asymptotic behaviour of systems. See Figure 1 for an
example.

The approach that I present here focuses on computation of stable and unstable manifolds
by phrasing them as a boundary value problem on the original set of differential equations.
This formulation suggests that iterative techniques can be used for computation. Thus, I
will begin my thesis with a brief summary of the prior work that lead to the boundary value
formulation. Afterwards, in Chapter 3, I will give descriptions of the numerical schemes for
manifold computation, as well as describe their main properties. This will be the bulk of the
thesis. Finally, in Chapter 4 I will take a closer look at one of the methods, in an attempt
to develop a more rigorous approach to the study of the behavior of these schemes.
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1. Introduction & Background
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Figure 1. The stable and unstable manifold of a two dimensional, hyperbolic fixed point.
This is the system analyzed in Example 15. This is a phase portrait. The curves
represent the phase space trajectories of the systems, and the arrows represent the
direction of motion along the trajectory forward in time.

1a. The stable and unstable manifolds

I will begin by defining the stable and unstable manifolds.

Definition 1. Consider a system of differential equations

dz

dt
= f(z) , z ∈ Rn ,

with some fixed point z∗ – that is z(t) = z∗ is a solution. The stable set of z∗ is given by

Ws(z
∗) =

{
z0 : z(0) = z0 =⇒ lim

t→∞
z(t) = z∗

}
,

and the unstable set by

Wu(z
∗) =

{
z0 : z(0) = z0 =⇒ lim

t→−∞
z(t) = z∗

}
.

In the case that these sets are manifolds, we call them the stable and unstable manifolds.

Example 2. For the system

d

dt

(
x
y

)
=

(
−5 4
−4 5

)(
x
y

)
,

2



1. Introduction & Background

general solutions of the system have the form(
x(t)
y(t)

)
= c1e

−3t
(

2
1

)
+ c2e

3t

(
1
2

)
,

where c1, c2 are constants determined by the initial conditions. Following from Definition
1, the stable manifold is the set of initial conditions such that c2 = 0, and the unstable
manifold is the set of initial conditions such that c1 = 0. Some algebra leads to the stable
manifold being 2x0 − y0 = 0 and the unstable manifold being x0 − 2y0 = 0.

In a well-behaved system1, the unstable manifold will attract all trajectories forward in
time, and the unstable manifold will attract all trajectories backwards in time. For example,
note the behaviors of the trajectories in Figure 1. Alternatively, in a hyperbolic linear system,
following Definition 1, the stable manifold is the span of the eigenvectors corresponding to the
negative eigenvalues, and the unstable manifold is the span of the eigenvectors corresponding
to the negative eigenvalues. Clearly for large t the unstable components dominate, and for
large −t the stable components dominate. Hence, knowledge of the stable and unstable
manifolds allows us to understand the asymptotic behavior of dynamical systems.

Furthermore, from Definition 1 it follows that the stable manifold is the unstable manifold
backwards in time, and the unstable manifold is the stable manifold backwards in time.
Therefore, the majority of the work I present here is written purely in the context of com-
putation of stable manifolds. It is understood that the same algorithms can be applied to
unstable manifold computation given the transformation t′ = −t.

The crux of the numerical methods presented here rely on the ability to write the stable
manifold as a boundary value problem. In most cases this requires that the system has no
center component (see [2] for a discussion on center manifolds). I will thereforeassume that
any given system that I am considering has no center components, which roughly correspond
to pure imaginary eigenvectors of the Jacobian evaluated at the fixed point. Furthermore, I
will assume that the fixed point of interest for any dynamical system is located at the origin.

1b. On the existence of stable manifolds

The optimal estimates for the existence of stable manifolds were given by Casteñeda and
Rosa in [1]. They demonstrated that the stable manifold of the dynamical system2

dx

dt
= Ax + F(x,y) , x ∈ Rm ,

dy

dt
= By + G(x,y) , y ∈ Rn ,

(1)

1Here I mean one that has no center manifold, and the function f is sufficiently smooth. See [2] for more
details.

2This special form isolates the linear and nonlinear components. This sort of separation was necessary to
perform within their work, as it was required that the linear components somehow dominate the nonlinear
components.

3



1. Introduction & Background

where F(0, 0) = 0 and G(0, 0) = 0, and A, B are matrices, is given by the fixed point of the
operator

T (x,y) =

(
etAx0 +

∫ t

0

e(t−s)AF(x,y) ds ,−
∫ ∞
t

e(t−s)BG(x,y) ds

)
, (2)

on the appropriate Banach space (see [1]) This is called the Lyapunov-Perron operator [1–5].
The stable manifold is then unique and global if T is a contraction mapping.

Theorem 3. [1]. Given the dynamical system (1) If

1. The linear components satisfy an exponential dichotomy:∥∥etA∥∥ ≤ e−αt ,
∥∥etB∥∥ ≤ e−βt ,

where α, β ∈ R, and ‖·‖ is an appropriate matrix norm.

2. The nonlinear components are globally Lipschitz:∥∥∥∥( F(x1,y1)
G(x1,y1)

)
−
(
F(x2,y2)
G(x2,y2)

)∥∥∥∥ ≤ δ

∥∥∥∥( x1

y1

)
−
(

x2

y2

)∥∥∥∥ ,
where δ > 0 .

3. the spectral gap condition holds:
β + α > 2δ .

Then the operator T is a contraction mapping, and thus has a unique fixed point.

1c. Survey of numerical methods

Robinson in [6] provides a general justification for using numerical schemes for the compu-
tation of (un)stable manifolds. The numerical methods I will present here phrase the stable
manifold of (1) as a boundary value problem on the same set of differential equations. This
allows us to apply the methods used in solutions of boundary value problems to compute
the stable manifold. This significantly eases the computation.

For instance, previous methods, such as those presented in [3, 5] discretize operators similar
to (2) and compute the inertial manifold3 from there. These algorithms were generalized
and improved in [4]. Older methods, such as [7], applied the use of Galerkin methods for
computation. Alternatively, the work in [8] demonstrates that the problem of stable manifold
computation may be reduced to the solution of a system of partial differential equations.

Our methods are significantly simpler to implement.4 Since they implement a boundary
value problem on the original system of differential equations, there is minimal additional

3In hyperbolic systems which satisfy the conditions in Theorem 3, the inertial manifold is the unstable
manifold [4].

4See Appendix C for a sample implementation of the algorithms.
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1. Introduction & Background

work to be done in implementation. The methods themselves are similar to waveform relax-
ation methods [9], and are likewise highly parallelizable, suggesting that they may ultimately
be superior in speed as well.

1d. A note on the global Lipschitz condition

A lot of the work I present here requires functions to be globally Lipschitz. Such a strict
condition may have the reader thinking that such work would be very difficult to apply to
real problems. However, we can note that in real world applications, only a finite region of
space is of interest. For the purposes of such an application, we can then design functions
to be Lipschitz by introducing a smooth fall off to zero away from the area of interest. In
this sense, the algorithms presented here would be self-validating: if given that the stable
manifold stays within the locally Lipschitz region, then for that given application a smooth
fall off can be used to force the function to be globally Lipschitz. Such methods are used in
[7].

5



2. The Numerical Methods & Their
Properties

Once again, we consider differential equations in the form

dx

dt
= Ax + F(x,y) ≡ f(x,y) ,

dy

dt
= By + G(x,y) ≡ g(x,y) ,

(3)

where x ∈ Rm and y ∈ Rn. Further, we assume that the stable manifold of (3) is a fixed
point of the Lyapunov-Perron operator (2), and that all conditions of Theorem 3 are satisfied.
Then,

x(t) = etAx0 +

∫ t

0

e(t−s)AF(x,y) ds ,

y(t) = −
∫ ∞
t

e(t−s)BG(x,y) ds .

Differentiation with respect to t then recovers the initial set of differential equation, but
subject to the boundary conditions.

x(0) = x0 , y(∞) = 0 . (4)

Hence the stable manifold is a boundary value problem on an infinite interval. Note: the
unstable manifold would be instead subject to the boundary conditions

x(−∞) = 0 , y(0) = y0 .

The boundary value formulation (4) reduces the question of finding the stable manifold to
finding the corresponding y0 for a given x0, as we can trace the remainder of the trajectory
using standard methods for solving differential equations. In particular we are interested in
writing

y0 = Φ(x0) .

Going back to Example 2, we could derive the same result by assuming some fixed x0 and
then finding the y0 which satisfies the condition y(∞) = 0. One may also note that the
stable manifold satisfies the boundary conditions x(∞) = 0 and y(0) = y0. Though this
is true, the exponential dichotomy condition prefers x as the stable direction, meaning it is
possible to construct an example in which there are multiple trajectories which satisfy these
boundary conditions, with only one being the stable manifold. However, if the conditions of
Theorem 3 hold, there will only be one trajectory which satisfies (4).

6



2. The Numerical Methods & Their Properties

The first key step to developing a numerical algorithm is to truncate the interval of the
boundary value problem to a finite one. That is to say, we consider solutions of (3) which
satisfy

x(0) = x0 , y(T ) = 0 (5)

where T is some sufficiently large number. Given the form of this boundary value problem,
it stands to reason that we should iteratively integrate x forward in t, and y backward in t.
We call this the forward-backward method.1 Then, given some initial grid2 x0, y0, we can
write down the Euler method with a Jacobi update scheme:

xi+1
j+1 = xij + hf(xij,y

i
j) , xi0 = x0 ,

yi+1
j−1 = yij − hg(xij,y

i
j) , yiN = 0 .

(6)

As mentioned before, the superscripts refer to the iteration of the method, and the subscripts
refer to the elements of x and y. I have also introduced the total number of grid points, N .

I have referred to (6) as a Jacobi scheme, as it relies exclusively on the previous iteration
of the method in its update. It may instead seem like a good idea to include information
of xi+1

j and yi+1
j into the generation of xi+1

j+1 and yi+1
j−1, respectively, as that information is

available to us. This idea leads to the Gauss-Seidel update scheme:

xi+1
j+1 = xi+1

j + hf(xi+1
j ,yij) , xi0 = x0 ,

yi+1
j−1 = yi+1

j − hg(xij,y
i+1
j ) , yiN = 0 .

(7)

It is also possible to create more exotic update schemes; however I will limit the discussion
here to the Jacobi (6) and Gauss-Seidel (7) schemes.

Hitherto, I have only mentioned variations of the Euler method. However, there is no
reason for us to restrict ourselves to the Euler method. For instance a Runge-Kutta order
4 (RK4) with the Jacobi update scheme can be written as

ξ1 =hf
(
xij, y

i
j

)
, υ1 =hg

(
xij, y

i
j

)
,

ξ2 =hf

(
xij +

ξ1
2
, yij +

υ1
2

)
, υ2 =hg

(
xij +

ξ1
2
, yij +

υ1
2

)
,

ξ3 =hf

(
xij +

ξ2
2
, yij +

υ2
2

)
, υ3 =hg

(
xij +

ξ2
2
, yij +

υ2
2

)
,

ξ4 =hf
(
xij + ξ3, y

i
j + υ3

)
,

xi+1
j+1 = xij +

1

6
(ξ1 + 2ξ2 + 2ξ3 + ξ4) .

1Similar forward-backward methods were used in [4], though they relied on direct discretization of the
Lyapunov-Perron operator.

2It typically makes sense to initialize the x grid as an array of x0 values, and the y grid as an array of
zeros.

7



2. The Numerical Methods & Their Properties

ξ1 =hf
(
xij, y

i
j

)
, υ1 =hg

(
xij, y

i
j

)
,

ξ2 =hf

(
xij −

ξ1
2
, yij −

υ1
2

)
, υ2 =hg

(
xij −

ξ1
2
, yij −

υ1
2

)
,

ξ3 =hf

(
xij −

ξ2
2
, yij −

υ2
2

)
, υ3 =hg

(
xij −

ξ2
2
, yij −

υ2
2

)
,

υ4 =hg
(
xij − ξ3, yij − υ3

)
,

yi+1
j−1 = yij −

1

6
(υ1 + 2υ2 + 2υ3 + υ4) .

Other order finite difference methods, such as linear multistep methods, may be developed
in a similar manner.

2a. Errors due to truncation

In the implementation of the method, we must pick some cutoff time T that serves as the
endpoint of the time grid. Since the analytical boundary condition occurs at t =∞, creating
a cutoff time inherently creates a error in our calculation of the manifold. This error can be
described explicitly for a two-dimensional linear system.

Theorem 4. Let y(0) = y0 be the initial condition for the two-dimensional boundary value
problem

d

dt

(
x
y

)
= A

(
x
y

)
, x(0) = x0, , y(∞) = 0 , (8)

where A has spectrum {λ−, λ+} where λ− < 0 < λ+. Let b(0) = b0 be the initial condition
for

d

dt

(
a
b

)
= A

(
a
b

)
, a(0) = x0, , b(T ) = 0 . (9)

Then the error between y0 and b0 is given by

|y0 − b0| =
∣∣∣∣ ξeλ−T

ηeλ+T − γeλ−T

∣∣∣∣ , (10)

where ξ, η, and γ are constants independent of T .

Proof. Recall that the general solution of the linear system

d

dt

(
x
y

)
= A

(
x
y

)
,

is given by (
x
y

)
= c+v+e

λ+t + c−v−e
λ−t ,

where v± denotes eigenvector of A associated with λ±, and c1, c2 are constants denoted by

8



2. The Numerical Methods & Their Properties

the boundary conditions. A little bit of algebra yields the solutions to (8) and (9):(
x
y

)
=

x0
v−,x

v−e
λ−t ,

(
a
b

)
=

(
x0v+,ye

λ+T

v−,xv+,yeλ+T − v−,yv+,xeλ−T

)
v−e

λ−t −
(

x0v−,ye
λ−T

v−,xv+,yeλ+T − v−,yv+,xeλ−T

)
v+e

λ+t .

Some algebra then yields:

y0 =
x0v−,y
v−,x

.

b0 =
x0v−,yv+,y

(
eλ+T − eλ−T

)
v−,xv+,yeλ+T − v−,yv+,xeλ−T

.

As expected, b0 → y0 when T →∞. It then follows that

|y0 − b0| =

∣∣∣∣∣∣
x0v−,y

(
v+,y − v−,yv+,x

v−,x

)
eλ−T

v−,xv+,yeλ+T − v−,yv+,xeλ−T

∣∣∣∣∣∣ .

The difficulty in extending this proof to higher dimensions lies in the fact that it is no longer
trivial to write the explicit forms of y0 and b0, as the components of the eigenvectors are no
longer scalars. Certainly, a closed form must be possible, but would likely be considerably
more difficult to write down. We will see in Section 2d that the error due to truncation
appears to follow the pattern in (10) in higher dimensional and nonlinear systems.

2b. Matrix representations and stability

As usual in stability analysis [10], I will consider the stability of these methods on linear
systems. This sort of analysis is referred to as A-stability analysis and gives the stability of
schemes on exponentially decaying “stiff” systems. This is particularly relevant to us, as the
x-direction is stiff forward in time, and the y-direction is stiff backwards in time.

The analysis here is similar to the stability analysis of waveform relaxation methods in
[9]. However, the forward-backward nature of the scheme introduces additional subtleties in
the stability making the results of [9] inapplicable.

Definition 5 (Stability). A method is called stable for some linear system ż = Mz if when
the the numerical scheme is written as zi+1 = Azi, the spectral radius of A is less than or
equal to 1, implying that

lim
i→∞

zi

converges.

9



2. The Numerical Methods & Their Properties

Proposition 6 (Jacobi). Given a linear system of equations

d

dt

(
x
y

)
=M

(
x
y

)
,

where x ∈ Rm, y ∈ Rn, and M is a m + n square matrix, then the iterations of the Jacobi
update scheme for any one step method can be written as

(
x
y

)i+1

=



Im×m
Am×m Bm×n

. . . . . .
. . . . . .

. . . . . .
. . . . . .

Cn×m Dn×n
In×n



(
x
y

)i
, (11)

Subscripts on matrices are used here to denote their size. In each quadrant, the dimensions
of the blocks are the same.

Proof. On a linear system, the Jabobi update for a one step method may be written as

xi+1
j+1 = Am×mxij +Bm×ny

,
j,

yi+1
j−1 = Cn×mxij +Dn×ny

i
j ,

where A, B, C, and D are determined by M, the step size, and numerical method. Noting
that the initial set of points in x and the ending points in y are fixed as per the condition
in (5), the result of (11) follows.

Theorem 7. [11]. Let a, b, c, d > 0 and

M =

(
aJn bIn
cIn dJTn

)
, (12)

where Jn is an n-dimensional Jordan block.3 Then the spectral radius of M satisfies the
relation

ρ(M) ≤
√
ad+

√
bc . (13)

The requirements on the positivity of a, b, c, d seem strict, but we shall see that these come
out naturally in linear systems which satisfy both exponential dichotomy, and the spectral
gap condition. At first, it may appear that that matrix in (11) does not have the right form.

3See [12] for a discussion.

10



2. The Numerical Methods & Their Properties

However, we can note that the matrix in (11) is block lower triangular:

Im×m
Am×m Bm×n

Am×m
. . .

. . . . . .
. . . . . .

. . . . . .

Cm×m Dn×n
In×n


,

meaning that n of its eigenvalues are equal to one, and the rest are equal to the eigenvalues
of the lower block. But, this block is upper block triangular:

Bm×n

Am×m
. . .

. . . . . .
. . . . . .

. . . . . .

Cn×m Dn×n
In×n


,

meaning that m of the eigenvalues are also equal to one. Therefore, the question of stability
of the Jacobi method reduces to the question of finding the spectral radius of the matrix

Bm×n

Am×m
. . .

. . . . . .
. . . . . .

. . . Dn×n
Cn×m


.

This matrix now reassembles the form of the one in theorem 7.

Example 8 (The Jacobi Euler scheme). The Jacobi Euler scheme, given in (6), for the linear
system

d

dt

(
x
y

)
=

(
M11 M12

M21 M22

)(
x
y

)
, (14)

may be written as
xi+1
j+1 = (I + hM11)x

i
j + hM12y

i
j ,

yi+1
j+1 = −hM21x

i
j + (I − hM22)y

i
j .

11



2. The Numerical Methods & Their Properties

The full matrix form of this scheme may be written by following the proof of Proposition 6.
However, in order to fit the format of Theorem 13, let us consider the case where dim x =
dim y = 1; and M11 = −A, M22 = B, and M12 = −M21 = δ, where A,B, δ > 0, and
A+B > 2δ. The matrix form of the scheme can then be written as

(
x
y

)i+1

=



1
1− hA hδ

. . . . . .
. . . . . .

. . . . . .
. . . . . .

hδ 1− hB
1



(
x
y

)i

The relevant spectral radius is that of the inner block, i.e. excluding the boundary points.
Following the Theorem 7, that spectral radius is bounded by ρ ≤

√
(1− hA)(1− hB) + hδ.

Our ultimate goal is to find a value of h such that ρ < 1. Some algebra yields the condition

h(AB − δ2)− A−B + 2δ < 0

We then need to consider a few cases:

1. If the gap condition holds and AB ≤ δ2, then the scheme will converge for all h > 0.

2. If the gap condition holds and AB > δ2, then we need

h <
A+B − 2δ

AB − δ2
. (15)

3. If the gap condition does not hold then the scheme will never converge.

Example 9 (Jacobi Runge-Kutta order 2). Recall that for the differential equation ẋ = f(x)
the scheme

xj+1 = xj + hf

(
xj +

h

2
f(xj)

)
,

has order 2 accuracy. Then for (14), the Jacobi scheme is given by

xi+1
j+1 = xij + h

(
M11

(
xij +

h

2
M11x

i
j +

h

2
M12y

i
j

)
+M12

(
yij +

h

2
M22y

i
j +

h

2
M21x

i
j

))
,

yi+1
j−1 = yi

j − h
(
M21

(
xij −

h

2
M11x

i
j −

h

2
M12y

i
j

)
+M22

(
yij −

h

2
M22y

i
j −

h

2
M21x

i
j

))
.

12
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Reorganising like terms, we have

xi+1
j+1 =

(
I + hM11 +

h2

2
M2

11 +
h2

2
M12M21

)
xij +

(
hM12 +

h2

2
M12M22 +

h2

2
M11M12

)
yij ,

yi+1
j−1 =

(
−hM21 +

h2

2
M21M11 +

h2

2
M22M21

)
xij +

(
I − hM22 +

h2

2
M2

22 +
h2

2
M21M12

)
yij .

Once again, we will consider the case where dim x = dim y = 1; and M11 = −A, M22 = B,
and M12 = −M21 = δ, where A,B, δ > 0, and A+B > 2δ. The schemes then become

xi+1
j+1 =

(
1− hA+

h2

2
A2 − h2

2
δ2
)
xij +

(
hδ +

h2

2
Bδ − h2

2
Aδ

)
yij ,

yi+1
j−1 =

(
hδ +

h2

2
Aδ − h2

2
Bδ

)
xij +

(
1− hB +

h2

2
B2 − h2

2
δ2
)
yij .

We can use Theorem 7 to derive the stability condition:√(
1− hA+

h2

2
A2 − h2

2
δ2
)(

1− hB +
h2

2
B2 − h2

2
δ2
)

+

√(
hδ +

h2

2
Bδ − h2

2
Aδ

)(
hδ +

h2

2
Aδ − h2

2
Bδ

)
≤ 1 .

Unfortunately, these do not simplify nicely. However, we can consider the special case when
A = B. Then we have

1− hA+
h2

2

(
A2 − δ2

)
+ hδ ≤ 1 ,

and some algebra recovers the conditions of the Euler method:

A2 − δ2 > 0 , h < 2
A− δ
A2 − δ2

.

Proposition 10 (Gauss-Seidel). Given a linear system of equations

d

dt

(
x
y

)
=M

(
x
y

)
,

where x ∈ Rm, y ∈ Rn, and M is a m+ n square matrix, then the iterations of the Gauss-

13



2. The Numerical Methods & Their Properties

Seidel update scheme for any one step method can be written as

Im×m
−Am×m Im×m

. . . . . .
. . . . . .

. . . . . .
. . . . . .

In×n −Dn×n
In×n



(
x
y

)i+1

=



0m×n
Bm×n

. . .
. . .

. . .
. . .

Cn×m
0n×m



(
x
y

)i
.

(16)

Subscripts on matrices are used here to denote their size. In each quadrant, the dimensions
of the blocks are the same.

Proof. On a linear system, the Gauss-Seidel scheme can be written as

xi+1
j+1 = Am×mxi+1

j +Bm×ny
i
j ,

yi+1
j−1 = Cn×mxij +Dn×ny

i+1
j .

(17)

Moving like super-indices to each side, we can write (17) in the matrix form of (16)

Theorem 11. [11]. Suppose L = 1
d
(In − aJn) and U = 1

c
(In − bJTn ) where a, b, c, d > 0 and

ab ∈ (0, 1). Then the spectral radius

ρ(LU) >
1− ba
cd

.

Example 12 (Gauss-Seidel Euler scheme). Using the same example as in Example 8, we
can write down the Gauss-Seidel Euler scheme as

xi+1
j+1 = (1− hA)xi+1

j + hδyij ,

yi+1
j−1 = hδxij + (1− hB) yi+1

j .

Though we can write this in the form of (16), but in this case it is possible to do better.

14
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This scheme can be rewritten as

xij =
1

hδ
yi+1
j−1 +

hB − 1

hδ
yi+1
j ,

yij =
hA− 1

hδ
xi+1
j +

1

hδ
xi+1
j+1 .

Therefore, the iteration can be written as

1

hδ



hδ
1 hB − 1

. . . . . .
. . . . . .

. . . . . .
. . . . . .

hA− 1 1
hδ



(
x
y

)i+1

=

(
x
y

)i
.

In this case, we are interested in the spectral radius of the inverse of the matrix we see on
the lefthand side. Hence, we want the spectral radius of that matrix to be less than or equal
to one. Following the arguments we used for the Euler method, we can reduce the matrix of
interest to

1

hδ



1 hB − 1
. . . . . .

. . .
. . .
. . . . . .

hA− 1 1


.

Notice that this matrix is of the form

1

hδ

(
U

L

)
.

Squaring it, we obtain a block-diagonal matrix with each block in the form of Theorem 11.
Hence, Since the iteration is really the inverse of this matrix, we want the spectral radius to
be greater than one. Thus we want

1− (1− hB)(1− hA)

h2δ2
> 1 .

Some algebra then yields that we need

h <
A+B

AB2 + δ2
.

15
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Note that this condition is more strict than the Jacobi method. In general, it appears that
the Gauss-Seidel scheme offers between convergence, but with the tradeoff of worse stability.

2c. Errors in the Euler method, first approach

In this section, I present a method to derive the error for the Euler method, given stringent
conditions on the nature of our dynamical system. This approach follows the methodology
in [10], which presents the traditional approach for calculating the error term for the Euler
method. A more general method for finding error will be given in the next chapter.

It is first important to note that for the Euler method, all update schemes converge to the
fixed point (a,b)T , satisfying

1. a0 = x0 ,

2. bN = 0 ,

3. aj+1 = aj + hf(aj,bj) , j ∈ N ∩ [0, N − 1] ,

4. bj−1 = bj − hg(aj,bj) , j ∈ N ∩ [1, N ] .

(18)

Theorem 13. Let x,y be Taylor expandable functions which satisfy the boundary value
problem

dx

dt
= Ax + F(x,y) , x(0) = x0 ,

dy

dt
= By + G(x,y) , y(T ) = 0 ,

with

1. For all h < h0, under some induced matrix norm |||·|||, |||I + hA||| < 1 − hα and
|||I − hB||| < 1− hβ for some suitable positive constants α, β.

2. There exist constants LF and LG such that

‖F(x1,y1)−F(x2,y2)‖ ≤ LF (‖x1 − x2‖+ ‖y1 − y2‖) ,
‖G(x1,y1)− G(x2,y2)‖ ≤ LG (‖x1 − x2‖+ ‖y1 − y2‖) ,

(19)

for all choices of x1,x2,y1,y2.

3. There exists some γ such that α− LF ≥ γ > 0 and β − LG ≥ γ > 0.

4. LFLG ≤ γ2.

5. We are in a regime where hγ < 1 .

Let a, b satisfy the conditions of (18). Then

‖x− a‖∞ ≤ h
LFη + γξ

2(γ2 − LFLG)
,

‖y − b‖∞ ≤ h
LGξ + γη

2(γ2 − LFLG)
,

16
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where η and ξ are positive constants.

Proof. Since x and y are Taylor expandable we can write

xj+1 = xj + hAxj + hF(xj,yj) +
h2ξj

2
,

yj−1 = yj − hByj − hG(xj,yj) +
h2ηj

2
,

(20)

where the subscript j denotes at time jh. For convenience, we define the error terms, ε and
δ, by

εj = ‖xj − aj‖ ,
δj = ‖yj − bj‖ .

A substitution of (20) yields

εj+1 ≤ εj + h ‖A(xj − aj) + F(xj,yj)−F(aj,bj)‖+
h2ξ

2
,

δj−1 ≤ δj + h ‖B(yj − bj) + G(xj,yj)− G(aj,bj)‖+
h2η

2
,

where we have defined ξ = maxj (‖ξj‖) and η = maxj (‖ηj‖). Applying the triangle inequal-
ity, as well as the first three conditions, it follows that

εj+1 ≤ (1− hγ)εj + hLFδj +
h2ξ

2

≤ (1− hγ)εj + hLFδmax +
h2ξ

2
.

Likewise,

δj−1 ≤ (1− hγ)δj + hLGεmax +
h2η

2
.

We can note that the expression for ε is equivalent to

εj+1 ≤ (1− hγ)j+1ε0 +

(
hLFδmax +

h2ξ

2

) j∑
n=0

(1− hγ)n .

The latter term is a geometric series, but we will sum to infinity as the extra terms are not
useful in constructing the bounds. Furthermore, we note that by construction ε0 = 0. Hence

εj+1 ≤
LFδmax

γ
+
hξ

2γ
.

Since this is true for all εj, it is true for εmax:

εmax ≤
LFδmax

γ
+
hξ

2γ
.

17
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Likewise, for δ, we find that

δmax ≤
LGεmax

γ
+
hη

2γ
.

Given the fourth condition, we find that

εmax ≤ h
LFη + γξ

2(γ2 − LFLG)
,

δmax ≤ h
LGξ + γη

2(γ2 − LFLG)
.

Interestingly, the fourth condition for this error, LFLG < γ2, is analogous to the first part
of the stability condition we found for the Jacobi scheme in (15).

2d. Test cases & numerical results

Though the theory is helpful, it is likewise useful to demonstrate the capabilities of these
numerical schemes on a few test problems. In particular, I will consider two test problems:
a linear problem and a nonlinear problem.

Example 14 (Linear). In a linear system

d

dt

(
x
y

)
=M

(
x
y

)
,

for which the stable manifold satisfies the boundary value problem

x(0) = x0 , y(∞) = 0 ,

the stable manifold in phase space is the span of the eigenvectors ofM which have negative
eigenvalues. In particular, I will consider the system

dx

dt
= −x+

1

10
y ,

dy

dt
= − 1

10
x+ y , (21)

which has a stable manifold given by

y =

√
11

33 + 10
√

11
x .

As mentioned before, the two relevant errors are with respect to the step size h, and the
cutoff time T . Since the system is determined entirely by the initial condition y(0), the
natural error term to use would be |y∗(0) − y(0)|, where y∗ denotes the analytical form of
the stable manifold. Holding the step size fixed, the error with respect to the cutoff time is
given in Figure 2 and the error with respect to the step size, holding the cutoff time fixed,
is given in Figure 3. The asymptotic region in Figure 2 is where the error from the step

18
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Figure 2. Error of various methods in computing the stable manifold for the linear test
system (21). The step size was fixed at h = 0.02, the tolerance was 10−10, and the
initial condition was x0 = 4.
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Figure 3. Error of various methods in computing the stable manifold for the linear test
system (21). The cutoff time was fixed at T = 80, the tolerance was 10−12, and
the initial condition was x0 = 4.

19



2. The Numerical Methods & Their Properties

size dominates. We can note that the error due to step size for the order 2 Runge-Kutta
scheme is actually order 3 in accuracy. This appears to be a property that the method
has on linear systems. We will see in Example 15 that this is not necessarily the case for
a nonlinear system. Though these calculations were carried out using the Jacobi method,
the error curves would be identical for the Gauss-Seidel method, within the order of the
tolerance.

Example 15 (Nonlinear). The system

dx

dt
= −1 + c1c2

1− c1c2
x− −2c1

1− c1c2
y − c1

1− c1c2
(
(x+ c1y) sin(c+ c1y)− k(x+ c1y)3

)
,

dy

dt
=

2c2
1− c1c2

x+
1 + c1c2
1− c1c2

y +
1

1− c1c2
(
(x+ c1y) sin(c+ c1y)− k(x+ c1y)3

)
.

(22)

has the implicitly defined stable manifold

k

4
(x+ c1y)3 + cos(x+ c1y)− sin(x+ c1y)

x+ c1y
− c2x− y = 0 .

This sort of system can be computed by solving explicitly for a nonlinear system in which one
of the variables is decoupled from the other, and then performing some linear transformation.
See Appendix A for a full derivation. In this case c1, c2 are the parameters for that linear
transformation, and k is a constant to keep the nonlinear terms small. This is the system
depicted in Figure 1. The corresponding behaviour of the error can be seen in Figures 4 and
5. We can note that the error with respect to T behaves similarly to the linear case, with
an extra sudden increase in accuracy near T = 5. This sort of behavior often appears in
nonlinear systems, and is most likely due to the nature of the phase portrait of the system.
For the error with respect to h, all methods have the expected order of accuracy.

Note: Though these algorithms were tested on two dimensional systems, they are valid
for any hyperbolic system of dimension greater or equal to two. The purpose of the linear
example was to draw parallels between Examples 8, 9, and 12; and it is difficult to create a
solvable nonlinear example problem with a global stable manifold.

Example 16 (Convergence of methods). We can consider the convergence of methods by
plotting the tolerance ‖xi − xi−1‖+ ‖yi − yi−1‖ versus the number of steps, i. These results
can be seen in Figures 6 and 7. Clearly, the Gauss-Seidel schemes converge much faster.
For reference, in the linear example it took the Jacobi scheme 2133 steps to reach the same
tolerance that the Gauss-Seidel scheme reached in 20 steps, and in the nonlinear example it
took the Jacobi scheme 2916 steps to reach the same tolerance that the Gauss-Seidel scheme
reached in 60 steps. However, it would be incorrect to discount the Euler method, as it has
much more predictable stability behaviour, as seen when comparing the results of Examples
8 and 12, as well as the general forms of Proposition 6 and 10.
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Figure 4. Error of various methods in computing the stable manifold for the nonlinear test
system (22) with k = 0.001, c1 = −0.3, c2 = −0.2. The step size was fixed at
h = 0.02, the tolerance was 10−10, and the initial condition was x0 = 4.
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Figure 5. Error of various methods in computing the stable manifold for the nonlinear test
system (22) with k = 0.001, c1 = −0.3, c2 = −0.2. The cutoff time was fixed at
T = 80, the tolerance was 10−10, and the initial condition was x0 = 4. The dotted
line is the tolerance of the method.
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Figure 6. The rates of convergence of the Jacobi and Gauss-Seidel Euler schemes in com-
puting the stable manifold for the linear test system (21). The step size was fixed
at h = 0.02, the cutoff time at T = 80, and the initial condition was x0 = 4.
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Figure 7. The rates of convergence of the Jacobi and Gauss-Seidel Euler schemes in com-
puting the stable manifold for the nonlinear test system (22) with k = 0.001,
c1 = −0.3, c2 = −0.2. The step size was fixed at h = 0.02, the cutoff time at
T = 80, and the initial condition was x0 = 4.
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3. Discrete Operator Framework for the
Jacobi Scheme

In this chapter we discuss the theoretical properties of the Jacobi method. We will demon-
strate that under similar conditions as those imposed by Theorem 3, the Jacobi Euler method
is also a contraction mapping. Furthermore, we will demonstrate that under these conditions
the method has an upper bound on the error with respect to the truncated boundary value
problem (23) that is proportional to h.

3a. Framework

Given some x0, we begin with the autonomous system of integral equations

x = x0 +

∫ t

0

f (x(s),y(s)) ds ,

y = −
∫ T

t

g (x(s),y(s)) ds ,

(23)

where (x,y)T ∈ (X, Y )T , where X = L1([0, T ],Rm), Y = L1([0, T ],Rn), and f , g are
sufficiently smooth. We then proceed to define the operator JN,T : (X, Y )T → (X, Y )T by
the rules

1. When t = jh, where h = (T + 1)/N and j ∈ N ∩ [1, N − 1]

JN,T
(

a
b

)∣∣∣∣
t=jh

=

(
a(t− h) + hf (a(t− h),b(t− h))
b(t+ h)− hg (a(t+ h),b(t+ h))

)
.

2. When t = 0

JN,T
(

a
b

)∣∣∣∣
t=0

=

(
x0

b(t+ h)− hg (a(t+ h),b(t+ h))

)
.

3. When t = T

JN,T
(

a
b

)∣∣∣∣
t=T

=

(
a(t− h) + hf (a(t− h),b(t− h))

0

)
.

4. Otherwise, define ε as the closest distance to the lowest nearby jh, and δ as the distance
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3. Discrete Operator Framework for the Jacobi Scheme

to the higher nearby jh Then

JN,T
(

a
b

)∣∣∣∣
t

=

(
a(t− h− ε) + (h+ ε)f (a(t− h− ε),b(t− h− ε))
b(t+ h+ δ)− (h+ δ)g (a(t+ h+ δ),b(t+ h+ δ))

)
. (24)

Note that this operator is simply the Jacobi Euler method with an interpolation (24). It-
erations of TN,τ correspond to the iterations of the numerical method. Since the map is
piecewise integrable, JN,T : (X, Y )T → (X, Y )T .

3b. Contraction conditions

Here I briefly examine under what conditions JN,T is a contraction mapping. First, consider
the operator J̃N,T : R(m+n)×N → R(m+n)×N defined by

1. When 0 < j ∈ N < N , then

J̃N,T
(

ã

b̃

)
j

=

 ãj−1 + hf
(
ãj−1, b̃j−1

)
b̃j+1 + hg

(
ãj+1, b̃j+1

)  .

2. When j = 0

J̃N,T
(

ã

b̃

)
j

=

(
x0

b̃j+1 + hg
(
ãj+1, b̃j+1

) )
.

3. When j = N

J̃N,T
(

ã

b̃

)
j

=

(
ãj−1 + hf

(
ãj−1, b̃j−1

)
0

)
.

This operator corresponds to the Jacobi scheme on a grid, and as would be expected, has
related behaviour to JN,T .

Lemma 17. The operators JN,T and J̃N,T have the same number of fixed points.

Proof. Consider some fixed point of J̃N,T ,
(

ã b̃
)T

. Define the functions(
a′(t)
b′(t)

)
=

(
ãbt/hc
b̃bt/hc

)
,

where b c denotes the floor of a number. Then, by construction of J̃N,T ,

JN,T
(

a′

b′

)∣∣∣∣
t=jh

=

(
a′

b′

)∣∣∣∣
t=jh

,

for all j ∈ N ∩ [0, N ]. For t 6= jh, the values of the operator are given by

JN,T
(

a′

b′

)∣∣∣∣
t6=jh

=

(
a′(t− h− ε) + (h+ ε)f (a′(t− h− ε),b′(t− h− ε))
b′(t+ h+ δ)− (h+ δ)g (a′(t+ h+ δ),b′(t+ h+ δ))

)
,
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3. Discrete Operator Framework for the Jacobi Scheme

where ε and δ have the same meaning as they do in (24). As the mapping of points at t 6= jh
depends exclusively on points at t = jh, it follows

JN,TJN,T
(

a′

b′

)
= JN,T

(
a′

b′

)
.

Hence, the existence of a fixed point of J̃N,T implies the existence of a fixed point of JN,T .

Now consider some fixed point of JN,T ,
(

a b
)T

. By construction of J̃N,T , the vector
defined by (

ãj
b̃j

)
=

(
a(jh)
b(jh)

)
is a fixed point of J̃N,T .

Lemma 18. J̃N,T is a contraction mapping if given two arbitrary vectors, (x1,y1)
T and

(x2,y2)
T , then

N∑
j=1

‖x1,j + hf(x1,j,y1,j)− x2,j − hf(x2,j,y2,j)‖

+ ‖y1,j + hg(x1,j,y1,j)− y2,j − hg(x2,j,y2,j)‖) <
N∑
j=1

‖x1,j − x2,j‖+ ‖y1,j − y2,j‖) .

Proof. Let us use the vector norm defined by

∥∥(x,y)T
∥∥ =

N∑
j=1

(‖xj‖+ ‖yj‖) .

For J̃N,T to be a contraction mapping, it must satisfy the condition∥∥∥∥J̃N,T ( x1

y1

)
− J̃N,T

(
x2

y2

)∥∥∥∥ < ∥∥∥∥( x1

y1

)
−
(

x2

y2

)∥∥∥∥ .
From the definition of J̃N,T , we can note that∥∥∥∥J̃N,T ( x1

y1

)
− J̃N,T

(
x2

y2

)∥∥∥∥ ≤ N∑
j=1

‖x1,j + hf(x1,j,y1,j)− x2,j − hf(x2,j,y2,j)‖

+ ‖y1,j + hg(x1,j,y1,j)− y2,j − hg(x2,j,y2,j)‖) ,

and the result follows.
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3. Discrete Operator Framework for the Jacobi Scheme

Theorem 19. Suppose that we have a system of differential equations

dx

dt
= Ax + F(x,y) ,

dy

dt
= By + G(x,y) .

as long as we have that

1. For sufficiently small h, under some induced matrix norm |||·|||, |||I + hA||| < 1 − hα
and |||I − hB||| < 1− hβ for some suitable positive constants α, β.

2. There exist constants LF and LG such that

‖F(x1,y1)−F(x2,y2)‖ ≤ LF (‖x1 − x2‖+ ‖y1 − y2‖) ,
‖G(x1,y1)− G(x2,y2)‖ ≤ LG (‖x1 − x2‖+ ‖y1 − y2‖) ,

for all choices of x1,x2,y1,y2.

3. α, β > LF + LG

then J̃N,T will be a contraction mapping.

Proof. From Lemma 18 we need to prove that

N∑
j=1

(‖(I + hA) (x1,j − x2,j) + h (F(x1,j,y1,j)−F(x2,j,y2,j))‖

+ ‖(I − hB) (y1,j − y2,j)− h (G(x1,j,y1,j)− G(x2,j,y2,j))‖)

<
N∑
j=1

‖x1,j − x2,j‖+ ‖y1,j − y2,j‖) .

It is sufficient to prove that this inequality holds for all j, so we will drop the sum. Applying
the triangle inequality, we have

L.H.S. ≤ ‖(I + hA) (x1,j − x2,j)‖+ h ‖F(x1,j,y1,j)−F(x2,j,y2,j)‖
+ ‖(I − hB)) (y1,j − y2,j)‖+ h ‖G(x1,j,y1,j)− G(x2,j,y2,j)‖
≤ |||I + hA||| ‖x1,j − x2,j‖+ h ‖F(x1,j,y1,j)−F(x2,j,y2,j)‖

+ |||I − hB||| ‖y1,j − y2,j‖+ h ‖G(x1,j,y1,j)− G(x2,j,y2,j)‖ ,

where |||·||| is the matrix norm induced by ‖·‖. Applying conditions 1 and 2, we get

L.H.S < (1− hα + hLF + hLG) ‖x1,j − x2,j‖+ (1− hβ + hLF + hLG) ‖y1,j − y2,j‖ .

Applying condition 3, the result follows.

We must note that the third condition imposed is much stronger than the gap condition
used by [1]. It is unclear whether this condition can be reduced by a more careful analysis
of the norm inequalities in Theorems 18 and 19, or if it simply a result of the discretization.
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3. Discrete Operator Framework for the Jacobi Scheme

3c. Step size error

We now have a much more general framework for describing the Euler method. As promised,
We can now lay out a more general condition for the error. In order to aid this discussion, I
will define

J X
N,T

(
a
b

)
≡ projX

(
JN,T

(
a
b

))
, J Y

N,T

(
a
b

)
≡ projY

(
JN,T

(
a
b

))
.

Theorem 20. If the operator JN,T : (X, Y )T → (X, Y )T is a contraction mapping with rate
constant L and fixed point (a, b)T , and (x, y)T satisfies (23) and has a Taylor sequence with
radius of convergence of at least 2h around all t0 ∈ [0, T ]. Then∥∥∥∥( x(t)

y(t)

)
−
(

a(t)
b(t)

)∥∥∥∥ ≤ 2Kh2

1− L
, (25)

where K is some finite, positive constant. Furthermore, when t = jh, for some j ∈ N,∥∥∥∥( x(jh)
y(jh)

)
−
(

a(jh)
b(jh)

)∥∥∥∥ ≤ Kh2

2(1− L)
. (26)

Proof. Recall that for any given function of one variable, q(t), that is Taylor expandable
within some ball of radius ε around some point t0, for some δ < ε

q(t0 ± δ) = q(t0)± `q′(t0) +
`2

2
q′′(ξ)′ .

where ξ ∈ [t0, t0 ± `]. Therefore, for some µ1 ≤ 2h we can write

x(t+ µ1) = x(t) + µ1f (x(t),y(t)) +
µ2
1

2
x′′(ξ) .

However, if we define µ1 as h+ ε from (24), it follows that

x(t+ µ1) = J X
N,T

(
x(t+ µ1)
y(t+ µ1)

)
+
µ2
1

2
x′′(ξ) . (27)

Likewise, we can define µ2 = h+ δ

y(t− µ2) = J Y
N,T

(
x(t− µ2)
y(t− µ2)

)
+
µ2
2

2
y′′(ξ)) . (28)

Defining

K = sup
t∈[0,T ]

∥∥∥∥( x′′(ξ)
y′′(ξ)

)∥∥∥∥
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3. Discrete Operator Framework for the Jacobi Scheme

and noting that µ ≤ 2h, we find that∥∥∥∥( x(t)
y(t)

)
−
(

a(t)
b(t)

)∥∥∥∥ ≤ ∥∥∥∥JN,T ( x(t)
y(t)

)
− JN,T

(
a(t)
b(t)

)∥∥∥∥+ 2hK .

Since JN,T is a contraction mapping, meaning that∥∥∥∥( x(t)
y(t)

)
−
(

a(t)
b(t)

)∥∥∥∥ ≤ L

∥∥∥∥( x(t)
y(t)

)
−
(

a(t)
b(t)

)∥∥∥∥+ 2hK ,

or (since L < 1) ∥∥∥∥( x(t)
y(t)

)
−
(

a(t)
b(t)

)∥∥∥∥ ≤ 2Kh2

1− L
.

Furthermore, we can note that when t = jh, µ1 = µ2 = h, and equations (27) and (28)
become

x(jh+ µ1) = J X
N,T

(
x(jh+ µ1)
y(jh+ µ1)

)
+
h2

2
x′′(ξ) ,

y(jh− µ2) = J Y
N,T

(
x(jh− µ2)
y(jh− µ2)

)
+
h2

2
y′′(ξ)) .

Then, it follows that ∥∥∥∥( x(jh)
y(jh)

)
−
(

a(jh)
b(jh)

)∥∥∥∥ ≤ Kh2

2(1− L)
.

Though this gives an error term for the numerical method, without an idea of what L is,
we cannot say if taking the limit h → 0 converges. Under the assumptions of Theorem 19,
we can note that L = 1− γh for some γ > 0, meaning ther error become

2Kh

γ
,

which is first order in h. This is what we would expect for the Euler method.

Corollary 21. If JN,T is a contraction mapping with rate L such that L < 1−h2, and fixed
point (a,b)T , then

lim
h→0

(
a
b

)
,

is the unique Taylor expandable solution of (23).

Proof. From (25) it follows that under the condition that the operator JN,T is a contraction
mapping, its fixed point (a,b)T limits to a solution of (23). There can only be one Taylor
expandable solution of (23) since (25) is true with respect to all Taylor expandable solutions.
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3. Discrete Operator Framework for the Jacobi Scheme

3d. Conclusions

The methodology presented in this chapter can be understood in two ways. First of all, it
provides a rigorous method through which we can determine whether our schemes are able to
converge to a unique fixed point, and what is the global error of these schemes with respect
to the truncated boundary value problem. Viewing this formalism through such a sense
makes no reference to the fact that the presented schemes are meant to calculate stable and
unstable manifolds, and the similarity between Theorem 19 to the conditions of Castaneda
and Rosa is a coincidence.

Alternatively, the formalism may be seen as the first step to a solution to the integral
equations

x = x0 +

∫ t

0

f (x(s),y(s)) ds ,

y = −
∫ ∞
t

g (x(s),y(s)) ds

for we have demonstrated that the system for any finite T has a unique solution. In a sense,
we are one limit away from a novel proof of the existence of a unique stable manifold in a
dynamical system. If this is achieved, this methodology would be much more robust than
that of Castañeda and Rosa [1], since the vector norm equations of Theorem 18 puts no
requirement on the existence of linear and nonlinear components.
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A. Derivation of Nonlinear Test System

Consider the differential equation of the form

du

dt
= −u , dv

dt
= v + u sinu− ku3 .

This system has a solution of the form

u(t) = u0e
−t , v(t) = αet − ku30

4
e−3t + cos

(
u0e
−t)− 1

u0
sin
(
u0e
−t) et ,

where α is a constant determined by the initial condition on v. From Definition 1, the stable
manifold will be given by some set of conditions on u0, v0 such that α = 0. This is satsifed
by

v0 =
k

4
u30 + u0 cosu0 +

1

u0
sinu0 .

Now consider the linear transformation to the function x, y:(
u
v

)
=

(
1 c1
c2 1

)(
x
y

)
,

(
x
y

)
=

( 1
1−c1c2 − c1

1−c1c2
− c2

1−c1c2
1

1−c1c2

)(
u
v

)
.

Then, the differential equations governing x and y are given by

dx

dt
=

−1

1− c1c2
(x+ c1y)− c1

1− c1c2
(
c2x+ y + (x+ c1y) sin(c+ c1y)− k(x+ c1y)3

)
,

dy

dt
=

c2
1− c1c2

(x+ c1y) +
1

1− c1c2
(
c2x+ y + (x+ c1y) sin(c+ c1y)− k(x+ c1y)3

)
.

Simplifying, we get

dx

dt
= −1 + c1c2

1− c1c2
x− −2c1

1− c1c2
y − c1

1− c1c2
(
+(x+ c1y) sin(c+ c1y)− k(x+ c1y)3

)
,

dy

dt
=

2c2
1− c1c2

x+
1 + c1c2
1− c1c2

y +
1

1− c1c2
(
(x+ c1y) sin(c+ c1y)− k(x+ c1y)3

)
.

The stable manifold also transforms linearly, and becomes

k

4
(x+ c1y)3 + cos(x+ c1y)− sin(x+ c1y)

x+ c1y
− c2x− y = 0 .
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B. Local Boundary Conditions

We saw in Chapter 1 that the boundary value formulation of the stable manifold requires the
conditions of Theorem 3. Nevertheless, we can note that our numerical methods accurately
converge to the stable manifold for systems which do not satisfy these requirements, as seen
in Example 15. Though all of the theorems on the properties of the numerical methods
which I present do require some variation of these conditions, it is important to note that
the boundary value formulation itself, at least locally, does not require them.

Hand-wavy Theorem 1. Given the dynamical system

dx

dt
= f(x,y) ,

dy

dt
= g(x,y) ,

where dim x = m and dim y = n has a hyperbolic fixed point at the origin, a diagonalizable
Jacobian matrix at the origin, and an m-dimensional stable manifold, then there exists some
set of coordinates (u ,v), where dim u = m and dim v = n, which are related linearly to
(x ,y): (

u
v

)
= M

(
x
y

)
,

such that near the origin, the stable manifold of the system satisfies the boundary values
u(0) = u0, v(∞) = 0.

Proof. Since the system has an m dimensional stable manifold, we know that the Jacobian
of the system at the origin J(f, g; x = 0,y = 0) has m negative eigenvalues and n positive
eigenvalues. We can diagonalize the Jacobian by similarity through some matrix M such
that M−1JM is a diagonal matrix. The linear system corresponding to this matrix has a
stable manifold corresponding to the boundary values u(0) = u0, v(∞) = 0. This system
is locally a topological conjugacy (see [13]) to the original dynamical system in coordinates
given (

u
v

)
= M

(
x
y

)
,

meaning that locally, the boundary conditions will apply to the stable manifold.

Though the methods that I present here are not guaranteed to converge for all dynamical
systems with stable manifolds, it is clear that they will locally converge for a lot of them.
Therefore, it is not too unexpected to see the numerical schemes find stable manifolds for
systems which are not covered by the theory.
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C. Sample MATLAB Code

1 function [x,y] = jb euler(f,g,x0,yT,h,N,tol,maxiter)
2 % jacobi euler method
3

4 % initialize xy
5 x = x0*ones(1,N);
6 y = yT*ones(1,N);
7

8 e = 2*tol;
9 i = 0;

10 while e > tol && i < maxiter
11 i = i + 1;
12 xl = x;
13 yl = y;
14 x(:,2:end) = x(:,1:end-1) + h*f(x(:,1:end-1),y(:,1:end-1));
15 y(1:end-1) = y(:,2:end) - h*g(x(:,2:end),y(:,2:end));
16 e = norm(x-xl)+norm(y-yl);
17 end

Jacobi Euler

1 function [x,y] = gs euler(f,g,x0,yT,h,N,tol,maxiter)
2 % gauss-seidel euler method
3

4 % initialize xy
5 x = x0*ones(1,N);
6 y = yT*ones(1,N);
7

8 e = 2*tol;
9 i = 0;

10 while e > tol && i < maxiter
11 i = i + 1;
12 xl = x;
13 yl = y;
14 for j = 1:N-1
15 x(:,j+1) = x(:,j) + h*f(x(:,j),yl(:,j));
16 y(:,N-j) = y(:,N-j+1) - h*g(xl(:,N-j+1),y(:,N-j+1));
17 end
18 e = norm(x-xl)+norm(y-yl);
19 end

Gauss Seidel Euler
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