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Abstract

A recent theoretical paper by Leonard Mlodinow and Todd Brun suggests that the functioning of

physical records or “memories” is never accompanied by a decrease in entropy, meaning that all memories

“align” with the thermodynamic arrow of time. In this thesis, we characterize a class of physical systems

as memories in terms of inferences that can be made about the state of the world, given certain information

about these systems. Tools from Bayesian probability theory are used to quantify the informativeness and

reliability associated with such inferences. Based on consideration of two model systems, one classical and

one quantum, we argue in favor of Mlodinow and Brun’s claim that the functioning of memory systems

is conditioned by thermodynamic constraints. For the classical model, we show that a memory which

operates against the thermodynamic arrow, and thus “remembers” a relatively high-entropy state, is

much less informative than a similar memory which aligns with the thermodynamic arrow. Our analysis

of the quantum model, expressed in the density matrix formalism of quantum mechanics, allows us to

consider the inferences that can be made when a quantum system is coupled to a simple type of quantum

memory system. We ultimately show that these inferences can be expressed in terms of a probabilistic

matrix completion problem.
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1 Questions and Motivation

1.1 Introduction

There is an extensive scientific canon which posits a link between the second law of thermodynamics, which

describes the increase in thermodynamic entropy over time, and physical memories, or systems which record

information. Researchers have made the case for such a relationship from a range of perspectives. Some,

like psychologist Ryan Smith, approach memory from a neurological standpoint: Smith has noted that the

micro-scale processes which are the building blocks of human cognition rely on a predictable increase in

entropy.10 Others have considered the brain and other memory systems as computing systems, and have

investigated how the physical instantiation of logical operations is constrained by thermodynamic effects.

For example, the famous “Landauer’s principle” states that every erasure of a bit, or “clearing” of a bit of

memory, entails a net increase in entropy of kB ln 2.7 Some authors, such as Lorenzo Maccone, have even

searched for a connection between memory and entropy in quantum physics. Maccone has argued that the

physics of quantum systems makes it so that all processes which leave a “trail of information” cannot be

entropy-decreasing processes.8

The goal of this thesis is to explore how the reliability of a physical record is conditioned by the existence

of a thermodynamic arrow of time. Our analysis was inspired by the 2014 work of Leonard Mlodinow and

Todd Brun, who argued that physical systems can only function precisely and reliably as memories of the

thermodynamic past.9 That is, if a memory accessed at a time t1 reveals information about the state of the

world at another time t2, then the entropy of the memory and its surroundings at t1 must be higher than

the entropy at t2, in order for the memory to be reliable or “robust.” In our Universe, where all isolated

subsystems so far observed exhibit a common thermodynamic arrow of time, this result implies that all

memory systems share a common “directionality” in time which aligns with our intuitive, human distinction

between the past and the future.

Mlodinow and Brun’s analysis is motivated by the property of time-reversal invariance, a characteristic

possessed by many modern physical theories, including quantum mechanics and special relativity. The

mathematical structure of such theories does not pick out a certain direction in time as obviously past

or future. Rather, this temporal ordering is imposed by users of these theories, who already possess a
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definite notion of past and future. The question of how our world, governed by such time-symmetric laws,

could nevertheless appear so asymmetric when we compare one direction in time to the other, is known as

Loschmidt’s paradox. Mlodinow and Brun’s analysis aims to address Loschmidt’s paradox in the particular

context of memory systems. That is, they propose an explanation for why all systems that function as

memories only appear to operate in one direction of time, despite the underlying time-symmetric dynamics

of these systems.

Our contribution to Mlodinow and Brun’s work has been to develop two simple models, one classical

and one quantum, that we believe can help clarify and extend their analysis. In the remainder of Chapter

1, we offer some theoretical background and motivation for our work, and characterize the terms of the

research question more precisely. In particular, we introduce our interpretation of memory as a type of

probabilistic inference. This reasoning is applied to a classical model system in Chapter 2. We consider

a simple stochastic system of marbles moving between two urns, and show that the informativeness of a

“memory-type” inference about certain properties of the marble system is contingent upon changes in the

entropy of the system over time. In Chapter 3, we explore a model quantum memory system with a similar

approach. Using the density matrix formulation of quantum mechanics, we investigate how inferences about

the state of a quantum system are conditioned by observations of a memory device coupled to the system.

Chapter 4 concludes our investigation, and highlights some possible avenues for future work. Finally, in

Appendix A, we present an overview of the theory of Bayesian probabilistic inference, and in Appendix B

we give an introduction to the density matrix formalism.

1.2 Memory as inference

To begin our investigation, a concrete definition of a physical memory system is essential. Here, we wish

to understand the category of memories as a broad class of “record” systems, so as to include any system

which can function as a record or repository of information about the world. Accordingly, this conception of

memory systems encompasses systems like the human brain or computer memories, which can be understood

as specifically evolved or designed for the function of recording information. But it also extends beyond

these straightforward cases. For example, we would also like to identify objects like fossils as a record of this

type, because when given an observation of a fossil’s physical properties, we can reasonably extract a wealth

of information about the distant past. Of course, the possibility of accessing this information also hinges

upon a background of prior information and a pre-existing theoretical framework, which includes scientific
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knowledge of geological processes, evidence from similar fossils, and an understanding of biological evolution.

So we wish to define a class of “memory systems” in terms of the information about the world which

might be inferred from observation or analysis of such systems. With this conception of memory in mind,

we put forward the following working definition of a memory system. In this work, we classify a physical

system M as a memory of a second system S if:

Given some knowledge of the state or properties of M at some time t1, some inference about the state of

S at another time t2 can be made with high confidence.

Two important aspects of this characterization of a memory system immediately stand out. First, this

definition suggests that memory systems come in degrees, with the reliability of the memory scaling with the

confidence that can be placed in the relevant inferences being made. Indeed, almost any system might qualify

as a potential memory under this criterion, although the inferences made based on most such systems will be

so uninformative as to be practically useless. Although our definition does not provide a strict dividing line

between memories and non-memories, it does leave open the possibility that similar memory systems might

be compared, based on the relative confidence associated with the inferences they allow.

Second, under this definition, the status of a system as a usable memory depends not only on the raw

physical constitution of the memory and its environment, but also on the logical procedure of inference.

Of course, the types of inferences which can be made about the world based on a memory will be heavily

constrained by physical interactions between the memory and its surroundings. However, we will argue that a

purely physical account of memory systems, which does not introduce some notion of inference, is insufficient

to account for a range of common systems which function as useful memories.

We emphasize here that our conception of inference should not be construed as an exclusively human

activity. Rather, we understand inference as an abstract logical procedure, which could potentially be em-

bodied in a range of physical systems. A system which instantiates an inference procedure take inputs which

encode relevant information about the world, processes this information with a set of physical operations

corresponding to logical rules, and then produces a physical result associated with this processed informa-

tion. Consequently, any system capable of encoding and manipulating information in this way could perform

inferences about memory systems. Of course, one example of such a system is the human brain, but systems

like artifical neural networks and some non-human animals are also capable of inference in this sense.

Proceeding with this definition of memory suggests two related objections. First, why should we even

introduce a concept like inference into our definition of a memory? Surely, there must be some way to appraise
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a system as a memory solely in terms of its physical properties, without interpretation through an inferential

procedure. Second, even if such a definition of memory is put forward, how could it possibly be made precise

and unambiguous, given that the state of a single physical record may imply different conclusions under

different logical frameworks for inference? We have already noted, for example, that the inferences which

could be made about a fossil specimen are heavily conditioned by relevant evidence and scientific knowledge.

Though a physical system may, in practice, function as a memory for one observer but not another, this

seems to be only a contingent fact about when and how the memory is accessed, and not a rigorous criterion

by which we might distinguish memories from non-memories.

In addressing the first objection, we argue that a definition of memory without some notion of inference

would exclude a broad class of systems which, intuitively and practically, we think of as memories or records.

This is because many memory systems, particularly those at a macroscopic scale, function probabilistically

as memories. That is, these systems work well as memories not because they deterministically record the

state of the world with perfect fidelity, but because we judge them to be reasonably reliable under certain

conditions. The presence of noise and outlying data does not prevent us from categorizing our experimental

instruments as memories; these errors simply temper our trust in these devices. In these cases, it may be

difficult or practically impossible to determine whether, in any particular instance, a system acts “properly”

as a memory or whether it malfunctions. However, this limitation does not rule out the possibility of building

probabilistic theoretical models of these memory systems, which can provide an incomplete and yet useful

account of how such systems operate and record information.

Allowing for a probabilistic conception of memory systems is particularly important in the present work,

given that we aim to describe memories in the presence of the thermodynamic arrow of time. As we will

explain in the next section, results from statistical mechanics suggest that the changes in entropy which

determine an arrow of time emerge only statistically: It is not that an observable decrease in entropy is

physically impossible, but only that it is extremely unlikely. If we wish to properly account for memory

systems which exhibit a thermodynamic arrow of time, we must be able to articulate a meaning for memory

in this probabilistic context.

Making this notion of probability more precise will help to address the second objection, concerning the

dependence of inference on background information and a pre-existing logical framework. In this work, we

follow the Bayesian approach to the assignment and interpretation of probabilities. In the Bayesian formu-

lation of probability, a numerical probability quantifies the degree of certainty that can be associated with
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the truth or falsity of a given inference. These probabilities are assigned, not observed, based on information

relevant to the inference and on requirements of logical consistency. In this way, the Bayesian probability

calculus functions as a generalization of standard two-valued formal logic, appropriate for scenarios where

incomplete information prevents a definite assignment of “true” or “false” to specific claims.

The logical groundwork of Bayesian probability theory is described in more detail in Appendix A. How-

ever, for our present purposes, what is most important to note is that although Bayesian probabilities must

be assigned with respect to given prior information, these assignments are done in a systematic and logically

consistent manner. To begin with, Bayesian probabilities are constrained by the same basic mathemati-

cal axioms that all other theories of probability must satisfy. For example, all probabilities must respect

countable additivity, which requires that the probability of observing any of a set of mutually exclusive out-

comes is simply the sum of the probabilities of the individual outcomes. However, for any given problem

to which Bayesian analysis is applied, certain considerations may not only limit the possible probabilities

that an observer might assign, but may single out a unique probability assignment as appropriate for the

situation. These considerations may have to do with relevant prior information, symmetries of the problem,

or constraints related to the rationality or self-consistency of the logical procedure.

But this type of formalism is exactly what we need in order to sharpen our notion of inference. For if

the information gathered from a memory system allows some inference to be made about the world, then

the tools of Bayesian logic make it possible to assign a probability to the truth value of this inference. This

probability quantifies the degree of certainty associated with the inference, and therefore quantifies the extent

to which the memory system functions as a useful memory. The most functional and reliable memory systems

will permit precise inferences, with associated high probabilities.

So although we acknowledge that any memory inference will depend on relevant prior knowledge and on

a given logical framework, Bayesian probability theory allows us to treat this information in a consistent and

systematic way. In some instances, the relevant probability assignments can be entirely determined by the

given information, combined with constraints of logical consistency encoded in the Bayesian formalism. In

these cases, the inference procedure prescribed by Bayesian logic is, in a sense, the only reasonable way to

perform inference, since any other method may lead to inconsistent results.
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1.3 Thermodynamics and memory

Given this notion of memory as a form of inference, we can now begin to sketch an outline of our investigation.

In this work, we aim to analyze memory-type inferences in the context of a thermodynamic arrow of time:

A monotonic change in entropy over some period of time. In existing memory systems, this arrow invariably

points in the same direction: All known memory systems are records of a past which had a lower entropy

than the present. This suggests that entropy changes in a memory system or its surroundings may condition

the inferences that observation of a memory system permits. We will argue that memory inferences in the

traditional sense, which refer to a low-entropy past state based on observation of a high-entropy present

state, can be made much more precise and reliable than the reverse.

In setting the framework for this argument, it is important to be clear about the particular notion of

entropy which we refer to in speaking of an “arrow of time.” Entropy is a rich concept, with distinct yet

related meanings in thermodynamics, statistical mechanics, and information theory. Although colloquially

understood as a measure of disorder, the precise definitions of entropy in various fields do not always align

with this popular conception. In our analysis, we make use of the statistical mechanical Gibbs entropy,

defined as follows.

Suppose a classical system can be measured as having certain macroscopic properties, such as a definite

temperature or a given energy. Although these measurements tell an observer something about the state of

this system, they do not specify its state completely. A full account of the microscopic configuration of a

classical system would consist of knowledge of the positions and velocities of every constituent particle of the

system; this is clearly a practically unreachable goal. However, certain microscopic configurations that are in

principle possible might be incompatible with the given macroscopic measurements, and other configurations

might be judged as more or less likely in light of these measured quantities. In defining the Gibbs entropy,

we consider the set or “ensemble” of all microscopic configurations which might possibly give rise to the

observed macroscopic measurements. If we define pi as the probability that the ith state in this ensemble is

the actual microscopic configuration of the system, then the Gibbs entropy S is expressed as

S = −kB
∑
i

pi ln pi. (1)

This definition assumes that the ensemble contains a countable number of configurations; in the case

of an uncountable ensemble, this sum must be replaced with an integral. If we assume further that the
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ensemble has some finite number of states Ω, then we can consider the special case where all these states

are equiprobable, such that pi = 1/Ω. This probability assignment then yields an especially simple form for

the entropy, S = kB ln Ω. In this simplified formula, the Gibbs entropy appears as a measure of the number

of possible microscopic configurations that a system could conceivably attain, given certain macroscopic

knowledge or constraints.

In the quantum mechanical case, the Gibbs entropy is generalized as the von Neumann entropy, which is

defined in terms of the density operator ρ which describes the system of interest. The von Neumann entropy

takes the form

S = −kBTr
[
ρ̂ ln ρ̂

]
, (2)

where the symbol Tr signifies the trace operation, and the operator logarithm ln ρ̂ can be computed in terms

of a power series. As described in more detail in Appendix B, the density operator ρ̂ contains information

about the probabilities associated with the possible outcomes of measurements on a quantum system.

A fundamental result of statistical mechanics, demonstrated in a variety of proofs with varying degrees

of generality, is that any decrease in the Gibbs or von Neumann entropy of an isolated system with many

interacting degrees of freedom has vanishing probability.2,4,5,11 Loosely speaking, this result emerges because

in a system with a large number of microscopic components, there are far more configurations of the system

which correspond to high entropy states than to low entropy states. This fact is manifest in our simplified

expression for the Gibbs entropy, S = kB ln Ω, where the entropy scales logarithmically with the number of

possible microscopic configurations Ω . Therefore, if a system starts in some low entropy state, a very large

fraction of the states it could potentially evolve into have higher entropy.

The “thermodynamic arrow of time” points in the direction of this increase in entropy. Although the

proof of an arrow of time in statistical mechanics is a probabilistic one, the probabilities involved are so

close to unity for macroscopic systems that the increase of entropy can be treated as a practical certainty.

Technically, we have only sketched an explanation for the increase of the statistical mechanical entropy,

not the thermodynamic entropy, which can be computed from measurements of temperature and heat flow.

However, it is a standard conclusion in statistical mechanics that these two entropies coincide for simple

thermodynamic systems, so for our analysis working with the statistical mechanical entropy is sufficient.5

With this concept of entropy clearly defined, we can now outline the goals of our analysis in the following

two chapters. In this work, we study two model memory systems, one with classical dynamics and the
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other with quantum dynamics. In Chapter 2, we introduce our classical model, a probabilistic system which

is a modification of the “urn problem” from introductory probability theory. This urn model lends itself

to a certain class of memory inferences, in which observation of some property of the system allows an

inference to be made about another property of the system at a different time. Using the framework of

Bayesian probability theory, we can compute the probabilities associated with this class of inferences. These

probabilities act as a metric for the reliability of inferences: A useful, informative memory system will allow

for a sharp probability distribution to be assigned over the possible values of a recorded observable. We

pay special attention to cases where the entropy of the urn system changes over time. Analysis of these

cases allows us to describe how the urn model memory is conditioned by a thermodynamic arrow of time, as

identified by a sustained increase in entropy.

For the quantum model, we consider a pair of coupled quantum systems, an abstract memory system

and an observed system which is coupled to the memory system. In Chapter 3, we characterize and analyze

this model in terms of the density matrix formalism of quantum mechanics. We consider a simple form of

coupling between the two systems which permits straightforward memory inferences, and then investigate

how measurement of the state of the memory system informs an observer about the possible states of the

recorded system.

1.4 Prior work of Mlodinow and Brun

The original impetus for this project was a 2014 paper, “Relation between the psychological and thermody-

namic arrows of time,” written by physicists Leonard Mlodinow and Todd Brun.9 In their work, Mlodinow

and Brun attempt to explain the direction of the “psychological arrow of time,” that is, the temporal di-

rection in which memory devices function, as a consequence of the direction of the thermodynamic arrow.

They argue that any useful memory system exhibits a property they term “generality,” and then go on to

show that any memory system with this property must operate in the same direction as the thermodynamic

arrow. In Mlodinow and Brun’s analysis, a memory that satisfies generality is one which does not have to

be “fine-tuned” to a particular state in order to record each possible outcome. In the remainder of the first

chapter, we present a summary of Mlodinow and Brun’s approach, and argue that our inferential account of

memory systems can supplement their work.

To motivate their work, Mlodinow and Brun begin with a brief note on time reversal invariance. Except

for during certain uncommon processes, the microscopic dynamics of both classical and quantum systems
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are adequately described by mathematical formalisms which are invariant under time reversal. That is, the

equations which govern the time evolution of these systems do not change form when the time variable t is

replaced by −t. This mathematical symmetry has a physical consequence: Given any possible sequence of

states that a system could move through during its evolution, there exists another possible evolution through

that same set of states, but in the opposite temporal order. For certain simple systems, this claim seems

plausible. A ball thrown in an arc through the air could certainly, in principle, be thrown again so that it

moves through the same arc but in the opposite direction. But for most events, this consequence of time

reversal invariance flies in the face of everyday experience. It seems ridiculous to suggest that the existence

of an egg shattering implies that an egg could spontaneously reassemble itself, or that a drop of dye diffused

in water might be suddenly concentrated back into a dense point. These processes appear to us as clearly

“one-way” or irreversible, whether they occur naturally or with the help of human intervention.

This apparent paradox can be resolved by recourse to the second law of thermodynamics. From the

perspective of statistical mechanics, the second law tells us that processes during which the entropy of a closed

system decreases, although not disallowed by the laws of physics, are nevertheless extremely improbable. This

means that although we may observe a range of entropy-increasing processes, the time-reversed versions of

these processes are effectively impossible due to the entropy deficit that they would generate. Mlodinow

and Brun’s suggestion is that this asymmetry in time can be used to explain another asymmetry, namely

the fact that memory systems only operate as memories in one direction of time. In their view, it is not

just a contingent fact that all memory systems function in the same direction of time, but rather a physical

consequence of the universal existence of the thermodynamic arrow of time.

As in this thesis, Mlodinow and Brun’s notion of a memory is very general, intended to include any system

which can function as a record of the state of another system. However, to develop their argument, they

first focus on a simple model system that captures the basic content of their result. Mlodinow and Brun’s

model system consists of two canisters of a classical ideal gas, and a microscopic rotor or “turnstile” placed

inside a nozzle which connects the two canisters. This rotor has M possible positions, labeled by the integers

0 to M − 1, and Mlodinow and Brun define a variable r(t) which corresponds to the rotor position at any

particular time t. The nature of the rotor is such that whenever a gas particle moves from left to right, the

position of the rotor increments by one, while a flow of particles in the opposite direction causes the rotor to

decrement. A diagram of this setup is given in Figure 1.
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Figure 1: Diagram of Mlodinow and Brun’s gas-rotor model memory system. The microscopic configuration

of the gas is determined by specifying the position and momentum of each gas molecule. The state of the

rotor is specified by the variable r(t), which increments or decrements by 1 whenever a gas molecule passes

from one canister to the other. This image is a modified version of a figure that appears in Mlodinow and

Brun’s 2014 paper.9

Given these dynamics, Mlodinow and Brun then introduce a memory “readout” function fread(r(t)),

which tracks the net number of particles that have passed from left to right between a time ti and another

time t. This function is defined as

fread(r(t)) = r(t)− rref , (3)

where rref ≡ r(ti) is the position of the rotor at the reference time ti, and ti < t. As expressed in this

function, Mlodinow and Brun’s model system has been constructed so that the rotor position r(t) encodes

information about the evolution of the gas. In this way, the rotor functions as a memory of changes in the

distribution of gas particles between the two canisters. However, Mlodinow and Brun argue that there is no

reason that the dynamics of the system cannot be interpreted in a different way, as encoding a record of how

many particles will pass from left to right between two times t and tf , where tf > t. Such a “memory” of

the future could be expressed in terms of a second readout function,

f ′read(r(t)) = r′ref − r(t). (4)

In this case, r′ref ≡ r(tf ) is the position of the rotor at the final reference time tf . At this stage, there is

no compelling reason to deem (3) to be a valid memory readout, and at the same time deny the validity of

(4). No characteristic of the system singles out a particular direction in time as “past-like” in any way; the
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classical nature of the system insures that the dynamics completely respect time-reversal symmetry. Indeed,

our choice of the particular time variable t to track the evolution of the system is somewhat arbitrary, in the

sense that the temporal direction in which it increases has no special significance. If we were to re-describe

the system in terms of the alternate time variable −t, (3) would then appear as a memory of the future. The

point here is that no absolute notion of past or future is encoded in the dynamics of the gas-rotor system

itself, although observers may impose a convenient time variable in order to track the system’s evolution.

However, a definite time asymmetry, and therefore a notion of past and future, does emerge for certain

evolutions of Mlodinow and Brun’s model. Consider a scenario in which at some reference time, the distri-

bution of particles between canisters is highly asymmetric. For example, there might be far more particles

of gas in the left canister than in the right. In such cases, experience tells us that gas will rush into the right

canister from the left, until a uniform gas density has been achieved across the two canisters. Specifically,

this result is a consequence of the second law of thermodynamics, since the asymmetric distribution at the

reference time has a lower entropy than an even distribution. Although this low-entropy condition at the

reference time does not guarantee an evolution to uniform gas density, the difference in entropy between the

two states does make this evolution extremely likely. This preference for trajectories that increase entropy

defines the gas-rotor system’s thermodynamic arrow of time. In the context of such a tendency, referring to

a state of the system as in the ”past” of another state simply means that the first state has a lower entropy

than the other.

It is under these conditions, when the model system exhibits a thermodynamic arrow of time, that a

salient asymmetry between the two memory readout functions (3) and (4) becomes apparent. To understand

this distinction, Mlodinow and Brun introduce the concept of “generality.” If a memory system satisfies

generality, then it must be capable of recording more than one possible state of the world, without having

to be set specifically to record each possible state. For Mlodinow and Brun, a memory which does not meet

this criterion is hardly a memory at all: For example, they note that if a digital camera required a new chip,

specific to each scene, in order to take a photograph, the camera would be of little use as a memory in the

first place. Requiring memories to satisfy generality insures that memory systems are not correlated with

other systems due to some special “fine-tuning” of the memory state, but due to a definite interaction with

the world that reliably effects the memory system.

Armed with the generality criterion, the essential difference between the memory readouts in (3) and (4)

can now be explained. Assume that the system exhibits a standard thermodynamic arrow of time, so for
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two times t1 < t2, the entropy of the system at t1 is lower than at t2. In the case of the standard “past

memory” as defined by the readout in (3), this means that the readout at any time t > ti will be associated

with an increase in entropy between ti and t. To impose the generality condition for this memory, we need

to understand how the memory would record different possible states. Consider the exact microscopic state

of the gas at ti, which can be specified in principle by listing the positions and velocities of all its constituent

particles. If the memory satisfies generality, then the readout function fread(r(t)) given in (3) ought to still

function as a record if this microscopic state differed slightly from its true value. Indeed, this is the case. If we

imagine perturbing the system at ti in this way, as long as we perform this perturbation so that rref = r(ti)

remains unchanged, fread(r(t)) would still offer an accurate account of the flow of gas particles between ti

and t. The exact evolution of the rotor may be slightly different, but this is exactly what we want, since

we wish to show that the memory can record multiple possible outcomes. In addition, we see that for such

perturbations, the arrow of time we have postulated is generally preserved. This is because although we

have altered the microscopic state of the gas at ti, this microscopic state still corresponds to a low-entropy

state of the gas. In Figure 2, several possible evolutions of fread(r(t)) are displayed for a low-entropy initial

condition, all of which exhibit a definite arrow of time.

Figure 2: Schematic plots of several possible evolutions of the memory readout function fread(r(t)), given

a low-entropy initial condition at t = ti. Each of these trajectories corresponds to a different microscopic

perturbation of the gas, such that rref = r(ti) is left unchanged. All of them exhibit a well-defined arrow of

time in the direction of increasing t.

For the “future memory” expressed in the readout function f ′read(r(t)) in (4), the situation is quite

different. Here, if we want to consider the possible states that this memory could record, we can imagine
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a similar perturbation of the microscopic state of the gas, this time at tf . Again, as long as we do not

change the value of r′ref = r(tf ) in this perturbation, the record encoded in f ′read(r(t)) will still remain valid,

although the particular value that is read out at t may change. However, we find that upon making such

perturbations, the thermodynamic arrow of time we originally proposed will generally be destroyed. This

is because, by assumption, the entropy of the gas at tf is larger than at any time t < tf . But the second

law of thermodynamics tells us that given this entropy at the boundary time tf , the entropy at any other

time t is almost certainly higher, which contradicts our assumption. So in attempting to define a memory in

terms of the function f ′read(r(t)), we are forced to conclude that if a thermodynamic arrow of time does exist

for the system, it will generally lead us to identify the time tf with the thermodynamic past. This effect is

demonstrated in Figure 3, where we plot a number of possible evolutions of f ′read(r(t)) from a high-entropy

final state, most of which do not pick out an arrow of time in either direction.

Figure 3: Schematic plots of several possible evolutions of the memory readout function f ′read(r(t)), given

a high-entropy initial condition at t = tf . Each of these trajectories corresponds to a different microscopic

perturbation of the gas, such that r′ref = r(tf ) is left unchanged. Most of these evolutions do not exhibit a

significant arrow of time.

In our view, this argument proposed by Mlodinow and Brun is essentially sound. However, we claim

that without some understanding of memory as a type of inference, some aspects of their proposal remain

unclear. The difficulty appears when we try to clarify what is meant by a “generic” evolution of the gas-rotor

system. In their work, Mlodinow and Brun claim that a generic evolution of the model system exhibits

an arrow of time if, for the vast majority of trajectories possible given some constraints, there is a similar

change in entropy over the course of the evolution. First of all, in classical physics, the number of possible
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trajectories that satisfy certain conditions will in general be uncountably infinite, since classical systems

can exhibit a continuous range of position and momentum values. But more importantly, this metric based

on some “number of trajectories” cannot account for probabilistic constraints, which might suggest that

certain evolutions are much more likely than others. Indeed, this is precisely the type of constraint that

a thermodynamic arrow of time imposes: To say that a system has a thermodynamic arrow of time does

not necessarily disallow decreases in entropy, but means that such evolutions of the system are extremely

unlikely. In order to precisely account for the probabilistic nature of memory systems in a thermodynamic

context, our contribution in this thesis is to bring the tools of Bayesian inference to bear upon the problem.
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2 A Classical Memory Model

In this chapter, we introduce a modified version of the urn problem from standard probability theory, as a

prototypical example of a classical memory system. The dynamics of this model are simple enough to permit

a full analytical treatment of the relevant probabilities, and they allow for a straightforward demonstration

of how a thermodynamic arrow of time can emerge purely from statistical considerations. We demonstrate

that in the urn model, memory inferences are most informative when made about the thermodynamic past,

such that they refer to states of relatively low entropy.

2.1 Characterization of the model

In the urn model, we consider a pair of two urns, labeled arbitrarily as “right” and “left,” and a set of N

marbles distributed between them. Defining the variables NR(t) and NL(t) respectively as the number of

marbles in the right and left urns at some time t, we have the constraint NR(t) +NL(t) = N . The dynamics

of the system are as follows: At each of a set of discrete times t = ... − 2,−1, 0, 1, 2..., a single marble is

removed from one of the urns, and placed into the other. The selection of each marble is “random” in the

sense that an observer of the system has no knowledge of the mechanism by which individual marbles are

selected. To display the evolution of the system over time, we introduce a sequence of quantities {σi|i ∈ Z},

where each value σi corresponds to the ith time-step. The elements of this sequence are defined so that

σi = +1 if a marble is moved from right to left at time t = i, and σi = −1 if a marble is moved from left to

right. So, for each time-step from t = i to t = i+ 1, the distribution of marbles (NR(t), NL(t)) undergoes an

evolution of the form

(NR(t), NL(t))→ (NR(t+ 1), NL(t+ 1)) = (NR(t)− σi, NL(t) + σi). (5)

Now, suppose that this system is coupled to a device, the function of which is to record and display the

net number of marbles that have moved from right to left, between some reference time t = 0 and another

time t = n. Given the definition of the quantities σi, the output f(n) of this “memory register” will be a

sum of all values of σi between t = 0 and t = n,
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f(n) =

n−1∑
m=0

σm. (6)

The evolution rules expressed in (5) and (6) describe all of the observer’s knowledge of the dynamics

of the system. It is important to note that at this stage in the characterization of our urn model, it is

not physically meaningful to define either direction in time as “past” or “future.” Nothing in the general

dynamics of the urn system itself singles out a direction of time as obviously past or obviously future. Out

of a desire to provide a definite temporal label to each marble swap, we are compelled to define some time

variable t which increases in a particular direction. But the direction affiliated with this choice of labeling is

no more meaningful than associating “up” on the Earth’s surface with positive values of a height coordinate.

In fact, if we specify a suitable summation convention for how to evaluate the sum in (6) for n ≤ 0, then we

can track the evolution of the memory register for t = −1,−2,−3... as well.

However, introducing a concept of entropy for the urn system will allow us to define an arrow of time

for particular evolutions of the marble distribution. The statistical entropy associated with this system, for

any distribution of marbles (NR(t), NL(t)), is computed as S = kB log Ω, where Ω the number of possible

configurations of marbles which would produce that given distribution. For example, in the extreme case

where NR(t) = 0, there is only a single way to achieve this distribution, simply by placing every marble

in the left urn, and so S = kB log 1 = 0. The entropy S = kB log Ω is simply a special case of the Gibbs

entropy in (1), where we have assumed that all configurations are equiprobable. In the general case, there

will be multiple ways to obtain the desired distribution. Suppose we wish to arrange the marbles in the

distribution (NR(t), NL(t)). Given N marbles, this means we must choose NR(t) marbles out of the total N

to place in the right urn. But there are Ω = N !/(NR(t)!(N − NR(t))!) = N !/(NR(t)!NL(t)!) ways to make

this choice, each corresponding to a different configuration of marbles which has the same overall distribution

(NR(t), NL(t)). The entropy S of the system for this distribution is then just

S = log

(
N !

NR(t)!NL(t)!

)
= logN !− logNR(t)!− logNL(t)!, (7)

where we have set kB = 1. If NR(t) and NL(t) are very large, we can apply Stirling’s approximation to each

term in (7). We find that the entropy per marble S/N is effectively a function of the relative fractions of

marbles, NR(t)/N and NL(t)/N , in the right and left urns, and is given by
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S/N ≈ −NR(t)

N
log

(
NR(t)

N

)
− NL(t)

N
log

(
NL(t)

N

)
. (8)

In Figure 4, this expression is plotted as a function of NR(t)/N alone, which we can compute since

NR(t)/N + NL(t)/N = 1. Inspecting this plot reveals that the entropy drops to zero when either the right

urn or the left urn is completely empty, at NR(t)/N = 0 and NR(t)/N = 1, respectively, and that it reaches

a maximum when the marbles are evenly distributed at NR(t)/N = NL(t)/N = 1
2 . So, for a given time

evolution of the marble distribution, we would associate a thermodynamic arrow of time with this evolution

if there is a strong tendency for the system to progress from an unevenly distributed state to a balanced

state. We will see such a tendency for evolutions for which the urn model begins in a low entropy state.

Figure 4: Plot of the approximate entropy per marble S/N , given in (8), as a function of NR(t)/N . S/N

reaches a maximum at NR/N = 1
2 , which corresponds to an even distribution of marbles between the two

urns.

2.2 Memory inferences in the urn model

Now that the physical properties and dynamics associated with the urn model have been defined, we can ask

questions about the various “memory-type” inferences which can be made about the urn model. Specifically,

we would like to know: Given knowledge of f(n), the output of the memory register, at some particular time

t = n, what can we infer about the distribution of marbles (NR, NL) at t = 0?

We can formulate this question in terms of Bayesian inference as follows. Suppose that we define f̄ = f(n)

as the observed output of the register at t = n, and we let NR = NR(0) and NL = NL(0) refer to the number

of marbles in the right and left urns, respectively, at t = 0. NR and NL therefore do not change in time.
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If we are making an inference about the distribution of marbles at t = 0, this means that we would like to

assign probabilities to the various possible distributions (NR, NL), conditioned on the value of f̄ . We denote

these probabilities as

P (NR, NL|f̄ , n,N), (9)

which translates verbally to “the probability that the marbles have the distribution (NR, NL) at t = 0,

conditioned on the knowledge of f̄ , n, and N .” This is a probability distribution over the possible mar-

ble distributions (NR, NL), which expresses our confidence in an inference about the marble distribution.

P (NR, NL|f̄ , n,N) reaches a maximum around the values of (NR, NL) which are most likely, given knowl-

edge of f̄ . Moreover, the informativeness of our inference scales with the narrowness of the probability

distribution around this peak. A tightly peaked distribution suggests that (NR, NL) is almost certainly given

by the peak value, while a broad and flat distribution does not strongly single out any particular values of

(NR, NL).

In order to understand how knowledge of f̄ informs our inference about the value of NR, and thus the

marble distribution at t = 0, we can compute the probabilities in (9) in terms of a Bayesian updating proce-

dure. As described in detail in Appendix A, this procedure derives from the rule for assigning probabilities

to a joint proposition,

P (A,B|I) = P (B|A, I)P (A|I) = P (A|B, I)P (B|I). (10)

Here, the probability P (A,B|I) that the statements A and B are both true is computed in terms of two

factors: The probability P (B|A, I) that B is true, given that A is true, and the probability P (A|I) that A

is true. All of these probabilities are conditioned on the knowledge of some prior information I.

For our inference, we can identify the proposition A with a claim about the distribution (NR, NL) at

the time t = 0, and associate B with the observed value f̄ of the memory register. We take the prior

information I as encoding the values of n and N . By making these substitutions into (11) and then solving

for P (A|B, I) = P (NR, NL|f̄ , n,N), we find the relation

P (NR, NL|f̄ , n,N) =
P (f̄ |NR, NL, n,N)

P (f̄ |n,N)
P (NR, NL|n,N). (11)

Thus, we can calculate our desired probability P (NR, NL|f̄ , n,N), which we now refer to as the posterior
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distribution, in terms of three other probability distributions. These are:

• The likelihood function, P (f̄ |NR, NL, n,N). The likelihood is the probability that a given value f̄ is

observed as the output of the memory register at t = n, given that a particular distribution of marbles

(NR, NL) is known at t = 0.

• The prior distribution, P (NR, NL|n,N). This gives the probability that the marbles are in the dis-

tribution (NR, NL) at t = 0, independent of any knowledge of the value of f̄ . The prior probability

distribution quantifies our initial state of knowledge concerning the marble distribution, before any

information about the output of the memory register is obtained.

• The normalization, P (f̄ |n,N). This gives the probability that a given value f̄ is observed as the

output of the memory register at t = n, independent of any information about the marble distribution

(NR, NL) at t = 0. The normalization is fixed by requiring that the posterior is a normalized probability

distribution over the possible values of (NR, NL).

We now consider each of these three distributions in turn, in order to understand the behavior of the

posterior distribution. In the calculations that follow, we will use abbreviated notation that suppresses

any dependence on n and NL. For example, we will denote the posterior distribution as P (NR|f̄ , N) ≡

P (NR, NL|f̄ , n,N).

We begin with the likelihood function. To compute P (f̄ |NR, N), we first note that any particular value

of f̄ can be the outcome of a number of different sequences of swaps {σi}. Specifically, whenever a sequence

of swaps occurs such that f̄ = f(n) =
∑n−1
m=0 σm, the output on the memory register will be f̄ . Each of these

possible sequences is a mutually exclusive outcome. Therefore the probability P (f̄ |NR, N) is simply the sum

of the probabilities of obtaining each individual sequence,

P (f̄ |NR, N) =

′∑
P ({σi}|NR, N). (12)

Here, the prime over the sum specifies that the sum only runs over sequences {σi} for which f̄ =
∑n−1
m=0 σm.

Now, the problem of calculating P (f̄ |NR, N) reduces to computing the probability of the system evolving

through various sequences {σi}, which we have written as P ({σi}|NR, N).

To proceed with this calculation, it is easiest to start with a short sequence, and then generalize the

procedure for longer evolutions. Consider the situation when n = 2. In this case, the evolution of the system
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is given by a sequence {σ0, σ1}, where σ0 specifies the direction of the marble swap between t = 0 and t = 1,

and σ1 does the same for the swap between t = 1 and t = 2. The probability P ({σ0 σ1}|NR, N) is then the

joint probability that the first swap corresponds to the value of σ0, and that the second swap corresponds

to the value of σ1. Expanding this as a conditional probability, we find the relation

P ({σ0, σ1}|NR, N) = P (σ0|NR, N)P (σ1|σ0, NR, N). (13)

So, the probability of the sequence {σ0, σ1} occurring is the product of two factors: The probability

P (σ0|NR, N) of attaining the first value σ0 of the sequence, and the probability P (σ1|σ0, NR, N) of attaining

the second value σ1 of the sequence, conditioned on the fact that σ0 is given.

We can assign a value to the first factor, P (σ0|NR, N), by the following logic. Between t = 0 and t = 1,

there are N possible ways in which the system might evolve, since any of the N marbles might be moved

into the opposite urn. To an observer, nothing known about the dynamics we have specified gives any reason

to single out any particular marble; there is a symmetry in the information that the observer has about the

marbles. This suggests that the observer ought to assign an equal probability to each marble being swapped,

because otherwise one or more marbles would be arbitrarily distinguished from the others. Therefore, the

probability of any given marble being swapped must be 1/N , so that the total probability that any of the

marbles is swapped is unity. As described in Appendix A, this justification for a uniform assignment of

probabilities is commonly known as the “Principle of Indifference.”

However, not all of these possible evolutions will produce a given value of σ0. For example, the value

σ0 = +1 could be realized in NR possible ways, since there are NR marbles which could be moved from

the right urn. Since we have assigned equal probability to each of these mutually exclusive possibilities, the

probability that some marble will be moved from right to left is NR/N . But this is just the probability

that σ0 attains the value +1, and so we have P (σ0 = +1|NR, N) = NR/N . By an analogous argument, a

probability of P (σ0 = −1|NR, N) = NL/N ought to be assigned to the claim that σ0 = −1.

Similar reasoning also motivates the probability assignment for the second factor, P (σ1|σ0, NR, N). Here,

it is given that σ0 has some known value. This means that at t = 1, the distribution of marbles has evolved

to (NR − σ0, NL + σ0), and we aim to assign probabilities to the occurrence of σ1 = +1 and σ1 = −1. But

this situation is precisely analogous to our calculation of P (σ0|NR, N): The distribution of marbles at a

given time-step is known, and we must assign probabilities to infer the subsequent value in the sequence

{σi}. Symbolically, we have the identity

22



P (σ1|σ0, NR, N) = P (σ1|NR − σ0, N). (14)

That is, the probability of a left (or right) swap during the second time-step, given that the direction

of the first swap is known, is equal to the probability of a left (or right) swap during the first time-step,

but with the initial distribution (NR − σ0, NL + σ0) instead of (NR, NL). Thus, for σ1 = +1, we have

P (σ1 = +1|σ0, NR, N) = (NR − σ0)/N , and for σ1 = −1, we have P (σ1 = −1|σ0, NR, n) = (NL + σ0)/N .

After multiplying these results by the probabilities we obtained for P (σ0|NR, N), we arrive at the probabilities

associated with each possible sequence {σ0, σ1}:

P ({σ0 = +1, σ1 = +1}|NR, N) =
NR
N

NR − 1

N
, (15)

P ({σ0 = +1, σ1 = −1}|NR, N) =
NR
N

NL + 1

N
, (16)

P ({σ0 = −1, σ1 = +1}|NR, N) =
NL
N

NR + 1

N
, (17)

P ({σ0 = −1, σ1 = −1}|NR, N) =
NL
N

NL − 1

N
(18)

For n = 2, the probability of obtaining any value of f̄ can now be computed by summing over the

appropriate probabilities given in (15)-(18), as noted earlier in (12). For example, the value f̄ = 0 will

be observed if either the sequence {σ0 = +1, σ1 = −1} or {σ0 = −1, σ1 = +1} is realized, so we have

P (f̄ = 0|NR, N) = P ({σ0 = +1, σ1 = −1}|NR, N) + P ({σ0 = −1, σ1 = +1}|NR, N).

In the n = 3 case, for which we wish to assign a probability to a sequence {σ0, σ1, σ2}, the generalization

is straightforward. Again, we expand the probability of the whole sequence as a product of conditional

probabilities, as in (13). Only this time, the result consists of three factors, one for each term in the

sequence:

P ({σ0, σ1, σ2}|NR, N) = P (σ0|NR, N)P (σ1|σ0, NR, N)P (σ2|{σ0, σ1}, NR, N). (19)

The first two factors are the same as what we computed for the n = 2 case. The third factor can

be assigned a probability by an argument similar to that used to assign the value of the second factor.

Specifically, the probability of a left (or right) swap during the third time-step, given that the directions of

the first two swaps are known, is equal to the probability of a left (or right) swap during the first time-step,

but with the initial distribution (NR−σ0−σ1, NL +σ0 +σ1) instead of (NR, NL). So in terms of the output

of the memory register f(n), we have the expression
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P (σ2|{σ0, σ1}, NR, N) = P (σ2|NR − σ0 − σ1, N) = P (σ2|NR − f(n = 2), N). (20)

At this point, a definite pattern has begun to emerge. In the general case, for arbitrary n, we expand

the probability P ({σi}|NR, N) of a sequence {σi} as a product of conditional probabilities. Recall that the

probabilities P ({σi}|NR, N) are what we require to compute the likelihood function, as given in the sum

(12). Proceeding with this expansion yields a product of n factors, which takes the form

P ({σi}|NR, N) =

n−1∏
k=0

P (σk|{σi, 0 ≤ i < k}, NR, N). (21)

In this expression, each factor P (σk|{σi, 0 ≤ i < k}, NR, N) is the probability that the value σk will

be realized on the (k + 1)th swap, given that the truncated sequence of values {σi, 0 ≤ i < k} is known

to have been attained on the previous k swaps. But just as in the n = 2 and n = 3 cases, we know that

this probability is equal to the probability of σk occurring on the first swap, given the initial distribution

(NR − f(k), NL + f(k)). Generalizing (14) and (20), we then have the result

P (σk|{σi, 0 ≤ i < k}, NR, N) = P (σk|NR − f(k), N) =


(NR − f(k))/N if σk = +1,

(NL + f(k))/N if σk = −1.

(22)

So, the probability P ({σi}|NR, N) given in (21) is simply a product of factors of the form (NR− f(k))/N or

(NL + f(k))/N , depending on the sign of σk.

In order to simplify our expression for P ({σi}|NR, N) given in (21), we will now assume that the magnitude

of the memory register is always much smaller than N , so that |f(k)| << N throughout the evolution of

the register. This simply means that we take the change in the number of marbles between urns to be much

less than the total number of marbles. Such an approximation implies that the f(k) terms in (22) can be

neglected, yielding

P (σk|{σi, 0 ≤ i < k}, NR, N) ≈


NR/N if σk = +1,

NL/N if σk = −1.

(23)

That is, in the limit where |f(k)| << N , the probabilities associated with each swap are independent of the

results of the previous swaps. This result is intuitively reasonable, given that for very large N , swapping a

few marbles from urn to urn will leave the relative fraction of marbles apportioned to each urn practically

unchanged.
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Now, we can see that under this approximation, each factor in (21) can only have one of two possible

values. For the factors for which σk = +1, we have P (σk|{σi, 0 ≤ i < k}, NR, N) = NR/N , and for the

factors for which σk = −1, we have P (σk|{σi, 0 ≤ i < k}, NR, N) = NL/N . So, if we define nR as the total

number of swaps taken from the right urn between t = 0 and t = n, and nL is the total number of swaps

taken from the left, then (21) simplifies to

P ({σi}|NR, N) =

(
NR
N

)nR
(
NL
N

)nL

. (24)

Noting that n = nR + nL and f̄ = nR − nL, we can then express this probability in terms of f̄ and n as

P ({σi}|NR, N) =

(
NR
N

)n+f̄
2
(
NL
N

)n−f̄
2

. (25)

Therefore, under the assumption that |f(k)| << N , the probabilities P ({σi}|NR, N) associated which

each possible sequence {σi} are in fact independent of the particular order of the terms σi, and only sensitive

to the net passage of marbles f̄ between urns. This means that all the terms in (12), which sum to give us the

likelihood function, are in fact identical and equal to (25). So to complete our calculation of the likelihood

function, it suffices to determine the number of terms in (12).

Since each term in (12) corresponds to a sequence {σi} for which f̄ =
∑n−1
m=0 σm, the total number of

terms is simply the number of possible sequences of length n which satisfy this constraint. We can deduce

this number by noting that if a sequence of length n produces an output of f̄ on the memory register, then

there were nR = (n + f̄)/2 swaps from right to left during the sequence. These swaps could have occurred

at any time between t = 0 and t = n, and are marked by the values of the sequence for which σk = +1.

Each possible “placement” of right-to-left swaps within the n time-steps corresponds to a distinct sequence

for which f̄ =
∑n−1
m=0 σm. Therefore, counting the number of such sequences is equivalent to counting the

number of ways that we can “choose” nR of the n time-steps to have σk = +1. But this is just the binomial

coefficient
(
n
nR

)
= n!/(nR!(n−nR)!) = n!/(nR!nL!). So, summing the n!/(nR!nL!) terms in (12), all equal to

(25), yields our final expression for the likelihood function,

P (f̄ |NR, N) =
n!

nR!nL!

(
NR
N

)nR
(
NL
N

)nL

=
n!(

n+f̄
2

)
!
(
n−f̄

2

)
!

(x)
n+f̄

2 (1− x)
n−f̄

2 , (26)

where we have introduced the variable x ≡ NR/N . Note that the likelihood has now taken the form of a

binomial distribution in nR, associated with obtaining nR successes in n trials.
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The first ratio in (26) is an even function of f̄ , corresponding to a symmetric probability distribution over

f̄ which is peaked around f̄ = 0. However, this symmetry is broken by the second pair of factors containing

x, which pushes the maximum of the distribution towards positive or negative f̄ , depending on the initial

distribution of marbles (NR, NL). In this weight provided by these two factors, we can see evidence of an

emergent arrow of time: For asymmetric initial distributions of marbles, we are most likely to see a value

of f̄ which corresponds to a relaxation back towards an even distribution. Furthermore, the longer that we

wait, corresponding to larger values of n, the larger the most likely value of f̄ . This effect is demonstrated

in Figure 5, which shows plots of P (f̄ |NR, N) at x = 3
4 for various values of n.

Figure 5: Plots of the likelihood function P (f̄ |NR, N) as a probability distribution over f̄ , at x = 3
4 , for five

values of n. From left to right, the curves plotted are for n = 20 (blue), n = 40 (orange), n = 60 (green),

n = 80 (red), and n = 100 (purple). For the purposes of easy visualization, P (f̄ |NR, N) has been plotted

here as a continuous function, although f̄ can actually only take on integer values.

However, for the purposes of our memory inference, we are most interested in the behavior of the likelihood

as a function of x. This dependence on x determines how the posterior distribution P (NR|f̄ , N) is weighted

relative to the prior P (NR|N), due to the observer’s knowledge of f̄ . Specifically, we would like know the

conditions under which the likelihood is tightly peaked around a particular value of NR. If the likelihood,

and therefore the posterior distribution, exhibits a narrow peak for some value of x, this suggests a high

confidence in the claim that the initial marble distribution corresponded to this value. In Figure 6, we plot

the likelihood as a function of x for various values of f̄ at n = 50, to demonstrate how the location and

sharpness of the peak in the likelihood can vary with changing f̄ .

A contour plot of the likelihood, as a function of x and f̄ , is given in Figure 7. Here, we can see that

26



Figure 6: Plots of the likelihood function P (f̄ |NR, N) as a function of x, at n = 50, for five values of f̄ . From

left to right, the curves plotted are for f̄ = 0 (blue), f̄ = 10 (orange), f̄ = 20 (green), f̄ = 30 (red), and

f̄ = 40 (purple). As in Figure 5, for the purposes of easy visualization, P (f̄ |NR, N) has been plotted here as

a continuous function, although x can actually only take on values that are multiples of 1/N .

the likelihood function exhibits a diagonal ridge of maximum values. Each point on this ridge corresponds

to the peak value of the likelihood as a a function of x, for a given value of f̄ . By taking the derivative

with respect to x of our expression for the likelihood in (26) and setting it equal to zero, we find that these

maximal values lie on the line given by

f̄∗ = 2n

(
x− 1

2

)
. (27)

To understand how the width of the likelihood as a function of x varies along this ridge, we now consider

the limit of large n. Since (26) takes the form of a binomial distribution in nR, for large n we can approximate

the likelihood as a normal distribution in nR, with mean nx and variance nx(1 − x). Proceeding with this

approximation, and then making the substitutions nR = (n+ f̄)/2 and f̄∗ = 2n
(
x− 1

2

)
, yields the expression

P (f̄ |NR, N) ≈ 1√
2πnx(1− x)

exp

[
− (f̄ − f̄∗)2

8nx(1− x)

]
. (28)

So we see that the likelihood is a normal distribution in f̄ , with a mean of f̄∗ = 2n
(
x− 1

2

)
and variance

of 4nx(1− x). Expressed in terms of x instead of f̄∗, this becomes

P (f̄ |NR, N) ≈ 1√
2πnx(1− x)

exp

−n
(
x− n+f̄

2n

)2

2x(1− x)

 . (29)
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Figure 7: Contour plot of the likelihood function P (f̄ |NR, N), as a function of x and f̄ for n = 10. The blue

shading in the upper left and lower right corners corresponds to small values, and the yellow and red shading

along the diagonal ridge corresponds to large values. As in Figures 5 and 6, P (f̄ |NR, N) has been plotted

here as a continuous function in f̄ and x.

This expression for the likelihood is approximately normally distributed in x, albeit with an effective

variance σ2
n(x) = x(1−x)/n that depends on the value of x near the peak of the likelihood. We are now in a

position to quantify the informativeness of the inference about x, and therefore the initial marble distribution

(NR, NL). Substituting our expression for the likelihood in (29) into our equation for the posterior distribution

given in (11), we obtain

P (NR|f̄ , N) =
1√

2πnx(1− x)

P (NR|N)

P (f̄ |N)
exp

−n
(
x− n+f̄

2n

)2

2x(1− x)

 . (30)

The informativeness of this posterior function depends on the width of the distribution over the possible

values of (NR, NL). This width scales with the variance of the posterior, which we denote as σ2
post. To get

a sense of how the width of the posterior distribution may vary, suppose for concreteness that the prior is

approximately normally distributed, with mean x0 and variance σ2
prior, so that we have
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P (NR|N) ∝ exp

[
− (x− x0)2

2σ2
prior

]
. (31)

Note that now that the prior is given, we have completely specified the dependence of the posterior on x, and

consequently its dependence on (NR, NL) as well. Computing the normalization P (f̄ |N) is not important

for our purposes, since it does not vary with x, and therefore does not effect the shape of the posterior as a

probability distribution over the possible marble distributions (NR, NL).

For the case of the Gaussian prior, the posterior becomes a product of normal distributions, with variance

given by

1

σ2
post

≈ 1

σ2
prior

+
1

σ2
n

(x0) =
1

σ2
prior

+
n

x0(1− x0)
. (32)

Here, we have substituted the value x = x0 into the variance σ2
n(x0) of the likelihood, since the prior

distribution peaks at x0. Supposing that the variance of the prior is fixed, we can consider this expression

for σ2
post in two different limits. First, for a given value of x0, if we take n to be very large, to compensate

we must have a small variance σ2
post for the posterior. This result tells us that as the number of time-steps

n increases, the inference about the initial marble distribution becomes more informative. Second, we can

look at the behavior of σpost for fixed n, as we allow x0 to vary between 0 and 1. This is the more interesting

limit, as it demonstrates how the informativeness of the inference changes with our knowledge of an arrow

of time.

As x0 approaches either 0 or 1, the likelihood term σ2
n(x0) in (32) grows without bound. For a value of x0

near these extremes, the prior identifies the state of the system at t = 0 as a low entropy state. In this case,

the magnitude of the likelihood term must be compensated by a small value of σ2
post, indicative of a highly

informative inference. This corresponds to a “memory of the past” in the thermodynamic sense, where we

identify the past with a state of relatively low entropy. In contrast, values of x0 near 1
2 yield inferences which

are far less informative for a given value of σ2
prior and n, since the denominator of the likelihood term will

be much larger than in the x0 → 0, 1 limit. In these cases, the prior singles out a high-entropy state as most

likely at t = 0. As a result, the relevant inference is not nearly as sharp; we identify this as a “memory of

the future.”
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3 A Quantum Memory Model

Having completed our analysis of the classical urn model, we now move to develop a quantum mechanical

model which will serve as a prototypical quantum memory system. We define this quantum memory to

record the net change in some coarse-grained property of a system which it is coupled to, in analogy with

Mlodinow and Brun’s rotor memory. In order to understand the informativeness of such a memory system,

we consider how a measurement of the memory system at one time conditions inferences about the state

of the coupled system at a different time. This analysis is carried out in the density matrix formulation of

quantum mechanics. Although our work with the quantum memory system is not yet complete, we are able

to show that memory inferences in the quantum model can be expressed in terms of a probabilistic matrix

completion problem.

3.1 Characterization of the model

We consider two quantum systems: A system S, and a record system M which functions as a memory

of some aspect of S. For concreteness, we assume that the Hilbert space of possible states accessible to

S is spanned by some orthonormal basis {|j〉S} = {|j1〉S , |j2〉S , |j3〉S ...}, where the index j takes on values

within some indexing set J. We write j as a boldface index to emphasize that the indexing set J could be

multidimensional. For example, each value of j might correspond to an ordered pair j = (j1, j2), where each

element of the ordered pair is associated with an independent degree of freedom of S. Suppose that for each

possible basis state of S, we can associate a definite integer value of some physical quantity f to this state,

so that the value of f corresponding to the state |j〉S is given by some function f(j).

We define the interaction between S and M so that changes in the value of f(j) can be inferred from

knowledge of the state of M . The function f(j) in this quantum memory model will play a role analogous to

that of Mlodinow and Brun’s readout function fread(r(t)), and that of the memory function f(n) in the urn

model in Chapter 2. That is, just as the functions fread(r(t)) and f(n) do not encode every detail about each

particular state of the gas in Mlodinow and Brun’s canisters, or the location of every marble in the urns, the

value f(j) does not necessarily capture all the properties of a given state |j〉S of S. Rather, these functions

refer to coarse-grained properties of their respective systems, which are insensitive to all the precise details
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of any given state. Often, such properties correspond to average or aggregate quantities taken over a large

number of a system’s degrees of freedom. For example, the total spin angular momentum of a many-body

quantum system is such a coarse-grained quantity, since many different internal configurations of such a

system can correspond to the same net value of the spin.

We can get a clearer sense of the properties of this function f(j) by means of a simple visualization.

Consider Figure 8, which represents a subset of the set of basis states {|j〉S} of S in terms of a grid. Each

square on the grid corresponds to a basis state with a different value of j. In this example, we have assumed

that j = (j1, j2) is a two-component index, so that the degrees of freedom corresponding to j1 and j2 can be

varied independently by moving parallel to one axis or the other. What we see from this representation is

that the function f(j) induces a partition on this set of basis states, with each set in the partition marked

by a different color. States with the same color have the same value of the function f(j), and therefore have

the same value of whatever property f(j) corresponds to. We would like to construct our memory system M

so that it only registers a change when the system S evolves from one coloring in this partition to another,

that is, from one value of f(j) to the next. This is analogous to the memory function f(n) in the urn model,

which only varies when the coarse-grained variable NR changes.

To this end, we consider a memory system M with a set of NM orthonormal basis states {|i〉M} =

{|0〉M , |1〉M ...|NM − 1〉M}, labeled by a quantum number i between 0 and NM − 1. The Hilbert space of the

composite system M ×S will then have a basis consisting of the tensor products of basis states of M and S.

That is, one useful basis of the Hilbert space of M × S is defined by

{ |i〉M ⊗ |j〉S } ≡ { |i〉M ⊗ |j〉S | 0 ≤ i < NM , j ∈ J }. (33)

The coupling between S and M is defined so that when the state of S changes, the change in the value

of the memory quantum number i is equal to the change in the value of the quantity f . To see how this

constrains the time evolution of the composite system M × S, we consider the evolution of a generic basis

state |i〉M ⊗|j〉S in some definite time interval, between some time t = t1 and a second time t = t2. Assuming

that this evolution is defined by the action of some unitary operator Û , it will generically take the form

|i〉|j〉 → Û |i〉|j〉 =
∑
i′,j′

Ui,j,i′,j′ |i′〉|j′〉. (34)

In this summation and in all subsequent equations, sums over a italicized index can be assumed to range
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Figure 8: Visualization of the set of basis states of the system S. Each block corresponds to a single basis

state, and blocks with the same color have the same value of the quantity f(j), as given in the box on the

right. Here, j = (j1, j2) is a two-component index, and each axis corresponds to varying a different degree of

freedom of S, associated with either j1 or j2. A trajectory through this space is illustrated with arrows; the

numbers above the arrows denote how much a memory register coupled to S would increment or decrement

during each step.

from 0 to NM −1 in integer steps, while sums over a boldface index vary over all values in the indexing set J.

Here, we have abbreviated the basis states as |i〉|j〉 ≡ |i〉M ⊗ |j〉S , and the coefficients Ui,j,i′,j′ ≡ 〈i|〈j|Û |i′〉|j′〉

are the matrix entries of this operator in the basis given in (33). These entries cannot take on arbitrary

values, however, since we have specified that any changes in f must be accompanied by equal changes in

the memory quantum number. That is, for each term in (34), the change f(j′) − f(j) must be equal to the

change i′ − i, otherwise the term should vanish. This means that for all nonzero terms in (34), we have

i′ = i+ f(j′)− f(j), and consequently the evolution simplifies to the constrained form

|i〉|j〉 → Û |i〉|j〉 =
∑
j′

Ui,j,i+f(j′)−f(j),j′ |i+ f(j′)− f(j)〉|j′〉. (35)

Since the matrix elements Ui,j,i′,j′ vanish when i′−i 6= f(j′)−f(j), we can also write this constraint simply

as Ui,j,i′,j′ = Ui,j,i′,j′δi′−i,f(j′)−f(j). Beyond the restriction, we allow Û to be an arbitrary unitary operator.

To be precise, we must note that there is one class of evolutions for which (35) is ill-defined. These occur
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when i+f(j′)−f(j) either falls below 0 or rises above NM−1. These are invalid evolutions, since the memory

system quantum number can only take on NM distinct values. To account for this possibility, we require that

when the memory “overflows” or “bottoms out” in this manner, the memory quantum number will reset back

to 0 or NM−1. This amounts to replacing the expression i+f(j′)−f(j) in (35) with (i+f(j′)−f(j)) mod N .

In the remaining analysis, we will suppress this detail when convenient, since ignoring it will have little effect

on our results.

In order to make the effects of the constraint in (35) more readily apparent, we introduce an ordering of

the basis states of the composite system M ×S. This ordering will allow us to group the matrix entries of Û

into (NM )2 different blocks, each of which is a sub-matrix in itself that will take a particularly simple form.

Consider the set of basis states {|i, j〉} defined as

{|i, j〉} = { |i, j〉 = |(i+ f(j)− f(j0)) mod NM 〉|j〉 | 0 ≤ i < NM , j ∈ J }. (36)

In this set, j0 is some arbitrary fixed value in J, which we can choose so that f(j0) = 0 if we wish. This set

is in fact the same basis set as defined in (33), only with a new notation to emphasize a particular ordering

of the basis vectors. We can think of these basis vectors as arranged as follows. First, we take all the basis

vectors |i, j〉 with i = 0, and arrange them in accordance with some arbitrary ordering j = j1, j2, j3... of the

values of j in the index set J. These are the first vectors in our ordering. We then place all the vectors with

i = 1 after this first subset, organized by the same ordering of j values as for i = 0. We continue this until

we have reached the subset where i = NM − 1, at which point we have arranged all of our basis vectors. The

complete ordering will take this form:

|i, j〉 = |0, j1〉, |0, j2〉, |0, j3〉... |1, j1〉, |1, j2〉, |1, j3〉... |NM − 1, j1〉, |NM − 1, j2〉, |NM − 1, j3〉... (37)

What does this permutation of the basis vectors correspond to physically? For each value of i, this

arrangement includes a subset of basis vectors that is that same size as the basis {|j〉S} of S. We will call

this the ith block of vectors in the ordered basis. Each basis state |i, j〉 = |(i+ f(j)− f(j0)) mod NM 〉|j〉 in

this block corresponds to a term in the superposition obtained when evolving M × S from the state |i, j0〉.

Ordering the basis elements in this way allows the action of the evolution operator Û to be expressed

in a simple form. The basis states are now separated into NM different blocks, each containing basis states

|i, j〉 with a fixed value of i and all possible values of j. As a result, we can now also think of the matrix
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entries of U as divided into blocks. In our new basis ordering, the matrix elements of Û are defined as

U ′ij,i′j′ ≡ 〈i, j|Û |i′, j′〉, where we have included a prime to distinguish these elements from our original matrix

elements Uij,i′j′ . Consider the set of all such matrix entries for a given value of i and i′. These entries will

form a contiguous square block, since the ordering of our basis insures that basis vectors |i, j〉 with the same

value of i will be in a single block. This block is itself a matrix, with entries indexed by j and j′. We refer

to this matrix as the block entry of Û at i and i′, and denote it as U ii′ , and we specify its own elements as

(U ii′)jj′ ≡ U ′ij,i′j′ . In terms of these block units, the matrix corresponding to the evolution operator Û in

this basis takes the form

Û ∼



U00 U01 . . . U0,N−1

U10 U11 . . . U1,N−1

...
...

. . .
...

UNM−1,0 UNM−1,1 . . . UNM−1,NM−1


(38)

So far, expressing the operator Û in this form just amounts to a specific ordering and grouping of the

matrix elements of Û . However, we can see that this block matrix will simplify considerably by considering

the evolution of a basis vector |i, j〉 as expanded in the {|i, j〉} basis:

|i, j〉 → Û |i, j〉 =
∑
i′,j′

(U ii′)jj′ |i′, j′〉 =
∑
i′,j′

(U ii′)jj′ |i′ + f(j′)− f(j0)〉|j′〉 (39)

Again, we have suppressed the mod NM operator in |i, j〉 = |(i+f(j)−f(j0)) mod NM 〉|j〉 for brevity. We

can now ask how the constraint expressed in (35), which specifies how the states of the memory system M

co-evolve with the states of S, constrains the terms in this expansion. From (35), we know that a state |i〉|j〉

evolves into a superposition with terms only of the form |i + f(j′) − f(j)〉|j′〉, so that the quantum number

of the memory system state increases by an amount equal to the change in the value of f . This means that

the state |i, j〉 = |i + f(j)− f(j0)〉|j〉 that is evolved in (39) can only evolve into a superposition with terms

of the form:

|(i+ f(j)− f(j0)) + f(j′)− f(j)〉|j′〉 = |i+ f(j′)− f(j0)〉|j′〉 = |i, j′〉 (40)

So, a basis element |i, j〉 under the evolution operator Û evolves into a superposition of only basis vectors

with the same value i. That is, the evolution induced by Û does not send states from one block of our basis
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ordering into another. Specifically, this means that all terms in (39) must vanish except for those for which

i′ = i, and so the entries (U ii′)jj′ are zero unless i′ = i. This simplifies the representation of Û in our ordered

basis into a block-diagonal matrix, where each off-diagonal block element is just the zero matrix 0 with all

vanishing entries. Using the abbreviation U i ≡ U ii for the diagonal elements, we then have:

Û ∼



U0 0 . . . 0

0 U1 . . . 0

...
...

. . .
...

0 0 . . . UN−1


= diag(U0, U1...UN−1) (41)

Moreover, the assumption that Û is a unitary operator implies that each of these diagonal block entries

U i is also a unitary matrix. We can see this be computing the product Û Û† in our ordered basis, which is

equal to the identity operator 1̂ since Û is unitary. Noting that Û† = diag(U
†
0, U

†
1...U

†
N−1), we can see that

the block entries (Û Û†)kk′ of the product Û Û† are given by

(Û Û†)kk′ =
∑
i

(Û)ki(Û
†)ik′ . (42)

Here, we have performed the matrix multiplication blockwise. In a blockwise multiplication, the block entries

of the product are computed in terms of the block entries of the factors, in the same form as a standard

matrix multiplication. We have denoted the block element of Û with indices k and i as (Û)ki, and the block

element of Û† with indices i and k′ as (Û†)ik′ . We will continue to use this notation in the next section:

Unless otherwise specified, we surround a matrix with parentheses and two indices in order to signify the

block entry of that matrix specified by those indices.

Notation aside, we find that the block entries of Û Û† given in (42) simplify because Û and Û† are both

block-diagonal. Specifically, the sum in (42) collapses to a single term, since (Û)ki and (Û†)ik′ are equal to

the zero matrix unless k = i = k′. Noting that (Û)kk = Uk and (Û†)k′k′ = U
†
k′ , we have the result

(Û Û†)kk′ = δkk′(Û)kk(Û†)k′k′ = δkk′UkU
†
k. (43)

However, we know that since Û Û† = 1̂, the block entries of Û Û† are given by identity matrices I along the

diagonal, and by 0 otherwise. This means that (Û Û†)kk′ = δkk′I, and equating this expression with (43)

yields UkU
†
k = I. This is just the condition for the unitary of the matrix Uk.
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To conclude this section, we note that there is no reason why the various block entries of Û should not be

equal to one another. Under the action of such an operator, all blocks of our ordered basis would evolve in the

exact same manner. In this case, given an initial state of the system S, the states of S in the superposition

produced by the action of Û will be independent of the initial state of M . So in fact, an operator Û for

which the block entries U i are the same or almost the same could be said to correspond to the most useful

sort of memory, since this constraint means that the evolution of S is hardly effected by the coupling to M .

However, for our analysis, we will still consider the general case with nonidentical block entries of Û , since

an interaction of some system with a memory need not leave that system completely undisturbed.

3.2 Probabilities in the quantum model

In analogy with our analysis of the classical urn model, we now wish to understand how observation of the

quantum memory system M at one time allows for inference about the state of the system S at another

time. To this end, we describe the systems M and S primarily in terms of density operators, as opposed to

the state vectors that we have been working with until now. An overview of the density operator formalism

is given in Appendix B. This approach is useful in our present context for two reasons. First, the density

operator description easily accommodates a probabilistic analysis of the state of S. A general density operator

encodes not only probabilities arising from fundamental quantum indeterminism, but also probabilities which

are assigned based on a lack of exact information about a system. Second, it allows us to describe the systems

M and S in terms of two separate mathematical objects, namely each system’s reduced density operator.

This is not possible when working with state vectors alone, since if M and S become entangled, a state vector

can only be meaningfully assigned to the composite system M × S.

To begin, suppose that at some reference time t1, the composite system M ×S is in some separable state,

so that the total density operator ρ̂(t1) = ρ̂ = ρ̂M ⊗ ρ̂S for M ×S is simply the tensor product of the density

operators ρ̂M and ρ̂S , corresponding to the systems M and S respectively. While the state of S is described

by some unknown density operator ρ̂S , we assume that M is in a known pure state ρ̂M = |m0〉M 〈m0|M .

Now, under the evolution described in the previous section, the composite system M × S will evolve

into a new state ρ̂(t2) = Û ρ̂Û† by some second time t2. Suppose now that a measurement of the quantum

number associated with the memory system M is made, so that M collapses back into a new pure state

|m〉M 〈m|M . Given the initial pure state ρ̂M = |m0〉M 〈m0|M of M and the evolution operator Û , we would

like to understand how the measurement of M at t2 informs any inference we can make about the possible
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entries of ρ̂S , and therefore the state of S, at t1.

Our first task is to calculate how the density operator ρ̂ will evolve between t1 and t2. This evolution will

look simplest in the ordered basis given in (36). From the analysis in the previous section, we know that Û

takes a block diagonal form in this basis. We can obtain the entries of ρ̂ in this basis as follows. First, we

expand our definition ρ̂ = ρ̂M ⊗ ρS in terms of basis states of M and S, yielding

ρ̂ = ρ̂M ⊗ ρ̂S = |m0〉M 〈m0|M ⊗

∑
j,j′

ρSjj′ |j〉S〈j′|S

 =
∑
j,j′

ρSjj′ |m0〉|j〉〈m0|〈j′|. (44)

Here, the coefficients ρSjj′ ≡ 〈j|M ρ̂S |j′〉M are the entries of ρ̂S in the {|j〉S} basis. However, we also know

that we can expand ρ̂ as the sum of the reordered basis states

ρ̂ =
∑
i,i′,j,j′

(ρii′)jj′ |i, j〉〈i′, j′| =
∑
i,i′,j,j′

(ρii′)jj′ |i+ f(j)− f(j0)〉|j〉〈i′ + f(j′)− f(j0)|〈j′|. (45)

Just as we expressed the entries of Û in terms of the block matrices U ii′ , we define (ρii′)jj′ ≡ 〈i, j|ρ̂|i′, j′〉

as the entry at row j and column j′ of the block matrix ρii′ . In terms of these block entries, the density

operator is represented as:

ρ̂ ∼



ρ00 ρ01 . . . ρ0,N−1

ρ10 ρ11 . . . ρ1,N−1

...
...

. . .
...

ρN−1,0 ρN−1,1 . . . ρN−1,N−1


(46)

Now, after equating terms in (44) and (45) with the same values of j and j′, we find the relation

ρSjj′ |m0〉〈m0| =
∑
i,i′

(ρii′)jj′ |i+ f(j)− f(j0)〉〈i′ + f(j′)− f(j0)|. (47)

Comparing the terms of this sum with ρSjj′ |m0〉〈m0|, we can now see that the only nonzero term will be

that for which m0 = i+f(j)−f(j0) = i′+f(j′)−f(j0). This means that if these equalities are satisfied, then

we simply have (ρii′)jj′ = ρSjj′ . Otherwise, we must have (ρii′)jj′ = 0 if the appropriate terms are to vanish.

Symbolically, our result is:

(ρii′)jj′ = ρSjj′δm0,i+f(j)−f(j0)δm0,i′+f(j′)−f(j0). (48)
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Now that all the entries of ρ̂ in our ordered basis have been specified, determining the evolution of ρ̂ is

just a matter of computing the product Û ρ̂Û†. Our goal is to calculate the individual entries of this product,

((Û ρ̂Û†)αα′)ββ′ ≡ 〈α,β|Û ρ̂Û†|α′,β′〉, where α and α′ take on the integer values from 0 to NM − 1, and β

and β′ are in the indexing set J. As an intermediate step, we first compute the block entry of Û ρ̂Û† at row

α and column α′, denoted (Û ρ̂Û†)αα′ . As noted previously, this computation has the exact same form as a

standard matrix multiplication, but with the individual entries given as matrices instead of single numbers.

Proceeding this way, we obtain the result

(Û ρ̂Û†)αα′ =
∑
k,l

UαkρklU
†
lα′ = Uαραα′U

†
α′ , (49)

where the sum collapses to a single term because of the block diagonal form of Û , which ensures that U ii′ = U i

is the zero matrix unless i = i′. Proceeding to the computation of ((Û ρ̂Û†)αα′)ββ′ , we find that

((Û ρ̂Û†)αα′)ββ′ = (Uαραα′U
†
α′)ββ′ =

∑
k,l

(Uα)βk(ραα′)kl(U
†
α′)lβ′ . (50)

Noting that (U
†
α′)lβ′ = (Uα′)

∗
β′l, where ∗ denotes complex conjugation, and substituting our expression for

(ρii′)jj′ given in (48), our final expression for ((Û ρ̂Û†)αα′)ββ′ is

((Û ρ̂Û†)αα′)ββ′ =
∑
k,l

(Uα)βkρ
S
klδm0,α+f(k)−f(j0)δm0,α′+f(l)−f(j0)(Uα′)

∗
β′l. (51)

Given these entries for the evolved density matrix, we can now evaluate the probabilities P (m|ρ̂S) of

obtaining various values m when the measurement of M is made at t2. As described in Appendix B, these

probabilities are given by P (m|ρ̂S) = Tr
[
P̂mÛ ρ̂Û

†
]
, where the operator P̂m is the projection operator onto

the space of states of M with quantum number m, and the symbol Tr denotes the trace operation. In this

case, the basis state |m〉M is the unique state described by this quantum number, so P̂m is simply |m〉M 〈m|M .

The trace of |m〉M 〈m|M Û ρ̂Û†, expressed as a sum over the original basis states, is given by

P (m|ρ̂S) = Tr
[
|m〉M 〈m|M Û ρ̂Û†

]
=
∑
i,j

〈i|M 〈j|S
(
|m〉M 〈m|M Û ρ̂Û†

)
|i〉M |j〉S . (52)

Given the orthogonality of the basis states {|i〉M}, the terms in this sum are zero unless i = m, and so we

have
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P (m|ρ̂S) =
∑
j

〈m|M 〈j|SÛ ρ̂Û†|m〉M |j〉S . (53)

Now, the matrix Û ρ̂Û†, expressed in terms of its entries ((Û ρ̂Û†)αα′)ββ′ , takes the form:

Û ρ̂Û† =
∑

α,α′,β,β′

((Û ρ̂Û†)αα′)ββ′ |α,β〉〈α′,β′|, (54)

Û ρ̂Û† =
∑

α,α′,β,β′

((Û ρ̂Û†)αα′)ββ′ |α+ f(β)− f(j0)〉M |β〉S〈α′ + f(β′)− f(j0)|M 〈β′|S . (55)

Upon substituting this expression for Û ρ̂Û† into the equation for P (m) in (53), we note that the only

non-vanishing terms will be those for which m = α+ f(β)− f(j0) = α′ + f(β′)− f(j0) and l = β = β′, due

to the orthogonality of the basis states associated with both M and S. Thus we are left with

P (m|ρ̂S) =
∑
j

((Û ρ̂Û†)m−f(j)+f(j0),m−f(j)+f(j0))jj. (56)

This probability only depends on the diagonal entries of Û ρ̂Û†. From (51), we can see that these entries take

the values

((Û ρ̂Û†)αα)ββ =
∑
k,l

(Uα)βkρ
S
klδm0,α+f(k)−f(j0)δf(k),f(l)(Uα)∗βl. (57)

Here, we have replaced the product δm0,α+f(k)−f(j0)δm0,α′+f(l)−f(j0) in (51) with δm0,α+f(k)−f(j0)δf(k),f(l),

since for α = α′ these quantities are equal. Finally, substituting (57) into our expression for P (m|ρ̂S) in (56),

with α = m− f(j) + f(j0) and β = j, we find the result

P (m|ρ̂S) =
∑
j,k,l

(Um−f(j)+f(j0))jkρ
S
klδm0,m+f(k)−f(j)δf(k),f(l)(Um−f(j)+f(j0))

∗
jl. (58)

Now, collecting the terms with common values of ρSkl, we have:

P (m|ρ̂S) =
∑
k,l

∑
j

(Um−f(j)+f(j0))jk(Um−f(j)+f(j0))
∗
jlδm0,m+f(k)−f(j)δf(k),f(l)

 ρSkl, (59)

P (m|ρ̂S) =
∑
k,l

a
(m)
kl ρSkl. (60)

We have defined the coefficient a
(m)
kl as the sum over j in parentheses in (59). So, we see that the

probability P (m) is a linear combination of the entries of ρ̂S , the initial density operator of the system S.
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The coefficients a
(m)
kl are known to us, since they depend on the entries of Û , the form of f(j), and the value

of m0, all of which we assume are given. Given this expression P (m|ρ̂S), which encodes our knowledge about

the measurement of M at the time t2, we can now ask how about how this conditions any inference we can

make about ρ̂S , which describes the state of S at the time t1.

Since ρ̂S is a density matrix, this already places some constraints on the values of its entries. First, ρ̂S is

necessarily a Hermitian operator, and therefore has fewer independent degrees of freedom than an arbitrary

complex operator. To see this, let us assume for simplicity that the matrix representation of ρ̂S is a finite

N × N matrix. In order to be Hermitian, this matrix must have N real diagonal entries, and N(N − 1)/2

independent complex values in off-diagonal entries. This means that ρ̂S is described by N +N(N − 1) = N2

real values, each corresponding to an independent degree of freedom. This is half the degrees of freedom

available to a general complex N × N matrix. Second, the eigenvalues of ρ̂S must all be real numbers

between zero and one, and they must sum to one. This constraint insures that the eigenvalues of ρ̂S can

be interpreted as probabilities. Without any additional information, these two restrictions alone vastly

underdetermine the values of the entries ρSkl. The task of assigning these entries in the most appropriate

way, given such constraints, constitutes a matrix completion problem. For the purposes of our inference, the

solution to this problem is also informed by the sum (60), which relates the matrix entries to one another in

terms of the known coefficients a
(m)
kl and the probability P (m|ρ̂S).

So far, we have only just begun to consider our quantum memory model from the standpoint of a matrix

completion problem. One way to analyze this problem may be through a Bayesian updating procedure. In

this case, the aim is to make the best inference about the values of the matrix elements of ρ̂S . We begin

with a prior distribution P (ρ̂S) over the possible values of the entries ρSkl, conditioned by our knowledge

that ρ̂S is a density operator, as well as by any relevant prior information about the systems M and S.

Then, after a particular value m of the memory quantum number is obtained in a measurement, we use this

value to update our prior distribution over the possible matrix entries, to obtain a posterior distribution

P (ρ̂S |m). Here, the role of the likelihood function is played by P (m|ρ̂S), since it encodes the probability of

a measurement outcome conditioned on knowledge of ρ̂S . Expressed in this form, the memory inferences in

our quantum model appear quite analogous to the inferences in the classical urn model.
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4 Conclusions

In our analysis, we have attempted to bring out the role of inference in the functioning of physical systems

as memories. Any system is capable of interacting with its environment, and when it does so, information

about the state of the world is encoded in its internal degrees of freedom. However, this information may be

recorded in an unpredictable way, dispersed throughout a set of practically inaccessible degrees of freedom,

or quickly scrambled by further environmental influence. Fortunately, in some special cases, the coupling of

a system to its surroundings in a regular way allows for predictable correlations between certain properties

of the system and certain aspects of the environment. If these correlations can be harnessed to make precise,

informative inferences about the state of the world at one time, given observation of some property of the

system in question at another time, then we say then the system functions as a memory.

In the case of our classical urn model system, we have carried through an analysis of inferences about

the marble distribution between urns, given the output of a coupled memory device at a different time.

This has allowed us to understand how such memory inferences depend on the thermodynamic arrow of time

associated with the the marble system. Specifically, we find that inferences about the low-entropy past, given

information from the relatively high-entropy future, are much more informative in general than inferences in

the reverse direction. For our quantum model, although more work still needs to be done, we have developed

a framework for understanding how measurements of a quantum memory register allow inferences to be made

about a system coupled to the register. We have shown that such inferences can be couched in terms of a

matrix completion problem, where the entries of the density matrix of the coupled system must be inferred

based on the outcome of a measurement of the memory.

This work builds on that of Mlodinow and Brun in two key ways. First, as we have previously argued,

a definition of memory in terms of inference allows us to make sense of Mlodinow and Brun’s notion of

“generality.” For Mlodinow and Brun, a memory system satisfies generality if it still functions as a memory

under certain perturbations of the state of the memory’s environment; these perturbations may correspond

to a range of different possible recorded values. We can then say that such a memory aligns with the ther-

modynamic arrow of time if “typical” evolutions of the memory under these perturbations all exhibit similar

changes in entropy. However, to understand which possible evolutions of the memory and its surroundings
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are most likely to occur, and therefore most typical, we have to be able to pose some inference about the

how the memory will interact and evolve over time. To specify such inferences in a regular and quantitative

manner, we have applied the formalism of Bayesian inference in the context of memory systems.

Second, we have begun to extend this reasoning to quantum systems. In Mlodinow and Brun’s paper,

the systems which they consider are explicitly classical: The states of both the memory system and its

environment are described by points in classical phase space, which precisely specify the positions and

velocities of all the constituent parts of these systems. This state of affairs no longer obtains in a quantum

memory system. Importantly, the quantum states of a memory system and its environment will generally not

be specifiable individually, but only as an entangled quantum state of the composite system composed of the

memory and its surroundings. As Mlodinow and Brun point out, their argument assumes that the memory

and its environment are separable, in the sense that the state of each system can be specified individually.

However, the interactions between two quantum systems which encode information about one system in the

degrees of freedom of the other will generally entangle these systems, so that a state vector cannot be assigned

to the systems individually. So in the quantum realm, this assumption of separability must be dispensed

with. Nevertheless, we ultimately hope to show that this assumption is not critical to the thrust of Mlodinow

and Brun’s argument.

Given these developments in our work, several possible paths are left open for further study. The most

obvious next step is to complete our investigation of the quantum memory system. This would entail an

analysis of the matrix completion problem that we described at the end of Chapter 3, in order to determine

the most reasonable entries to assign to the density matrix for the system S, given a measurement of the

memory system M . Another direction of future research might then involve considering the von Neumann

entropy of the quantum memory system and its surroundings. We would like to show, as we have for the

urn model, that changes in the entropy of the memory and its surroundings over time condition the possible

inferences that can be made about these systems. Finally, it may prove fruitful to generalize the classical

results obtained with our urn model. This would involve describing the memory inferences about a classical

system more abstractly, without reference to any particular system like the urn model. Our analysis of the

urn model was useful because of the simple probabilistic calculations that it permitted, but approaching the

problem in more general terms may highlight the essential structure of our arguments.
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5 Appendix A: Bayesian Probability Theory

Bayesian probability theory, in the form developed by authors such as E. T. Jaynes, is a mathematical

prescription for assigning degrees of belief to various inferences, or claims about the world made on the

basis of relevant information. These degrees of belief, which quantify the extent to which inferences are

supported by the given evidence or information available, are expressed as probabilities between 0 and 1.

The standard rules of probability theory allow these degrees of belief to be manipulated and compared. In

particular, the Bayesian approach to Bayes’ rule of conditional probability is a method by which degrees of

belief may be systematically updated, given the existence of new information. This “Bayesian updating”

procedure is especially relevant for our analysis of memory systems, since it can be used to understand how

inferences about the state of some observed system can change upon access to some “memory” device that

is coupled to it. In this appendix, we present an overview of three important concepts in Bayesian theory:

The interpretation of probability statements, the Bayesian updating method, and the assignment of “prior”

or baseline probabilities. This presentation is guided by the writings of E. T. Jaynes concerning Bayesian

probability, particularly his book Probability Theory: The Logic of Science.6

We begin with a brief note on the meaning of probabilities in Bayesian theory. Bayesian probabilities, as

degrees of belief, are not empirical quantities. This interpretation of probabilities may be unfamiliar to some

readers, who are accustomed to understanding probability as the frequency with which a given event occurs,

relative to some set of other possible outcomes. In such “frequentist” accounts of probability, probabilities

are estimated based on the real or hypothetical frequencies of specific events, and then manipulated with the

mathematical rules governing probabilities. In contrast, a Bayesian probability is assigned to an inference as

the result of a logical procedure, which takes as inputs the information relevant to making that inference. In

this way, probabilities in the Bayesian formalism are not facts or properties of the world, but rather a metric

by which inferences can be quantified and then compared.

However, although the probabilities employed in Bayesian logic are not empirical quantities, they are also

more than just subjective judgments or beliefs of some human observer. First of all, Bayesian probabilities

cannot be assigned arbitrarily, but must obey both the standard rules of probability and a standard of

logical consistency. In some cases, a careful imposition of such constraints can single out a unique set of
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probabilities as the correct assignment for a given inference. In such situations, the resultant probabilities

are completely objective or “user-independent” in the sense that there is only one way to assign them in a

logically consistent manner. In fact, Cox’s Theorem, first proved in Richard T. Cox’s 1961 work Algebra of

Probable Inference, is discussed extensively in the first two chapters of Jaynes’ book. This theorem proves

that under very general assumptions, any self-consistent method for assigning numerical values to degrees

of belief about analytic statements of the form “A is true,” can be mapped to standard probability theory.3

Here, A can be a proposition like “A = The mass of the electron is X,” or “A = G is a human,” or any

proposition which can be assigned a definite binary truth value.

Second, the notion of inference employed in Bayesian theory does not rely on the existence of some human

agent or observer who can formulate inferences. Rather, since Bayesian inference is a clearly defined logical

procedure, it might be instantiated in all sorts of physical processes, from the cognitive processes of animals

to the bit operations of computers. The dynamics of such processes carry out the inference as a type of

computation or sequence of logical operations; no human intervention need be invoked. To emphasize this

very point, Jaynes even introduces a hypothetical “inference robot” in the first chapter of his book, which

demonstrates how each logical step in Bayesian probability theory can be precisely formulated and then

automated.

Given this approach to probabilities, we can now explain how Bayesian probabilities are assigned. The

procedure of assigning probabilities is conventionally divided into two steps: The assignment of initial prob-

abilities, called “prior probabilities”, and the updating of these probabilities based on new information or

evidence. We will first discuss the Bayesian updating procedure, and then conclude with a short explanation

of prior probabilities.

To introduce the Bayesian updating procedure, we first must define some basic notation. Consider

two claims A and B, which are propositions about the world. Specifically, these claims must be analytic

statements, i.e. they obey the Law of the Excluded Middle. They are either true or false. Typically, these

will be claims of as-of-yet undetermined truth value, such as statements about the future. Now suppose we

would like to assign a probability to the claim B, conditioned on the fact that A is given to be true. We

denote this probability as

P (B|A). (61)

All probabilities we will consider will take this form. Specifically, in the Bayesian formalism it is meaning-
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less to define probabilities like P (A), that is, the probability that A is true given no background information.

Any statement A about the world with any content always presupposes certain conditions, at least enough

to make the meaning of the statement intelligible. The notation P (B|A) makes this conditioning explicit.

The one rule of probability we will need to derive the Bayesian updating method is the rule governing joint

probabilities, or probabilities associated with more than one proposition being true simultaneously. Suppose

we wish to assign a probability to the claim that two statements A and B are both true, given a statement

C. If we denote this joint claim as (A,B), then this probability is expressed simply as P (A,B|C). The rule

for assigning joint probabilities like P (A,B|C) is as follows. First, we compute the probability of one of the

claims, for example A, given that C is true. Then, we compute the probability that the second claim B is

true, assuming that C and the first claim A are true. The joint probability is then given by the product of

these two probabilities,

P (A,B|C) = P (B|A,C)P (A|C). (62)

Note that this probability could equally be expressed as P (A,B|C) = P (A|B,C)P (B|C), since the joint

statement (A,B) is symmetrical: (A,B) is the same as (B,A). By equating these two expressions for

P (A,B|C) and solving for P (A|B,C), we arrive at Bayes’ Theorem, expressed as

P (A|B,C) =
P (B|A,C)

P (B|C)
P (A|C). (63)

The method of Bayesian updating can now be expressed simply in these terms. Suppose that, given some

background information encoded in a set of statements I, we have formulated some inference H, which we

will call the hypothesis. We wish to associate a probability with this inference, given that the information I

and some additional claim E are true. We call this statement E the evidence, and interpret it as some new

information which has been acquired. Given these definitions and Bayes’ Theorem in (63), the probability

of interest P (H|E, I) can be expressed as

P (H|E, I) =
P (E|H, I)

P (E|I)
P (H|I). (64)

Now, it becomes clear why we have referred to this method as an “updating” procedure. (64) tells us

that, given some initial assignment of a probability to our hypothesis H, expressed as P (H|I), we can then

reassess this probability upon consideration of the new information provided by the evidence E. This updated
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probability is given by P (H|E, I). In Bayesian terminology, the various terms in this updating procedure

are typically described as follows:

• P (H|I): The prior probability. This represents the best assessment of the hypothesis, without any of

the information expressed in the additional evidence E. Prior probabilities can be assigned in various

ways, depending on the specific nature of the prior information I; a few of these methods will be

touched on later.

• P (H|E, I): The posterior probability. Obtaining this value is the goal of our updating procedure, as it

corresponds to a new assessment of the hypothesis based on the additional evidence E.

• P (E|H, I): The likelihood. This probability must be computed in order to evaluate the posterior,

assuming some prior is already assigned. One way to interpret this factor is to consider the hypothesis

H as corresponding to some model about the world. P (E|H, I) then expresses the probability that the

given evidence E is obtained, given that the model expressed by H is a valid one.

• P (E|I): The normalization. This factor must also be assigned a value in order to compute the posterior.

However, the normalization is usually not computed directly, but is instead fixed by the constraint that

the probability of H and its logical negation must sum to 1.

Given the posterior probability in terms of these values, the only remaining obstacle to implementing

a Bayesian updating procedure is to specify a prior probability. The particular method of assigning this

prior will depend on the nature of the hypothesis and prior information at hand, and in general there is not

a single universal method for assigning priors. However, with certain types of prior information, invoking

certain criteria of logical consistency can greatly constrain the possible priors which may be assigned. A few

of these potential constraints are described briefly below.

One criterion for assigning prior probabilities is the Principle of Indifference. This principle states that,

given N possible hypotheses Hi = H1, H2... HN , if the given prior information does not distinguish them

in any way except for their labeling, then equal probabilities ought to be assigned to each hypothesis:

P (Hi|I) = 1/N . This principle can be useful in cases when each possible outcome can be expressed in terms

of some base set of possibilities, each of which can be assigned an equal probability. Another method is to

invoke symmetry considerations. For example, if a hypothesis H concerns some physical system which has

rotational symmetry, then any probability assignment associated with this system should assign identical
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values to statements which are indistinguishable up to a rotation of the system. One other approach,

pioneered by Jaynes, is the “Maximum Entropy” principle. This criterion identifies the prior distribution with

the probability distribution that maximizes the Gibbs entropy defined in (1), with respect to any constraints

on the probabilities given in the prior information. With no constraints on the probability distribution, and

a finite number of possible outcomes, the Maximum Entropy principle assigns the same probabilities as the

Principle of Indifference.
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6 Appendix B: The Density Matrix Formalism

In this appendix, we develop the concepts and mathematics behind the density matrix formulation of non-

relativistic quantum mechanics. The advantages of the density matrix formalism are twofold. First, it

permits a natural treatment of quantum systems in a statistical mixture of states, that is, systems which are

in an indefinite state not due to intrinsic quantum indeterminism, but because of uncertainty in the system’s

preparation. Second, the density matrix formalism allows for a useful description of individual subsystems

of an entangled quantum system. The framework developed in this appendix is primarily drawn from the

textbook Entangled Systems: New Directions in Quantum Physics, by Jürgen Audretsch.1

The appearance of randomness in the standard account of quantum mechanics is well known. In general,

the value of a quantum observable cannot be predicted with certainty prior to measurement: Only proba-

bilities can be assigned to the various possible outcomes. Despite this fundamentally stochastic character

of quantum systems, in quantum theory a definite state is nevertheless assigned to an isolated quantum

system at all times. This is the state vector |ψ〉, which encodes the probabilities of obtaining various possible

measurement outcomes from the system. In quantum mechanics, knowledge of the state vector amounts to

the most complete description possible of a quantum system, although it does not deterministically dictate

the results of measurement outcomes.

However, a description of a quantum system may also require probabilities for another reason, independent

of the indeterministic foundation of quantum physics. This can occur when the system under consideration

has been prepared in one of a set of possible states, but it is not known which one. We refer to this ensemble

of possible states as a statistical mixture, or simply a mixed state. In such situations, although the system

might be described by a single state vector in principle, without further interaction with the system this

exact state cannot be specified. However, under these circumstances, it may be useful to assign a probability

to each possible state in the mixture, which expresses the likelihood that the system is actually in that

particular state. This is where the density matrix formalism becomes useful: It offers a compact description

of the possible quantum states in a statistical quantum, along with their corresponding probabilities. As

we will demonstrate later, the density matrix description can also be employed in the analysis of entangled

quantum systems, for which it is impossible to meaningfully assign a definite state vector to either entangled
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subsystem.

To begin building the density matrix picture of quantum mechanics, we first consider the special case in

which a quantum system does in fact have a definite state vector. In contrast to mixed states, in this case

we say that the quantum system is in the pure state |ψ〉. We will assume that this vector is normalized. We

define the density operator associated with such a pure state as the outer product of the state vector |ψ〉 and

its adjoint, 〈ψ|,

ρ̂ ≡ |ψ〉〈ψ|. (65)

This operator encodes the same probabilities concerning measurement outcomes as the state vector, but

in a way which generalizes to the description of statistical mixtures in a straightforward manner. To see

this, suppose there exists some quantum observable associated with the system under consideration, with a

corresponding operator Q̂. Each possible outcome of a measurement of this observable will be an eigenvalue

of Q̂. We denote the ith potential measurement outcome as qi, where the index i ranges over some set of

integer values. In terms of the state vector, the Born rule states that the probability P (qi) of obtaining a

given outcome upon measurement is given by P (qi) = 〈ψ|P̂i|ψ〉, where P̂i is the projection operator onto

the space of eigenvectors of Q̂ with eigenvalue qi. We can express this probability in terms of the density

operator by taking the operator trace, denoted with the symbol Tr, of P (i). Given any orthonormal basis

{|j〉} = {|1〉, |2〉...} for the Hilbert space of the system under consideration, where the index j ranges over a

set of integer values, the trace operation on a operator Ô takes the form

Tr
[
Ô
]

=
∑
j

〈j|Ô|j〉. (66)

This operation leaves P (qi) unchanged, since the trace of a single number is just that number itself, and

so P (qi) = Tr
[
〈ψ|P̂i|ψ〉

]
. Now, by noting that the trace of a product such as 〈ψ|P̂i|ψ〉 is invariant upon

cyclic permutations of the factors, we can write P (qi) as

P (qi) = Tr
[
〈ψ|P̂i|ψ〉

]
= Tr

[
P̂i|ψ〉〈ψ|

]
= Tr

[
P̂iρ̂
]
. (67)

As a result of such a measurement, the state vector will collapse to an eigenvector of Q̂ corresponding

to the outcome of the measurement, qi. Specifically, the state vector after measurement is obtained by

applying the projection operator P̂i to the pre-measurement state vector, and then dividing by the factor
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√
P (qi) =

√
〈ψ|P̂i|ψ〉 for normalization. Symbolically, the state vector undergoes the evolution |ψ〉 → |ψ′〉 =

P̂i|ψ〉/
√
〈ψ|P̂i|ψ〉. The corresponding evolution for the density operator, from ρ̂ to ρ̂′, is then given by

ρ̂ = |ψ〉〈ψ| → ρ̂′ = |ψ′〉〈ψ′| = P̂i|ψ〉√
P (qi)

〈ψ|P̂ †i√
P (qi)

=
1

Tr
[
P̂iρ̂
] P̂iρ̂P̂i, (68)

where P̂ †i denotes the Hermitian conjugate of P̂i. We have used the fact that P̂i is Hermitian, or that P̂i = P̂ †i .

We can also consider how the density operator will evolve in isolation, in the absence of measurement. In

this case, the state vector evolves from |ψ〉 to |ψ′〉 = Û |ψ〉, where Û is some unitary operator determined by

the Hamiltonian of the system. Under this evolution, the adjoint of |ψ〉 evolves into 〈ψ|Û†, and so we see

that corresponding evolution of the density operator takes the form

ρ̂ = |ψ〉〈ψ| → ρ̂′ = |ψ′〉〈ψ′| = Û |ψ〉〈ψ|Û† = Û ρ̂Û†. (69)

Taken together, equations (67)-(69) describe the dynamics of a pure state, and the probabilities which it

encodes, in terms of operations on the density operator. To understand how these properties generalize to

the case of statistical mixtures, it is useful to first consider the measurement probabilities associated with a

mixed state. As described previously, mixed states occur when a quantum system is in one of some set of

definite states, but it is not known which one. For some given mixed state, we denote this set of possible

states as {|ψn〉} = {|ψ1〉, |ψ2〉, |ψ3〉...}, where the index n ranges over some set of integer values. To describe

a mixed state, we assign a set of probabilities {pn} = {p1, p2, p3...} over the set of possible states, such that pn

gives the probability that the system is actually in the state |ψn〉. The best way to assign these probabilities

is contingent upon what is known about the preparation procedure which produced the quantum state. At

this stage, we will just take this set of probabilities as a given.

Now, a straightforward application of the rules of probability can tell us the probabilities of obtaining

the various values {qi} of the observable Q̂. Suppose that upon measurement, the value qi is observed.

This result could have emerged in a number of ways. For example, the true state of the system prior to

measurement might have been given by |ψ1〉, and the measurement could have induced a collapse to a new

state P̂i|ψ1〉/
√
〈ψ1|P̂i|ψ1〉 with probability 〈ψ1|P̂i|ψ1〉, as given by the Born rule and (67). Alternately, the

system could have collapsed to a new state P̂i|ψ2〉/
√
〈ψ2|P̂i|ψ2〉 from |ψ2〉, with probability 〈ψ2|P̂i|ψ2〉. In

general, there will be as many different possible “paths” by which this measurement can occur as there are

states in {|ψn〉}, the set of possible initial states. Moreover, each one of these possibilities corresponds to a
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mutually exclusive event: The system is only ever truly in one quantum state, and only one of these possible

collapses occurs. The probability of obtaining some result from a set of mutually exclusive outcomes is simply

the sum of the individual probabilities of each event in the set. Therefore, if we define P (|ψn〉 and qi) as the

probability that the system began in state |ψn〉 and then the value qi is obtained, then the total probability

P (qi) of obtaining qi is the sum of these probabilities,

P (qi) =
∑
n

P (|ψn〉 and qi). (70)

Since each term in this sum is a joint probability of two separate events, we can express each term as

a product of probabilities, in accordance with (62) in Appendix A. Specifically, for each term, the joint

probability P (|ψn〉 and qi) is equal to the probability P (|ψn〉) that the system begins in the state |ψn〉,

multiplied by the conditional probability P (qi||ψn〉) that the value qi is obtained, given the initial state |ψn〉.

That is, we have

P (|ψn〉 and qi) = P (|ψn〉)P (qi||ψn〉). (71)

However, we have already seen the factors in this product. The first factor P (|ψn〉) is, by definition, equal

to the probability pn, since we defined each member pn of the set {pn} as the probability that the system

was prepared in the initial state |ψn〉. The second factor is given by the Born rule and (67): If the system

begins in the state |ψn〉, then a value qi will be obtained upon measurement with probability 〈ψn|P̂i|ψn〉.

So, after substituting these results into (71), and then rewriting the sum in (70) in these terms, we find the

result

P (qi) =
∑
n

P (|ψn〉)P (qi||ψn〉) =
∑
n

pn〈ψn|P̂i|ψn〉. (72)

That is, the total probability of obtaining the result qi in a measurement of Q̂ is the sum of the Born

probabilities of observing this result for each possible initial state |ψn〉, weighted by the probabilities pn.

Given this expression for P (qi), to understand how the density operator might be defined for the case of

mixed states, we can ask: How should our original definition of ρ̂ in (65) be generalized to statistical mixtures,

so that the probabilities P (qi) take the same form Tr
[
P̂iρ̂
]

as in the pure state case? We can answer this

question by manipulating our expression for P (qi) in (72) as follows:
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P (qi) =
∑
n

pnTr
[
〈ψn|P̂i|ψn〉

]
=
∑
n

pnTr
[
P̂i|ψn〉〈ψn|

]
= Tr

[
P̂i

(∑
n

pn|ψn〉〈ψn|

)]
. (73)

So, we see that if we define that density operator as ρ̂ =
∑
n pn|ψn〉〈ψn| for mixed states, then the

probabilities P (qi) are still given as Tr
[
P̂iρ̂
]
, just as for pure states. Therefore, we take this as the definition

of the density operator in the general case, for a statistical mixture with possible states {|ψn〉} and associated

probabilities {pn}:

ρ̂ ≡
∑
n

pn|ψn〉〈ψn| =
∑
n

pnρ̂n. (74)

Here, we have introduced the notation ρ̂n ≡ |ψn〉〈ψn| to denote the density matrix associated with the pure

state |ψn〉. The density operator for a mixed state is then simply a weighted sum of the density matrices for

the pure states in {|ψn〉}. For a pure state, all of the probabilities in the set {pn} vanish except for one, and

this general definition reduces to the original definition given in (65).

After defining the density operator in this way, we find that the evolution of mixed states also takes the

same form as the pure state case, for both evolution due to measurement and unitary evolution when the

system is isolated. We have already noted that the system will, in the course of a measurement with value

qi, evolve into some state of the form P̂i|ψn〉/
√
〈ψn|P̂i|ψn〉, with the value of n dependent on the initial

pre-measurement state:

|ψ〉 → |ψ′〉 ?
=

Pi|ψ1〉√
〈ψ1|Pi|ψ1〉

,
Pi|ψ2〉√
〈ψ2|Pi|ψ2〉

... (75)

Therefore, the post-measurement density operator, in accordance with the definition given in (74), will

be given by a weighted sum of the density operators for these possible states. In this case, the appropriate

weight for each term |ψ′〉〈ψ′| = P̂iρ̂nP̂i/Tr
[
P̂iρ̂n

]
is the probability that the system collapsed into this state,

given that a measurement of qi was obtained. But this is just the probability that the system started

in |ψn〉, given the measurement result qi, since there is only one state in the mixture that could evolve

into P̂i|ψn〉/
√
〈ψn|P̂i|ψn〉. If we denote this probability as P (|ψn〉|qi), then the post-measurement density

operator ρ̂′ is given by

ρ̂→ ρ̂′ =
∑
n

P (|ψn〉|qi)
P̂iρ̂nP̂i

Tr
[
P̂iρ̂n

] =
∑
n

P (|ψn〉|qi)
P (qi||ψn〉)

P̂iρ̂nP̂i. (76)
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On the right side of this expression, we have noted that the expression Tr
[
P̂iρ̂n

]
is just P (qi||ψn〉), the

probability of the measurement outcome qi, given the initial state |ψn〉. By invoking Bayes’ Theorem, given

in (63) in Appendix A, we can rewrite the ratio of probabilities in each term as follows:

P (|ψn〉|qi) =
P (qi||ψn〉)
P (qi)

P (|ψn〉) =⇒ P (|ψn〉|qi)
P (qi||ψn〉)

=
P (|ψn〉)
P (qi)

=
pn

Tr
[
P̂iρ̂
] . (77)

Substituting this into (76), we find that

ρ̂→ ρ̂′ =
∑
n

pn

Tr
[
P̂iρ̂
] P̂iρ̂nP̂i =

1

Tr
[
P̂iρ̂
] P̂i(∑

n

pnρ̂n

)
P̂i =

1

Tr
[
P̂iρ̂
] P̂iρ̂P̂i. (78)

This is exactly the same form as the evolution of a pure state under measurement, as given in (68).

Last, we can look how a density operator for a mixed state evolves when the system under consideration is

isolated. Given a mixed state with a density operator ρ̂ =
∑
n pn|ψn〉〈ψn| =

∑
n pnρ̂n, there are a number

of different ways that the system might evolve, depending on the true initial state |ψn〉 that the system

occupies. Specifically, the state |ψ1〉 will evolve to Û |ψ1〉, |ψ2〉 will evolve to Û |ψ2〉, and so on. Therefore, in

general, after the evolution the system will be in the state Û |ψn〉 with probability pn. This means that the

corresponding evolution of the density operator is given by

ρ̂→ ρ̂′ =
∑
n

pnÛ |ψn〉〈ψn|Û† = Û

(∑
n

pn|ψn〉〈ψn|

)
Û† = Û ρ̂Û†. (79)

So again, this evolution takes the same form as in the pure state case. We now see that the formulas

(67)-(69) governing the probabilities and dynamics associated with the density operator are equally valid for

both pure states and statistical mixtures, given that the density operator is defined as in (74). This is what

makes the density operator formalism useful in the context of statistical mixtures: The density operator

alone can fully encode both the set of possible states {|ψn〉} in a statistical ensemble, and the corresponding

set of probabilities {pn}.

The other useful application of the density matrix formalism that we will discuss here occurs when

a quantum system cannot be described by a single state vector |ψ〉, not because of a preparation which

generates a statistical ensemble, but because the system of interest has become entangled with another

system. In this case, although a state vector cannot be assigned to the state of the individual systems, we

will find that a density operator can be associated with each system that captures all the relevant probabilities

and dynamics for that system.
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To develop the density matrix formalism for entangled systems, let us consider the general form of a

density operator for a composite system. Consider two subsystems A and B, which form a composite system

A × B. Suppose we can find some orthonormal basis {|i〉A} = {|1〉A, |2〉A, |3〉A...} for the Hilbert space

associated with A, and another basis {|j〉B} = {|1〉B , |2〉B , |3〉B ...} for the Hilbert space of B. For both

bases, the indices i and j range over some set of integers, possibly infinite. In this case, a basis for the

Hilbert space of the composite system is given by {|i〉A ⊗ |j〉B}, where the indices i and j range over all

possible combinations of their values in the bases {|i〉A} and {|j〉B}. Here, the expression |i〉A⊗|j〉B denotes

the tensor product of |i〉A and |j〉B , which we will write more concisely as |i〉A|j〉B or |i, j〉.

Once we have chosen this basis, a general density operator ρ̂ which describes the composite system A×B

can be expanded as a sum of outer products of the vectors in this basis,

ρ̂ =
∑

i,i′,j,j′

ρij,i′j′ |i〉A|j〉B〈i′|A〈j′|B =
∑

i,i′,j,j′

ρij,i′j′ |i, j〉〈i′, j′|. (80)

Here, the coefficients ρij,i′j′ of this expansion are given simply as ρij,i′j′ = 〈i, j|ρ̂|i′, j′〉, since we have expanded

ρ̂ in terms of an orthonormal basis. These are the matrix elements of ρ̂ in the basis {|i, j〉}.

However, there are many cases where we would like to focus our analysis on one subsystem or the other,

without handling the full density matrix ρ̂. For example, we may be considering measurements of the system

A alone, or measurements or observables which are local to A. A local observable for A has an operator Q̂

of the form

Q̂ = Q̂A ⊗ 1̂B = Q̂A ⊗

∑
j

|j〉B〈j|B

 , (81)

where Q̂A is the operator for this observable in the Hilbert space for the system A. To construct the

corresponding operator Q̂ for this observable in the complete Hilbert space for the composite system A×B,

we must take the tensor product of Q̂A with the identity operator 1̂B =
∑
j |j〉B〈j|B for the Hilbert space

of B. The form of local operators implies that they will have the same set of eigenvalues as the lower-

dimensional operator from which they were constructed. That is, Q̂ has the same eigenvalues as Q̂A, and

these eigenvalues correspond to the set of possible measurement outcomes associated with these operators. In

addition, the projection operator P̂i, which projects onto the space of eigenvectors of Q̂ with the eigenvalue

qi, takes the simple form
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P̂i = P̂Ai ⊗ 1̂B = P̂Ai ⊗

∑
j

|j〉B〈j|B

 . (82)

Here, P̂Ai is the projection operator for Q̂A in the Hilbert space for the system A alone. So, we construct

the projection operator P̂i from P̂Ai in the same way that we construct Q̂ from Q̂A. Given this form for

local operators and their associated projection operators, we can now examine how measurements of local

observables are carried out, and compute the corresponding probabilities. This will lead us to a method for

constructing a density operator associated with the subsystem A alone.

Like any observable, the probabilities associated with the possible measured values of Q̂ are given in (67)

as

P (qi) = Tr
[
P̂iρ̂
]

= Tr
[
(P̂Ai ⊗ 1̂B)ρ̂

]
. (83)

However, since the projection operator P̂i = P̂Ai ⊗ 1̂B in this expression factors due to the locality of the

observable Q̂, we can express this probability in a special form, in terms of a density operator for A alone.

To do this, we first reexamine the trace operator, as defined earlier in (66). In the orthonormal basis {|i, j〉}

that we have selected for the composite system, the trace of some operator Ô is given by

Tr[Ô] =
∑
i,j

〈i, j|Ô|i, j〉 =
∑
i

〈i|A

∑
j

〈j|BÔ|j〉B

 |i〉A. (84)

On the right hand side of this expression, we see that the trace of an operator in the Hilbert space of the

composite system A×B can be thought of as two separate operations: A sum over the basis states associated

with the B subsystem, followed by a sum over the basis states for the A subsystem, or visa versa. These

operations are defined as the partial traces over the degrees of freedom of B and A, respectively. That is,

the partial trace TrA
[
Ô
]

of Ô over the degrees of freedom of A is defined as

TrA
[
Ô
]
≡
∑
i

〈i|AÔ|i〉A. (85)

TrB [Ô] is defined in an analogous way. We can now take the complete trace of Ô by applying the partial

traces over the individual subsystems in either order, so that Tr
[
Ô
]

= TrA

[
TrB

[
Ô
]]

= TrB

[
TrA

[
Ô
]]

.

We can use this decomposition of the trace operator to rewrite our expression for P (qi) in (83) as follows,

P (qi) = TrA

[
TrB

[
(P̂Ai ⊗ 1̂B)ρ̂

]]
= TrA

∑
j

〈j|B(P̂Ai ⊗ 1̂B)ρ̂|j〉B

 . (86)
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Now, note that since P̂Ai is an operator on the Hilbert space associated with A alone, it is unaffected by

the products with the basis vectors |j〉B of the Hilbert space of B, and therefore can be taken out of the sum

over j. This allows for the simplification

P (qi) = TrA

P̂Ai
∑

j

〈j|B 1̂B ρ̂|j〉B

 = TrA

P̂Ai
∑

j

〈j|B ρ̂|j〉B

 = TrA

[
P̂Ai TrB

[
ρ̂
]]
. (87)

In this manipulation, the tensor product symbol ⊗ is dropped after the projection operator P̂Ai is taken

outside the sum, since the sum over j is not an operator on the Hilbert space of B, but simply a number.

In addition, we drop the identity operator 1̂B , since by the definition of the identity operator we have

〈j|B 1̂B = 〈j|B . Given this expression for P (qi), we can now usefully define the reduced density operator ρ̂A

associated with the subsystem A as

ρ̂A ≡ TrB
[
ρ̂
]
. (88)

After substituting this definition into (87), the probabilities P (qi) take the form

P (qi) = TrA

[
P̂Ai ρ̂

A
]
. (89)

So, for observables which are local to the subsystem A, the reduced density matrix ρ̂A encodes the

probabilities associated with measurement outcomes in exactly the same way as density matrices for a lone

quantum system. That is, for a given ρ̂A, to compute the probability of a measurement result qi, we apply the

appropriate projection operator PAi , and then take the trace of the result. Only now, after tracing over the

degrees of freedom of B to obtain ρ̂A, this computation is done entirely within the Hilbert space associated

with A. In addition, during a local measurement on the subsystem A, the reduced density operator ρ̂A

evolves in the same way as a density operator of a full system. We can see this by tracing over the degrees

of freedom of B in equation (68), in the particular case of a local observable where P̂i = P̂Ai ⊗ 1̂B :

TrB
[
ρ̂
]

= ρ̂A → ρ̂A′ = TrB

[
1

Tr
[
P̂iρ̂
] P̂iρ̂P̂i] = TrB

[
1

TrA
[
P̂Ai ρ̂

A
] (P̂Ai ⊗ 1̂B)ρ̂(P̂Ai ⊗ 1̂B)

]
, (90)

ρ̂A → ρ̂A′ =
1

TrA
[
P̂Ai ρ̂

A
] P̂Ai TrB

[
ρ̂
]
P̂Ai =

1

TrA
[
P̂Ai ρ̂

A
] P̂Ai ρ̂AP̂Ai . (91)
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Again, this is just as in the case of an single isolated system: To obtain the post-measurement density

operator, we apply the projection operator P̂Ai to either side of the initial density operator ρ̂A, and then

normalize by dividing by the factor P (qi) = TrA

[
P̂Ai ρ̂

A
]
.

Of course, for non-local measurements, and for the evolution of A in the absence of any interaction

external to A × B, the evolution of ρ̂A will be more complicated. This is because these processes depend

on the state of the subsystem B and its interactions with A in a nontrivial way. However, working with ρ̂A

can still be a useful tool for understanding the information encoded in the subsystem A alone, in terms of

the probabilities P (qi) associated with making various local measurements on A. In particular, the reduced

density operator allows us to understand how interaction with B produces an effective statistical mixture

of the possible states of A. This is because although the subsystems A and B might begin in individual

pure states ρ̂A and ρ̂B , in which case the density operator factorizes as ρ̂ = ρ̂A⊗ ρ̂B , a nontrivial interaction

between A and B will generally evolve the system so that the new reduced density operators ρ̂A′ and ρ̂B ′

each correspond to mixed states. This is the content of entanglement: After interaction, neither reduced

density operator can be associated with a single state vector, but only an ensemble of possibilities.
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