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Abstract

The introduction and spread of invasive species is increasingly

driven by the expansion of human-made transportation routes. We

formulate a network model of biotic invasion incorporating logis-

tic growth and dispersal along a network, and present analyses of

the model. We introduce small world networks and use them to

investigate the role of network properties and long-distance disper-

sal on spread dynamics. Lastly we present comparisons between

the stochastic and deterministic models to illustrate the effects of

stochasticity on invasive species spread dynamics.
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Chapter 1

Introduction

1.1 Background on Invasive Species

The National Invasive Species Council defines invasive species as non-native species whose

introduction is likely to cause harm (Committee et al., 2006). As a common and pervasive

cause of environmental and economic damage, the problem of invasive species has come to

be one of the most pressing issues in ecology today. Invasive agricultural pests alone are

estimated to cost the United States $120 billion annually. In addition, 42% of endangered

or threatened species in the U.S. are at risk primarily due to invasive species (Pimentel

et al., 2005). The severity of the problem is clear, yet attempts at guarding ourselves

against invasive species introductions have historically failed, and still do. Though a

portion of these failures can be contributed to sociological issues, such as lack of public

awareness and government support to address the issue, we still have only a limited

understanding of the spread and proliferation of terrestrial invasive species (Mack et al.,

2000). It is the role of modelers to understand these processes well enough to produce

accurate insights on them.

The invasion process proceeds in several stages, as explained in Williamson (1989).

First is the introduction of propagules or organisms into the new environment. Although
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an introduction may occur, a large proportion of these introductions fail to establish

stable colonies. Those that succeed in the establishment phase often exhibit a lag time

- a period of low growth followed by rapid proliferation until the population reaches

its carrying capacity (Mack et al., 2000). This particular pattern of accelerating and

decelerating growth is called logistic growth and will be described further.

Once established in a central location, further range expansion can rapidly occur - the

“spread” phase. Many different models are used to describe the spread or dispersal phase

of species invasion. Historically, logistic population growth has been paired with diffusive

spread to generate predictive models of species spread. Yet many species are known to

be spread via long-distance dispersal events via human transport vectors (Carlton, 2003).

Humans and animals have long acted as vectors of dispersal for invasive organisms.

Gypsy moths lay their eggsacs on the underside of car bumpers, bivalves can be taken in

with ballast water on ships, and exotic pest species can be shipped in infected shipments

of agricultural or construction materials (Carlton, 2003). Biotic invasions have occurred

long before our time (oftentimes, plant seeds are physically dispersed by hitching onto

an animal or person), but since the Industrial Revolution, the rapid expansion of pro-

duction alongside the development of new global trade routes has hastened the rate of

introductions significantly (Hulme, 2009).

The perceived importance of long-distance dispersal events in invasive species spread,

particularly relating to the human-made transportation network, leads us to choose a

network model framework for our research.

1.2 Modeling Background

The invasive species literature is rich with a large volume of research to draw upon to

formulate our model. The purpose of this section is twofold in both motivating this

study and providing a brief summary of the common modeling techniques in the invasive

species literature. Throughout this thesis, we will use the terms “node” and “patch”
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interchangeably. Generally, a node in our network model is meant to represent a discrete

population, or “patch” in the context of biology.

We begin by discussing models of single-patch population growth, discounting dispersal

between locations for now. The most common model of population growth in biology is

the continuous logistic equation, defined as:

dN

dt
= rN

(
1− N

K

)
, (1.1)

where N is the population size, r is the intrinsic growth rate of the population, and K is

the carrying capacity.

One criticism of this model is that lacks the inclusion of an Allee effect, characterized

as a positive association between population density and individual fitness. As explained

in Korolev et al. (2014), a strong Allee effect is a phenomenon that leads a population

to extinction once it dips below a certain threshold. Thus the extension of the logistic

growth function with a strong Allee effect describes a population which grows at interme-

diate population levels but whose growth rate declines at both low and high population,

becoming negative at low populations below the threshold. Allee effects can be caused by

many different mechanisms that are positively density dependent, such as pack hunting

behavior or mate-finding. The logistic equation can be modified to include an Allee effect

as follows:
dN

dt
= rN

(
1− N

K

)(
N

A
− 1

)
, (1.2)

where A is a positive constant that defines the threshold below which extinction is ensured.

Steady states and stability for Equations 1.1 and 1.2 are shown in Figure 1.1. In the

population undergoing logistic growth without an Allee effect (Figure 1.1a), the extinct

state (zero population) is unstable and grows towards carrying capacity with a small

positive perturbation. However, under a strong Allee effect (Figure 1.1b), another steady

state at the Allee threshold A is introduced. The extinct state becomes stable, with

A being unstable and the carrying capacity remaining a stable point. As discussed in

Section 1.1, the introduction of a small number of individuals of an invasive species to a
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Figure 1.1: (a) Flow diagram showing steady states and stability of Equation 1.1. (b)

Flow diagram showing steady states and stability of Equation 1.2.

new location will often fail to establish a stable colony. The steady state properties of

the logistic equation predict that all introductions will establish stable colonies. We know

that in nature, this is not true. A likely reason for this is that many species experience

population growth with positive density dependence at low populations as modeled by

the logistic equation with a strong Allee effect.

The previous models describing single-patch population growth are not spatially ex-

plicit. Models of species spread combine population growth with some sort of dispersal

mechanism. Historically, a common and relatively simple approach to model spatial dis-

persal is based on reaction-diffusion equations. An early example of this is a form of

Fisher’s equation, taken from Neubert and Parker (2004):

∂N

∂t
= rN

(
1− N

K

)
+D

∂2N

∂x2
. (1.3)

Here, we present a simple one-dimensional form, with N(x, t) representing the population

density at time t and location x. The parameters r and K denote the intrinsic growth rate

and the environmental carrying capacity, respectively. Finally, D denotes the diffusion

coefficient. This type of model presents an oversimplified view of population spread,

failing to take into account variables such as age-structure or environmental factors such

as landscape heterogeneity. Models with simple diffusion describe species invasion as a

solid advancing front, where in reality, the spread dynamics are much more complex. For

example, in recorded terrestrial invasions such as the coypu rodent in Europe and North

America, the spread of the species is not synchronous, but rather there exist isolated
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colonies ahead of the front as well as locations behind that front that remain uncolonized

by the species (Reeves and Usher, 1989).

Several different approaches were developed to incorporate various aspects left out by

the relatively basic reaction-diffusion equations. Integro-difference equations (IDEs), as

described in Neubert and Parker (2004), express the process of spread in two phases. For

a model of population spread along a single dimension, we would first calculate the change

in local population density according to the equation

N(y, t+ 1) = f [N(y, t)], (1.4)

where N(y, t+ 1) is the population density at location y at time t+ 1, which is arrived at

from applying a growth function f on the population at time t. Secondly, the population

is redistributed by the density kernel k(x, y), the probability of redistributing from point

y to point x. The resulting distribution of population at time t + 1 is then described by

the IDE:

N(x, t+ 1) =

∫ +∞

−∞
k(x, y)f [N(y, t)]dy. (1.5)

The main advantage of IDEs are their flexibility in choosing the density kernel, which

allows for more complex redistribution of population. A similar type of model, integrodif-

ferential equations, are used in Sharov and Liebhold (1998) to model the spread of Gypsy

moths in the United States. Integrodifferential models share a similar form to integrod-

ifference models, with the difference being that the former represents continuous time

processes whereas the latter is a discrete time model.

In recent years the growth in computational power and abundance and communication

of ecological data has spurred the use of more data-driven species distribution models

(SDMs). These models, as explained in Václav́ık and Meentemeyer (2009), use presence

and absence data with environmental data to create a mathematical model of species

distribution in environmental space. With the appropriate geographically mapped data,

for example, data layers in a Geographical Information System (GIS) data set, one could

generate potential landscapes that the species could inhabit. As reviewed in Elith and
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Leathwick (2009), there is much debate about model selection and predictive capabilities

of SDMs. Historically SDMs have been used to explain present species distributions.

However, in the case of invasive species we wish to use the model for extrapolation. One

problem with SDMs is that an underlying assumption is that the species in question is in

equilibrium with its environment. Essentially, this means that we expect the species to be

present in all of its suitable habitats. This assumption is likely false for invasive species,

since they face clear dispersal limitations being newly introduced to their environment.

Despite these concerns, SDMs are increasingly being used more for extrapolations by

linking them with dispersal models to generate predictions of invasive species spread.

Lastly, we reach a relatively new approach and the topic of this thesis: network models

of invasive species. Networks are widely studied and applied to a multitude of fields, in-

cluding invasive species biology. In this field, marine species have received more attention

than terrestrial species. A recent, highly cited paper by Kaluza et al. (2010) posed a

network framework of marine bioinvasion, with links between ports weighted by observ-

able shipping traffic along these routes. Floerl et al. (2009) investigated transport hubs

as centers for species dispersal. Using data from marinas near New Zealand, they found

that locations categorized as high traffic and connectivity “hubs” were much more likely

to be infected early and be the source of spread to many secondary locations than less

visited locations.

There have also been recent papers focused on building predictive models of terrestrial

invasive species. For example, in Ferrari et al. (2014), researchers presented a predictive

model of hemlock woolly adelgid spread, using a dynamic network model to explore which

nodes were most active in dispersal. In Koch et al. (2014), researchers investigated the

spread of forest pests in the United States and Canada via firewood movement, commonly

held as a vector for forest pest introduction. Despite the acknowledged importance of

these studies, much of the presently available research has been focused on case studies

of particular species and their specific distribution networks. Less work has been done on
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the general analysis of network models of invasive species, although we are seeing a rise

in their usage.

The spread of invasive species across disparate terrestrial landscapes lends itself to

modeling in a network framework. In addition, the new availability of both ecological

species data and human-centric transportation data will facilitate studies such as these

for terrestrial species. The goal of our research is to present a general network model of

terrestrial invasive species spread and analyze the individual components of that model.

This model is derived from research the author previously conducted to produce a Markov

chain model of invasive species spread using commodity flow pathway data (Yan et al.,

2016). Over time, data driven, computationally-intensive models may become more at-

tractive due to increases in data availability and computational power. This will lead us

to more powerful predictive tools, but we should aim to understand the general properties

of network science and invasion biology that underlie their use.

1.2.1 Thesis Outline

In this thesis we will formulate and analyze a network model of biotic invasion using

steady state analysis as well as numerical modeling. We divide the thesis into three main

sections in addition to the introduction and conclusion. In Chapter 2 we will derive the

deterministic model and analyze its steady state properties in 1 and 2 dimensions. We

also define the n dimensional model we use for computational simulations. In Chapter

3, we introduce the characteristics of a particular type of network, small world networks,

and their relation to biotic invasion. Lastly, in Chapter 4, we introduce a stochastic model

and explore the role of stochasticity in different parameter regimes in the network invasion

model.
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Chapter 2

Deterministic Modeling

2.1 1-Dimensional Model Formulation

2.1.1 Rationale

We begin by defining a single-patch model, where the dynamics are described simply by

population growth. In the wider model of invasive species, this single-patch model repre-

sents the establishment phase of an invasive species in a single location. In this section,

we define the time-t map, the discrete time analog to the continuous logistic equation de-

fined by Equation 1.1. The main reason we chose not to use the continuous time logistic

equation was because using our map formulation here reduced the computational time

significantly over integration of the continuous logistic growth function.

2.1.2 Model Specification

We begin by deriving the discrete map analog to the standard logistic equation presented

above in Equation 1.1. This will map a population within a single patch forward in yearly

time steps.

Through separation of variables and direct integration, we come to the general solution

8



to the continuous time logistic equation:

N(t) =
Cert

1 + Cert

K

, (2.1)

where C is the constant of integration. Setting the initial population at time zero equal

to some value N0, we solve for C, and arrive at the equation below:

C =
N0

1− N0

K

. (2.2)

Replacing C in Equation 2.2 yields the particular solution

N(t) =
N0e

rt

1 + N0(ert−1)
K

. (2.3)

Given an initial population value N0 at time t = 0, we can calculate the population at

t = 1. We define the resulting discrete map with a 1-year time step with the equation:

Nt+1 = g(Nt) =
Nte

r

1 + Nt(er−1)
K

. (2.4)

2.1.3 Alternative Logistic Models

A common discretization of the logistic differential equation (1.1) is the standard form of

the recurrence relation form shown below:

Nt+1 = rNt

(
1− Nt

K

)
. (2.5)

Although relatively simple looking, this formulation of the discrete logistic map reveals

undesirable bifurcation properties and chaos as we increase the intrinsic growth rate r

from 0 to 4. We chose to use the formulation in Equation 2.4 because of the lack of

chaotic behavior at large values of r. Our formulation exhibits the typical sigmoidal

curve characteristic of the logistic equation without atypical behavior.
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2.2 1-Dimensional Stability Analysis

2.2.1 Fixed points

What are the steady state properties of the model discrete logistic map we defined in

Equation 2.4? We discussed the steady state of the ordinary differential equation form

of the logistic equation, Equation 1.1, in Chapter 1. We expect the stability results here

to reflect those of the logistic ordinary differential equation (ODE) since we derived the

map from the logistic equation. We follow the approach described in Strogatz (1994) to

analyze the steady state stability of our discrete map system from Equation 2.4. We first

look to discover the fixed points of the system. A fixed point of g is a point N∗ that

satisfies N∗ = g(N∗) where g(N) is given by Equation 2.4. Solving the equation below

for N∗,

N∗ =
N∗er

1 + N∗(er−1)
K

, (2.6)

we find the fixed points N∗ = 0 and N∗ = K satisfy this equation. The zero fixed point,

N∗ = 0, is the extinct state. The positive fixed point is K, which is the carrying capacity.

To determine how the system will react to perturbations from a fixed point, we inves-

tigate their stability.

2.2.2 Stability of Fixed Points

Concretely, we will investigate the response of the system to a small perturbation defined

by εt. Suppose the population at Nt is the fixed point N∗, then

Nt = N∗ + εt, where |εt| << 1.

We can approximate how the population changes at the next time step by finding the

Taylor series expansion around the fixed point as shown below:

Nt+1 = g(N∗ + εt)
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Nt+1 ≈ g(N∗) + g′(N∗)εt +O(ε2t )

Nt+1 ≈ N∗ + g′(N∗)εt.

Because εt is small, we ignore the higher order terms because they will be negligible. The

size of the perturbation at time t+ 1 is then defined as:

εt+1 ≈ g′(N∗)εt.

A fixed point will be stable if the perturbations near it get smaller and smaller as time goes

on. Perturbations will grow larger and away from an unstable fixed point. If |g′(N∗)| < 1,

then N∗ is a stable fixed point. If |g′(N∗)| > 1, then N∗ is an unstable fixed point. If

g′(N∗)| = 1, then the stability test is inconclusive. Note that the assumption that εt is

small means that these conclusions only hold in the local neighborhood of the fixed point.

We calculate the value of g′(N∗) for fixed points N∗ = 0 and N∗ = K in our model,

using the equation:

g′(Nt) =
er(

1 + Nt(er−1)
K

)2 . (2.7)

For the fixed point N∗ = 0, we find that g′(N∗) = er, and for the fixed point N∗ = K,

we find that g′(N∗) = e−r. This means that the zero fixed point is stable for r < 0 and

unstable for r > 0. The positive fixed point is stable for r > 0 and unstable for r < 0.

These are the results that we expected from knowing the steady state stability of the

continuous time logistic equation.

2.2.3 Interpretation

In a biological sense, the fixed points represent where the population neither grows nor

shrinks. When the population is 0, it tends to stay at zero. When the population has

reached the environmental carrying capacity, the birth rate matches the death rate and

growth halts.
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Recall that the parameter r is the intrinsic rate of growth for the population N .

Though negative growth rates are possible, the populations we are modeling under typi-

cal logistic growth have positive growth rates associated with them. In terms of invasive

species populations, the results of our fixed point analysis reveal that once an invasive

is introduced to a new location, it will tend to grow until it reaches its carrying capac-

ity. However, in more intricate models, this will not always be the case. For example,

introduction of a strong Allee effect will induce a negative growth rate at low population

densities, making the zero fixed point stable.

2.3 Model Formulation in Higher Dimensions

In this section we define a general form of the model in n dimensions. With multiple

populations, patch dynamics depend on both within-node logistic growth as well as im-

migration and emigration between nodes.

The migration rates between the nodes are determined by the transition matrix P,

P =



p11 · · · p1j · · · p1n
...

. . .
...

pi1 pij pin
...

. . .
...

pni · · · pnj · · · pnn


, (2.8)

where element pij represents the proportion of population in patch j transferred from

patch j to patch i in a single time step. The columns of P sum to 1, meaning that the

outgoing population from each node is conserved. In addition, not all of the population

is transferred out. The diagonal elements, pjj, are the proportion of population within

each patch that is sent back to itself at each time step.

We use a directed network graph to illustrate the connections defined by the transition

matrix in a 3-patch model in Figure 2.1.
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Figure 2.1: This is a connected network model in 3 dimensions. Each patch is connected

with both its neighbors and itself, with edge weights denoted by pij which represent the

proportion of population transferred from patch j to i in a single year.

The population of each node at each time t is stored in the state vector st, an n

dimensional column vector defined as

st =



st,1
...

st,i
...

st,n


, (2.9)

where element st,i represents the number of individuals in node i in year t. We define a
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mapping of state vector st from year t to t+ 1 as

st+1 = Pg(st), (2.10)

with the vector function

g(st) =



g(st,1)
...

g(st,i)
...

g(st,n)


. (2.11)

Thus by applying the growth function defined in Equation 2.4 element-wise to each

patch in st and multiplying the transition matrix P by the resulting column vector g(st),

we have our n dimensional determinstic network model of population growth and spread

on the network.

2.4 Analysis of 2-Dimensional System

With the new notation in mind, we can describe the most general case of a two-patch

system for analysis:

st+1,1 = f1(st) =
p11st,1e

r

1 + st,1(er−1)
K

+
p12st,2e

r

1 + st,2(er−1)
K

(2.12)

st+1,2 = f2(st) =
p22st,2e

r

1 + st,2(er−1)
K

+
p21st,1e

r

1 + st,1(er−1)
K

. (2.13)

Similarly to the 1-dimensional analysis, we want to find the fixed points of the above

system, s∗1 and s∗2. We define s∗i as the fixed point value of patch i in the state vector,

where fi(s
∗
i ) = s∗i . Checking for the fixed points as we did before, we find that the extinct

state at (0, 0) remains. Intuitively following the results from the 1-dimensional analysis,

we predict the existence of a stable positive non-zero state. If we assume symmetry in our

transition matrix, meaning in this case that p12 = p21, because column sums also equal 1,
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we find that p11 +p12 = 1 and p21 +p22 = 1. Simplifying the system with this assumption,

we find the fixed point to be (K,K), as predicted. Without this assumption of symmetry,

in the model’s most general form, we must solve a complicated polynomial equation to

arrive at an analytical form for the positive fixed point. We do not attempt to solve it

here.

2.4.1 Stability Analysis

As in the 1-d analysis, we investigate the stability of the extinct state. From Strogatz

(1994), we can characterize the stability of this fixed point from the Jacobian matrix J ,

below, which describes our system of equations:

J =

∂f1
∂s1

∂f1
∂s2

∂f2
∂s1

∂f2
∂s2

 .
We can characterize the stability of the extinct state by determining the eigenvalues of

the Jacobian evaluated at that point. We evaluate the Jacobian at (s∗1, s
∗
2) = (0, 0) below:

J0,0 =

p11er p12e
r

p21e
r p22e

r


. We allow the carrying capacity K to be equal to one. As a result, the population terms

are taken to represent a fraction of the total carrying capacity.

Setting up the characteristic equation for the Jacobian,

(p11e
r − λ)(p22e

r − λ)− p21erp12er = 0,

we solve for the eigenvalues using the quadratic equation,

λ+, λ− =
er
(
p11 + p22 ±

√
(p11 − p22)2 + 4p21p12

)
2

, (2.14)

where λ+ denotes the root derived from adding the quantity under the square root, and

λ− denotes the result of subtracting it. We note that in our model, movement between
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nodes conserves population such that the column sums of the transition matrix P are

equal to 1. Thus, p11 = 1− p21 and p22 = 1− p12. Substituting these into Equation 2.14,

we get:

λ+, λ− =
er [p11 + p22 ± (2− p11 − p22)]

2
. (2.15)

We can simplify this to get an expression for each eigenvalue:

λ+ = er

λ− = er(p11 + p22 − 1).

Recall that the elements of P represent the proportion of population transferred between

nodes. As such, they are bounded between 0 and 1. Because 0 ≤ p11 ≤ 1 and 0 ≤ p22 ≤ 1,

it follows that −1 ≤ p11 +p22−1 ≤ 1. Thus the magnitude of λ− will always be a fraction

of λ+, such that |λ−| ≤ |λ+|. To determine stability, we need only look at the magnitude

of the larger eigenvalue, λ+. If the magnitude of λ+ is less than 1, then the fixed point

is stable, and conversely if the magnitude of λ+ is greater than 1, the fixed point is

unstable. Setting up the inequality λ+ > 1, we find that for r > 0, the fixed point at

(0, 0) is unstable. We have then shown that in 2-D, the extinct state is unstable when the

growth rate r is positive.

2.5 Numerical Methods

Due to the complexity of analyzing the general network model in higher dimensions, in

this section we introduce the deterministic models we use for numerical simulations. This

includes the discrete map as well as an integrated ODE model.

2.5.1 Discrete Map

The discrete map defined by Equation 2.10 was implemented in R directly and was used

for all results in the small world network section in Chapter 3.
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2.5.2 ODE Model

We used an integrated ODE model to compare against the stochastic model in the stochas-

tic modeling section. To see whether our discrete map derivation agrees with the original

ODE model, we generate an integrated ODE model using the ’deSolve’ package with the

logistic equation (1.1) which we modify to incorporate the immigration and emigration

terms derived from the transition matrix P in Equation 2.8. We define this as:

dNi

dt
= rNi

(
1− Ni

K

)
+

n∑
j=1,j 6=i

pijNj −
n∑

j=1,j 6=i

pjiNi. (2.16)

The term pijNj is the number of individuals patch j sends to patch i. The immigration

term then, is the sum of pijNj over all patches j that are not the patch in question, i.

Emigration is defined similarly, though it is the sum of all outgoing individuals, pjiNi over

all patches that are not the original patch i.

The values of pij in the transition matrix are filled using the migration rate v, which is a

newly introduced parameter specified prior to beginning a simulation. In our simulations,

we assume that edges between nodes are equally weighted with value v. Recall element pij

is the proportion of population each patch transfers out over a yearly time step. For every

edge pij where there exists a connection, we set its weight to v. Because the population

is conserved, the values along the matrix diagonal values are set by the equation:

pjj = 1− kjv,

where kj is the out degree of patch j. An example of a network generated with migration

rate v is shown in Figure 2.2.

To simulate a biotic invasion over a given time period, we initialize the state vector as

s0 = ~0. Then, we set the value of the patch where the invasion begins to carrying capacity

K. Then we apply the particular model, discrete map, integrated ODE, or Monte Carlo,

which will be introduced later, for the given time period. We discuss the agreement of the

deterministic models, the discrete map and the integrated ODE, in the following section.
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Figure 2.2: Figure showing a sample network with edges equally weighted. The parameter

v is the migration rate between nodes and kj is the out degree of the node j. In this

example kj = 2 for each node.

2.5.3 Deterministic Model Agreement

The discrete map model in Equation 2.10 differs from the ODE model presented in Equa-

tion 2.16 in how population is distributed. In the former discrete time model, population

is grown according to the growth function, Equation 2.11, before migration is calculated

at the end of each time step according to the transition matrix. In the continuous time in-

tegrated ODE model, population growth and migration are calculated concurrently. This

creates a small discrepancy between the models, which can be assumed to be negligible

for our purposes. Consider the equation dNi

dt
= −vNi, which represents the population

loss term due to outbound migration on node i. Integrating over the course of one year

gives us the equation Ni(t + 1) = e−vNi(t). The corresponding system in our discrete
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Figure 2.3: Figure showing the agreement between the ODE model and the discrete map

at typical parameter values. The solid lines are the abundances in the ODE model, and

are overlaid with points every 40 years from the discrete map model. The parameter

values given are listed: n = 2 patches, migration rate v = 0.001, birth rate r = 0.01, and

carrying capacity K = 100, over a course of 1000 time steps.

map model is Ni(t+ 1) = (1− v)Ni(t). At low values of v, e−v ≈ 1− v. In this thesis, we

typically use values of v << 1 as well as r << 1. We show the agreement of the model

for typical parameter values in Figure 2.3. Disagreement at a large value for v is shown

in Figure 2.4. To find the exact parameter relationships in higher dimensions we would

have to integrate the differential equation represented in 2.16, but are unable to do so.

Despite this, we observe that at the typically parameter values chosen in this study, there

is agreement between the two deterministic models presented.
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Figure 2.4: Figure showing discrepancy between the ODE model and the discrete map at

a large v value. The points are plotted at every 1 year. The parameter values given are

listed: n = 2 patches, migration rate v = 0.25, birth rate r = 0.01, and carrying capacity

K = 100, over a course of 10 time steps.
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Chapter 3

Small World Networks

3.1 Background

Networks are often characterized by commonly studied properties of their nodes and

edges. Two of these properties are called the clustering coefficient and characteristic path

length. As discussed in Watts and Strogatz (1998), the clustering coefficient depends on

triplets of nodes. Consider a vertex V with kV neighbors on an undirected graph. Any

connection between the neighbors of V generates a node triplet. Then there can exist at

most kV (kV − 1)/2 edges between the kV neighbors. Let clustering coefficient CV denote

the fraction of these triplets that actually exist for node V . Then, the average clustering

coefficient C is the average of CV calculated from each vertex. The characteristic path

length, L of a graph is the shortest path length between two vertices, averaged over all

unique pairs of vertices.

Regular networks are defined as networks where each node has the same number of

neighbors, and the connections between neighbors follow a particular pattern. An example

of a particular pattern on a ring is shown in Figure 3.1. Random networks are defined

wherein the connections between nodes are determined randomly. It is a common property

of regular networks to be highly clustered. Random networks, on the other hand, exhibit
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lower clustering but have small characteristic path lengths due to the existence of many

randomly introduced connections between distant nodes (Walsh et al., 1999). Small world

networks were introduced by Watts and Strogatz (1998) as being an intermediate between

these two types of networks. They maintain some degree of regularity in node connections

while also having a small number of random connections relative to a completely random

graph.

We are interested in small world networks because they could be analogous to the

movement network of invasive species. Population networks of invasive species often de-

velop by a combination of movement between neighboring habitats and dispersal along

a long distance transport vector, for example, a truck carrying a soil shipment across

the United States. Indeed, there have been many research papers discussing small-world

properties of real world networks, including transportation networks (Latora and Mar-

chiori, 2001). By analyzing the impact of randomness on a small world network, we hope

to learn about the effect of long-distance dispersal in biotic invasions.

3.2 Small World Methods

The original paper (Watts and Strogatz, 1998) generates a small world network by rewiring

a regular ring lattice into a random graph. We begin with the regular ring lattice, which we

define as a regular network where the nodes are arranged into a ring, and begin randomly

choosing edges and randomly reassigning their endpoints, based on a parameter of rewiring

probability p. An example of this process is shown in Figure 3.1.

The increase in rewiring probability is correlated with a decline in characteristic path

length and mean clustering coefficient, seen in Figure 3.2.
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Figure 3.1: A regular ring lattice is rewired with increasing values of p, the rewiring

probability.

3.2.1 Extension to Invasion Model

In this section we implement a portion of the procedures including generating the small

world network in R using the package ‘igraph’ (Csardi and Nepusz, 2006).

The algorithm for constructing the small world network using igraph begins by con-

structing a ring lattice with each of the n nodes connected to its nearest 2m neighbors.

We choose m = 2 and n = 50. Begin the rewiring process by choosing nodes x and y from

a random uniform probability distribution of all possible node values. Rewiring is done

by replacing each edge eij with edge exy with probability p. Rewiring events resulting in a

self-loop or a duplicated path are redrawn by the igraph algorithm, by redrawing another

pair of values x and y. We imposed an additional check at the end of the rewiring process

so that any disconnected networks, meaning networks where there are unreachable nodes,

were entirely discarded and replacement networks were generated. This implementation

slightly differs from the original Watts and Strogatz method in that both endpoints of
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Figure 3.2: Plots showing relationship between normalized characteristic path length and

clustering coefficient with rewiring probability. C(p) and L(p) refer to the values of each

property for a network generated with given rewiring probability p. The plotted values are

normalized by their values calculated on a regular graph. Parameter values are n = 1000,

m = 5, the results are averaged over 20 realizations.

the edge eij are randomized here as opposed to just one in the original method. However,

this difference did not seem significant to the underlying small world network properties.

To validate the igraph method we created a plot of characteristic path length and clus-

tering coefficient in Figure 3.2 and compared the results with those presented in Watts

and Strogatz (1998). We found that the curves were almost identical, with an insignif-

icant difference attributed to an algorithmic difference between the ‘igraph’ small world

network generation and the algorithm presented in the original paper.

To adapt this small world network to fit our model of species invasion, we transform its

adjacency matrix. The adjacency matrix of a network is defined as a matrix A such that

every element aij has a binary value 1 or 0. A value of 1 indicates a connection between
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nodes i and j whereas 0 indicates no connection. Because the small world network is

undirected, the adjacency matrix is symmetric, so that aij = aji.

To map the adjacency matrix to the transition matrix, we perform the following trans-

formations:

1. pij = vaij for i 6= j

2. pjj = 1−
∑n

i=1 vaij.

In this definition, P refers to the transition matrix defined in Equation 2.8, and v is the

migration rate, the proportion of population sent from any node to every other node.

Consider the network in Figure 3.3 of 50 nodes labeled from 1 to 50 counterclockwise

in a ring lattice. We use the transformed adjacency network to map an invasion with

yearly time steps over the course of 1000 years. We investigate the transient properties of

this system by recording a metric t(p), called the time to establishment. We define this

metric on a network rewired with probability p, as the number of time steps it takes for

the population to spread from the initial node 1 to the one diametrically opposite, node

26, and surpass a population threshold arbitrarily set to 100 individuals.

Consider one experiment to be defined as generating a small world network with

rewiring probability p, transforming the adjacency matrix, and running a simulation as

described above.

We performed several sets of experiments recording t(p) at different values of p and

averaged the results over 1000 networks for each value of p, with the average times to

establishment denoted by T (p). In each set of experiments, we varied values of v and r

to observe the effects of migration rate and birth rate on the transient properties of an

invasion on our network model. The results are presented in the next section.
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Figure 3.3: Example of the small world network generated by igraph with n = 50, m = 2,

and p = 0.25.

3.3 Results

We first present the results of normalized time to establishment, that is, T (p)/T (0), versus

the rewiring probability p, with varying migration rates v in Figure 3.4. We next present

the results of varying the birth rate r in Figure 3.5. Then, we present results where v and

r are varied respectively to each other. The migration and birth rate terms are both linear

order in population N , so varying both at the same time in opposing directions attempts

to show the relative effects of each parameter while keeping the overall time scale of the

invasion reasonably constant. The results of the normalized time to establishment for this
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Figure 3.4: Plot of the normalized time in years to establishment of a species invading

a small world network with varying values of v. Parameters n = 50, m = 2, r = 0.01,

K = 5000, and establishment threshold is set at 100. Rewiring probability is parameter

p.

set of experiments is shown in Figure 3.6, and the non-normalized, absolute time results

are presented in Figure 3.7.

Comparing the plots of normalized time to establishment to Figure 3.2, we find that

the normalized time to establishment, T (p)/T (0), shares the same shape as C(p)/C(0).

This is interesting because we expected these curves to relate to the characteristic path

length since the characteristic path length is directly related to the number of long-

distance connections between distant nodes on the ring. It is not immediately clear why

the time to establishment should appear more analogous to the clustering coefficient than

the characteristic path length, but this warrants further investigation.

Following the curves in the Figure 3.4, we find that starting from p = 0, the curves

diverge and settle at p = 1 such that the larger v is, the smaller T (1)/T (0) is at p = 1;

they are inversely related. This result is as expected as we hypothesized a relationship
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Figure 3.5: Plot of the normalized time in years to establishment of a species invading

a small world network with varying values of r. Parameters n = 50, m = 2, v = 0.01,

K = 5000, and establishment threshold is set at 100. Rewiring probability is parameter

p.

between decreased characteristic path length and increasing speed of invasion (time to

establishment). This is reasonable, as in a highly connected graph with high migration

rate, the first few time steps could find the invasive species spread all around the network,

whereas this would not occur as quickly with a slower migration rate.

Following the curves in the Figure 3.5, we find a surprising result. First, we notice that

whereas previously observed curves were fairly close together, at very low birth rate, the

time to establishment drops off at a higher value of p than at higher birth rates. Secondly,

we notice that the normalized time to establishment at p = 1 is directly related to the

birth rate. Note that we are plotting the normalized time to establishment. The absolute

time to establishment is positively related to increasing values of both v and r. The fact

that the normalized time to establishment at p = 1 is inversely related to birth rate,

such that the curve with the lowest growth rate exhibits the lowest normalized time to
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Figure 3.6: Plot of the normalized time in years to establishment of a species invading a

small world network with varying sets of migration rates v and birth rate r. Parameters

n = 50, m = 2, r = 0.01, K = 5000, and establishment threshold is set at 100. Rewiring

probability is parameter p.

establishment at p = 1 can be explained by considering the contribution of long distance

connections in the spread of the invasion. One possible explanation is that the long

distance connections contribute more in invasions with low birth rate because the time

it takes for an invasion to spread via diffusion across the network would be much longer

than for an invasion with a higher growth rate. Thus, at low values of p, the invasion

process is extremely slow with low birth rate, but increases rapidly with an increasing

number of long distance connections. This could also explain the large gap between the

curves. Perhaps this phenomenon is only visible at sufficiently low birth rate.

By varying both parameters v and r concurrently, in Figure 3.6, we see that values

of the time to establishment at p = 1 supports the results from varying the parameters

separately. However, if we look at the absolute time plot in Figure 3.7, we notice two main

differences. Note the change on the y-axis to the number of years, rather than a normalized
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Figure 3.7: Plot of the absolute time in years to establishment of a species invading a

small world network with varying sets of migration rates v and birth rate r. Parameters

n = 50, m = 2, r = 0.01, K = 5000, and establishment threshold is set at 100. Rewiring

probability is parameter p.

value. First, we notice that while the values of T (p)/T (0) between the curves diverge as p

increases, the absolute time values of T (p) converge as p increases. One possible reason for

this is that in the initial regular graph, the shortest path between opposite nodes is longer

than in the random graph. Different combinations of parameters v and r could produce

slower or faster spreading invasions. As that path length decreases as p increases, any

difference in the spread rate between parameter combinations is diminished since there is

less distance to cover.

Additionally, we find that the curves tracing absolute time to establishment vs. p

converge in a different order at p = 1 than those of normalized time to establishment.

Here, the curve with the intermediate value of v and the lowest value have switched

places. It seems that in absolute terms, the curve with v = 0.1 still results in the fastest

establishment. There is possibly some interplay between these parameter values and
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invasion dynamics that we do not completely understand.
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Chapter 4

Stochastic Modeling

4.1 Stochastic Model

The stochastic simulations are carried out in a continuous-time Monte Carlo simulation

using the Gillespie algorithm (Gillespie, 1977). Generally, we calculate what happens

over a series of time steps, where in each time step one individual is either born, dies,

or migrates between nodes. We keep track of the number of individuals in each patch

and determine what happens at each time step based on the probability of each state

transition: birth, death, or migration.

The birth and death rates bi and di respectively, for a population Ni in each node,

were chosen as:

bi = rNi (4.1)

di = r
N2

i

K
. (4.2)

This choice is easily related back to the logistic ODE in Equation 1.1. We can expand

the equation and rearrange the terms as:

dN

dt
= rN − rN

2

K
, (4.3)
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where the birth and death rates are represented by the positive and negative terms re-

spectively.

The total migration rate M is defined as the total number of individuals in the state

vector. This is because each individual has a possibility of migrating. However, the

majority of migrations are self-loops, which do not result in any population transfer.

Notice this migration rate is defined as the total migration rate for the implementation

of the Monte Carlo simulation, and is different from v, the parameter which relates to

individuals that actually migrate out of a node:

M =
n∑

i=1

Ni. (4.4)

Transitioning between different population states is a Poisson process with a mean

rate of Rtot. Rtot is equal to the sum of all birth, death, and migration rates,

Rtot =
n∑
i

bi +
n∑
i

di +
n∑
i

Ni,

and the time between events is then exponentially distributed with mean R−1tot .

The algorithm to simulate a biotic invasion is implemented as described: First, initial-

ize the state vector st as described for the deterministic models. At each time step, record

the values in each patch in st. To generate the time to the next event τ , we first draw

a uniformly distributed random number u ∈ (0, 1]. This is converted to an exponentially

distributed number by:

τ =
ln( 1

u
)

Rtot

. (4.5)

After we have found the time step, we determine whether a birth, death, or migration

event has occurred. This is done by assigning a numerical range to each event proportional

to the fraction of its rate over the total rate Rtot, then seeing where u falls relative to these

ranges after normalizing it to the total rate. Specifically, we first multiply u by the total

rate Rtot. Then, we decide which type of event occurs. If the relation Rtot < M is true,

a migration event occurs. Otherwise, we know a birth or death event has occurred. To
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decide between the two, we generate another random uniform number u, and multiply it

by the sum of the birth and death rates. Then we perform the test
∑n

i bi+
∑n

i di <
∑n

i bi.

If the result is true, then a birth occurs, and otherwise, a death occurs.

We repeat the process of drawing uniform random numbers and placing them within a

range to determine which patch or patches are involved in the event that occurs. For birth

and death this involves drawing u, then multiplying by the total number of individuals in

the state vector. To determine which patch the birth occurs in, we follow a similar process

as described in the previous paragraph in assigning each patch a birth rate as defined in

Equation 4.1 and testing whether the process occurs in each path consecutively, stopping

if we find the one where birth occurs. Death is determined in a similar manner using the

equation 4.2.

For migration the process involves drawing two numbers, one for the source node and

one for the destination node. To determine the source node, we first multiply the number

u by the total number of individuals in the state vector. The process of determining which

patch is the source is the same as above, but the rate value we assign to each patch is

simply the number of individuals in that patch. To determine the destination node, the

rate is determined by the value of pij from the transition matrix, where j would be the

source node we just found and we iterate through values of i to find the destination.

To generate a plot of population vs. time that we can compare against the determin-

istic model, we run the algorithm described above for 1000 years.

4.1.1 Results

In the introduction we stated that a large proportion of invasive species introductions do

not establish stable colonies, and that those that do experience a lag period before growing.

However, in the deterministic model analysis section, we showed that the extinct state of

our population growth function is unstable. This means deterministically we would expect

any introduction to grow to carrying capacity. The difference between the deterministic
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Figure 4.1: Migration rate v = 0.01. Plot (a) shows the entire 1000-year trajectory of

each population patch while plot (b) shows a shorter time frame where stochastic effects

are most apparent. Other parameters K = 500, r = 0.01.

model and biological reality is that in reality stochastic effects can play a large role in a

colony’s establishment. Stochastic effects are particularly significant in populations with

a small number of individuals and small migration rates, both of which are properties of

invasive species introductions.

Here we present some results from the comparison of the deterministic ODE model

and the stochastic Monte Carlo simulation. The following are multi-panel plots of 1000-

year simulations of the deterministic model (solid line) and the stochastic model (dashed

line) with constant parameter values K = 500, r = 0.01. We initialize the invasion in

patch 1 and record its spread to patches 2 and 3. These figures illustrate the increasing

magnitude of stochastic effects at low population levels and migration rates.

We note that in all of these simulations, the overall pattern is that all populations

reach equilibrium. This is reasonable because our birth and death processes mimic the

logistic growth function, which has an unstable extinct state. At low population, the

35



Figure 4.2: Migration rate v = 0.001, other parameters K = 500, r = 0.01.

Figure 4.3: Migration rate v = 0.0001, other parameters K = 500, r = 0.01.

migration out of a patch is negligible, so the probability of a series of chance events

driving a new population experiencing logistic growth to extinction is incredibly small
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Figure 4.4: Migration rate v = 0.0001, other parameters K = 100, r = 0.01. This plot

shows that patch dynamics can become highly varied when the population sizes are low.

when there is a source feeding into it. As a result the stochastic model more or less traces

the deterministic model with small perturbations.

However, these figures show that the fit between the deterministic and stochastic model

breaks down over certain time and parameter regimes. Specifically the regime where

stochastic effects are most apparent is in the initial lag period before logistic growth

is high, when population is low and population dynamics are primarily controlled by

migration. While in the deterministic model, the populations in patches 2 and 3 grow at

the same rate, this is not true of the stochastic model. Due to low migration rates and

birth rates at low population, if one of the sink patches happens to receive an introduction

early on, its population will grow much more rapidly than the others, as seen in Figure

4.4.
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Previously we discussed Allee effects as more biologically realistic than logistic growth

models. The subject of Allee effects in stochastic simulations is discussed in the concluding

chapter as a possible topic of future work.
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Chapter 5

Conclusions

5.1 Summary

In this section we will summarize the results of this thesis. We first developed our n

dimensional deterministic network model and analyzed it. We found the fixed points

and stability of the 1 dimensional system, which is simply logistic growth of a single

population, to be the same for our discrete map in Equation 2.4 as the stability of the

original continuous logistic equation (1.1) from which it was derived. For populations

with a positive growth rate r, we find that the extinct state is unstable while there is

a stable fixed point at the carrying capacity K. We presented a portion of the analysis

of the 2 dimensional system, though did not include calculations for a positive non-zero

fixed point due to its complexity. We found that the stability result for the extinct state

held in the more complex 2 dimensional system. This result was that the extinct state is

unstable. For modeling higher dimensional networks, we relied on numerical simulations.

We implemented deterministic and stochastic versions of this model in R. We explained

how the discrete time map we developed in Equation 2.4 differs from the integrated ODE

model in Equation 2.16 in dependence on parameters v and possibly r. We found that

the discrepancy is negligible for relevant parameter values in this study and leave it for
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future work to determine the exact relationship between the discrete time and continuous

time models.

We introduced small world networks and used them to study the effects of random

dispersal events on the transient properties of a biotic invasion. We measured the speed

of an invasion by measuring a metric called time to establishment. This was the time it

took for an invasive population establish on the diametrically opposite node from where

the invasion began. We recorded the normalized and absolute time to establishment for

multiple parameter sets at increasing values of p, the rewiring probability of the small

world network generator. We found that the normalized time to establishment generally

decreases in relation to rewiring probability, which we hypothesize relates to a decrease

in characteristic path length with increasing p, resulting in an increasing number of long

distance connections between nodes, thought to be a significant component of invasive

species dispersal. Further work in this area could include investigation into characteristic

path length, clustering coefficient, and other network properties and how they influence

spread dynamics.

We found that the results from the numerical simulations on the stochastic model

generally followed a growth pattern expected from our analysis of steady states in our

deterministic network model. We identified regimes where stochastic effects were most

relevant: low migration rate and small population. However, we found that long-term

behavior of the deterministic and stochastic models agreed. Any node that received an

introduction grew its population to the carrying capacity. Allee effects would be a good

direction to take future work, recalling that the stability of the extinct state switches from

unstable to stable with the introduction of a strong Allee effect.
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5.2 Future Work

5.2.1 Allee Effect

We previously introduced the Allee effect as an extension of the logistic growth equation.

The resulting ODE incorporating an Allee effect into logistic growth is defined in Equation

1.2. We noted that there is a difference in steady states between this model and the original

ODE in Equation 1.1. In the Allee model, there are three fixed points: 0, A (the Allee

threshold), and K. Recall that 0 < A < K. The extinct state, 0 is stable, the Allee

threshold is unstable, and the carrying capacity is stable.

The difference in steady states and stability underly a significant difference between

our current stochastic model and a biologically realistic one. In real landscapes introduced

populations do not necessarily tend towards carrying capacity; instead, many small pop-

ulations fail to establish. This effect is described by the change in steady state stability of

a logistic growth model under an Allee effect. A future direction for research would be the

implementation and analysis of a growth function incorporating an Allee effect. Updating

the continuous time Monte Carlo simulation using birth and death rates associated with

that model would likely yield interesting results when tested under low migration rate

and low population.

5.2.2 Networks

In the small world section we noted that the normalized time to establishment metric we

tested followed the same shape as the normalized mean clustering coefficient. It might be

fruitful to further investigate how clustering affects spread dynamics and also what other

network properties might be important in the same respect. It is not intuitively clear why

clustering coefficient would impact time to establishment and so the connection may be a

coincidence or related to a confounding variable, perhaps another network property that

is dependent on node clustering.
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Another topic of interest in many networks is the presence of hubs. Hubs, defined

non-technically, are nodes which experience a large volume of of incoming and outgoing

traffic relative to other nodes. As discussed in the introduction in Chapter 1, in Floerl

et al. (2009), once an invasive species has established in a hub, it plays a large role in the

spread of that species to many secondary locations, having considerable impact on the

overall spread dynamics. Hubs in network models have a direct real world significance,

corresponding to regions that experience large volumes of traffic, such as population and

shipping centers. For example, in Kaluza et al. (2010), researchers found that highly

trafficked ports were on coastlines that had high numbers of marine invasive species. Hubs

as hotspots for the spread of invasive species could be a promising direction for future

research. This type of research could be particularly useful for environmental managers,

who could employ this type of knowledge to best allocate limited resources to transport

hubs where they would have the largest impact.
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