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Abstract

Scale-free networks grown via preferential attachment have been

used to model real-world networks such as the Internet, citation

networks, and social networks. Here we investigate signed scale-free

networks where a link represents a positive or negative connection.

We present analytic results and simulations for a growing signed

network model and compare the signed network to an unsigned

scale-free network. We discuss several options for preferential at-

tachment in a signed network model. Lastly we measure preferential

attachment in a real-world network and discuss the advantages and

disadvantages of data fitting methods.
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Chapter 1

Introduction

1.1 Networks

A network is a graph representation of a system where members are connected to other

members. We define a network by a set of nodes (or vertices) and a set of links (or edges)

connecting those nodes. Networks are used in a diverse range of disciplines to model

complex systems such as metabolic networks, epidemiological networks, and the World

Wide Web [2, 10, 17]. Growing networks are complex networks that evolve as a function

of time, where new nodes and links are added or removed throughout the lifespan of the

network [5]. Since many real-world networks, such as social networks and collaboration

networks, expand and change over time it is important to study the processes by which

networks grow so that we may understand and predict the behavior of these networks.

While directed networks specify the direction of a link between two nodes, we focus

on undirected networks. We further simplify by only including networks without self-

connections or multiple edges between the same two nodes. The degree of a node is

the number of links incident to that node. The degree distribution of a network is the

probability distribution of degrees that occur in the network. The degree distribution

function P (k) is the likelihood that a randomly selected node will have a degree of k.
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Consider the simple and commonly studied random network proposed by Erdős and

Rényi [21]. The Erdős-Rényi (ER) random network model has a fixed set of n nodes and

randomly places a given number of links between those nodes such that every possible

link has the same probability of being created. The nodes in this network will all have

a similar degree, approximately the average degree 〈k〉 of the network. We observe that

the degree distribution for an ER random network is a Poisson distribution where 〈k〉

has the greatest probability of occurring in the network [1]. Networks that appear in

the real world, however, are built according to principles more complex than ER random

networks.

1.2 Scale-Free Networks

The discovery of degree distributions that follow a power law in several real-world net-

works has led to growing interest in scale-free networks [2, 20]. A scale-free network is a

network with a degree distribution that follows a power law. We use the “∼” symbol to

denote values that are proportional to each other in the limit of large k. Thus the degree

distribution of a scale-free network is

P (k) ∼ k−γ (1.1)

where γ > 0 is the degree exponent. Since

logP (k) ∼ −γ log k (1.2)

we can expect a logarithmic plot of P (k) versus k to be linear with slope −γ. Most

scale-free networks have a degree exponent in the range 2 < γ < 3 [1, 20]. Scale-free

networks observed in the real world include citation networks, social networks, movie

actor collaboration networks, the Internet, and the World Wide Web [5].
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(a) ER Random Network (b) Scale-free Network

Figure 1.1: (a) An ER random network does not contain hubs and most nodes have degree
close to the mean. (b) A scale-free network has many low-degree nodes and a few hubs
(red nodes). Figure from [6].

The World Wide Web was first suggested to be a scale-free network in 1999 by Albert,

Jeong, and Barabasi, who constructed a directed network of over 300,000 web pages

where a link represents a hyperlink pointing from one web page to another [2]. Because

these links are directed, each web page has an in-degree kin of hyperlinks leading to that

web page and an out-degree kout of hyperlinks from that web page to another web page.

The degree distributions were found to follow a power law such that P (kin) ∼ k−2.1
in and

P (kout) ∼ k−2.45
out . This significant deviation from the Poisson distribution of a random

network suggests a need to define the mechanism that creates scale-free networks.

A visual inspection of a scale-free network reveals the appearance of highly-connected

nodes, called hubs, that are not present in random networks (see Figure 1.1). A power

law degree distribution falls off much more slowly than a Poisson distribution which is

approximately Gaussian. Therefore a scale-free network has many low-degree nodes and

a few very high-degree nodes, compared to the degree distribution of an ER random

network where most nodes have degree close to the mean. This explains the absence of

hubs in a random network.
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Figure 1.2: Growth of BA model from t = 0 to t = 8 where 1 node and 2 links are added
at each time step. The red node is the newest node at each time step. Figure from [4].

1.2.1 Barabási-Albert Model

The Barabási-Albert (BA) model is an algorithm for constructing a scale-free network

utilizing two mechanisms: growth and preferential attachment [2].

While the ER random network model has a fixed number of nodes, most real-world

networks grow over time as new nodes are added. For example, citation networks grow

with each new publication, movie actor networks expand with each new movie, and thou-

sands of new web pages are added to the World Wide Web every day. The BA model

incorporates growth by adding one node to the network at every time step (Figure 1.2).

In the ER random network model every node is equally likely to obtain a new link.

Preferential attachment is a mechanism where new nodes prefer to connect to existing

high-degree nodes. For example, a new web page is more likely to include hyperlinks

to other web pages that are already well-known. Similarly, a newly published paper is

most likely to cite existing well-known (i.e., highly cited) papers. In the BA model the

probability that a node will receive a new link is proportional to that node’s degree. We

define ki to be the degree of node i and Π(i), called the attachment kernel, to be the

probability that a new link will attach to node i such that

Π(i) ∝ ki. (1.3)

To build a network using the BA model we begin with a small network of m0 nodes.

This base network is complete, meaning that each node is connected to every other node

4



Term Meaning
t current time step

N(t) number of nodes at time t
M(t) number of links at time t
m number of links connected to new node
m0 starting size of network
ki degree of node i
ti time that node i is added

Π(i) probability a new link will attach to node i

Table 1.1: BA model definitions

in the network. At every time step a new node will be added to the network. Then m

links will be added to the network connecting the new node to m existing nodes. At t = 1,

the new node must have at least m existing nodes with which to connect; thus, we set

our base network size to m0 = 2m. See Table 1.1 for a full listing of the variables in the

BA model.

We define N(t) to be the number of nodes in the network at time t and M(t) to be

the number of links in the network at time t. Therefore,

N(t) = m0 + t (1.4)

M(t) =
m0(m0 − 1)

2
+mt. (1.5)

For large t we can ignore the m0 term, resulting in the following approximations:

N(t) ≈ t (1.6)

M(t) ≈ mt. (1.7)

When a new node is added to the network, m existing nodes are chosen to connect

to the new node using preferential attachment. The probability that a given node i is

5



chosen as the target for a given link is determined by its attachment kernel, Π(i):

Π(i) =
ki

N(t)∑
j=1

kj

. (1.8)

The attachment kernel is normalized by dividing by the sum of the degrees of all the

nodes in the network so that the sum of the attachment kernels of all nodes is 1. For

simplicity, we will drop the limits of summation in the normalization term; a summation

of kj in this thesis is over all nodes in the network.

We observe an important feature of the BA model by studying the relationship between

a node’s age ti and its degree ki. By assuming continuous degrees across the network, we

can obtain an approximate time evolution of an individual node’s degree. At time t, a

given node i has m chances, each with a probability of Π(i), to be chosen to connect to

the new node. Thus its change in degree with respect to time is as follows [1]:

∂ki
∂t

= mΠ(i) = m
ki∑
j

kj
. (1.9)

Because each new link increases the total degree sum by 2, the sum of all degrees is equal

to twice the total number of links. Thus
∑
j

kj = 2M(t). By Equation 1.7 for large t we

can use the substitution
∑
j

kj = 2mt resulting in

∂ki
∂t

=
ki
2t
. (1.10)

The degree of node i when it first enters the network at ti is m, resulting in the initial

condition ki(ti) = m. By integrating Equation 1.10 using this initial condition we obtain

ki(t) = m

(
t

ti

) 1
2

. (1.11)
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This definition exposes an important feature of the BA model: older nodes become hubs

because they have more chances to gain links. The factor 1
ti

implies that the earlier a

node is added the higher its degree. This observation explains why the network contains

a range of degrees further from the mean degree than in a random network.

1.2.2 Barabási-Albert Model Degree Distribution

We solve for the exact degree distribution of a network grown according to the BA model

to verify that the network is scale-free and to identify the degree exponent. We find the

steady state of the degree distribution P (k) by using a rate equation approach developed

by Krapivsky, Redner, and Leyvraz [12]. We wish to find N(k, t), the number of nodes

with degree k at time t. We define P (k, t) = N(k,t)
N(t)

to be the proportion of nodes with

degree k at time t. After one time step, N(k, t) is decreased by the number of degree k

nodes that gain a link (becoming degree k + 1 nodes) and is increased by the number of

degree k − 1 nodes that gain a link (becoming degree k nodes).

The number of degree k nodes that gain a link is the product of the number of links

being added, the number of degree k nodes, and the probability that a degree k node will

be linked to by incoming link (i.e., its kernel). Thus the number of degree k nodes that

gain a link is:

mN(k, t)
k∑
j

kj
= mN(k, t)

k

2M(t)
. (1.12)

By Equation 1.7 for large t we can use the substitution
∑
j

kj = 2mt resulting in

N(k, t)
k

2t
= N(t)P (k, t)

k

2t
. (1.13)

It follows that the number of degree k−1 nodes that gain a link is N(t)P (k−1, t)k−1
2t

.
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Then together

N(t+ 1)P (k, t+ 1) = N(t)P (k, t)−N(t)P (k, t)
k

2t
+N(t)P (k − 1, t)

k − 1

2t
. (1.14)

By Equation 1.6 for large t, N(t) ≈ t and N(t+ 1) ≈ t+ 1 so this becomes

(t+ 1)P (k, t+ 1) = tP (k, t)− P (k, t)
k

2
+ P (k − 1, t)

k − 1

2
. (1.15)

This equation holds for k > m.

Because every node has a degree of at least m, P (k, t) = 0 for k < m. One new node

of degree m is added to the network at each time step. Thus we can define the following

boundary condition:

(t+ 1)P (m, t+ 1) = tP (m, t)− m

2
P (m, t) + 1. (1.16)

We solve for the steady state P (k,∞) = P (k). Using Equation 1.15 and 1.16 gives us

P (k) =

 k−1
k+2

P (k − 1) : k > m

2
m+2

: k = m.
(1.17)

We solve the recurrence relation by iteration:

P (m) =
2

m+ 2
(1.18)

P (m+ 1) =
m

m+ 3
P (m) =

2m

(m+ 2)(m+ 3)
(1.19)

P (m+ 2) =
m+ 1

m+ 4
P (m+ 1) =

2m(m+ 1)

(m+ 2)(m+ 3)(m+ 4)
(1.20)

P (m+ 3) =
m+ 2

m+ 5
P (m+ 2) =

2m(m+ 1)

(m+ 3)(m+ 4)(m+ 5)
. (1.21)

We observe that the iterations of P (k) follow a simple recursive pattern, producing the

8



Figure 1.3: Degree distribution of a network simulation using the BA model at t = 500, 000
for m = 2 and m = 10. Black curves are theoretical prediction from Equation 1.22.
Dashed curve shows asymptotic slope of k−3.

exact solution for the degree distribution of the BA model [12]:

P (k) =
2m(m+ 1)

k(k + 1)(k + 2)
. (1.22)

For large k, P (k) ∼ k−3, fulfilling the requirement in Equation 1.1 and confirming that

the BA model produces a scale-free network.

We simulate the growth of a network using the BA model to verify the prediction for

the degree distribution. The methods for this simulation are similar to what will be de-

scribed in Section 2.1.1. Our simulation of the BA model matches the analytic prediction

for the degree distribution given by Equation 1.22 (Figure 1.3). It is expected that the

degree distribution plot exhibits substantial noise in the tail. This occurs because very

high degrees with low probabilities would have an expected occurrence number between

0 and 1. Since the simulation obviously only allows for an integer number of occurrences,

the observed probabilities for these high degrees will be noisy.
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Figure 1.4: Reverse cumulative degree distribution of a network simulation using the BA
model at t = 500, 000 for m = 2 and m = 10. Black curves are theoretical prediction
from Equation 1.22. Dashed curve shows asymptotic slope of k−2.

One method for smoothing the degree distribution is to plot the reverse cumulative

degree distribution, P (k ≥ K) =
∞∑
k=K

P (k). By summing the probabilities of all degrees

greater than or equal to the current degree we achieve a more accurate representation of

the high degree probabilities. The reverse cumulative degree distribution is the integral

of a degree distribution so we expect a network with a degree distribution of P (k) ∼ k−3

(as in Figure 1.3) to have a reverse cumulative degree distribution of P (k ≥ K) ∼ k−2

(as in Figure 1.4).

1.3 Outline

This chapter presented an overview of growing scale-free networks. It is important to

study the mechanisms by which scale-free networks grow so that we may predict how

networks will behave in the future. Given the attachment kernel for a network, it is

possible to predict which nodes are likely to obtain new links.

10



Chapter 2 discusses a special class of networks, called signed networks, where links

have a label of positive or negative. The growth of signed networks is a new field and

an accepted mechanism for growing signed networks is yet to be determined. In Section

2.2 we propose a basic method for signed network growth called separate preferential

attachment and study it analytically. In Section 2.3 we propose several more complicated

signed growth methods and discuss their motivation and consequences.

Chapter 3 describes existing techniques for fitting an attachment kernel to data from

real-world networks. We test these methods on a data set from a signed online social

network and discuss the advantages and disadvantages of each fitting method. We propose

adaptations to these fitting methods that incorporate the sign of a link.

Chapter 4 summarizes our findings about growing signed networks and suggests further

work in the study of growing networks with positive and negative links.
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Chapter 2

Signed Network Model

2.1 Notation and Definitions

A signed network is a special class of networks in which each edge is labeled positive or

negative. Most research on online networks focuses on the positive connections of friend-

ship, trust, or collaboration; however, it is important to consider the negative connections

of distrust, animosity, and controversy. Signed networks have been used to measure status

and centrality in a social network of monks [7], to identify top users and unpopular “troll”

users in the online social network Slashdot [14], and to observe structural balance in on-

line networks [15]. Signed networks could also represent positive and negative reviews on

product review sites like Amazon and eBay or upvotes and downvotes on voting sites such

as Reddit or YouTube. A simple example of a signed network can be seen in Figure 2.1

which shows the alliances of countries leading up to World War I [8]. Here a green link

(a positive link) means that the two countries are allies and a red link (a negative link)

means the two countries are enemies.

Most existing research on signed networks has focused on structural balance theory

[9,14,15]. We observe structural balance by looking at the signs of links in a cycle between

three nodes. If all three links are positive, this cycle supports the principle that “the friend

12



Figure 2.1: World War I alliance network [8]

of my friend is my friend.” If one link is positive and two are negative, that cycle suggests

that “the enemy of my enemy is my friend.” According to structural balance theory these

two types of cycles occur more often than cycles with all negative links or with only one

negative link.

Our project, to the best of our knowledge, is the first attempt to model the growth of

signed networks. We propose attachment kernels for adding positive and negative links

and run simulations for the growth of a signed network where positive and negative links

are added to the network at each time step.

With two kinds of links, we must introduce new terminology. The positive degree of a

node is the number of positive links a given node participates in. The negative degree of

a node is the number of negative links a given node participates in. The total degree of

a node is the sum of its positive and negative degrees. The positive degree distribution,

P (k+), of a network is the probability distribution of positive degrees that occur in the

network, and likewise for the negative degree distribution, P (k−). The joint probability

distribution, P (k+, k−), gives the probability that a randomly selected node will have a

positive degree of k+ and a negative degree of k−.

Because the types of signed networks we wish to model, specifically social networks,

typically have a power law degree distribution we adapt the BA model for growing un-

signed scale-free networks in order to grow a signed scale-free network. See Table 1.1 for

13



Term Meaning
m+ number of positive links added to each new node
m− number of negative links added to each new node
m0 starting size of network
k+i positive degree of node i
k−i negative degree of node i

Π+(i) probability a new positive link will attach to node i
Π−(i) probability a new negative link will attach to node i
p fraction of positive links in the network

Table 2.1: Growing Signed Network Model Definitions

the definitions of variables in the BA model, Table 2.1 for the definitions of new variables

in the signed model, and Section 2.1.1 for a description of the initial network. At each

time step one node is added to the network and m+ positive links and m− negative links

are made between the new node and existing nodes in the network. There can only be one

type of link between any two nodes. The positivity, p, of a signed network is the fraction

of links in the network that are positive such that p = m+

m++m−
. In many signed social

networks, p = 0.8, meaning 80% of the links in the network are positive [14,15]. However,

to simplify our analytical study of growth, we set p = 0.5. Thus m = m+ = m−, such

that m positive links and m negative links are added at each time step.

The positive attachment kernel, Π+(i), is the probability that a new positive link

will attach to node i. The negative attachment kernel, Π−(i), is the probability that a

new negative link will attach to node i. We assume that some variation of preferential

attachment is occurring so we suggest that the positive and negative attachment kernels

are related to the degree of the node. However, it is unclear how to weight the positive and

negative degree of a node in an attachment kernel given the difference in semantic value

of the two types of links. We propose several variations of signed preferential attachment

and discuss their implications.
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2.1.1 Simulation Methods

Here we present an overview of our simulation of growing signed networks. The user-

inputted parameters for the program are the desired number of time steps, the value of

m, and the attachment method. Each node has the following attributes: its positive and

negative degree, its individual positive and negative attachment kernels (determined by

the inputted attachment method of the network), its age, and a list of its neighbors. The

network begins as a complete network of size m0 = 2m, meaning that every possible link

between the m0 nodes exists. As links are added their signs alternate between positive

and negative such that half of these links are positive and half are negative.

At each time step one new node is added to the network. Then m positive links and m

negative links are added between the new node and existing nodes. The signs of these links

alternate such that one positive link is added, then one negative link, then one positive

link, and so on. When adding a link we first generate a random number between 0 and 11.

The positive and negative attachment kernels are, by definition, normalized so that the

sum of the positive attachment kernels of all the nodes in the network at any given time

is 1, and likewise for the negative attachment kernels. Consider each node as a bin on

the number line from 0 and 1 where the width of each bin is equal to the node’s positive

or negative attachment kernel. Thus the random number corresponds to a particular bin

which corresponds to a particular node, where the probability that the random number

will land in that bin is equal to that node’s positive or negative attachment kernel.

To add a positive link we iterate through the list of existing nodes, adding a node’s

positive attachment kernel to a running sum, then stop when the running sum reaches

or exceeds our random number. The node at which we stop is selected to participate

in the new positive link. Therefore a node’s positive attachment kernel determines the

probability that the node gains a positive link. To add a negative link, the same process

is used, except using a node’s negative attachment kernel. Before a new link is added we

1All random numbers were generated using the Ran.java class from Numerical Recipes [23].
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verify that a link (positive or negative) does not already exist between those two nodes.

If a link does exist between those nodes we return to the first step of the algorithm by

generating a new random number and selecting a new target node.

This process of node and link addition terminates when the desired number of time

steps is reached. The program offers options for outputting positive, negative, and joint

degree distributions as well as other statistics about the resulting network.

2.2 Separate Preferential Attachment

The first method of signed attachment we propose is separate preferential attachment. The

motivation for this method was to produce a simple base case for signed network growth

that is almost analogous to unsigned network growth. The preferential attachment is

“separate” in the sense that the positive attachment kernel depends only on the positive

degree and the negative attachment kernel depends only on the negative degree. Thus an

incoming positive link ignores a node’s negative degree and prefers to connect to nodes

with a high positive degree. Likewise, an incoming negative link ignores a node’s positive

degree and prefers to connect to nodes with a high negative degree. We define the positive

and negative attachment kernels as follows:

Π+(i) =
k+i + 1∑

j

(k+j + 1)
(2.1)

Π−(i) =
k−i + 1∑

j

(k−j + 1)
. (2.2)

The +1 is added to the degree so that a node with a degree of zero still has a small

chance of gaining a link. It is especially important to consider nodes with zero degree

in a signed network because even if a node has a non-zero total degree, it may still have

positive degree or negative degree of zero. In our simulation, every node has a positive

16



and negative degree of at least m, so no node will ever have a degree of zero. However,

we introduce the +1 in anticipation of fitting this model to a real-world data set which

might contain nodes with degree zero.

Since the positive and negative attachment kernels act separately, essentially two un-

signed networks are placed on top of each other. Thus we expect the positive and negative

degree distribution for a network grown with separate preferential attachment to look the

same as an unsigned network grown with preferential attachment. The joint probability

distribution P (k+, k−) is unknown and to be determined analytically in the next section.

2.2.1 Analysis of Separate Preferential Attachment

Because the attachment kernels for separate preferential attachment are so simple we are

able to construct a theoretical prediction for the positive and negative degree distributions

and verify that they are consistent with the degree distribution of an unsigned network.

The joint probability distribution, P (k+, k−, t), is the probability that a randomly selected

node has positive degree k+ and negative degree k− at time step t. We use a rate equation

approach to construct a master equation for the change in the joint probability distribution

from time t to time t+1 [3]. To see what the network will look like in the long time limit,

we solve this equation for the steady state2.

To do this we consider two events. Event A is when a positive link is added to a given

node at time t + 1 and event B is when a negative link is added to a given node at time

t + 1. Let P (A) be the probability that event A occurs, P (A) be the probability that

event A does not occur, P (B) be the probability that event B occurs, and P (B) be the

probability that event B does not occur. There are three ways that a node can arrive at

degree of (k+, k−) at time t+ 1. First, a node with degree (k+− 1, k−) can gain a positive

link. Second, a node with degree (k+, k− − 1) can gain a negative link. Lastly, a node

that already has degree (k+, k−) can gain no new links. So we say that the probability

2The work in this section was conducted by Shadrack Antwi. For full details and results refer to [3].
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that a node will have degree (k+, k−) at time t+ 1 is the sum of the probabilities of these

three situations:

P (k+, k−, t+ 1) =P (k+ − 1, k−, t) · P (A)P (B)

+ P (k+, k− − 1, t) · P (B)P (A)

+ P (k+, k−, t) · P (A)P (B).

(2.3)

The probability that a link will be added is the product of the attachment kernel and m

because each link that is added at a time step is a chance that a given node will be chosen.

Using our definitions of the attachment kernel, we can write this in terms of k+, k−, and

m:

P (k+, k−, t+ 1) =P (k+ − 1, k−, t) ·m
k+∑

j

(k+j + 1)

1− k− + 1∑
j

(k−j + 1)


m

+ P (k+, k− − 1, t) ·m k−∑
j

(k−j + 1)

1− k+ + 1∑
j

(k+j + 1)


m

+ P (k+, k−, t) ·

1− k− + 1∑
j

(k−j + 1)


m 1− k+ + 1∑

j

(k+j + 1)


m

.

(2.4)

From the master equation we can produce a recurrence relation for P (k+, k−). We

assume that the network reaches a steady state in the long time limit. To find this steady

state we want to calculate the probability that a node with degree (k+, k−) will transition

to a new degree combination.

Figure 2.2 shows the web of possible degree transitions for a node with degree (k+, k−).

The node can gain more positive links and move left along the web or gain more negative

links and move right along the web. Consider a node transitioning from a degree of
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Figure 2.2: Binary tree of possible paths for a node from degree (k+, k−). Blue lines show
possible paths from (k+, k−) to (k+ + 2, k− + 1)

(k+, k−) to (k+ + 2, k− + 1). It could first add 2 positive links then 1 negative link, or

1 positive link then 1 negative link then 1 positive link, etc. Because the positive and

negative attachment kernels are separate, each of these paths has the same probability

of occurring, so to calculate the probability of this transition we count the number of

possible paths. Using this observation we can solve the recurrence relation resulting in

the following exact analytic expression for the joint probability distribution:

P (k+, k−) =
Γ(k+ + k− − 2m+ 1)

Γ(k+ −m+ 1)Γ(k− −m+ 1)

Γ(k+ + 1)Γ(k− + 1)

Γ( c
a

+ k+ + k− + 1)
λ, (2.5)

where a = 1 + 1
2m

, c = 2a2 + 2a, and λ =
2aΓ( c

a
+2m)

Γ(m+1)Γ(m+1)
.

In the asymptotic limit of large k+, k− the joint probability distribution reaches the

following steady state:

P (k+, k−) ∼ (k+k−)m

(k+ + k−)4+2m+1/m
. (2.6)

If we take the distribution of positive degree and negative degree separately we obtain

the following asymptotic positive and negative degree distributions:

P (k+) ∼ k+
−3−1/m (2.7)
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Figure 2.3: Reverse cumulative degree distribution for a network simulation grown with
separate preferential attachment with m = 2 and m = 10 at t = 500, 000. Dotted lines
are theoretical prediction from Equation 2.7.

P (k−) ∼ k−
−3−1/m. (2.8)

These are identical to that of an unsigned network grown by the BA model with the

variation of the attachment kernel being proportional to degree + 1 [3].

2.2.2 Simulation Results

To verify our exact theoretical prediction for the degree distribution we simulated a signed

network grown with separate preferential attachment using the method described in Sec-

tion 2.1.1. Figure 2.3 shows the reverse cumulative positive degree distribution for two

simulations of a network with separate preferential attachment. The two simulations were

run with different values of m to verify that the degree distribution depends on m. The

dotted lines are the theoretical prediction from Equation 2.7. We see that this network

is indeed scale-free. While the full joint probability distribution is in three dimensions,
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(a) Simulation (b) Theoretical

Figure 2.4: Joint probability distribution plots of log P (k+, k−) vs. k+, k− with m = 5
at t = 300, 000 for a network grown with separate preferential attachment from network
simulation (a) and exact analytic expression (b). Figure from [3].

this plot looks only at the positive degree distribution so that we may observe it in two

dimensions. A negative degree distribution would be identical.

Figure 2.4 shows the joint probability distribution in three dimensions. The x and

y axes are positive degree and negative degree respectively and the color is the log of

the probability of that degree combination. The two plots show agreement between the

simulation and the exact theoretical prediction.

2.2.3 Cross Correlation

The relationship between a node’s positive degree and its negative degree is an important

result of a network grown with preferential attachment. Studying the resulting cross

correlation of positive and negative degrees in a network gives us important insight into

how the network was grown.

In a network grown with separate preferential attachment, older nodes have the great-

est chance of receiving positive links and also have the greatest chance of receiving negative

links. Thus we expect the positive and negative degree of the nodes in the network to be
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kmax Simulation Exact Analytic Expression
50 0.7195 0.7206
55 0.7291 0.7281

Table 2.2: Cross correlation C(k+, k−) from a network simulation and from the exact
analytic expression. kmax is the maximum range of k+ and k− used to compute the cross
correlation.

positively correlated.

Let σk+ be the standard deviation of k+ and σk− be the standard deviation of k−.

The mean positive and negative degrees are k+ and k− respectively. Due to limitations

of computing large factorials in Matlab we choose a kmax and restrict our computation to

nodes with positive and negative degrees at or below our chosen kmax. We define the cross

correlation between a node’s positive degree k+ and its negative degree k− as follows:

C(k+, k−) =
1

σk+σk−

 kmax∑
k+=m

kmax∑
k−=m

(k+ − k+)(k− − k−)P (k+, k−)

 . (2.9)

The values of σk+ , σk− , k+, and k− can be calculated using the exact expression for

P (k+, k−) allowing us to calculate the exact analytic cross correlation. Table 2.2 shows

the resulting cross correlation computed using Equation 2.9 for a simulated network and

verifies that they are consistent with our exact analytic expression for cross correlation.

2.3 Other Attachment Methods

Separate preferential attachment offered a base case for signed network growth and its

simplicity allowed for thorough analytic investigation. However separate preferential at-

tachment fails to fully incorporate the meaning of signed links into its method for growth.

When a user makes a connection with another user, reviews a product, or votes on an

issue they will most likely make their decision based on both types of available informa-

tion: positive links and negative links. But how are these two attributes to be weighed
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in the decision? Do positive links help you just as much as negative links hurt you–or

does one type of link carry more weight? Does the old saying hold true that “any press

is good press”? The following sections propose several more complex methods for signed

preferential attachment with the purpose of modeling these possible phenomena.

2.3.1 Ratio Preferential Attachment

Ratio preferential attachment incorporates the idea that positive links are intrinsically

good and negative links are intrinsically bad. Thus the probability that a node will gain

positive links is positively correlated to the number of positive links it has and negatively

correlated to the number of negative links it has. Likewise the probability that a node

will gain negative links is positively correlated to the number of negative links it has

and negatively correlated to the number of positive links it has. We define the positive

attachment kernel to be proportional to the ratio of positive degree to negative degree and

define the negative attachment kernel to be proportional to the ratio of negative degree

to positive degree as follows:

Π+(i) =

k+i+1
k−i+1∑

j

(
k+j+1

k−j+1

) (2.10)

Π−(i) =

k−i+1
k+i+1∑

j

(
k−j+1

k+j+1

) . (2.11)

By taking the ratio of positive to negative degree when deciding which nodes will

receive new positive links, having a lot of positive links will increase your chances of

gaining positive connections and having a lot of negative links will decrease your chances

of gaining positive connections. Likewise, having a lot of negative links will increase your

chances of gaining negative connections and having a lot of positive links will decrease

your chances of gaining negative connections.
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Figure 2.5: Reverse cumulative degree distribution for a network simulation grown with
ratio preferential attachment with m = 5 at t = 300, 000. Dotted curve is a degree
distribution for an unsigned scale-free network.

Figure 2.5 shows the reverse cumulative degree distribution for a simulated network

with ratio preferential attachment. For comparison we also plot a degree distribution

for an unsigned scale-free network. It is possible that an earlier stage of the network

exhibited scale-free properties, however, in the long time limit this method does not

result in a scale-free network. In the infinite limit the network results in one gigantic

node that has a probability of gaining a new link almost equal to 1. This is a known

phenomenon for preferential attachment methods where the degree is raised to a power

greater than 1 [12].

2.3.2 Weighted Product Preferential Attachment

Weighted product preferential attachment is based on the principle that any press is good

press. This means that your probability of gaining positive links is positively correlated

with your negative degree. For the positive attachment kernel we wish to weight the
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Figure 2.6: Reverse cumulative degree distribution for a network simulation grown with
weighted product preferential attachment with m = 5 at t = 300, 000. Dotted curve is a
degree distribution for an unsigned scale-free network.

positive degree more heavily to account for the different meaning of positive and negative

links so we scale the positive degree by an exponent β > 0.5 and scale the negative degree

by 1 − β. By choosing these exponents so that they sum to 1 we avoid the “gelation-

like” effect that occurred in ratio preferential attachment when a degree is scaled by

an exponent greater than 1. For the positive attachment kernel we choose to scale the

positive degree by 0.7 and the negative degree by 0.3. The negative attachment kernel is

symmetric such that the positive degree is scaled by 0.3 and the negative degree is scaled

by 0.7. The resulting positive and negative attachment kernels are as follows:

Π+(i) =
(k+i + 1)0.7(k−i + 1)0.3∑
j

(k+j + 1)0.7(k−j + 1)0.3
(2.12)

Π−(i) =
(k+i + 1)0.3(k−i + 1)0.7∑
j

(k+j + 1)0.3(k−j + 1)0.7
. (2.13)

This model did result in a scale-free network in the long time limit (see Figure 2.6).
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Thus it is the first method for signed preferential attachment that considers the meaning of

signed links while still resulting in a scale-free network. This model also has the potential

to be adapted by changing the weighting of the positive and negative degrees. We expect

that a modification of this model with slight changes in the weighting of the degrees would

still result in a scale-free network, offering variability when fitting to a real-world network.
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Chapter 3

Data Fitting

3.1 Background and Assumptions

The previous chapter defined several models for signed network growth. In this chapter

we discuss data fitting methods to select the best fitting model for a given real-world net-

work. Determining the rules for growth in a real-world network will enable prediction of

the future behavior of the network. This information is very important for understanding

networks and has benefits for targeted advertising, user-retention efforts, and determining

the quality of products. Here we discuss and test existing methods for measuring prefer-

ential attachment in temporal unsigned network data sets and suggest modifications for

signed network data sets.

When choosing a fitting method for a given data set we must consider the number of

time points available. Some data sets are very detailed and have a time stamp denoting

exactly when each link was added to the network. Others might only have one or a few

snapshots of the network structure at a given moment in time. Clearly, using more time

points will result in a more accurate fitting; however, we also consider methods that only

require a few time steps in order to fit a broader range of data sets.

We use the Epinions social network as a case study for measuring preferential attach-
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ment [16]. Epinions.com is a consumer review platform where users are paid to write

reviews on a large collection of products. Users have the ability to personalize the reviews

they see by “trusting” and “distrusting” other users. The Epinions social network consists

of the trust connections (positive links) and distrust connections (negative links) between

users. The data set gives the connections made by 131, 828 users on the website from

January 2001 to August 2003. These connections are represented by 841, 372 directed

links with a value of +1 or −1 and the date the link was added. Because the links are

directed we only consider the in-degree of a node, the number of links pointing towards

that node. For simplicity of computation, we only consider the network’s giant connected

component, which consists of 648, 623 links. This data set has been used previously to in-

fer unknown trust connections from existing trust connections [13,18,19]. However, these

studies lack an understanding of the impact of negative links on preferential attachment.

This chapter provides background on existing methods for measuring preferential at-

tachment in unsigned networks. We present our attempts to reproduce these methods

and discuss the limitations that made some of these methods very sensitive to parameter

choices. We then discuss adaptations of the methods to alleviate these shortcomings.

Finally we propose methods for measuring preferential attachment in signed networks.

3.1.1 Nonlinear Preferential Attachment

The attachment kernels of growing networks were first measured in 2003 by Jeong et

al. [11]. Their method fits each node’s change in degree between two time points (t0 and

t1) to the attachment kernel of the network. The attachment kernel is assumed to be

nonlinear, where the linear attachment kernel defined in the BA model (Equation 1.8) is

modified by including a scaling exponent α > 0:

Π(i) =
kαi∑
j

kαj
. (3.1)
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They calculate the proportion of new links added between t0 and t1 to nodes that

originally had degree k at t0. Jeong et al. assume that when a short interval between

t0 and t1 is used, the functional form of Π(i) does not depend on t0 or t1. Then they fit

the change in degrees from t0 to t1 to Equation 3.1 and approximate the value of α for a

given data set. They recalculate α with different t0 and t1 values to show that the fitting

is not dependent on t0 or t1.

When α = 1, the network uses linear preferential attachment resulting in a power law

degree distribution with P (k) ∼ k−3. When α > 1, the network experiences a “gelation-

like” effect where one gigantic node has a probability of gaining a new link almost equal

to 1 [12]. These networks are not scale-free and their degree distributions do not reach

a steady state. For α < 1, the network uses sublinear preferential attachment which is

shown to result in a stretched exponential degree distribution [13].

Jeong et al. approximated the scaling exponent for the Internet and citation network

of published papers to be α = 1± 0.1, showing that these networks use linear preferential

attachment. The co-authorship network of neuroscientists and the co-starring network of

movie actors are shown to have sublinear preferential attachment with scaling exponents

of α = 0.79 ± 0.1 and α = 0.81 ± 0.1 respectively [11]. These results show that the

nonlinear preferential attachment model can achieve a better fit than the linear preferen-

tial attachment model for some real-world networks. Next we discuss variations of this

method to better fit temporal network data sets to the nonlinear preferential attachment

model.

3.2 Least Squares Fitting

The first method for preferential attachment measurement we investigate in detail uses

least squares regression to fit the attachment kernel to a node’s change in degree between

two time points. Kunegis et al. expand on the method proposed by Jeong et al. and

measure nonlinear preferential attachment using least squares fitting for over 40 online
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networks, showing that the scaling exponent depends on the type of network (e.g. social,

rating, or interaction networks), leading to a better understanding of the social processes

underlying preferential attachment [13]. In signed networks, their method ignores the sign

of a link and treats all positive and negative connections between users as unsigned links.

Kunegis et al. propose that the two time points (t0 and t1) be chosen such that t1 is the

most recent state of the network and t0 contains 75% of the links that are present at t1.

This differs from the choice of time steps by Jeong et al., which requires a short interval

between t0 and t1. These choices for time points offer an advantage over some other data

fitting methods because network data may be obtained by taking two snapshots of the

network rather than identifying the exact time that each link was added.

The method used by Kunegis et al. performs least squares fitting on the logarithm

of the change in degrees. We find that a parameter choice for logarithmic least squares

fitting can drastically change the result so we suggest variations of least squares fitting

that offer different weightings of the data.

3.2.1 Logarithmic Least Squares Fitting

We begin our study by attempting to reproduce the logarithmic least squares fitting

method for measuring preferential attachment achieved by Kunegis et al. [13]. Kunegis

et al. chose to perform the least squares fitting on the logarithmic degrees. They suggest

that this avoids the over-weighting of noisy high degrees in the network.

We define k0
i to be the degree of node i at t0, k1

i to be the degree of node i at t1, and

the change in degree of node i to be ∆(i) = k1
i − k0

i . Note that we use our own notation

for clarity. We make the assumption that the following method of preferential attachment

is used to grow the network:

Π(i) =
(1 + k0

i )
α∑

j

(1 + k0
j )
α . (3.2)

The +1 is added so that nodes with degree zero have a nonzero attachment kernel. We
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define the normalization term to be c(t) and treat it as a constant c(t0). Then Π(i) =

(1 + k0
i )
αc(t0). This attachment kernel should be proportional to the change in degree of

each node:

∆(i) ∝ (1 + k0
i )
αc(t0). (3.3)

Kunegis et al. suggest adding a regularization parameter λ to ∆(i). This ensures that

the value is nonzero so we can we take its logarithm even if the node does not gain any

links between t0 and t1. We search for an α such that

ln[∆(i) + λ] ∝ ln[(1 + k0
i )
αc(t0)]. (3.4)

Thus we use the following expression over all nodes:

ln[(1 + k0
i )
αc(t0)]− ln[∆(i) + λ]. (3.5)

To simplify the expression we let c(t0) = eβ. Then we arrive at the least squares mini-

mization expression:

min
α,β

∑
j

(
α ln[1 + k0

i ] + β − ln[∆(i) + λ]
)2
. (3.6)

We test this method for measuring preferential attachment by applying to temporal

data from a simulated network where α = 1 is known. We minimized the expression for

the change in degrees of the network using the Matlab function fminsearch which imple-

ments the Nelder-Mead method. Since the expression is linear in its unknown variables,

this minimization method is guaranteed to find a global minimum. Using λ = 0.1 as

suggested by [13] we measured α = 1.2900 for a simulated unsigned network grown using

the attachment kernel from Equation 3.2. Because the value of the parameter λ was cho-

sen arbitrarily, we investigated its effect on the resulting measurement of α. We ran the

method for values of λ between 0.01 and 1.00 and list the results in Table 3.1. The range
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λ α
0.01 1.7692
0.05 1.4370
0.10 1.2900
0.20 1.1378
0.30 1.0453
0.40 0.9779
1.00 0.7526

Table 3.1: Resulting α values using logarithmic least squares fitting for various λ values.

of α measurements for these small shifts in the value of λ presents a deficiency in this

method. The arbitrary choice of λ leads to incorrectly classifying the same network as

sublinear, linear, or superlinear. This shortcoming leads us to consider data fitting meth-

ods that do not take the logarithm of the degree and thus do not require the parameter

λ.

3.2.2 Basic Least Squares Fitting

The logarithmic least squares fitting method introduced an unnecessary arbitrary param-

eter that made the fitting unreliable. We return to a basic least squares fitting method

and suggest variations of how to group and weight the degrees.

For a simple least squares fitting method, we search for an α such that

∆(i) ∝ (1 + k0
i )
αc(t0). (3.7)

Note that we have removed the λ parameter because ∆(i) is permitted to be zero if we

are not taking its logarithm. Then we minimize the following over all nodes:

(1 + k0
i )
αc(t0)−∆(i). (3.8)

To simplify the expression we let c(t0) = β. Then we arrive at the least squares mini-
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(a) Simulation (b) Epinions

Figure 3.1: Change in degree from t0 to t1 for (a) a simulation grown with linear prefer-
ential attachment at t = 300, 000 and (b) the Epinions social network. Black curve shows
the fitting obtained by the basic least squares fitting method in Equation 3.9.

mization expression:

min
α,β

∑
j

(
β(1 + k0

i )
α −∆(i)

)2
. (3.9)

Note that this minimization expression is nonlinear in its unknown variables and thus

it is not guaranteed that our minimization method will find its global minimum. Our

tests with simulated data and the Epinions data set are indeed able to find a minimum

and visual inspection validates the fitting (see Figure 3.1).

We test this method on a simulated network grown using the preferential attachment

method described in Equation 3.2 with α = 1. The basic least squares method produced

an estimation of α = 1.0027 that is more accurate than the estimation produced by the

logarithmic least squares method (see Table 3.2). We also test the basic least squares

method on the Epinions data set and produce an estimation of α = 0.8900 which differs

significantly from the value of α suggested by Kunegis et al. [13].
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Fitting Method Simulation (α = 1.0) Epinions
Logarithmic Least Squares (λ = 0.1) α = 1.2900 α = 0.5525
Basic Least Squares α = 1.0027 α = 0.8900
Weighted Least Squares α = 1.0330 α = 0.9514
Binned Least Squares α = 1.0150 α = 0.7384

Table 3.2: Resulting α values using various fitting methods. The simulation is grown for
300, 000 time steps with a known value of α = 1. The expected value for the Epinions
data set is unknown.

3.2.3 Weighting of Data Points

Kunegis et al. suggest the importance of how the data points in a fitting are being weighted

[13]. They suggest that the high degrees in the network are noisy and thus may not

accurately describe the attachment kernel. On the other hand, there are significantly

more low-degree rather than high-degree nodes in the network so taking each node as its

own data point weights the fitting toward the attachment kernels exhibited by non-noisy

low-degree nodes. It is possible that this skew due to the number of occurrences of nodes

correctly weights the data.

Kunegis et al. proposes that the data must be weighted further to downplay the noisy

high degrees. Let σk be the error in ∆ for a node with degree k. Kunegis et al. suggest

that σk increases with k. Define y = ln ∆. Kunegis et al. weight all y values equally,

independent of k. Since ∆ = ey, σk = eyσy by propagation of error. Because σy is

assumed to be constant, σk ∝ ey which increases with k. Thus high degree nodes are

treated as having larger error bars. Then the least squares fitting of the logarithmic data

can be performed without adjusting for error.

We wish to avoid taking the logarithm of degrees as it introduced the arbitrary param-

eter λ, so we present an alternative method to weight the high degree nodes less heavily.

We assume that the change in degree ∆ of a node with degree n is drawn from a binomial

distribution with mean ∆n. Each new link has probability p to connect to this node,

increasing its change in degree. The variance of a binomial distribution is σ2 = µ(1− p).
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For a large network each p is very small so the variance for a single node is σ2 ≈ µ. Thus

σ2 ≈ ∆n. This observation matches our intuition because high degrees have a large ∆n

and thus have a greater error. We correct for this error by weighting the data points by

their variance in the least squares minimization:

min
α,β

∑
j

(β(1 + k0
i )
α −∆(i))

2

∆(i)
. (3.10)

The results of this method to fit a simulated network and the Epinions data set are shown

in Table 3.2. This method accurately estimates the preferential attachment of a simulated

network where α is known. The estimation of α for the Epinions data set differs from

previous fitting methods, further showing the impact of weighting on a data fitting.

Our next proposed variation involves a different assumption about the errors of the

degrees. Here we wish to counteract the skew due to the large number of occurrences of

low-degree nodes so that low degrees and high degrees are weighted equally. We do this

by averaging the occurrences of a degree into one data point. We consider all the nodes

at time t0 and group them by their degrees into bins n = 0, 1..., kmax. Our data points

for degrees at t0 are k0
n for n = 0, 1..., kmax. For each bin we take the nodes in the bin

and average the degree of those nodes at t1 resulting in k1
n for n = 0, 1..., kmax. Thus our

change in degree function is ∆(n) = k1
n − k0

n. We consider the following over all n:

(1 + k0
n)αc(t0)−∆(n). (3.11)

Then we arrive at the least squares minimization expression:

min
α,β

kmax∑
n=0

(
β(1 + k0

n)α −∆(n)
)2
. (3.12)

The results of this method to fit a simulated network and the Epinions data set are shown

in Table 3.2. This method also accurately estimates the preferential attachment of a

35



simulated network where α is known. Again the estimation of α for the Epinions data set

differs from previous fitting methods.

These methods present varying ways to weight the degrees in a data fitting method.

No one method was shown to be superior to another. All resulted in different estimations

for a data set with unknown preferential attachment, though we find the logarithmic

least squares method to differ the most from the other methods. We conclude that the

weighting of data points has significant impact on data fitting and should be further

studied to obtain more accurate measurements of preferential attachment.

3.3 PAFit Maximum Likelihood Estimation

The previous section discussed the least squares fitting method which assumes the func-

tional form of the preferential attachment method and uses two time points to fit the

change in degree. This method is designed for data sets with limited time points or when

power law preferential attachment is known to be present. This section discusses a more

versatile method for estimating attachment kernels proposed by Pham et al. called PAFit

maximum likelihood estimation [22].

The PAFit maximum likelihood estimation method iteratively fits temporal network

data to the vector ~A = [A0, A1, ..., Akmax ], where Ak gives the relative probability that

a node with degree k will gain a link such that Aki ∝ Π(i) for all i. We set A0 = 1.

Then, for example, a network with linear preferential attachment would have a vector

~A = [1, 2, 3, ...]. The functional form of the attachment kernel need not be assumed

because the method produces relative attachment probabilities to which a functional form

for attachment can later be fitted.

The derivation of the PAFit maximum likelihood estimation defines variables that

describe the links and nodes that are added at each time point then uses these to calculate

the likelihood of observing a given network in the next time step. Let Gt be the state of

the network at the end of time t after nodes and links have been added. We define n(t)
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to be the number of nodes added during time t and m(t) to be the number of links added

during time t. A parameter vector ~θ(t) determines the joint distribution of n(t) and m(t)

and is assumed not to depend on ~A. We let ~θ∗ denote the parameter vector specifying

geometry for the network at t = 0.

The PAFit method first calculates the probability of observing the network Gt given

the attachment kernel vector ~A and the previous state of the network at time t− 1, Gt−1.

This depends on two probabilities: first, the likelihood of n(t) and m(t) given Gt−1 and

~θ(t), and secondly, the likelihood of the current graph Gt given the previous graph Gt−1,

m(t), n(t), and ~A. Therefore,

P (Gt|Gt−1, ~A) = P (m(t), n(t)|Gt−1, θ(t)) · P (Gt|Gt−1,m(t), n(t), ~A). (3.13)

Now that we can calculate the probability of one time point in the data we can compile

these individual probabilities to find the likelihood of observing the entire data set given

some ~A. Then we maximize this likelihood to solve for ~A. The likelihood of observing

the entire data set is

P (G1, G2, ..., GT | ~A) = P (G0|~θ∗)
T∏
t=1

P (Gt|Gt−1, ~A). (3.14)

Note that the logarithm of this product will have the same maximum so we can instead

maximize the following function:

l( ~A) = logP (G0|~θ∗) +
T∑
t=1

logP (Gt|Gt−1, ~A). (3.15)
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Using Equation 3.13 and the initial conditions for G0 we obtain:

l( ~A) =
T∑
t=1

logP (Gt|Gt−1,m(t), n(t), ~A)

+
T∑
t=1

logP (m(t), n(t)|Gt−1, ~θ(t))

+ logP (G0|m(0), n(0), ~θ∗)

+ logP (m(0), n(0)|~θ(0)).

(3.16)

Since we are maximizing the function by finding ~A we can ignore the last three terms

because they do not depend on ~A.

We define nk(t) to be the number of existing nodes with degree k at time t and mk(t) to

be the number of new links that connect to nodes with degree k. Then the probability that

a newly added edge at time t connects to a node with degree k is pk(t) = nk(t)Ak∑kmax
j=0 nj(t)Aj

. We

represent P (Gt|Gt−1,m(t), n(t), ~A) by a multinomial distribution to count the different

ways links could be added:

P (Gt|Gt−1,m(t), n(t), ~A) =
2m(t)!

kmax∏
k=0

mk(t)!

kmax∏
k=0

pk(t)
mk(t). (3.17)

Substituting this equality into Equation 3.16 and dropping terms independent of A
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Expected Value Estimated Value
α = 1.0 α = 0.920
α = 0.7 α = 0.661

Table 3.3: Resulting α values using PAFit maximum likelihood estimation on two simu-
lated networks grown for 300, 000 time steps with a known value for α.

we reduce the function as follows

l( ~A) =
T∑
t=1

log
kmax∏
k=0

pk(t)
mk(t) (3.18)

=
T∑
t=1

kmax∑
k=0

mk(t) log

(
nk(t)Ak∑kmax

j=0 nj(t)Aj

)
(3.19)

=
T∑
t=1

kmax∑
k=0

mk(t)

[
log(nk(t)Ak)− log

(
kmax∑
j=0

nj(t)Aj

)]
(3.20)

=
T∑
t=1

kmax∑
k=0

mk(t) log(nk(t)Ak)−
T∑
t=1

m(t) log

(
kmax∑
j=0

nj(t)Aj

)
. (3.21)

To solve for ~A we begin with some arbitrary guess for ~A then update each Ak using the

following recurrence relation for every time point:

Ak =

∑T
t=1mk(t)∑T

t=1
m(t)nk(t)∑K
j=0 nj(t)Aj

. (3.22)

Pham et al. prove that this recurrence relation converges.

We used code provided by Pham et al. to apply this method to data from two simulated

networks grown with preferential attachment, one with a scaling exponent of α = 1 and

the other with α = 0.7 [24]. We fit the resulting attachment kernel vector to the nonlinear

preferential attachment kernel described in Equation 3.2. Table 3.3 displays the results

from these data fittings and verify that the PAFit maximum likelihood estimation method

can correctly measure nonlinear preferential attachment.
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3.3.1 Signed Maximum Likelihood Estimation

The flexibility of the PAFit maximum likelihood estimation estimation makes it an ideal

option for fitting signed networks. Here we propose an adaption of the PAFit maximum

likelihood estimation method that fits both the positive and negative attachment kernels

of a network.

Since signed attachment kernels are dependent on both positive and negative degrees

we aim to fit the two dimensional parameter matrices A+ and A−. Each entry A+
k+,k−

in

A+ represents the relative probability that a node with positive degree k+ and negative

degree k− will gain a positive link. Likewise each entry A−k+,k− in A− represents the

relative probability that a node with positive degree k+ and negative degree k− will gain

a negative link.

We define m+(t) to be the number of positive links added at time t and m−(t) to

be the number of negative links added at time t. The parameter vector ~θ(t) determines

the joint distribution of n(t), m+(t), and m−(t) and does not depend on ~A. We let ~θ∗

denote the parameter vector for the network at t = 0. Then the likelihood of observing

the network Gt given the previous network Gt−1, A+, and A− is as follows:

P (Gt|Gt−1,A+,A−) =P (m+(t),m−(t), n(t)|Gt−1, θ(t))

· P (Gt|Gt−1,m+(t),m−(t), n(t),A+,A−).
(3.23)

In the same manner that we achieved Equation 3.16 we combine the probabilities for

each time step to calculate the probability of observing the entire data set arriving at the
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following maximizing function:

l(A+,A−) =
T∑
t=1

logP (Gt|Gt−1,m+(t),m−(t), n(t),A+,A−)

+
T∑
t=1

logP (m+(t),m−(t), n(t)|Gt−1, ~θ(t))

+ logP (G0|m+(0),m−(0), n(0), ~θ∗)

+ logP (m+(0),m−(0), n(0)|~θ(0)).

(3.24)

The last three terms may be dropped because they do not depend on A+ or A−. We

propose to solve for A+ and A− by maximizing this function.

Our intuition from the models of signed preferential attachment presented in Chapter

2 allow us to make predictions about the positive and negative attachment matrices for

signed networks. First we observe that the existence of separate matrices for positive and

negative attachment enable fitting to a network that uses completely different rules for

positive link attachment and negative link attachment. The models we propose in Chapter

2 have symmetry between their positive and negative attachment kernels. However, a real-

world network may, for example, use separate preferential attachment for its positive links

and ratio preferential attachment for its negative links.

If we suspect a signed preferential attachment method may be occurring in a network

we can identify the functional form of the attachment kernel from its positive and negative

attachment matrices. For example we can deduce the expected attachment matrices for

a network with separate preferential attachment. The positive attachment matrix A+ for

such a network would have all identical rows because the positive attachment kernel does

not depend on negative degree. Likewise the negative attachment matrix A− would have

all identical columns because the positive attachment kernel does not depend on positive

degree.

The PAFit maximum likelihood estimation method has the disadvantage of requiring
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a robust data set with many time points. It also requires many occurrences of each k+, k−

combination, though this requirement can be relaxed by binning the degree combinations.

Despite these disadvantages, the flexibility of the PAFit maximum likelihood estimation

method to not have to assume the functional form of the attachment kernel offers a great

benefit, making it the most viable option for signed network data fitting that we have

studied.
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Chapter 4

Conclusions

The use of network science in a diverse range of fields reveals the importance of studying

and understanding network structure. By modeling the growth of networks over time we

can offer accurate predictions for the future behavior of a network and extract meaning

about the individual members in a network. Current research about network growth

continues to improve our understanding of the rules for network evolution. This project

contributes to the recent body of research relating to signed networks. We aim to study

the effect of assigning a positive or negative value to links in the network.

The first stage of this project was to develop potential rules for signed network growth.

We successfully proposed and analyzed the basic mechanism of separate preferential at-

tachment and reached a solid understanding of its effect on the degree distribution and

cross correlation of a network. We presented several other mechanisms for signed preferen-

tial attachment, each motivated by an intuition about social behavior. These preferential

attachment mechanisms offer a foundation for future research on signed network growth

and provide functional forms to which real-world data can be fit.

The next stage of the project was to investigate methods for fitting data from real-

world signed networks. These fitting methods attempt to determine the form of preferen-

tial attachment used in a network so that we may classify networks and make predictions
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about their future behavior. We first reproduced the method of logarithmic least squares

regression proposed by Kunegis et al. We show that this method is unstable due to a

regularization parameter and suggest that the stable method of basic least squares regres-

sion is preferred. Lastly we investigate the PAFit maximum likelihood estimation method

proposed by Pham et al. We conclude that the flexibility of this method makes it the

ideal choice for signed network data fitting.

4.1 Future Work

This project offers a foundation for the study of growing networks and leads to several

ideas for further research. Our proposals for signed network attachment serve as exam-

ples for the breadth of possible signed preferential attachment mechanisms that could be

present in real-world networks. Further research could include developing more possibili-

ties for signed preferential attachment and analyzing their viability.

Another important continuation of this project is to complete the development of a

signed network fitting method. We present suggestions for signed network data fitting but

have yet to fully implement a fitting method. Finally, future research on signed networks

would greatly benefit from data collection for more real-world signed networks. For this

project we found only one publicly available signed network data set of an adequate size.

The collection of many real-world signed networks would open up great opportunity for

the study and classification of signed network growth.
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