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Abstract 

 Helicobacter pylori is a gram-negative bacterium that colonizes the human gastric 

mucosal layer of 50% of the world’s population. H. pylori utilizes a variety of adhesin proteins to 

adhere to the gastric epithelial layer, allowing the bacterium to successfully colonize its host, 

gain access to nutrients, and persist even during gastric mucosal shedding. The present study 

investigates transcriptional regulation of adhesin-encoding genes sabA and hopZ in the H. pylori 

strain J99. Several adhesin-encoding genes, including sabA and hopZ, possess a repeating 

homopolymeric nucleotide tract within their promoter region and a poly-cytosine-thymine (poly-

CT) tract downstream of the translational start site. Strain J99's sabA promoter homopolymeric 

tract consists of 18 thymines, whereas the hopZ promoter has a poly-adenine tract composed of 

14 adenines. Both sabA and hopZ are phase-off , i.e., full-length protein cannot be synthesized, 

in the wild-type based upon poly-CT tract repeat lengths of 8 and 6 respectively. We used site 

directed mutagenesis to extend and truncate the poly-thymine or poly-adenine tract to determine 

whether altering lengths of these homonucleotide tracts affects transcription frequency of sabA 

or hopZ. Using qRT-PCR, we found that extending or truncating the poly-thymine tract of sabA 

or the poly-adenine tract of hopZ by five thymines or adenines respectively increases 

transcription frequency of these adhesin-encoding genes. In addition, alterations in the poly-CT 

tract of sabA to switch phase status to phase-on led to significant increases in transcription 

frequency of sabA. However, phase-on and poly-T tract extension mutations did not have 

synergistic effects on sabA transcription frequency. Phase-on mutations, but not poly-thymine 

tract mutations, increased H. pylori’s adhesion to human gastric epithelial cells. Not only did the 

phase-on mutants increase H. pylori adhesion, but also induced more inflammatory cytokine 

interleukin-8 (IL-8) production by the human gastric epithelial cells. Overall, the present study 
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examines different mechanisms of H. pylori adherence regulation at the genetic level and effects 

on the host inflammatory immune response.  

Introduction 

Helicobacter pylori 

 Helicobacter pylori is a gram-negative bacterium that colonizes the human gastric 

mucosal layer of 50% of the world’s population, making it one of the most prevalent human 

bacterial infections (Brown, 2000). Early research linked H. pylori infection to the development 

of ulcers, gastritis, and gastric adenocarcinoma (Marshall & Warren, 1984; Blaser et al., 1995). 

Since then, many studies have provided overwhelming evidence supporting H. pylori-specific 

induction of these gastric pathologies. As a result, the World Health Organization classified H. 

pylori as the sole bacterial Class I carcinogen, meaning there is sufficient evidence of 

carcinogenicity in animal models and humans (World Health Organization, 2015).  

H. pylori has co-evolved with humans for tens of thousands of years (Atherton & Blaser, 

2009). It was first discovered and characterized by Australian scientists, Barry Marshall and 

Robin Warren, in 1982. They observed the consistent presence of this bacterium in the stomachs 

of patients who exhibited gastritis and peptic ulcers (Marshall & Warren, 1984). Twenty-three 

years later, Marshall and Warren won the Nobel Prize for their discovery of H. pylori and its link 

to the development of gastric inflammation.  

The link between H. pylori and gastritis, peptic ulcer disease, and gastric cancer sparked 

great interest in understanding how H. pylori can elicit disease and how the infection is 

transmitted. Several clinical studies demonstrated that H. pylori infection in children is more 

likely to occur when one or both parents of the child are infected (Malaty et al., 1991; Oderda et 

al., 1991). H. pylori is generally believed to be transmitted via a fecal-oral or oral-oral route, 
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usually from mother to child (Brown, 2000; Oshio et al., 2009).  H. pylori transfer via a fecal-

oral route is evidenced by increased H. pylori infection prevalence in developing countries with 

limited access to clean water (Aziz et al., 2015). 

Marshall and Warren’s discovery of H. pylori within the stomach was challenged because 

the highly acidic environment of the stomach was thought to create an inhospitable environment 

for bacteria. Later studies investigated the question of how H. pylori survives in such a highly 

acidic environment. A few years after the bacteria’s discovery, researchers found that H. pylori is 

able to hydrolyze urea via a cytoplasmic protein called urease (Mobley et al., 1988). Although 

urease is characterized as a cytoplasmic protein, it is also localized outside of or associated with 

the H. pylori outer membrane (Dunn & Phadnis, 1998). By hydrolyzing urea, H. pylori generates 

ammonia, which surrounds the bacterium in a basic microenvironment, protecting the bacterium 

from the harsh, acidic environment of the stomach (Chen et al., 1997). 

Pathogenicity 

 Although 50% of the world’s population is infected with H. pylori, not all those infected 

develop H. pylori-associated pathologies (Brown, 2000). Genetic analysis of H. pylori present in 

patients with gastric cancer revealed the frequent presence of an island of DNA within these H. 

pylori isolates not frequently present in isolates of H. pylori from patients without Peptic Ulcer 

Disease (PUD) or gastric cancer (Ali et al., 2005; Mattar et al., 2007). This island of DNA, 

termed a pathogenicity island (PAI) encodes a Type IV Secretion System (T4SS), and was 

named the cytotoxin-associated gene pathogenicity island (cagPAI). The cagPAI also encodes a 

toxic effector protein, CagA. Interestingly, the origins of the cagPAI are unknown. 

Since the discovery of this pathogenicity island, several studies have demonstrated ulcer, 

gastritis, and gastric adenocarcinoma development correlated significantly with cagPAI-positive 
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H. pylori infection in different populations (Blaser et al., 1995). A major conclusion from these 

studies underscores the idea that patients infected with cagPAI positive H. pylori strains are 

more likely to develop gastric cancer than those patients infected with cagPAI negative strains or 

not infected by H. pylori at all (Blaser et al., 1995).  

CagA Signaling 

 Mounting evidence regarding the involvement of CagA in the development of gastric 

cancer led researchers to investigate further the CagA signaling pathway within the gastric 

epithelial cells and its potential effects on oncogenes and immune system response.  

CagA contains unique C-terminal glutamate-proline-isoleucine-tyrosine-alanine (EPIYA) 

repeated motifs (Müller, 2012). Schematically, EPIYA motifs are divided into distinct repeat 

regions A, B, and C (Figure 1). Eastern strains of H. pylori often do not possess a C repeat 

region, and instead possess a D repeat region (Müller, 2012). Upon translocation via the T4SS 

encoded by the cagPAI from H. pylori to host epithelial cell, CagA is first phosphorylated at a 

tyrosine residue within the EPIYA-C motif by the host c-Src kinase early in infection (Müller, 

2012). This phosphorylation event primes CagA to be subsequently phosphorylated by another 

host kinase, c-Ab1, at a different EPIYA motif site (Müller, 2012) (Figure 1). Phosphorylated 

CagA activates host intracellular SHP-2 tyrosine phosphatase that subsequently activates the 

Ras/Erk pathway as well as dephosphorylates Focal Adhesion Kinase (FAK), thus inducing 

morphological elongation of the host epithelial cell (Müller, 2012). However, unphosphorylated 

CagA can affect other signaling pathways such as STAT3 and PAR1b to disrupt tight junctions 

between gastric epithelial cells (Müller, 2012). Overall, the injection of CagA into host epithelial 

cells can elicit a variety of responses due to alterations in signaling cascades.  
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Figure 1: CagA phosphorylation pathways. CagA is phosphorylated by host Src and Ab1 kinases 
at different EPIYA motifs upon translocation. Only certain combinations of EPIYA phosphorylation 
patterns can activate the Ras-Raf pathway (Adapted from Müller, 2012). 
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H. pylori Induces Interleukin Expression 

 Correlational studies demonstrated that gastric epithelial cells in patients infected with 

cagPAI positive strains of H. pylori tend to express more interleukins, such as interleukin-8 (IL-

8) and interleukin-6 (IL-6) (Brandt et al., 2005; Nakagawa et al., 2013). Both IL-8 and IL-6 act 

as inflammatory chemokines that help recruit leukocytes to the site of H. pylori infection (Ataie-

Kachoie et al., 2014; Harada et al., 1994, Brandt et al., 2005, Nakagawa et al., 2013). In addition 

to these functions, IL-6 promotes the maturation of B cells (Ataie-Kachoie et al., 2014). 

Although IL-8 and IL-6 expression is usually beneficial to the host as it triggers an immune 

response to infection, high expression levels of IL-8 and IL-6 are associated with the promotion 

of gastric tumorigenesis and metastasis (Kitadai et al., 1998; Lee et al., 2013; Zhu et al., 2014, 

Kinoshita et al., 2013).  

 Previous studies on colorectal and breast cancer, demonstrated that tumor cells 

overexpress IL-8, which was quantified in patient samples and cell lines using Southern Blots 

and quantitative polymerase chain reaction (qPCR) (Ning et al., 2011; Freund et al., 2009). This 

overexpression of IL-8 has also been linked to epithelial and tumor cell proliferation, and even 

resistance to chemotherapy (Waugh & Wilson, 2008; Ning et al., 2011). IL-8 overexpression has 

been associated with increased angiogenesis within the stomach, which increased likelihood of 

tumor cell proliferation, cell movement, and metastasis (Kitadai et al., 1998; Lee et al., 2013). 

Mesenchymal stem cells (MSCs) present in gastric cancer activate neutrophils through IL-6 

signaling via STAT3 and promote the differentiation of these MSCs into cancer-associated 

fibroblasts (CAFs) (Zhu et al., 2014).  Increased IL-6 production and signaling through STAT3 

can promote tumorigenesis (Kinoshita et al., 2013), as evidenced by impaired H. pylori-induced 

gastric tumor development in IL-6 knockdown mice. Overall, the increased angiogenesis and 
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tumor formation as a result of hyper-interleukin production can increase the severity of gastric 

cancer and likelihood of tumor metastasis (Kitadai et al., 1998; Lee et al., 2013; Zhu et al., 2014, 

Kinoshita et al., 2013). Subsequent investigations on the molecular mechanisms behind H. 

pylori’s induction of interleukins have proposed different pathways such as CagA-dependent 

and/or T4SS-dependent pathways.  

 One such pathway is the CagA-independent, cagPAI-dependent induction of interleukin-

8 (IL-8) (Gorrell et al., 2013; Boonyanugomol et al., 2013). Cag positive strains of H. pylori 

utilize CagL, a structural protein within the T4SS, to interface with gastric epithelial cells 

(Cover, 2012). Association of CagL with its receptor integrin α5β1 induces IL-8 production in 

vitro (Yeh et al., 2013). CagL achieves this by initiating the α5β1-Src-Ras-Raf-ERK pathway, 

which leads to the activation of NF-κB, an essential transcription factor for IL-8 expression 

(Gorrell et al., 2013; Schlaepfer & Hunter, 1998) (Figure 2). 

On the other hand, H. pylori also utilize a CagA-dependent pathway for increased IL-8 

production, most notably later in the infection time course. Similarly to studies done with CagL, 

translocation of functional CagA has been linked to increased activation of NF-κB (Brandt et al., 

2005). In addition, CagA-dependent IL-8 production is dependent on functional small GTPase 

protein Ras and mitogen-activated kinases Raf and MEK, thus suggesting that CagA induces IL-

8 through a Ras-Raf-Mek-Erk-NF-κB pathway (Brandt et al., 2005).  

Several studies have linked the presence of CagA with increased IL-8 production at later 

points (Sokolova et al., 2013). However, other recent studies demonstrated that it is in fact the 

presence of a functional T4SS that is the essential feature in increased IL-8 production rather 

than the presence of functional CagA at earlier time points (Sokolova et al., 2013). A study by 

Sokolova, et al., in 2013, demonstrated that infection with either a wild-type H. pylori strain or a 
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cagA mutant strain induced phosphorylation and degradation of IKBα, an inhibitory protein of 

NF-κB. On the other hand, the virB7 mutant strain of H. pylori, which is unable to synthesize the 

pilus of the T4SS, did not exhibit phosphorylation and degradation of IKBα. These results 

indicate that the release of NF-κB as a result of IκBα phosphorylation and subsequent 

degradation of IκBα is T4SS-dependent and CagA-independent in earlier time points (Sokolova 

et al., 2013).  

 A recent study investigated the role of microRNAs (miRNA) in host interleukin 

production in response to H. pylori infection (Cheng et al., 2015). miRNAs are small regulatory 

Figure 2: CagL-Dependent CagA-Independent IL-8 Activation. α5β1-Src-Ras-Raf-ERK 

pathway is essential in CagL-dependent and CagA-independent induction of IL-8 expression 

(Adapted from “Qiagen- ERK Signaling,” n.d. and Smith & Marshall, 2010). 
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RNAs that promote the degradation of target mRNAs post-transcriptionally. Previous studies 

have demonstrated that infection with cag positive strains of H. pylori induces overexpression of 

interleukin-6 (IL-6) (Cheng et al., 2015), which allows for the recruitment of leukocytes to the 

site of H. pylori infection to help clear it (Scheller et al., 2011). Gastric epithelial cell miRNA-

155 and miRNA-146b, which are negative regulators of IL-6, are upregulated when gastric cells 

are infected with cag positive H. pylori (Cheng et al., 2015). Upregulation of these miRNAs was 

demonstrated through integrative analyses of gastroduodenal ulcer biopsies. In order to analyze 

the effects of miRNA-155 and miRNA-146b, AGS cells were transfected with these miRNAs 

and then co-cultured with cag positive H. pylori. IL-6 expression was then analyzed using 

Western Blotting and immunohistochemistry (Cheng et al., 2015). Through an undiscovered 

mechanism, H. pylori promotes the expression of miRNA-155 and miRNA-146b, which leads to 

a decrease in IL-6 expression (Cheng et al., 2015). These findings further our understanding of 

how H. pylori can impair host immune response in chronic infection. 

H. pylori Promotes Oncogenesis  

As previously discussed, cagPAI positive H. pylori strains have been frequently linked to 

the development of ulcers, gastritis, and gastric cancer (Blaser et al., 2005). Various studies 

investigated the impact of CagA and the T4SS on oncogenic targets within host cells subjected to 

H. pylori infection. One protein marker used in the diagnosis and prognosis of gastric cancer is 

osteopontin (Chang et al., 2015). Osteopontin is a protein involved in immune response, 

inflammation, and apoptosis regulation (Chang et al., 2015). Increased levels of osteopontin 

(OPN) lead to inhibition of apoptosis, which can contribute to the development of cancer. In one 

study, CagA significantly increased the expression of intracellular osteopontin (iOPN), as 

quantified by Western Blotting, in human gastric epithelial cells (Chang et al., 2015). In 
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addition, the functionality and adhesion of the T4SS via adhesion protein CagL was also required 

for this increase in iOPN (Chang et al., 2015). Increase of iOPN is specifically associated with 

increased production of IL-8 as demonstrated by  the decrease in IL-8 protein when gastric 

epithelial cells were treated with small interfering RNA (siRNA) targeting iOPN. Additionally, 

accumulation of β-catenin, a protein involved in epithelial cell adhesion, results from increased 

production of IL-8, as demonstrated by similar techniques (Chang et al., 2015). 

In addition to affecting osteopontin expression, the CagA can also impact DNA copy 

number and transcriptional expression of certain oncogenes, such as the gene for human 

epidermal growth factor receptor-2, otherwise known as HER-2 (Shim et al., 2014). HER-2 

encodes for a membrane tyrosine kinase receptor (Sun et al., 2015; Guiterrez & Schiff, 2011). Its 

activation has been linked to tumor cell proliferation (Sun et al., 2015; Guiterrez & Schiff, 

2011). Patients with breast cancer exhibit an overexpression of HER-2, demonstrating the role of 

HER-2 in the development of cancer (Gutierrez & Schiff, 2011). H. pylori can trigger the 

overexpression of HER-2 in human gastric epithelial cell lines via induction of increased HER-2 

copy number, quantified by RT-PCR and immunoblotting, as a result of CagA translocation 

(Shim et al., 2014). Although the exact mechanism has not been fully elucidated, one study 

(Shim et al., 2014) found that CagA translocation in conjunction with exposure to hydrogen 

peroxide led to an increase in reactive oxygen species (ROS) and HER-2 copy number, 

transcription, and translation. However, when exposed to radical scavenger TEMPOL 

(Chatterjee et al., 2000), the increased amounts of ROS and HER-2 copy number were reverted 

(Shim et al., 2014). These findings suggest that increased HER-2 copy number may be a result of 

CagA’s induction of ROS.  
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CagA and CagL can work in concert to promote oncogenesis within the gastric 

microenvironment. One particular CagL amino acid polymorphism Y58/E59 is associated with 

increased CagA phosphorylation, downstream IL-8 expression, integrin protein β1 activation, 

and integrin protein α5 expression (Yeh et al., 2013). Although studies demonstrate a variety of 

consequences associated with this polymorphism, there are currently no studies explaining why 

these specific amino acid substitutions elicit these changes. Yeh and colleagues' study observed 

most CagA phosphorylation between a pH of 5-7. However, lowest CagA phosphorylation 

occurred at more acidic conditions with a pH of 4.4 (Yeh et al., 2013). The CagL Y58/E59 

mutant demonstrated higher amounts CagA phosphorylation and translocation into epithelial 

cells and subsequent increased IL-8 production (Yeh et al., 2013). Integrin β1 and α5 were found 

to be activated and expressed more at a neutral pH in CagL Y58/E59 mutants (Yeh et al., 2013). 

These key changes are essential in understanding the persistence of oncogenesis due to H. pylori. 

Chronic H. pylori infection can lead to de-acidification of the stomach microenvironment (Zhao 

et al., 2003) and, therefore, increased expression and activation of key proteins involved in 

oncogenesis pathways.  

H. pylori Adhesion 

 In vivo, H. pylori exists both bound to gastric epithelial cells or actively navigating within 

the gastric mucus layer. H. pylori adherence to gastric epithelial cells increases the bacterium’s 

access to nutrients from host cells and prevents clearance of the bacterium when the mucus layer 

is shed. However, adherence may be detrimental to the bacterial population if the host exhibits a 

strong inflammatory immune response to the presence of H. pylori.  

H. pylori utilizes a variety of outer membrane proteins, called adhesins, to bind to gastric 

epithelial cells. These proteins include BabA, SabA, AlpA, AlpB, OipA, HopZ, and HomB. 
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BabA, which binds to Lewis b antigens presented on gastric epithelial cells, was one of the first 

and most well characterized adhesin proteins of H. pylori. Expression of the babA gene at the 

transcriptional and translational level is regulated via phase variation resulting from 

polymorphisms of the poly-cytosine-thymine (poly-CT) dinucleotide tract within the 5’ coding 

region. Due to its repetitive nature, the poly-CT dinucleotide tract is susceptible to slip-strand 

mispairing which is an error that results during genome replication. Errors that result from slip-

strand mispairing can lead to extensions or truncations of repetitive nucleotide tracts, which can 

therefore alter the frame and thus the expression or “phase” status of transcribed mRNA from 

the gene. babA has two paralogous genes, babB and babC, which are hypothesized to originate 

from duplication events of the babA gene. As a result, babA expression is also regulated via 

ectopic gene conversion with these slightly divergent paralogous genes. Interestingly, adherence 

mediated by BabA has been shown to potentiate the Type IV Secretion System (T4SS) encoded 

by the cag pathogenicity island (Ishijima, 2011).  

Sialic acid binding protein A, otherwise known as SabA, is another adhesin protein that 

shares some characteristics with BabA. SabA binds sialyl-dimeric-Lewis x antigens present on 

gastric epithelial cells as well as sialylated structures on mucins, neutrophils, and erythrocytes 

(Oleastro & Menard, 2013). Like babA, the sabA gene is regulated via phase variation of a poly-

CT tract through a slip-strand mispairing mechanism and ectopic gene conversion with its 

paralogous gene sabB of unknown function (Goodwin et al., 2008; Talarico et al., 2012). In 

addition, sabA expression is repressed by phosphorylated ArsR protein in response to increased 

acidity signaled through the ArsRS two-component signal transduction (TCST) system 

(Goodwin et al., 2008). 
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Hypothetical outer membrane protein Z, or HopZ, has been recently identified as an 

adhesin, but its receptor has yet to be determined. Again, similarly to the regulation of babA and 

sabA, hopZ expression at the transcriptional and translational levels is regulated via slip-strand 

mispairing phase variation of a poly-CT tract within its coding region (Kennemann et al., 2012). 

Other possible mechanisms of hopZ expression regulation have yet to be elucidated.  

Because H. pylori adhesion can be a benefit or a detriment to the bacterium’s fitness 

depending on the environment, tight regulation of adhesin protein expression is essential. 

Interestingly, the promoter regions of several adhesin and putative adhesin genes contain a 

unique homopolymeric tract composed of either thymines or adenines. For example, in one of 

the first strains of H. pylori to be completely genetically characterized (Alm et al., 1998), J99, 

sabA contains a poly-thymine (poly-T) tract composed of 18 tandem thymines from the -50 to     

-33 relative to the transcriptional start site, whereas hopZ contains a poly-adenine (poly-A) tract 

composed of 14 adenines from -37 to -24. Similarly, putative adhesin sabB also possesses a 

poly-T tract of 10 thymines from -42 to -33 The conserved presence of these repetitive homo-

polymeric tracts within the promoters of putative adhesin protein-encoding genes suggests that 

these tracts may play a role in the regulation of adhesin gene expression.  

H. pylori is a complex bacterium that has evolved over thousands of years to colonize the 

human stomach and persist throughout the host’s lifespan. In some cases, the presence of H. 

pylori can be detrimental to the host, causing inflammation, PUD, gastritis, and/or gastric cancer. 

Understanding the regulation of H. pylori adherence to the gastric epithelium and implications of 

increased adherence on host health will elucidate H. pylori’s ability to persist in the hospitable 

environment of the stomach and elicit disease.  
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Research Goals and Experimental Methods 

 H. pylori adherence is critical to successful colonization of the host and persistent 

infection. The adhesin-encoding sabA gene is an excellent model for studying the genetic 

regulation of H. pylori adherence because the SabA protein is very well-characterized (Yamaoka, 

2008; Pang et al., 2013; Aspholm et al., 2006) and many of the sabA promoter and phase 

variable motifs are observed in other putative adhesin-encoding genes (Alm et al., 1998; Tomb et 

al., 1997). Although H. pylori colonization is beneficial to the bacterium, this may elicit 

abnormal gastric pathologies within the host stomach, often initiated by the toxic effector protein 

CagA. The main goals of this study are to examine common regulatory mechanisms of adhesin-

encoding gene expression and investigate the effects of increased H. pylori adherence on host 

cell inflammatory response. The main regulatory motifs this study focuses upon include homo-

polymeric tracts within the promoter region and poly-CT tracts downstream of the transcriptional 

and translational start sites. Mutations were created in the homo-polymeric and poly-CT tracts of 

adhesin-encoding genes sabA and hopZ as well as putative adhesin-encoding gene sabB. Gene 

transcription of these mutant H. pylori strains was quantified using qRT-PCR. Adhesion assays 

were also conducted to determine differences in H. pylori mutant adhesion to gastric epithelial 

cells. Following these experiments, enzyme-linked immunoabsorbent assays were performed to 

quantify and compare gastric epithelial cell inflammatory cytokine IL-8 production in response 

to increased H. pylori adherence. Overall, this study explores expression regulation of H. pylori 

adhesin-encoding genes and effects of hyper-adherence on host inflammatory immune response 

in an in vitro model. 
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Methods 

H. pylori Culture 

H. pylori strain J99 was cultured on tryptic soy agar II with 5% sheep’s blood (BBLTM) 

for 24-48 hours at 37°C in an ambient air/5% CO2 atmosphere. Liquid cultures of H. pylori were 

grown in sulfite-free Brucella broth supplemented with 10% newborn calf serum, or 1X 

cholesterol (Gibco® by Life TechnologiesTM), and 20µg vancomycin/mL shaking at 150 rpm.  

AGS Cell Culture 

 AGS cells were a gift from Timothy Cover of Vanderbilt University Medical Center. 

Cells were grown in RPMI Medium 1640 supplemented with L-glutamine (Gibco® by Life 

TechnologiesTM), HEPES (Gibco® by Life TechnologiesTM), 10% fetal bovine calf serum (FBS), 

and penicillin/streptomycin (P/S). Cultures were grown at 37°C in an ambient air/5% CO2 

atmosphere on either 6-well tissue culture treated plates (CytoOne®) or tissue culture flasks 

(PRIMARIATM).  

Cloning of sabA plasmids 

A 603 base pair amplicon including the 3’ end of jhp0663, the poly thymine (poly-T) 

tract, -35/-10 putative promoter sites, transcriptional start site, and 5’ coding region of sabA 

(jhp0662) was amplified using oligonucleotide primers HP0726 Fwd and sabAPolyT.R (Table 1) 

from H. pylori strain J99. The amplicon was initially cloned into pCR® 4-TOPO® (Invitrogen), 

sub-cloned into the EcoRI site of pBlueScript SK+ vector (Stratagene), and designated psabA.  

 To generate the control plasmid, the construct upon which all subsequent mutations were 

made, a chloramphenicol acetyltransferase (CAT) gene from Campylobacter coli was cloned as a 

SmaI/EcoRV fragment (Wang & Taylor, 1990) from pBSC103 (Ando et al., 1990) into a blunt-

ended Mlu1 site at the end of jhp0633, the gene immediately upstream of sabA. The resulting 
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control plasmid, selected for resistance to 25µg chloramphenicol/ml in E. coli DH5α, was 

designated psabA.T18 (Table 2). The orientation of the chloramphenicol resistance gene in this 

construct was confirmed by sequencing. 

The poly-T tract region of sabA within the control plasmid psabA.T18 was mutated to 

varying T tract lengths using mutagenic primers sabA.5T.F, sabA.5T.R, sabA.less5T.F, and 

sabA.less5T.R (Table 1). Mutagenic oligonucleotides were used with the GeneArt® Site-

Directed Mutagenesis System and Accu Prime™ Pfx polymerase (Life Technologies). 

Mutagenic primers were designed to match the sequence of the poly-T tract site and surrounding 

sequence, however modifications in the number of T’s were introduced, adding or subtracting 

five T’s. The primers were designed according to the manufacturer's specifications.  

For the second series of mutagenesis experiments introducing alternate sequence 

extensions, the forward and reverse primers introducing AAAAA, GGGGG, or the random 

sequence ACTAG upstream and immediately adjacent to the poly-T tract were designated 

sabA.5A.F, sabA.5A.R, sabA.5G.F, sabA.5G.R, sabA.Ran.F, and sabA.Ran.R respectively (Table 

1). Mutagenesis was carried out according to the manufacturer’s protocol using 40 ng of 

psabA.T18 per 50µl reaction. The mutagenesis product was analyzed by agarose gel 

electrophoresis, and underwent a recombination reaction and transformation into DH5α-T1R E. 

coli as suggested by the manufacturer’s protocol. 

Plasmids were generated with variant poly-T tract lengths of T13 and T23. In the process 

of creating plasmids with the expected new length of thymines, alternate length polymorphisms 

were isolated as well, possibly due to oligonucleotide poly-T tract length polymorphisms 

generated during oligonucleotide synthesis. Thus, three additional plasmids were isolated and 

confirmed via sequencing reactions and amplified fragment length polymorphism to have lengths 
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of T17, T16, and T22 (Table 2). They too were subsequently recombined onto H. pylori strain 

J99 genome via allelic exchange to further characterize the role of the poly-T tract in sabA 

expression. 

For additional mutagenesis experiments, plasmids were created to represent three 

different extended poly-T tracts; the T18 tract extended by the nucleotides AAAAA (psabA.A5), 

the random nucleotides ACTAG (psabA.Ran), or the nucleotides GGGGG (psabA.G5) at the 5’ 

end of the poly-T tract (Table 2). The mutated poly-T tract regions of all plasmids were 

confirmed via sequencing reactions performed using the Big Dye® Sequencing Kit (Applied 

Biosystems), using the primer CAT Fwd (Table 1).  

To examine whether phase variation and polymorphisms in the poly-T tract length have 

an additive effect on sabA transcription frequency, plasmids were created to turn the sabA gene 

phase-on through altering the poly-CT tract or turn the sabA gene phase-on and increase the 

promoter poly-T tract by five thymines. A mutagenic primer, sabA.On (Table 1) was designed to 

change the poly-CT tract length from a wild-type phase-off length of 8 CT’s to 7 CT’s, turning 

the sabA gene phase-on. This primer was used in QuikChange Lightning Multi System (Agilent) 

mutagenesis reactions with the psabA.T18 and psabA.T23 plasmids described previously. 

Mutagenesis reaction products were used to transform XL10-Gold Competent cells, which were 

selected for chloramphenicol resistance. The mutated poly-CT tract regions of phase-on plasmids 

were confirmed via sequencing reactions performed using the Big Dye® Sequencing Kit 

(Applied Biosystems), using the primer CAT Fwd (Table 1). Although the mutagenic primer was 

designed to decrease the poly-CT tract to a length of 7 CT’s, selected colonies from mutagenesis 

reactions had poly-CT tract lengths of 10 CT’s. This CT mutation in psabA.T18 and psabA.T23, 
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despite differing from the mutagenic primer, still turned the sabA gene phase-on without any 

other addition mutations.  

Cloning of hopZ plasmids 

Using primers hopZ.F2 and hopZ.R2 (Table 1), a 853 bp amplicon, including the 3’ end 

of the upstream gene, promoter sequence of hopZ, transcriptional start site of hopZ, and 5’ 

coding region of hopZ, was isolated using PCR from H. pylori strain J99. The resulting amplicon 

was cloned into a pCR® 4-TOPO® vector, confirmed through sequencing using the Big 

Dye® Sequencing Kit (Applied Biosystems) and hopZ.F2 primer, and designated phopZ (Table 

2).  

To create a hopZ control plasmid, similar to the one used in of sabA experiments, we 

designed a mutagenic primer hopZ.BglII to insert a BglII site 152 bp upstream of the 

transcriptional start site of hopZ and performed mutagenesis using GeneArt® Site-Directed 

Mutagenesis System and Accu Prime™ Pfx polymerase (Life Technologies). Mutagenesis 

reactions were cloned into DH5α-T1R E. coli as suggested by the manufacturer’s protocol and 

selected for ampicillin resistance on Luria broth (LB) plates containing 100 micrograms/mL 

ampicillin. Plasmids isolated from successfully transformed E. coli were digested using BglII 

restriction enzyme and associated buffer. Similarly to methods used in sabA cloning, a CAT gene 

originating from Campylobacter coli (Wang & Taylor, 1990), was ligated into the BglII site of 

the digested hopZ plasmid using T4 ligase. Ligation products were used to transform DH5α E. 

coli and colonies were selected for chloramphenicol resistance on LB plates containing 25µg 

chloramphenicol/mL chloramphenicol. Insertion and forward orientation of the CAT gene was 

confirmed via sequencing reactions with hopZ.F2 primer (Table 1). The resulting control plasmid 

was successfully generated and named phopZ.A14 (Table 2).  
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Mutagenic primers inserting (hopZ.A19F and hopZ.A19R) or deleting (hopZ.A9F and 

hopZ.A9R) five adenines (Table 1) were used to mutate phopZ.A14 using site-directed 

mutagenesis. Again, we transformed DH5α E. coli and colonies were selected for 

chloramphenicol resistance. Insertion and deletions in the poly-A tract were confirmed via 

sequencing reactions are were designated as phopZ.A19 and phopZ.A9 respectively (Table 2). 

Cloning of sabB plasmids  

 Primers jhp0658.F and sabB.Rev were used to isolate a 1658 bp amplicon from H. pylori 

strain J99 using PCR. Amplicon includes the promoter region of sabB, including the 3’ end of 

gene jhp0658, the poly-T tract from positions -42 to -33, the transcriptional start site of sabB, 

poly-CT tract, and 5’ coding region of sabB. This amplicon was cloned into the pCR® 4-

TOPO® vector and cloning reaction was used to transform DH5α E. coli and were selected for 

resistance to ampicillin. Plasmids were isolated from ampicillin-resistant E. coli colonies, 

sequenced using jhp0658.F primer (Table 1) to confirm the successful insertion of the sabB 

amplicon into the plasmid, and designated psabB (Table 2). 

 A mutagenic primer containing a BamHI restriction site from positions +676 to +711 

relative to the transcriptional start site of the amplicon (Table 1) was designed and used to 

introduce a BamHI restriction site into pSabB via site-directed mutagenesis using the 

QuikChange Lightning Multi System (Agilent). Mutagenesis reaction products were used to 

transform XL10-Gold Competent cells, which were selected for ampicillin resistance. 

Introduction of a BamHI site was confirmed by BamHI digestion and by sequencing. 

 A gene cassette containing the chloramphenicol acetyl transferase and rdxA gene (CAT-

rdxA) was isolated from pMM674 (Loh et al., 2011), a gift from Mark McClain of Vanderbilt 

University Medical Center, using BamHI restriction digest. Digestion reaction of the plasmid 
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was run on a gel via gel electrophoresis, and the CAT-rdxA cassette was isolated by gel 

purification. psabB was digested with BamHI restriction enzyme and the CAT-rdxA cassette was 

ligated in using T4 ligase. This plasmid is designated psabB.CAT-rdxA. psabB was mutated 

using mutagenic primers designed to delete or insert five thymines from the poly-T tract, 

sabB.T5 or sabB.T15 respectively, or insert one CT in the poly-CT tract (sabB.On) (Table 1). 

Plasmids are designated psabB.T5, psabB.T15, and psabB.On respectively (Table 2).  

Plasmid Purification and Isolation 

5mL of liquid LB/chloramphenicol + ampicillin were inoculated with a single isolated 

colony from the antibiotic plates. Liquid culture incubated at 37o C shaking at 225rpm for 16-

24hours. Cells were spun down at 4360 rpm. Cells were lysed and plasmids were isolated using 

Midsci Mini Hi-Speed Plasmid Kit. Concentrations of plasmid dsDNA were quantified using a 

nanophotometer (Implen).  

H. pylori Transformation 

Desired H. pylori strain to be transformed was grown from freezer stock for 3-5 days and 

passed onto 4 blood agar plates to grow for 24-36 hours. Cells were harvested in 1mL 0.9% 

NaCl saline solution and pelleted at 6000 rpm. H. pylori cells were resuspended in 100 

microliters of sulfite-free brucella broth with 10% NCS and vancomycin. Transforming plasmid 

were heat-sanitized at 80o C for 20 minutes to reduce contamination. 7-10 µg of plasmid were 

added to resuspended H. pylori cells. Mixture was spotted over 5 blood agar plates and incubated 

in 37o C, 5% CO2 for 4 hours. Spots were spread and plates were incubated for 37o C, 5% CO2 

for 24 hours. H. pylori was then harvested and passed onto sulfite-free brucella agar plates 

containing 10% newborn calf serum and the selection antibiotic chloramphenicol (10 µg/ml). 

Plates were incubated at 37o C, 5% CO2 for 3-5 days. 
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Genomic DNA Extraction 

H. pylori was grown for 24-48 hours in standard conditions. Cells were harvested in 1mL 

saline and spin down at 6000rpm. gDNA extraction via Promega Wizard Genomic DNA 

Extraction Kit was performed according to manufacturer’s suggested protocol. Cells were lysed 

using provided nuclei lysis solution. Proteins were precipitated and separated via centrifugation. 

Supernatant containing gDNA was transferred into isopropanol and mixed until it precipitated. 

gDNA was washed using 70% ethanol and rehydrated in rehydration buffer provided. 

Amplified Fragment Length Polymorphism (AFLP) Analysis 

To quantify the degree of slipped-strand mispairing and the variation in poly-T length 

found in the J99 wild-type, J99 T18 control mutant and J99 sabA poly-T variant populations of 

H. pylori, amplified fragment length polymorphism (AFLP) was conducted by a modification of 

the protocol of Hallinger et al. (Hallinger et al., 2012). Briefly, an oligonucleotide primer pair 

bracketing the poly-T tract was synthesized with a VIC tag on the 5' end of the reverse primer 

(Applied Biosystems/Life Technologies). Primers used in all AFLP were sabA IG Fwd and sabA 

IG Rev (Table 1). Amplicons generated were diluted by a factor of 50 and analyzed by ABI 3100 

Automated Fluorescent DNA Sequencer (ABI) using a Liz 300 molecular weights standard set 

and data analyzed using GeneScan (Life Technologies). 

RNA Extraction 

H. pylori strains of interest were grown on TSA II with 5% sheep blood (Benton-

Dickinson) at 37˚C in an ambient air/5% CO2 atmosphere. Broth cultures were grown in Sulfite-

Free Brucella Broth (SFBB) with 10% newborn calf serum (Gibco/BRL), or 1X cholesterol 

(Gibco® by Life TechnologiesTM), and 20µg vancomycin/mL until the cells reached an OD600 of 

0.8-1.6. For RNA extraction, 1x109
 cells were harvested at 3300 g for 5 minutes and the pellets 
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were resuspended in 1 mL Tri Reagent (Ambion) prior to RNA extraction. Total RNA was 

extracted from each cell pellet according to the manufacturer’s protocol for the MagMAX™-96 

for Microarrays Total RNA Isolation Kit (Life Technologies) and the AM1839 Spin Program on 

a MagMAX™ Express Magnetic Particle Processor (Life Technologies). Purified RNA 

concentrations were analyzed on a P360 Nanophotometer (Implen) and frozen at −80˚C. 

cDNA was synthesized from 1µg of purified RNA samples using iScript reverse 

transcriptase (Bio-Rad), following the manufacturer's cDNA synthesis protocol. cDNA was 

diluted 1:10 and used for qRT-PCR.  

qRT-PCR 

The expression of H. pylori sabA and hopZ was compared to the housekeeping gene ftsZ 

(jhp0913) encoding the cell division protein FtsZ using a TaqMan® Gene Expression assay (Life 

Technologies) performed on the Applied Biosystems StepOne™. The assay was carried out 

according to the manufacturer’s protocol using custom TaqMan Gene Expression assays, 

including the sabA.Taq, hopZ.Taq, and ftsZ.Taq probes (Table 1). Assays for each strain and 

each gene were run in technical triplicate, and experiments were repeated three times. Relative 

expression of genes among the various mutants was calculated using the 2∆∆Ct method as 

described by Livak and Schmittgen (Livak & Schmittgen, 2001) and processed using 

DataAssist™ software (Applied Biosystems). 

Adhesion Assay 

2.5 x 105 AGS cells were grown in each well of a 6-well plate for 24 hours. Medium was 

removed and washed with antibiotic-free RPMI 1640 1X (Gibco® by Life TechnologiesTM) 

supplemented with 1X HEPES (Gibco® by Life TechnologiesTM) and 10% FBS three times. H. 

pylori suspended in supplemented RPMI was introduced to the washed AGS cells at a 
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multiplicity of infection of 100:1. AGS cells were co-cultured with bacteria for 5 hours shaking 

at 50 rpm in standard conditions.  

Medium was removed and collected followed by three washes with supplemented RPMI. 

AGS cells were lysed using 1 mL of PBS/0.1% saponin for 15 minutes at standard conditions 

shaking at 50 rpm. Lysates were collected and serially diluted to 10-7. Dilutions were spotted 

onto blood agar plates and incubated for 5 days at standard conditions. After 5 days, colony-

forming units per mL (CFUs/mL) were calculated.  

Enzyme-Linked Immunosorbent Assay (ELISA) 

2.5 x 105 AGS cells were grown in each well of a 6-well plate for 24 hours. Medium was 

removed and washed with antibiotic-free RPMI 1640 1X (Gibco® by Life TechnologiesTM) 

supplemented with 1X HEPES (Gibco® by Life TechnologiesTM) and 10% FBS three times. H. 

pylori suspended in supplemented RPMI was introduced to the washed AGS cells at a 

multiplicity of infection of 100:1. AGS cells were co-cultured with bacteria for 5 hours shaking 

at 50 rpm in standard conditions.  

Medium was removed and centrifuged at 6000rpm. Supernatant was collected for use in 

ELISA. 96-well plate (BioLegend®) was coated with human IL-8 capture antibody (ELISA 

MAXTM DELUXE by BioLegend®) overnight at 37°C. ELISA was performed according to 

manufacturer’s suggested protocol (antibody (ELISA MAXTM DELUXE by BioLegend®). 

Plates were blocked using 1X Assay Diluent (ELISA MAXTM DELUXE by BioLegend®), 

following a series of washes with a 1X PBS 0.05% Tween-20 wash buffer, cell medium samples 

were added to appropriate wells and incubated for 2 hours. Wells were washed with wash buffer 

and IL-8 detection antibody (ELISA MAXTM DELUXE by BioLegend®) was added. Again, 

wells were washed with wash buffer, incubated with Avidin-HRP antibody (ELISA MAXTM 
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DELUXE by BioLegend®), washed again, and incubated with Substrate Solution C (ELISA 

MAXTM DELUXE by BioLegend®) in the dark. Reactions were stopped using 2N sulfuric acid. 

Plate was read at 450nm and 570nm using a microplate reader (Synergy HT by BioTek®) and 

analyzed using Gen5 v2.05 software. Using IL-8 standards as references, absorbance readings 

were converted to concentration of IL-8.  

Results 

Multiple alleles of sabA exist within a population due to differing poly-T tract lengths 

Plasmid constructs with modifications to the poly-T tract length were designed and 

introduced into H. pylori J99 strains. In order to examine allelic variation in the thymine repeat 

tract at the sabA locus within in vitro populations of H. pylori strain J99 and isogenic poly-T 

tract indel mutants, we employed Amplified Fragment Length Polymorphism (AFLP) analysis. 

Results indicated the presence of multiple length polymorphisms within the sabA poly-T repeat 

tract amplicons from wild-type and all indel mutants. While each sabA poly-T tract indel mutant 

population contained multiple sub-populations possessing slightly different poly-T lengths based 

upon AFLP analyses, each of these H. pylori J99 mutant strains had a clear dominant population 

with a particular modified poly-T tract length. The wild-type H. pylori J99 containing 18 

thymines was measured as having a dominant sub-population with an amplicon of 230 base pairs 

(Alm et al., 1999). DNA sequencing of this locus confirmed the creation of H. pylori J99 

mutants with varying poly-T tract lengths. In addition, the length variation of amplicons 

possessing the poly-T tract of the sabA promoter within wild type and mutant H. pylori 

populations, demonstrated by AFLP, supports the hypothesis of slipped-strand mispairing events 

during DNA replication. In fact, our data suggests that this activity may increase with the 

increasing length of the repetitive tract. When we experimentally increased the length of the tract 
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from 18 to 23, AFLP analyses showed a less dominant size variant in the population and more 

measurable length polymorphisms. 

Transcription of sabA and hopZ is Regulated by Homopolymeric Tract Length 

 To examine the effects of sabA promoter poly-T tract length on sabA transcription, H. 

pylori strain J99 was transformed with plasmids containing mutated poly-T tract lengths. RNA 

was isolated from poly-T tract J99 mutants (Table 3), converted to cDNA, and used in qRT-PCR 

Figure 3: Amplified Fragment Length Polymorphism (AFLP) analysis of H. pylori sabA poly-T 
tract mutants. AFLP analysis was used to quantify variations in the sabA poly-T tract containing 
amplicons from H. pylori J99 and poly-T tract mutants. The amplicon generated using primers sabA 
IG Fwd and sabA IG Rev (Table 1) is predicted to be 230 bp based upon the annotated sequence of 
H. pylori strain J99 where the sabA poly-T tract possesses 18 thymines (Alm et al., 1998).  
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to quantify sabA transcription in each J99 mutant. Insertion of the CAT gene, via the psabA.T18 

control plasmid (Table 1), into J99 did not affect transcription of sabA (p > .05) as determined by 

a Welch’s unpaired t-test of unequal variance using the program R Studio (Figure 4A). Thus, 

sabA transcriptional differences are solely due to changes in the length of the poly-T tract. 

Mutations altering the poly-T tract to a length of 16, 17, or 22 thymines did not significantly alter 

sabA transcription (p > .05) (Figure 4B). Notable however was the 5.9-fold increase (p = 0.0013) 

of sabA expression in the H. pylori J99 strain sabA.T13 when compared to H. pylori J99 strain 

sabA.T18, and the 10-fold increase (p = 0.00086) in sabA expression in the H. pylori J99 strain 

sabA.T23 when compared to H. pylori J99 strain sabA.T18 (Figure 4B).  
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Figure 4: sabA promoter poly-T tract length affects transcription frequency. 
(A) Relative sabA gene expression levels of H. pylori wild-type J99 (set to 1) in comparison to 
mutant control strain sabA.T18 containing a CAT gene upstream of the sabA promoter sequence. (B) 
Relative sabA gene expression levels of H. pylori sabA poly-T tract mutants. Mutant control strain 
sabA T18 is set to 1. n.s. = p > .05, ** = p < .01, *** = p < .001 as determined by a Welch’s unpaired 
t-test of unequal variance. Error bars show standard deviation.  
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 Using similar methods, J99 was transformed with mutant plasmids containing extension 

or truncation mutations in the poly-A tract to lengthen or shorten the tract by five adenines. 

Comparable to experiments done with sabA, insertion of the CAT gene upstream of hopZ, via the 

hopZ.A14 control plasmid, did not significantly impact the gene’s expression (p > .05) as 

determined by a Welch’s unpaired t-test of unequal variance using the program R Studio (Figure 

4A). However, there was a 2.6-fold (p = 0.00977) or 2.2-fold (p = 0.002205) increase in hopZ 

transcription when the poly-A tract was truncated or extended by five adenines respectively 

when compared to the H. pylori J99 hopZ.A14 strain (Figure 5B).  
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Figure 5: hopZ promoter poly-A tract length affects transcription frequency. 
(A) Relative hopZ gene expression levels of H. pylori wild-type J99 (set to 1) in comparison to 
mutant control strain hopZ.A14 containing a CAT gene upstream of the hopZ promoter sequence. 
(B) Relative hopZ gene expression levels of H. pylori hopZ poly-A tract mutants. Mutant control 
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Poly-T and poly-A tracts are rigid and their presence affects the bendability of DNA 

(Suter et al., 2000). The rigidity and bendability of certain regions of DNA have been found to 

influence proteins’ ability to loop DNA (Laurens et al., 2012). The formation of DNA loops is 

essential in processes such as DNA replication and transcription regulation. Thus, changes in 

sequences that modify the rigidity and bendability of sections of DNA influence the energetics of 

loop formation associated with these essential processes (Laurens et al., 2012). We hypothesize 

that indels within the poly-T or poly-A tract in the promoter region of sabA or hopZ in H. pylori 

respectively may influence the ability for proteins to loop the DNA and ultimately affect RNA 

polymerases’ ability to bind or for other protein-DNA interactions to take place. Homopolymeric 

tracts similar to the poly-T and poly-A tracts in H. pylori were found in a variety of prokaryotic 

systems (Orsi et al., 2010). The overwhelming presence of homopolymeric tracts across 

prokaryotic taxa suggests that these tracts have been beneficial to these organisms. A study done 

by Wernegreen (Wernegreen et al., 2010) proposed that these homopolymers are advantageous 

because they are mutational hotspots where slippage can help eliminate and resurrect gene 

function.  

 We sought to test our revised hypothesis through a subsequent qRT-PCR experiment with 

the poly-T tract of the sabA promoter. An algorithm created by Vlahovicek et al. (Vlahovicek et 

al., 2003) predicts a sequence of adenine or thymine nucleotides to be non-curved, and of limited 

bendability while sequences with higher percentages of guanine and cytosine allow for more 

curvature and flexibility in DNA topology. To begin to address the role of curvature of DNA in 

the expression of sabA, we designed and created a series of H. pylori J99 sabA mutants that 

contained the wild-type sabA poly-T tract length of 18 nucleotides but now extended, either by 

five adenines (sabA.A5), five guanines (sabA.G5), or the random series of five nucleotides 
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ACTAG (sabA.Ran) (Table 3). In sabA.A5, sabA expression increased 11-fold compared to sabA 

expression in sabA.T18 (p =1.6 x 10-5). This increased sabA expression was comparable to 

sabA.T23 mutant strain whose poly-T  tract had been extended by five thymines (Figure 6). This 

result is perhaps not surprising as the extended tract still consists of A-T base pairs. Strikingly 

however, no significant increase (p > 0.05) in sabA expression occurred when the poly-T tract 

was extended by five guanines or by the random series of five nucleotides, ACTAG (Table 3) 

(Figure 6). Similar statistics and results were reproduced in the additional two biological 

replicates.  
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Figure 6: sabA expression in H. pylori J99 and J99 sabA poly-T mutants (Non-thymine 
extensions). Quantitative real time PCR was used to determine the relative expression of sabA 
in H. pylori J99 as compared with mutants containing a poly-T tract with various five 
nucleotide insertions upstream and adjacent to the poly-T tract. The data shown here is 
representative of the results obtained in three independent experiments, each conducted in 
technical triplicate. Error bars show standard deviation. Statistics were calculated using a 
Welch’s unpaired t-test of unequal variance with sabA.T18 as the control (**** = p ≤ .0001). 
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These results support the hypothesis that the nature of the adenine-thymine tract, as 

compared to one possessing guanine-cytosine base pairs or a random series of base pairs, results 

in changes in DNA topology and has a major effect on sabA expression. The intrinsic curvature 

of poly-A tracts in the ureR- ureD intergenic region in Proteus mirabilis is bound in an E. coli 

model system by both UreR and H-NS. Thus, proteins binding to the intrinsic curvature of this 

poly-A tract affects ureR transcription (Poore & Mobley, 2003). We hypothesize that the proper 

bending and curvature of the DNA in and around the H. pylori sabA poly-T tract may allow 

RNA polymerase to bind to the promoter optimally, or allow an upstream activator site and its 

bound transcription factor to approach RNA polymerase closely enough to affect transcription 

initiation. It is not a simple case of changing the distance between the binding site for a trans-

acting factor and the promoter that affects sabA expression, rather it is the topology of the DNA 

that allows for modulation of sabA expression. 

Another potential means of the altered sabA promoter activity associated specifically 

with such an A/T homopolymeric tract could be via increased stability of RNA polymerase 

association with the promoter sequences mediated through the poly-T tract. Consensus UP 

elements have been identified that are A/T rich and located just upstream of -35 promoter 

elements (Estrem et al., 1998; Estrem et al., 1999). These sequences are capable of increasing 

RNA polymerase affinity for promoters by interacting with C-terminal domains of RNA 

polymerase α subunits. This may explain the similarity of the results of this study on sabA 

promoter activity in the native organism, H. pylori, with those of Kao et al. (Kao et al., 2012) 

examining similar sabA poly-T tract length changes in the heterologous host, E. coli. The use of 

poly-A/T tracts in association with H. pylori omp genes is quite widespread (Alm et al., 1998; 
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Tomb et al., 1997). This may be a common means of modulating promoter activities in a 

bacterium such as H. pylori that has a paucity of transcription factors. 

Previous research in our lab suggests that transcription and translation of sabA is 

regulated via phase variation of the poly-CT as evident by differential sabA expression in strains 

with varied poly-CT tract lengths (Goodwin et al., 2008). In the current study, we showed five 

thymine extensions or truncations in the poly-T tract of the sabA promoter significantly increases 

Figure 7: Phase-on status and poly-T tract extensions do not have synergistic effects on 
sabA transcription frequency. Quantitative real time PCR was used to determine the 
relative expression of sabA in H. pylori control strain sabA.T18 as compared with mutants 
containing phase-on mutation and/or a poly-T tract five thymine extensions . The data 
shown here is representative of the results obtained in three independent experiments, each 
conducted in technical triplicate. Error bars show standard deviation. Statistics were 
calculated using a Welch’s unpaired t-test of unequal variance with sabA.T18 as the control 
(** = p ≤ .01,  n.s. = p > .05). 

** 
** 

n.s. 
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transcriptional frequency of sabA independent of phase status. To determine whether five 

thymine extensions of the poly-T tract and altered phase status of sabA have additive effects in 

increasing sabA transcriptional frequency, new sabA phase-on mutants were created. Wild-type 

J99 sabA possess a phase-off poly-CT tract of 8 CT’s. To switch sabA phase-on, the poly-CT 

tract was extended to 10 CT’s. The first phase-on mutant (sabA.T18On) had a promoter region 

poly-T tract length of 18, as in the wild type H. pylori strain J99, whereas a second phase-on 

mutant (sabA.T23) had an extended poly-T tract length of 23 thymines (Table 3). mRNA 

extracted from mutant H. pylori strains and gene expression of sabA was quantified using qRT-

PCR (Figure 5). sabA.T18On had a statistically significant 44-fold increase in sabA transcription 

frequency in comparison to the control strain sabA.T18 (p = .004) as determined by a Welch’s 

unpaired t-test. Similarly, sabA.T23On had a 43-fold increase in sabA transcription frequency 

when compared to the control (p = .001). Interestingly, there was no significant difference in 

sabA transcription frequency between sabA.T18On and sabA.T23On (p > .05), suggesting that 

there are no additive effects of increased poly-T tract length and phase-on status on sabA 

transcription (Figure 7).  

As previously mentioned wild-type J99 sabA possesses poly-CT tract length of 8 CT’s 

that causes a framshift resulting in a a premature translational stop codon on nascent mRNA 

(Alm et al., 1998; Tomb et al., 1997). Although phase variation is traditionally thought to only 

result in translation termination, it can also influence transcription termination as well (Adhya et 

al., 1974; Peters et al., 2011; Boudvillain et al., 2013). Other Gram-negative bacteria, such as 

Escherichia coli, possess RNA stem-loop structures that aid in transcription termination (Uptain 

& Chamberlin, 1997). Unlike other Gram-negative bacteria, H. pylori has very few identified 

stem-loop sequences within the H. pylori genome (Tomb et al., 1997). These results suggest that 
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H. pylori transcription termination is Rho-dependent (Washio et al., 1998). Rho is a transcription 

termination factor protein that is able to attach to the 5’ end of nascent mRNA. Rho moves along 

nascent mRNA in the 5’ to 3’ direction until it reaches RNA polymerase, causing it to dissociate 

from the gene 3’ end (Adhya et al., 1974; Peters et al., 2011; Boudvillain et al., 2013). Rho-

dependent RNA polymerase dissociation occurs at the end of a gene when the gene is phase-on 

because ribosome-mRNA association interferes with Rho’s movement along the mRNA. 

However, if a gene is phase-off, especially if the stop codon occurs early within the coding 

region of the mRNA, ribosomes frequently dissociate from the mRNA, allowing Rho to move 

uninterrupted, causing premature dissociation of RNA polymerase from the gene. Thus, phase 

variation does not only affect complete translation, but also affects complete transcription 

(Adhya et al., 1974; Peters et al., 2011; Boudvillain et al., 2013).  

Although we observe an increase in transcription frequency when the poly-T tract is 

extended by five thymines (Figure 4B) in a sabA phase-off strain, poly-T tract length does not 

seem to affect transcription frequency of a sabA phase-on strain (Figure 7). We speculate that 

this is indicative of a potential threshold for the  frequency of RNA polymerase binding to the 

sabA promoter and that phase-on status of sabA causes this frequency to reach its maximal 

threhold. Therefore, any alterations to the sabA promoter poly-T tract is not able to further 

increase transcription frequency.  

Increased sabA Transcription Increases H. pylori Adherence to Gastric Epithelial Cells 

 After demonstrating that altering the poly-T tract and poly-CT tract of sabA affects the 

gene’s transcription frequency, we wanted to investigate whether or not increased transcription 

leads to increased H. pylori adherence to gastric epithelial cells. H. pylori strains sabA.T18, 

sabA.T18On, sabA.T23, or sabA.T23On  were co-incubated with the AGS gastric 
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adenocarcinoma cell line at a multiplicity of infection (MOI) of 100:1. Adherent cells were 

collects and plated in serial dilutions. After 5 days, colony-forming units were counted. The 

adherence of H. pylori strains sabA.T18 and sabA.T23 did not significantly differ (p > .05) 

despite increased sabA transcription in strain sabA.T23 (Figure 6). More notably, H. pylori 

sabA.T18On had a 2.1–fold increase in adherence when compared to sabA.T18 (p = 0.035) and a 

2.7-fold increase when compared to sabA.T23 (p = 0.004). In addition, sabA.T23On had a 3.2–

fold increase in adherence when compared to sabA.T18 (p = 0.042) and a 8.7–fold increase when 

compared to sabA.T23 (p = 0.029) (Figure 6). Interestingly, sabA.T23On and sabA.T18On did 

not significantly differ in adhesion (p > 0.05) (Figure 6). This data suggests that although the 

poly-T tract increases sabA transcription, only phase variation via the poly-CT influences H. 

pylori adherence mediated by SabA protein. These results were consistent with our findings that 

the independent effects of phase status and poly-T tract mutations on sabA transcription 

frequency are not additive. Adhesion experiments were conducted in technical triplicate and 

experiments were repeated three times. 

 Despite the 44-fold increase of sabA transcription frequency in sabA phase-on strains, 

adherence only increased by around 2-fold in phase-on strains sabA.T18On and sabA.T23On. 

There are several possible explanations for this observation. First, increase in sabA transcription 

frequency does not necessarily indicate increase in SabA protein. Thus, post-translational 

regulation of SabA may decrease the amount of outer-membrane SabA. Ongoing research in our 

lab is examining whether or not increased transcription frequency of sabA results in increased 

SabA protein product. Second, SabA-mediated H. pylori binding to gastric epithelial cells is 

dependent upon the presence of SabA receptor sialyl-dimeric-Lewis x antigens present on gastric 



 36 

epithelial cells. Thus, the 2-fold increase in H. pylori adherence resulting from a 44-fold increase 

sabA transcription may be a result of saturated SabA receptors on the gastric epithelial cells.  

 

Increased H. pylori Adhesion via SabA Phase Variation Does Not Affect Epithelial IL-8 

Production 

 As previously mentioned, the model strain of H. pylori utilized in these experiments was 

the cagPAI-positive strain J99, which is able to translocate the toxic effector protein CagA via a 

Figure 8: Phase variation but not poly-T tract length of sabA influence H. pylori adherence. 
Adhesion assays were used to determine whether increased sabA transcription led to increased 
adherence to AGS cells. Adhesion phenotypes of H. pylori strains J99 WT, sabA.T18On, 
sabA.T23, and sabA.T23On were compared. The data shown here is representative of the results 
obtained in three independent experiments, each conducted in technical triplicate. Error bars show 
standard deviation. Statistics were calculated using a Welch’s unpaired t-test of unequal variance 
(* = p ≤ 0.05, n.s. = p > 0.05).  
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T4SS into gastric epithelial cells causing downstream increased IL-8 production. Because phase 

variation of the sabA gene significantly increased number of H. pylori cells adhered to one AGS 

cell, we hypothesized that infection of AGS cells with sabA phase-on variants would increase 

subsequent epithelial cell IL-8 production mediated by increased interaction of the T4SS with 

AGS cells and perhaps increased translocation of CagA protein into the epithelial cells.  

 Culture medium was collected after a 5 hour infection of AGS cells with a sabA phase-

off (sabA.T18) or phase-on (sabA.T18On) H. pylori. ELISA was conducted with undiluted 

medium. Experiments were conducted in technical triplicate and repeated for three biological 

replicates. AGS cells infected with sabA.T18On exhibited a 20% increase in IL-8 production in 

comparison to cells infected with sabA.T18. Differences in IL-8 production in these two 

infections were analyzed using a Welch’s unpaired t-test. Although there was a 20% increase in 

IL-8 production in AGS cells treated with sabA.T18On, these results were not statistically  

 significant (p > .05).  
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Figure 9: Increased adhesion via SabA 
does not affect gastric epithelial cell IL-8 
production. 
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after a 5 hour infection and used in an 
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 The original hypothesis suggests that with increased adhesion mediated by SabA would 

induce a higher T4SS-dependent epithelial cell immune response. However, our results suggest 

otherwise. As previously mentioned, IL-8 production can be triggered by a variety of pathways, 

such as CagA-dependent NF-κB activation and CagA-independent CagL-dependent NF-κB 

activation. Although we observed increased H. pylori adherence mediated by SabA, it remains 

uncertain whether or not adherence is influencing these epithelial cell inflammatory pathways at 

all. Further experimentation examining SabA-mediated adhesion on CagA translocation and NF-

κB activation need to be conducted to come to any conclusions regarding the effect of non-

cagPAI adhesins on host immune response. 

Discussion 

 H. pylori utilizes a wide variety of adhesin proteins to mediate the bacterium’s 

attachment to the gastric epithelial layer. By adhering to gastric epithelial cells, H. pylori is able 

to extract nutrients from the host through disruption of the tight junctions of the epithelial cells 

(Testerman & Morris, 2014). However, adherent H. pylori can trigger toll like receptor (TLR) 

signaling, thus invoking a host immune response. Bacteria closest to the epithelium are more 

susceptible to clearing from this response (Smith, 2014). H. pylori faces these major problems 

regarding the tradeoffs of adherence, which was coined the “adherence dilemma” (Moore et al., 

2011). The present study investigates multiple regulatory mechanisms H. pylori utilizes to 

regulate adhesin-encoding gene expression and effects of these mechanisms at the phenotypic 

level. Our results show that adhesin-encoding genes sabA and hopZ are regulated via promoter 

homopolymeric tract length polymorphisms. Homopolymeric tracts vary naturally within a 

population of H. pylori. Extensions and truncations of these tracts by five thymines or adenines 

significantly increases transcription frequency of sabA and hopZ. Although the mechanism 
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behind why these polymorphisms increase transcription frequency is unknown, we hypothesized 

that these changes may alter DNA topology to facilitate RNA polymerase binding, as previously 

demonstrated in studies in H. pylori ureR gene regulation (Poore & Mobley, 2003).  

The gene sabA has a homolog gene sabB that arose during a duplication event in H. 

pylori’s genetic history (Kawai et al., 2011). SabB protein function is unknown; however, 

because of shared sequence between sabA and sabB, we hypothesized that SabB may act as an 

adhesin. Interestingly, the promoter of sabB also contains a poly-T tract with a poly-CT tract 

downstream of the transcriptional and translational start sites (Alm et al., 1998; Tomb et al., 

1997). Mutant plasmids were constructed to extend or truncate the poly-T tract by five thymines 

or turn the sabB gene phase on by extending the poly-CT tract from wild-type 9 CT’s to 10 CT’s. 

However, transformations of H. pylori with mutant plasmids were unsuccessful and further 

attempts are required to fully research sabB regulation and SabB protein function.  

In addition to sabA’s transcription regulation via poly-T tract length, transcription 

frequency of sabA is influenced by phase variation determined by poly-CT tract length. Our 

results demonstrated that H. pylori strains with phase-on sabA have significantly higher 

transcription frequency in comparison to strains with phase-off sabA. Interestingly, five-thymine 

extension of the poly-T tract and phase-on status of sabA did not have additive effects on 

transcription frequency. We speculate that this is indicative of a potential threshold for the  

frequency of RNA polymerase binding to the sabA promoter.  

In agreement with these results, we found that only phase-on status of sabA increased H. 

pylori adherence to gastric epithelial cells independent of poly-T tract length. However, turning 

the sabA gene phase-on, while increasing transcription frequency by more than 44-fold, only led 

to a 2-fold increase in adhesion. This suggests that adhesin protein expression may be regulated 
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at the translational level as well or that the SabA receptors on the gastric epithelial cells were 

saturated. Ongoing studies by others in our lab are designed to develop means (Flag epitope 

tagging of SabA) to allow examination of post-transcriptional regulation. 

We hypothesized that the observed increase in adherence, and therefore increased number 

of H. pylori cells bound to one gastric epithelial cell, facilitating association of CagL with its 

receptor, thus increasing the amount of translocated CagA protein and signaling into the 

epithelial cell, thus inducing increased inflammatory response via increased IL-8 production. 

Contrary to our hypothesis, preliminary ELISAs showed no significant difference in epithelial 

cell production of IL-8 in response to SabA-mediated hyper-adherent H. pylori infection. These 

results suggest that SabA-mediated hyper-adherence of H. pylori may not increase translocation 

of CagA as originally hypothesized. To further investigate SabA-mediated adhesion and host 

immune response, studies examining the effect of phase variation and poly-T tract length on 

SabA protein levels, CagA translocation into gastric epithelial cells, and additional trials on 

gastric epithelial cell IL-8 production need to be conducted.  

As previously mentioned, H. pylori utilizes a wide variety of adhesin proteins. 

Interestingly, many of these adhesin-encoding genes possess similar promoter and regulatory 

elements, such as homopolymeric tracts and dinucleotide tracts (Alm et al. 1998; Tomb et al., 

1997). In a previous study with clinical isolates, AlpA and AlpB were produced at a constant 

rate, but all other outer membrane proteins (OMPs) were produced at highly variable rates 

ranging from 35% to 73%. This result indicates that variable expression of OMPs such as SabA, 

along with other adhesin proteins, is important in functional adaptation to the individual host or 

gastric niche (Odenbreit et al., 2009). The present study focuses primarily on sabA and hopZ, but 

the transcriptional and translational regulatory mechanisms of several adhesin-encoding genes 
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such as hopD and oipA remain understudied. Because the presence of promoter homopolymeric 

tracts and downstream dinucleotide tracts is widespread in H. pylori adhesin-encoding genes, the 

present study provides a platform for the study of other key H. pylori adhesins.  

Previous studies have connected the importance of H. pylori adherence to induction of 

host immune response (Ishijimi et al., 2011; Oleasetro et al., 2008). In particular, SabA is a key 

protein of interest. SabA-positive status of H. pylori is positively correlated with the formation of 

gastric pathologies in Western H. pylori strains (Yamaoka et al., 2002). In 2005, Unemo et al. 

proposed a potential mechanism explaining this observation. Their study demonstrated that 

mutant and wild-type H. pylori strains lacking SabA had no neutrophil-activating capacity, 

suggesting that SabA adhesion to sialylated neutrophil receptors plays an essential initial role in 

the adherence and phagocytosis of the bacteria. This further supports an argument for the critical 

role of adhesins as a virulence factors in disease pathogenesis (Unemo et al., 2005). Extensive 

research on adhesins BabA and SabA within the past twenty years has only scratched the surface 

of understanding how H. pylori adhesin regulation and function can impact infection. As 

previously mentioned, many H. pylori adhesins have yet to be fully investigated. Furthering our 

understandings of H. pylori adhesion regulation will allow us to better understand the persistence 

of H. pylori infection and virulence. 
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Table 1: Primers 
 
Primer 
Name 

5’ to 3’ Sequence 

HP0726 
Fwd 

TACGCAATCTTGTGGAGTCC  

sabAPolyT.
R 

CGCCGATTTGATGCCCGCGCTCAC  

sabA.5T.F TACCCCAAAATCTTTTTTTTTTTTTTTTTTTTTTTGAA ATCCAATAA 
sabA.5T.R TTATTGGATTTCAAAAAAAAAAAAAAAAAAAAAAA GATTTTGGGGTA 
sabA.less5T.
F 

TACCCCAAAATCTTTTTTTTTTTTTGAAATCCAATAA  

sabA.less5T.
R 

TTATTGGATTTCAAAAAAAAAAAAAGATTTTGGG GTA 

sabA.5A.F TACCCCAAAATCAAAAATTTTTTTTTTTTTTTTTTGAA ATCCAAT 
sabA.5A.R ATTGGATTTCAAAAAAAAAAAAAAAAAATTTTTGA TTTTGGGGTA 
sabA.5G.F TACCCCAAAATCGGGGGTTTTTTTTTTTTTTTTTTGA AATCCAAT 
sabA.5G.R ATTGGATTTCAAAAAAAAAAAAAAAAAACCCCCGA TTTTGGGGTA 
sabA.Ran.F TACCCCAAAATCACTAGTTTTTTTTTTTTTTTTTTGA AATCCAAT 
sabA.Ran.R ATTGGATTTCAAAAAAAAAAAAAAAAAACTAGTGA TTTTGGGGTA 
sabA.On AAAAAGACAATTCTACTCTCTCTCTCTCTCGCTTCATCGCTCTT 
CAT Fwd CTTGAAACCCAGGACAATAAC 
SabASpecifi
c.R 

TAAAGAGCTATTGACCAGCTC 

SabA.IG.Fw
d 

GTTTGGCTTTATTCCCATTG 

SabA.IG.Re
v 

VIC – GTCTTTTTCATAAAATGTTCCT 

hopZ.F2 CGTGGTCGTGAATGAAGTGC 
hopZ.R2 GCCAATTAGCCCTTGCGTGT 
hopZ.BglIIF CCTTTTGGGGGTTTTTATTAGATCTAACCGCTCGTTTTTAAAAAC 
hopZ.BglIIR GTTTTTAAAAACGAGCGGTTAGATCTAATAAAAACCCCCAAAAGG 
hopZ.A9F CTAAATTTTCTCCAAATGACAAAAAAAAACGATTTCATGCTACAATGC

T 
hopZ.A9R AGCATTGTAGCATGAAATCGTTTTTTTTTGTCATTTGGAGAAAATTTAG 
hopZ.A19F CTAAATTTTCTCCAAATGACAAAAAAAAAAAAAAAAAAACGATTTCA

TGCTACAATGCT 
hopZ.A19R AGCATTGTAGCATGAAATCGTTTTTTTTTTTTTTTTTTTGTCATTTGGAG

AAAATTTAG 
Jhp0658.F TGGCGGATTTTGAAGCCCGCCAA 
sabB.R TCTTTAGCCACGCTTAAAGCC 
sabB.BamHI CGCGCAACAGCTCATGGATCCAATCGAACAGACCAA 
sabB.T5 AAACACCCAAAAATCTTTTTGAAATCCAAAAAATT 
sabB.T15 AAACACCCAAAAATCTTTTTTTTTTTTTTTGAAATCCAAAAAATT 
sabB.On AAAAAGACAATTCTACTCTCTCTCTCTCTCTCTCTCGCTTCATCGCTCT
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T 
ftsZ.Taq.F TGAGCGGCATTTCTACGATTATCAC 
ftsZ.Taq.R CGCTCTTTAAATCGGCAAAATCAAC 
ftsZ.Taq FAM—CAAACCCGGTAATATC—MGB-NFQ 
sabA.Taq.F GATCAGTATCGTTATTTAGAGAAAGCCTATTTGA 
sabA.Taq.R ACCTCCTGTCTGTAAGGGTTAGTAG 
sabA.Taq FAM—CAATGCGGGTAAAACG—MGB-NFQ 
hopZ.Taq.F ACTTGAGCTAGCCGATCAAATGAAA 
hopZ.Taq.R GGCAAGCTGCCAAGTAATTTGTG 
hopZ.Taq FAM—TCCCAAGCCAATTTAT—MGB-NFQ 
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Table 2: Plasmids 
 
Plasmid Name Description 
psabA pBlueScript SK+ vector containing a 603 

base pair amplicon including the 3’ end of 
jhp0663, the poly thymine (poly-T) tract, -
35/-10 putative promoter sites, 
transcriptional start site, and 5’ coding 
region of sabA of H. pylori strain J99. 

psabA.T18 
 

psabA containing Campylobacter coli 
forward-oriented chloramphenicol acetyl-
transferase (CAT) gene upstream of sabA 
promoter sequence. 

psabA.T13 psabA.T18 with promoter poly-T sequence 
composed of 13 thymines.  

psabA.T16 psabA.T18 with promoter poly-T sequence 
composed of 16 thymines.  

psabA.T17 psabA.T18 with promoter poly-T sequence 
composed of 17 thymines.  

psabA.T122 psabA.T18 with promoter poly-T sequence 
composed of 22 thymines.  

psabA.T23 psabA.T18 with promoter poly-T sequence 
composed of 23 thymines.  

psabA.A5 psabA.T18 with promoter poly-T extended 
by 5 adenines at the 5’ end.  

psabA.Ran psabA.T18 with promoter poly-T extended 
by random five nucleotide sequence 
ACTAG at the 5’ end.  

psabA.G5 psabA.T18 with promoter poly-T extended 
by 5 guanines at the 5’ end.  

psabA.T18On 
 

psabA.T18 with sabA poly-CT tract length 
of 10 CTs. 

psabA.T23On 
 

psabA.T23 with sabA poly-CT tract length 
of 10 CTs. 

phopZ pCR® 4-TOPO® vector containing a 853 
bp amplicon, including the 3’ end of the 
upstream gene, promoter sequence of hopZ, 
transcriptional start site of hopZ, and 5’ 
coding region of hopZ of H. pylori strain 
J99. 

phopZ.A14 phopZ containing Campylobacter coli 
forward-oriented chloramphenicol acetyl-
transferase (CAT) gene upstream of hopZ 
promoter sequence. 

phopZ.A9 phopZ.A14 with promoter poly-A sequence 
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composed of 9 adenines. 
phopZ.A19 phopZ.A14 with promoter poly-A sequence 

composed of 19 adenines.  
psabB pCR® 4-TOPO® vector containing a 1658 

bp amplicon including the promoter region 
of sabB, including the 3’ end of gene 
jhp0658, the poly-T tract from positions     
-42 to -33 the transcriptional start site of 
sabB, poly-CT tract, and 5’ coding region 
of sabB of H. pylori strain J99. 

psabB.CATrdxA psabB with CAT-rdxA cassette cloned into 
a BamHI restriction site ___bp downstream 
of sabB transcriptional start site 

psabB.T5 psabB with promoter poly-T sequence 
composed of 5 thymines  

psabB.T15 psabB with promoter poly-T sequence 
composed of 15 thymines  

psabB.On psabB with poly-CT sequence composed of 
10 CTs.  

pΔrdxA pCR® 4-TOPO® vector containing an 
amplicon of the H. pylori strain 26695 
rdxA gene with a deletion mutation within 
the rdxA coding region. 
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Table 3: H. pylori strains 
 
H. pylori Strain Description 
sabA.T18 
 

J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract length of 
18 thymines 

sabA.T13 J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract length of 
13 thymines 

sabA.T16 J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract length of 
16 thymines 

sabA.T17 J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract length of 
17 thymines 

sabA.T22 J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract length of 
22 thymines 

sabA.T23 J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract length of 
23 thymines 

sabA.A5 J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract extended 
at the 5’ end by 5 adenines 

sabA.Ran J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract extended 
at the 5’ end by nucleotides ACTAG  

sabA.G5 J99WT containing CAT gene upstream of 
sabA promoter with a poly-T tract extended 
at the 5’ end by 5 guanines 

sabA.T18On 
 

sabA.T18 with sabA poly-CT tract length 
of 10 CTs 

sabA.T23On 
 

sabA.T23 with sabA poly-CT tract length 
of 10 CTs 

hopZ.A14 J99WT containing CAT gene upstream of 
hopZ promoter with a poly-A tract length 
of 14 adenines 

hopZ.A9 J99WT containing CAT gene upstream of 
hopZ promoter with a poly-A tract length 
of 9 adenines 

hopZ.A19 J99WT containing CAT gene upstream of 
hopZ promoter with a poly-A tract length 
of 19 adenines 
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