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Abstract

A graph consists of a set of vertices (nodes) and a set of edges (line connect-

ing vertices). Two graphs pack when they have the same number of vertices and

we can put them in the same vertex set without overlapping edges. Studies such

as Sauer and Spencer [7], Bollobás and Eldridge [1], Kostochka and Yu [6], have

shown sufficient conditions, specifically relations between number of edges in the

two graphs, for two graphs to pack, but only a few addressed packing with con-

straints. Kostochka and Yu [6] proved that if e1e2 < (1−ε)n2, then G1 and G2 pack

with exceptions. We extend this finding by using the language of list packing intro-

duced by Győri, Kostochka, McConvey, and Yager [2], and we show that the triple

(G1, G2, G3) with e1e2 + n−1
2 · e3 < (2− ε)

(
n
2

)
pack with well-defined exceptions.
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1 Introduction

Graph theory is widely used to model real-life situations. A graph consists of a set

of vertices (or nodes) and a set of edges (lines connecting two vertices). Write G =

(V (G), E(G)) where V (G) is the set of vertices and E(G) is the set of edges in graph G.

We denote a vertex v in G as v ∈ V (G), or v ∈ G. We say that vertex a is a neighbor of

vertex b in G, or a is adjacent to b, if they are connected with an edge in G. Write the

edge between a and b as edge ab, and we say that a and b are endpoints of edge ab. The

degree of a vertex v, d(v), is the number of neighbors of vertex v. The maximum degree

of graph G is denoted by ∆(G). We can also write a vertex v with degree d(v) = d as

a d-vertex. A vertex v with degree d(v) ≥ d is a d+-vertex, and a vertex with degree

d(v) ≤ d is a d−-vertex. The Handshaking Lemma states that, in any graph, the sum of

all vertex degrees is equal to twice the number of edges, or
∑

v∈G d(v) = 2|E(G)|.
A graph H is a subgraph of G, or H ⊆ G, if every vertex and every edge in H belongs

to G, or V (H) ⊆ V (G) and E(H) ⊆ E(G). For a graph G with n vertices, its complement

G is an n-vertex graph such that two vertices are adjacent in G if and only if they are

not adjacent in G.

A complete graph, or a clique, is a graph that has exactly one edge between every two

vertices. Denote a complete graph with n vertices as Kn. Note that K1 is an (isolated)

vertex, K2 is an (isolated) edge, and K3 is a triangle. A Kn is a graph that contains n

isolated vertices. An n-cycle is composed of n vertices such that every vertex in the cycle

is adjacent to exactly two other vertices.

Two graphs are disjoint if they do not share any vertex or edge. The union of two

disjoint graphs G = G1 ∪G2 is the graph with vertex set V = V1 ∪ V2 (all vertices in G1

and G2) and edge set E = E1 ∪ E2 (all edges in G1 and G2). For G = G1 ∪G2, we have

G1 = G−G2 and G2 = G−G1. An independent set is a set of vertices in a graph such

that no two vertices are adjacent. Equivalently, each edge in the graph has at most one

endpoint in the independent set.

1.1 Notation

For i = 1, 2, 3, let Gi = (Vi, Ei) denote the ith graph. For v ∈ Vi, Ni(v) is the set of

neighbors of v in Gi. Let di(v) = |Ni(v)| be the number of neighbors of v in Gi and

∆i = maxv∈Vi
di(v) be the maximum degree in graph Gi. Write ei = |Ei| as the number

of edges in Gi. A vertex u ∈ Gi and v ∈ G3−i are not neighbors in G3 is equivalent to

v 6∈ N3(u), or v ∈ G3−i −N3(u). We denote n0 as the number of 0-vertices in G1 and n1

as the number of 1-vertices in G1.
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1.2 Graph Packing

Two graphs with the same number of vertices pack if we can place them in the same

vertex set without overlapping edges. Subgraph containment problems can be described

by the language of graph packing. Graph G1 is a subgraph of G2 is equivalent to G1 and

the complement of G2, or G2, pack. If graph G has n vertices, G and G pack and form a

complete graph Kn when packed.

In 1978, Sauer and Spencer [7] proved sufficient conditions for packing two graphs

with bounded sum of the number of edges.

Theorem 1. (See Sauer and Spencer [7]) Let G1 and G2 be graphs with n vertices. If

e1 + e2 ≤ 3
2
n− 2, then G1 and G2 pack.

This upper bound is sharp (best possible). For e1 + e2 = 3
2
n − 1, there are pairs of

(G1, G2) that do not pack. The following pair is an example for n = 4:

G1 G2

Figure 1: Sharpness example for Theorem 1 when n = 4

For n ≥ 4, if G1 = n
2
K2 (G1 consists of n

2
disjoint K2 graphs) and G2 = K1,n−1

(there is a vertex adjacent to all other vertices and there is no other edges in G2), then

e1 + e2 = 3
2
n− 1 but G1 and G2 do not pack.

In the same year, Bollobś and Eldridge [1] showed a stronger result for packing two

graphs with ∆1 ≤ n − 2 and ∆2 ≤ n − 2. They showed sufficient conditions for two

graphs to pack with a larger upper bound, and listed out all possible counterexamples

(or exceptions) to their result.

Theorem 2. (See Bollobás and Eldridge [1]) Let G and H be graphs with n vertices and

∆(G),∆(H) ≤ n− 2. If |E(G)|+ |E(H)| ≤ 2n− 3, then G and H pack if {G,H} is not

one of the 7 exceptions: {2K2, K1 ∪K3}, {K2 ∪K3, K2 ∪K3}, {K2 ∪K4, 3K2}, {K3 ∪
K3, 2K3}, {K3 ∪K4, 2K2 ∪K3}, {K4 ∪K4, K2 ∪ 2K3}, {K4 ∪K5, 3K3} (Figure 2).
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Figure 2: Exceptions to Theorem 2 and Theorem 5 [2]

This result is also sharp. If G1 = K1,n−2 ∪K1 and G2 = Cn−2 ∪K2, then G1 and G2

with ∆1,∆2 ≤ n− 2 and e1 + e2 = 2n− 2 do not pack.

Sauer and Spencer [7] showed the sufficient condition for packing two graphs with

bounded product of the number of edges.

Theorem 3. (See Sauer and Spencer [7]) Let G1 and G2 be graphs with n vertices. If

e1e2 <
(
n
2

)
, then G1 and G2 pack.

The upper bound is best possible without introducing other restrictions. If G1 = Kn

and G2 = K2 ∪Kn−2, then e1e2 =
(
n
2

)
· 1 =

(
n
2

)
and G1 and G2 do not pack. Kostochka

and Yu [6] extended the result from Theorem 3 by Sauer and Spencer [7], increased the

upper bound for the product of the number of edges, and showed pairs (G1, G2) with

large n that do not pack within the bounded product of the number of edges.

Theorem 4. (See Kostochka and Yu [6]) For every ε > 0, there exists a positive number

N such that for all n > N , if e1e2 ≤ (1− ε)n2, then G1 and G2 pack if the pair {G1, G2}
is not one of the exceptions:

(i) {Kn, K2 ∪Kn−2}

(ii) G1 has ∆1 = n− 1 and G2 does not consist of vertices with degree 0.

(iii) G1 such that K3 ⊆ G1 and for every three vertices in G2, there is at least one edge.

It is difficult to describe pairs of n-vertex graphs (G1, G2) with e1e2 ≤ (1 + ε)n2 that

do not pack even for small ε. An exception to (G1, G2) with e1e2 ≤ (1 + ε)n2 is: G1 has

a vertex u adjacent to all except 3 vertices and the remaining 3 vertices form a triangle,

and G2 has a vertex v adjacent to all except 3 vertices and the remaining 3 vertices form

a triangle. This is also a sharpness example for Theorem 3.
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G1

u

G2

v

Figure 3: A sharpness example for Theorem 3 and Theorem 4

1.3 List Packing

Győri, Kostochka, McConvey, and Yager [2] introduced the language of list packing using

the notion of a bipartite graph. For two graphs G1 = (V1, E2) and G2 = (V2, E2) with

the same number of vertices, Győri et al. introduced the notion of a bipartite graph

G3 whose vertices are composed of the two disjoint sets V1 and V2 and whose edges

each connects one vertex in V1 and another in V2. An edge in G3 means that the two

endpoints of that edge cannot be put together when packing G1 and G2. In other words,

a list packing of a graph triple (G1, G2, G3) with G1 = (V1, E1), G2 = (V2, E2), and

G3 = (V1∪V2, E3) is a bijection g : V1 → V2 such that uv ∈ E1 implies g(u)g(v) 6∈ E2 and

for every u ∈ V1, ug(u) 6∈ E3. Bijection here means that every vertex in G1 is mapped

to exactly one vertex in G2, and every vertex in G2 is mapped to exactly one vertex in

G1. (G1, G2, G3) is a bad triple if they do not pack.

Győri et al. [2] found sufficient conditions for list packing with bounded sum of the

number of edges.

Theorem 5. (See Győri, Kostochka, McConvey, and Yager [2]) Let G1 and G2 be graphs

with n vertices. If ∆1,∆2 ≤ n−2, ∆3 ≤ n−1, and e1+e2+e3 ≤ 2n−3, then (G1, G2, G3)

pack with the same exceptions in Theorem 2.
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Clearly, (G1, G2, G3) do not pack if ∆3 = n−1 since the vertex in Vi (i = 1, 2) with ∆3

cannot be mapped onto any vertex in V3−i. The following examples of (G1, G2, G3) that

do not pack show that the upper bound of the edge sum cannot be weakened without

introducing additional restrictions.

Example 5.1. There are two vertices u1, u2 ∈ V1 such that u1 and u2 are connected to

all except one vertex, namely v1, in V2. In this example, (G1, G2, G3) do not pack but

∆3 ≤ n− 1 and e1 + e2 + e3 = 2n− 2.

Example 5.2. There is an edge u1u2 ∈ E1 and an edge v1v2 ∈ E2, and x1, x2 are adjacent

to all vertices in V2 − {v1, v2}.

We extend results from previous packing studies to the list setting. Specifically, we

extend Theorem 4 as the following.

Theorem 6. Let G1 and G2 be graphs with n vertices with ∆1 ≤ n− 2 and ∆2 ≤ n− 2.

For any ε > 0, there exists a positive number N such that for any n > N , if ∆3 ≤ n− 1,
n
2
≤ e1 ≤ n, and

e1e2 +
n− 1

2
· e3 < (2− ε)

(
n

2

)
(1)

then (G1, G2, G3) pack with all exceptions in Theorem 4 plus the following exceptions:

(i) A vertex v0 ∈ V2 is adjacent to all except a K3 in G2, and adjacent to all except a

K3 in V1.

(ii) G1 consists of Kk and n − k vertices with degrees larger than 2; G2 consists of a

vertex v0 ∈ V2 is adjacent to all except d0 ≥ 2 vertices and a Kd0; and G3 consists

of edges between v0 to all isolated vertices in G1 and 2+-vertices whose neighbors

are not adjacent to each other.

(iii) G2 consists of a vertex v0 such that v0 is adjacent to all except d0 ≥ 2 vertices in V2

and adjacent to every vertex x ∈ V1 with d1(x) ≤ d0.
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G1 G2

v0

(i)

G1 G2

v0

(ii) with k = 4, d0 = 3

G1 G2

v0

(iii) where d0 = 2

Figure 4: Examples of bad triples in Theorem 6

2 Preliminaries

We will use the following claims in our proof of Theorem 6.

Claim 7. e1 + e2 + e3 ≥ 2n− 3.

Otherwise, we use Theorem 5 to show that (G1, G2, G3) pack with exceptions. By

symmetry, we may assume that e1 ≤ e2. Then the following claim holds.

Claim 8. e2 + e3
2
≥ n− 3

2
.

Proof. By Claim 7, 2e2 + e3 ≥ e1 + e2 + e3 ≥ 2n− 3. Therefore, e2 + e3
2
≥ n− 3

2
.

For each graph triple (G1, G2, G3), a (u, v)-match is a pair of vertices such that

u ∈ V1, v ∈ V2, and v 6∈ N3(u). Suppose our graph triple (G1, G2, G3) is a minimal

counterexample that does not pack. We interpret minimal as the minimal number of

vertices n. Remove a vertex u from G1 and a vertex v from G2, then the remaining triple

(G′1, G
′
2, G

′
3) pack with exceptions if e′1, e

′
2, e
′
3 satisfies the condition

e′1e
′
2 +

n− 2

2
· e′3 < (2− ε)

(
n− 1

2

)
.
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Note that 
e′1 = e1 − d1(u)

e′2 = e2 − d2(v)

e′3 = e3 − d3(u)− d3(v) + d1(u)d2(v).

Substituting values of e′1, e
′
2, e
′
3, we get

(e1− d1(u))(e2− d2(v)) +
n− 2

2
(e3− d3(u)− d3(v) + d1(u)d2(v)) < (2− ε)

(
n− 1

2

)
. (2)

Subtracting equation (1) by equation (2), we get

e3
2

+ d1(u)e2 + d2(v)(e1 −
n

2
d1(u)) +

n− 2

2
(d3(u) + d3(v)) ≥ (2− ε)n. (3)

Let

f(u, v) =
e3
2

+ d1(u)e2 + d2(v)(e1 −
n

2
d1(u)) +

n− 2

2
(d3(u) + d3(v)).

Our goal is to

find a (u, v)-match such that f(u, v) ≥ (2− ε)n.

Claim 9. If there is some u ∈ V1 such that d1(u) = 0, then d3(u) + d3(v) ≤ 3 for all

(u, v)-match.

Proof. Suppose there is some d1(u) = 0 and v ∈ V2−N3(u) such that d3(u) + d3(v) ≥ 4,

then

f(u, v) =
e3
2

+ d1(u)e2 + d2(v)(e1 −
n

2
d1(u)) +

n− 2

2
(d3(u) + d3(v))

=
e3
2

+ d2(v)e1 +
n− 2

2
(d3(u) + d3(v))

≥ n− 2

2
· 4

≥ (2− ε)n.

So we are done. Therefore, we may assume that such a (u, v)-pair does not exist.

Similarly, a pair of subgraphs S ⊆ G1 and T ⊆ G2 is called an (S, T )-match if one

can pack S and T . We can obtain a packing of (G1, G2, G3) if we have a (S, T )-match

such that there is no edge between S and T and

e′1e
′
2 +

n− |S| − 1

2
e′3 < (2− ε)

(
n− |S|

2

)
.
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where 
e′1 = e(G1 − S)

e′2 = e(G2 − T )

e′3 = e3 − 1
2

∑
v∈S∪T d3(v) + |N1(S)| · |N2(T )|.

3 Proof of Theorem 6

We divide the proof of Theorem 6 into two cases based on the size of G1. In section 3.1,

we show that Theorem 6 is true when 3n
4
≤ e1 ≤ n. In the next section, we show that

Theorem 6 is true when n
2
≤ e1 ≤ 3n

4
.

3.1 3n
4 ≤ e1 ≤ n.

If there exists a (u, v)-match such that d1(u) ≤ 1, d2(v) ≥ 2 and d3(u) + d3(v) ≥ 1, then

f(u, v) =
e3
2

+ d1(u)e2 + d2(v)(e1 −
n

2
d1(u)) +

n− 2

2
(d3(u) + d3(v))

=

n+ 2 · n
4

+ n−2
2
≥ (2− ε)n, if d1(u) = 1

e3
2

+ 3n
2

+ n−2
2
≥ (2− ε)n, if d1(u) = 0.

Also, if there is a (u, v)-match such that d1(u) ≥ 2 and d2(v) ≤ 1 and d3(u)+d3(v) ≥ 1,

then

f(u, v) =
e3
2

+ d1(u)(e2 −
n

2
d2(v)) + d2(v)e1 +

n− 2

2
(d3(u) + d3(v))

≥

 e3
2

+ e2 + e2 − n+ e1 + n−2
2
≥ n+ 3n

4
− n+ 3n

4
+ n−2

2
≥ (2− ε)n, if d2(v) = 1

e3
2

+ 2e2 + n−2
2
≥ ( e3

2
+ e2) + e2 + n−2

2
≥ n+ 3n

4
+ n−2

2
≥ (2− ε)n, if d2(v) = 0.

Lemma 10. For every u ∈ G1 with d1(u) ≤ 1, d3(u) = 0

Proof. Suppose the contrary is true. Then choose a (u, v)-match with d1(u) ≤ 1 and

d3(u) > 0. Then d2(v) ≤ 1, and d3(u) ≤ 3, for otherwise,

f(u, v) =
e3
2

+ d1(u)e2 + d2(v)(e1 −
n

2
d1(u)) +

n− 2

2
(d3(u) + d3(v))

≥ e3
2

+ d1(u)e2 + d2(v) · n
4

+ 2n > (2− ε)n.

That is, the 2+-vertices in G2 must be in N3(u), which has at most three vertices. It

follows that e2 ≤ (3 · 2 + (n− 3))/2 < 3n/4, a contradiction.

Corollary 11. For every v ∈ G2 with d2(v) ≤ 1, d3(v) = 0.
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Proof. Suppose the contrary is true. Choose a (u, v)-match with d2(v) ≤ 1 and d3(v) > 0.

Then d1(u) ≤ 1, and d3(v) ≤ 3, for otherwise,

f(u, v) =
e3
2

+ d2(u)e1 + d1(u)(e2−
n

2
d2(v)) +

n− 2

2
(d3(u) + d3(v)) ≥ e3

2
+ 2(n− 2) ≥ 2n.

That is, the 2+-vertices in G1 must be in N3(v), which has at most three vertices. It

follows that e1 ≤ (3 · 2 + (n− 3))/2 < 3n/4, a contradiction.

By Lemma 10 and Corollary 11, the edges in G3 must be between 2+-vertices in G1 and

G2. As e1 < n and e2 ≥ 3n/4, we may choose a (u, v)-match with d1(u) ≤ 1, d3(u) = 0,

and d2(v) ≥ 2, d3(v) ≥ 1, whose f(u, v) ≥ (2− ε)n, as noted above.

3.2 n
2 ≤ e1 ≤ 3n

4

Since e1 ≤ 3n
4

, there must exist a vertex u ∈ V1 such that d1(u) ≤ 1. We will use the

Lemma 12 and Lemma 13 to show that Theorem 6 is true for n
2
≤ e1 ≤ 3n

4
.

Lemma 12. For each (u, v)-match with d1(u) = 0,

d3(u) + d2(v) + d3(v) ≤ 3, and d3(u) ≤ 2.

Proof. Take u ∈ G1 such that d1(u) = 0. Then

f(u, v) =
e3
2

+ d2(v)e1 +
n− 2

2
(d3(u) + d3(v)) ≥ e3

2
+
n− 2

2
(d3(u) + d2(v) + d3(v)).

Clearly, if d3(u) + d3(v) + d2(v) ≥ 4 then f(u, v) ≥ (2 − ε)n. Hence, we may assume

that d3(u) + d2(v) + d3(v) ≤ 3. If d3(u) = 3, then d2(v) = d3(v) = 0 for all v 6∈ N3(u).

It follows that only the vertices in N3(u) have non-zero degree in G2, which implies that

e2 ≤ 3, a contradiction to e2 ≥ e1 ≥ n
2
.

Lemma 13. For each (u, v)-match with d1(u) = 1, d3(u) + d3(v) ≤ 1.

Proof. Suppose d1(u) = 1 and d3(u) + d3(v) ≥ 2. Then

f(u, v) =
e3
2

+ e2 + d2(v)(e1 −
n

2
) +

n− 2

2
(d3(u) + d3(v)) ≥ (2− ε)n.

and we are done.

We divide this section into three cases based on the structure of G1. In the first case,

there is some u ∈ V1 such that d1(u) = 1 and d3(u) > 0. In the second case, there is some

d1(u) = 0 and d3(u) > 0. In the last case, d3(u) = 0 for all d1(u) ≤ 1.

12



Case 1: There exists u ∈ V1 with d1(u) = 1 and d3(u) > 0.

By Lemma 13, d3(u) = 1. LetN3(u) = {v0}. For each v ∈ V2−{v0}, d3(v) ≤ 1−d3(u) = 0.

So e3 = d3(v0).

Lemma 14. e3 ≥ 2εn ≥ 4.

Proof. Suppose e3 < 4 < 2εn. Choose v 6= v0 with d2(v) > 0. Then

f(u, v) ≥ e3
2

+ (2n− e3 − e1) + d2(v)(e1 −
n

2
) +

n− 2

2
≥ 2n− e3

2
≥ (2− ε)n.

Lemma 15. All 1-vertices and 0-vertices in G1 are adjacent to v0 in G3.

Proof. Consider an (x, v0)-match with d1(x) ≤ 1 and x is not adjacent to v0 in G3. Then

f(x, v0) ≥
e3
2

+ d1(x)e2 + d2(v0)(e1 −
n

2
d1(x)) +

n− 2

2
· (d3(v0) + d3(x))

≥ e3
2

+
n− 2

2
· e3 ≥ ε(n− 1)n ≥ (2− ε)n.

Lemma 16. e1 + e3 ≥ n and e3
2

+ e1 ≥ n− n0

2
.

Proof. By the handshaking lemma,

2e1 =
∑
x∈V1

d1(x) ≥ 2(n− n1 − n0) + n1. (4)

So we have n1 + 2n0 ≥ 2n − 2e1. Also, 2(n − n1 − n0) ≤
∑

x∈V1
d1(x) = 2e1. Thus,

e3 ≥ n1 + n0 ≥ n− e1, that is, e1 + e3 ≥ n. We also have e3 ≥ n1 + n0 ≥ 2n− 2e1 − n0,

that is, e3 + 2e1 ≥ 2n− n0. Consequently, e3
2

+ e1 ≥ n− n0

2
.

Lemma 17. All except at most one vertices in G1 are 1- or 2-vertices, and v0 is not

adjacent to any 2-vertex in V1. Additionally, if there is one 3+-vertex in G1, then the

vertex is adjacent to all 1−-vertices. As n
2
≤ e1 ≤ 3n

4
, we must have some 2-vertices in

G1.

Proof. Consider an (S, T )-match with T = {v0, v1, v2} and S = {u0, u1, u2} such that

N1(u0) = {u1, u2} and d2(v1) = d2(v2) = 1 and v1v0, v2v0 6∈ E2. Then
e′1 ≤ e1 − 2

e′2 ≤ e2 − d2(v0)− 2

e′3 ≤ e3 − d3(v0) + 4.

13



So

e′1e
′
2 +

n− 3

2
e′3 ≤ (e1e2 +

n

2
e3)− 2e2 − (d2(v0) + 2)e1 − (d3(v0)− 4)

n− 3

2
− 3

2
e3 + 2(d2(v0) + 2)

= (2− ε)
(
n

2

)
− d2(v0)(e1 − 2)− 2(e1 + e2)− (d3(v0)− 4)

n− 3

2
− 3n

2
+ 4

≤ (2− ε)
(
n

2

)
− 6n ≤ (2− ε)

(
n− 3

2

)
.

Lemma 18. There is no (S, T )-match such that T = {v1, v2} ⊆ V2 − v0 with d2(v1) =

1, d2(v2) = d′ ≥ 1 and v1v2 ∈ E2, and S = {u1, u1} such that d1(u1) = 1, d1(u2) = d ≥ 2

and u1u2 6∈ E1.

Proof. Consider such an (S, T )-match. Then

e′1e
′
2 +

n− 3

2
e′3 = (e1 − 1− d)(e2 − d′) +

n− 3

2
(e3 − 1− d3(u2) + d′ − 1)

≤ e1e2 +
n

2
e3 − ((d+ 1)e2 + d′e1 + e3) + (d′ − 2− d3(u2))n/2 + d′(d+ 1)

≤ (2− ε)
(
n

2

)
− (d+ 1)e2 − e3 − d′(e1 −

n

2
− d− 1)− (2 + d3(u2))

n− 3

2

≤ (2− ε)
(
n

2

)
− (d+ 1)e2 − e3 − (d3(u2) + 2)n/2

= (2− ε)
(
n

2

)
− (d− 1)e2 − 3n− d3(u2)n/2

≤ (2− ε)
(
n

2

)
− 4n ≤ (2− ε)

(
n− 2

2

)
, if d ≥ 3 or d3(u2) ≥ 1.

Lemma 19. n0 > 0.

Proof. Suppose n0 = 0. We first claim that e2 < (1− ε)n. Suppose that e2 ≥ (1− ε)n.

As e3 ≥ 2n− 2e1, we have

e1e2 +
n

2
e3 ≥ e1e2 + (n− e1)n = n2 + e1(e2 − n) ≥ n2 − εne1 ≥ (1− ε)n2.

It follows thatG2 contains at least εn tree components. Thus one can find an (S, T )-match

described in Lemma 18.

Lemma 20. d2(v) ≤ 2 for all v ∈ V2 − v0, e2 ≥ n− 1 and n0 ≥ εn.

Proof. By Lemma 12, d2(v) ≤ 2 for all v ∈ V2 − v0. By Lemma 18, every 1-vertex

must be in N2(v0). So the components of G2 not containing v0 are cycles. Consequently,
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e2 ≥ n−1. Furthermore, we have (1− ε)n2 ≥ e1e2 +ne3/2 ≥ n(e1 + e3/2) ≥ n(n−n0/2).

Thus, n0 ≥ 2nε.

Consider an (S, T )-match with S = {u1, u2, u3} ∈ V1 such that d1(u1) = d ≥
2, d1(u2) = d1(u3) = 0, and T = {v1, v2, v3} ⊆ V2 such that d2(v1) = 2 and N2(v1) =

{v2, v3} and v1v0 6∈ E2. Then e′1 = e1 − d, e′2 ≤ e2 − 3 and e′3 = e2 − 2 (note that u2, u2

are adjacent to v0 in G3), and we have

e′1e
′
2 +

n− 3

2
e′3 ≤ (e1 − d)(e2 − 3) +

n− 3

2
(e3 − 2)

≤ e1e2 +
n

2
e3 − (3e1 + de2 + 3e3/2− 3d+ n− 3)

≤ (2− ε)
(
n

2

)
− (n− 3)− 3

2
(e1 + e3)−

3e1
2
− d(n− 4)

≤ (2− ε)
(
n

2

)
− 6n, if d ≥ 3

< (2− ε)
(
n− 3

2

)
.

It follows that d1(x) ≤ 2 for x ∈ V1. Let u0 ∈ V1 −N3(v0), and N1(u0) = {u1, u2}. If

one can find v1, v2 ∈ G2 −N2(v0) such that {u1, u2} can pack with {v1, v2} (they cannot

only if u1u2 ∈ E(G) and the only component not containing v0 is a triangle), then we

consider and (S, T )-match where S = {u0, u1, u2} and T = {v0, v1, v2}. Note that
e′1 ≤ e1 − 3

e′2 ≤ e2 − d2(v0)− 2

e′3 = e3 − d3(v0) + 4.

So

e′1e
′
2 +

n− 3

2
e′3 < (2− ε)

(
n− 3

2

)
.

Hence, (G′1, G
′
2, G

′
3) pack with exceptions. By induction, (G1, G2, G3) pack with ex-

ceptions. A bad triple in this case is (G1, G2, G3) where v0 is adjacent to all except a

triangle in G2, and adjacent to all except a triangle in V1 in G3. (this triple actually has

e1e2 + ne3/2 > (1− ε)n2)

Case 2: There is a vertex u ∈ G1 such that d1(u) = 0 and d3(u) ≥ 1.

By Lemma 12, 1 ≤ d3(u) ≤ 2 and d2(v) + d3(v) ≤ 2 for each v 6∈ N3(u).

Lemma 21. There is v0 ∈ N3(u) with d2(v0) + d3(v0) ≥ 4.

Proof. If d3(u) = 2, then from (12), d2(v) + d3(v) ≤ 1 for all v 6∈ N3(u). Let N3(u) =
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{v1, v2}. Then ∑
x∈V2−{v1,v2}

d2(x) + d3(x) ≤ n− 2.

It follows 2e2 + e3 − (d2(v1) + d3(v1)) + (d2(v2) + d3(v2)) ≤ n− 2. So (d2(v1) + d3(v1)) +

(d2(v2)+d3(v2)) ≥ 2e2+e3−(n−2). By symmetry, we let d2(v1)+d3(v1) ≥ d2(v2)+d3(v2).

Then d2(v1) + d3(v1) ≥ 4.

When d3(u) = 1, let v0 be the neighbor of u in G3. Let d2(v0) + d3(v0) ≤ 3. Then

2e2 +e3 =
∑

v∈V2
(d2(v)+d3(v)) ≤ 3+2(n−1) = 2n+1. As e1 +e2 +e3 ≥ 2n−3, we have

e2 ≤ e1 + 4 < 3n
4

+ 4. It follows that e3 >
n
2
− 7 and e3/2 + e1 ≥ e3/2 + e2 − 4 ≥ n− 4.

If there is a (u, v)-match with d3(v) = d2(v) = 1 or with d2(v) = 2, then f(u, v) ≥
e3
2

+ d2(v)e1 + (1 + d3(v))n−2
2
≥ e3

2
+ e1 + n ≥ 2n − 4. So for v ∈ V2 − v0, d2(v) = 0 if

d3(v) ≥ 1. Since x ∈ V2 − v0 has d3(x) ≤ 2, and e3 > n/2, at least n/4 vertices in V2

have positive degree in G3, thus 2e2 + e3 =
∑

v∈V2
d2(v) + d3(v) ≤ 2(n− n

4
) + 1 · n

4
= 7n

4
,

a contradiction.

By Lemma 12, we may assume that all x ∈ V1 with d1(x) = 0 must be adjacent to

v0 in G3. Note that by Case 1, we may assume that no 1-vertex in G1 is adjacent to a

vertex in V2.

Lemma 22. If there is a 1-vertex in G1, then G1 has exactly one 0-vertex, and contains

at least n − e1 >
d2(v0)−1+2ε

2d2(v0)
n ≥ (1 + ε)n/3 tree components. In particular, there is a

component consisting of an edge.

Proof. Let u ∈ V1 with d1(u) = 1. Then d3(u) = 0 and consider (u, v0)-match, by (13),

d3(v0) ≤ 1, so d3(v0) = 1 and it follows that n0 = 1. Again from the proof of (13),

d2(v0)(e1 − n/2) < (1/2− ε)n. So e1 <
d2(v0)+1−2ε
2d−2(v0) n. It follows that G1 contains at least

n− e1 > d2(v0)−1+2ε
2d2(v0)

n ≥ (1 + ε)n/3 tree components, where d2(v0) ≥ 4− d3(v0) = 3.

Lemma 23. There is no 1-vertex in G1.

Proof. Otherwise, we have an isolated edge x1x2 in G1 that is not adjacent to any vertex

in V2. Consider a ({x1, x2}, {v0, v})-match with vv0 6∈ E(G). Then

e′1e
′
2 +

n− 2

2
e′3 ≤ (e1 − 1)(e2 − d2(v0)− d2(v)) +

n− 2

2
(e3 − 1− d3(v))

≤ e1e2 +
n

2
e3 − e2 − (d2(v0) + d2(v))e1 − e3 −

1 + d3(v)

2
(n− 2)

≤ (2− ε)
(
n

2

)
− (e1 + e2 + e3)− n/2− (d2(v0) + d2(v)− 1)e1 − d3(v)n/2

≤ (2− ε)
(
n

2

)
− 4n, if d2(v0) + d2(v) + d3(v)− 1 ≥ 3

≤ (2− ε)
(
n− 2

2

)
.
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Note that d2(v0) + d2(v) + d3(v) − 1 ≥ 3 must be true. For otherwise, d2(v0) ≥ 3,

we must have d2(v0) = 3 and d2(v) = d3(v) = 0 for all v 6∈ N2(v0).Thus e2 ≤ 6, a

contradiction. So (G′1, G
′
2, G

′
3) pack, with exceptions.

A bad triple (G1, G2, G3) is a triple so that G1 consists of isolated vertices and 2+-

vertices, G2 contains a vertex v0 that is connected to all except vertices in a complete

graph in G2, and G3 contains all edges from v0 to the isolated vertices and 2+-vertices

whose neighborhood is not an independent set in G1. Another bad triple (G1, G2, G3) is

a triple so that v0 ∈ V2 is adjacent to all except d0 ≥ 2 vertices in V2 and every vertex

x ∈ V1 with d1(x) ≤ d0.

Lemma 24. 3 ≤ ∆1 ≤ 4.

Proof. First we show that ∆1 ≥ 3. For otherwise, we may choose u ∈ V1 −N3(v0) with

d1(u) = 2. As it is not a bad triple, we can find two vertices v1, v2 ∈ V2 −N2[v0] so that

v1v2 6∈ E2. Now pack N2(v1)∪N2(v2) with the same number of 0-vertices in G1 and pack

u with v0. Then G′1 has at least n− 7 vertices. Then

e′1e
′
2 +

n− 3

2
e′3 ≤ (e1 − 2)(e2 − d2(v0)) +

n− 3

2
(e3 − d3(v0))

= e1e2 + ne3/2− 14n ≤ (2− ε)
(
n

2

)
− 14n ≤ (2− ε)

(
n− 7

2

)
.

Then we show that ∆1 ≤ 4. For otherwise, let ∆1 ≥ 5 and let d1(u) = ∆1. Let v ∈ V2
be a vertex not adjacent to v0. Then d2(v) = 1 or 2. Consider the ({S∪{u}, N2[v])-match,

where S consists of d2(v) 0-vertices in G1 that are not adjacent to N2[v]. Then

e′1e
′
2 +

n− 1− d2(v)

2
e′3 ≤ (e1 −∆1)(e2 − d2(v)) +

n− d2(v)− 1

2
(e3 − d2(v))

= e1e2 + ne3/2− d2(v)e1 −∆1e2 −
n− d2(v)− 1

2
d2(v)− d2(v) + 1

2
e3

≤ e1e2 + ne3/2− d2(v)(e1 + e2 + e3/2 + n/2)− (∆1 − d2(v)− 1)e2 − (e2 + e3/2)

≤ (2− ε)
(
n

2

)
− 2nd2(v)− 2e2 − n ≤ (2− ε)

(
n− (d2(v) + 1)

2

)
.

So (G′1, G
′
2, G

′
3) packs, with some exceptions.

Lemma 25. Each 2+-vertex whose neighbourhood is an independent set in G1 is adjacent

to v0.

Proof. Otherwise, find u ∈ V1−N3(v0) such that G1[N1(u)] is an independent set. As it

is not a bad triple, we can find a set T of d1(u) vertices in G2 that are not neighbors of

v0. Consider (S ∪ N1[u], N2[T ] ∪ {v0})-match, where S is a set of |N2[T ] − T | 0-vertices

in G1. Then e′1e2 + e′3(n− s)/2 < (2− ε)
(
n−s
2

)
.
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Lemma 26. There is no 0-vertex in G2.

Proof. Suppose otherwise.

We first claim that all 0-vertices must be adjacent to each of 3+-vertices in G1.

Otherwise, consider an (x, y)-match with d1(x) ≥ 3, d2(y) = 0, and xy 6∈ G3. Then

f(x, y) ≥ e3
2

+ 3e2 ≥ 2n.

We then claim that all 0-vertices must be adjacent to all 2+-vertices in G1. Otherwise,

consider an (x, y)-match with d1(x) ≥ 2, d2(y) = 0, and xy 6∈ G3. Note that d3(y) ≥ 1.

So f(x, y) ≥ e3/2 + 2e2 + n/2 ≥ 2n.

Clearly, a 0-vertex in G2 now is incident to too many edges in G3, a contraction to

Lemma 12.

Lemma 27. Every vertex y ∈ V2 with d2(y) = d3(y) = 1 must be adjacent to x ∈ V1 with

d1(x) ≥ 2 and d3(x) ≥ 1 in G3.

Proof. For otherwise, we consider such an (x, y)-match. Then

f(x, y) =
e3
2

+ d1(x)(e2 − n/2) + e1 +
n− 2

2
(d3(x) + d3(y))

≥ (
e3
2

+ e2 − n) + e2 + e1 +
n− 2

2
(d3(x) + d3(y))

≥ e2 + e1 + (n− 2)/2 · 2 ≥ (2− ε)n.

Lemma 28. G2 does not contain a component consisting of an edge or a 1-vertex not

adjacent to v0. It follows that e2 ≥ n− 1.

Proof. Let v1 be a 1-vertex in G2 −N − 2(v0) and N2(v1) = {v2}. By (12), d2(v2) ≤ 2.

We choose u1 ∈ G1 to match v1 so that it has the highest possible degree in G1 (that is,

if d3(v1) = 1, we have d1(u1) ≥ 2 and when d3(v1) = 0 we have d1(u1) ≥ 3), and choose

u2 ∈ G1 to match v2 so that d1(u2) = 0 if d2(v2) ≥ 2 and when d2(v2) = 1, d1(u2) ≥ 2

and u1u2 6∈ E1. Then

e′1e
′
2 +

n− 2

2
e′3 ≤ (e1 − d1(u1)− d2(u2))(e2 − d2(v2)) +

n− 2

2
(e3 − d3(u2)− d3(v1))

≤ e1e2 +
n

2
e3 − 2(e2 + e3/2)− (d1(u1) + d1(u2)− 2)e2 − d2(v2)e1 −

n− 2

2
(d3(u2) + d3(v1))

≤ (2− ε)
(
n

2

)
− 4n ≤ (2− ε)

(
n− 2

2

)
.
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Now consider a (S, T )-match such that T = N2[v] for some v 6∈ N2[v0] and S consists

of a 3+-vertex u0 and d2(v) 0-vertices in G1 and then

e′1e
′
2 +

n− d2(v)− 1

2
e′3 ≤ (e1 − d1(u0))(e2 − d2(v)) +

n− d2(v)− 1

2
(e3 − d2(v))

≤ e1e2 +
n− 1

2
e3 − [d1(u0)e2 + d2(v)e1 − d1(u0)d2(v) +

n− d2(v)− 1

2
d2(v) +

d2(v)

2
e3]

< (2− ε)
(
n

2

)
− 3e2 − d2(v)(e1 − d1(u0) +

e3
2

+
n

2
− d2(v) + 1

2
) <

(
n− d2(v)

2

)
.

Case 3: d3(u) = 0 for all u ∈ G1 with d1(u) ≤ 1.

Note that there is some u ∈ G1 with d1(u) ≤ 1, then by (12) and (13), d2(v) + d3(v) ≤ 3

for all v ∈ V2.

Lemma 29. If d2(v) = 1, then d3(v) = 0.

Proof. Otherwise, consider an (x, v)-match with d1(x) ≥ 2. Then

f(x, v) ≥ e3
2

+d1(x)(e2−
n

2
) + e1 +

n− 2

2
(d3(x) +d3(v)) ≥ e2 + e1 +

n− 2

2
(d3(x) +d3(v)).

If d3(x) ≥ 1, then f(x, v) ≥ n/2 + n/2 + n = 2n; otherwise, all x ∈ V1 with d1(x) ≥ 2

and d3(x) ≥ 1 are adjacent to v in G3, thus e3 = d3(v) ≤ 2, and e1 + e2 ≥ (2n− 3)− 2,

so f(x, v) ≥ 2n− 5 + (n− 2)/2 > 2n.

Lemma 30. For each v ∈ V2, d2(v) 6= 0.

Proof. Otherwise, consider an (x, v)-match with d1(x) ≥ 2, d3(x) ≥ 1 and d2(v) = 0.

Then

f(x, v) ≥ e3
2

+ d1(x)e2 +
n− 2

2
≥ e3/2 + 2e2 + (n− 2)/2

= (e3/2 + e2) + e2 + (n− 2)/2 ≥ n+ n/2 + (n− 2)/2 = 2n− 1.

It follows that for each v ∈ V2, (d2(v), d3(v)) ∈ {(1, 0), (2, 0), (2, 1), (3, 0)}. By Lemma

13, there is no 1-vertex in G1.

Lemma 31. e2 < n.

Proof. Suppose otherwise that e2 ≥ n. If there is an (x, v)-match such that x ∈ V1 with

d1(x) ≥ 2 and d3(x) ≥ 1, (d2(v), d3(v)) = (2, 1), then

f(x, v) ≥ e3
2

+ d1(x)(e2 − 2 · n
2

) + 2 · e1 + 2 · n− 2

2
≥ 2n.
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If such a pair does not exist, then all v with d3(v) > 0 are adjacent to some u ∈ V1.
That is, e3 = d3(u). Now we find v ∈ G2 −N3(u) to match with u, and find a small tree

component in G1 (with at most t ≤ 3 vertices) to match the neighbors of v (potentially)

plus some more vertices in G2. Note that if we can do this, then G′3 is empty, and

e′1e
′
2 < (e1 − d1(u)− t+ 1)(e2 − 2)

= (2− ε)
(
n

2

)
− n− 1

2
e3 − 2(e1 − d1(u)− t+ 1)− (d1(u) + t− 1)(e2 − 2)

< (1− ε)(n− t− 1)2, where we assume that e3 ≥ 10.

So we can pack (G′1, G
′
2, G

′
3).

Note that e1 <
3n
4

implies that G1 must contain some tree components with at most

3 vertices. And if e3 < 10, then e2 >
5n
4
− 10 and thus we can see that

f(x, y) ≥ e3
2

+ d1(x)(e2 − 2 · n
2

) + 2 · e1 + ·n− 2

2
≥ 2n.

with d1(x) ≥ 2 and (d2(y), d3(y)) = (2, 1).

Lemma 32. For each x ∈ V1, d3(x) ≤ 1. Consequently, e3 ≤ n− n0 − n1 ≤ e1
2

.

Proof. Suppose that for some x ∈ V1, d3(x) ≥ 2. Note that d1(x) ≥ 2. As e2 < n and

no vertex in V2 has degree 0, some vertex v ∈ V2 has d2(v) = 1. Then

f(x, v) = e3/2 + e1 + d1(x)(e2 −
n

2
) +

n− 2

2
d3(x)

≥ e3/2 + e1 + 2e2 − n+ (n− 2) ≥ (e3/2 + e2) + e1 + e2 ≥ 2n.

Lemma 33. For each x ∈ V1 with d3(x) = 1, d1(x) = 2.

Proof. For otherwise, let d1(x) ≥ 3 and d3(x) = 1. Consider an (x, v)-match with

d2(v) = 1. Then

f(x, v) = e3/2 + e1 + d1(x)(e2 −
n

2
) +

n− 2

2
d3(x)

≥ e3/2 + 2e3 + 3(e2 − n/2) + (n− 2)/2 = 3(e3/2 + e2)− n ≥ 3n− n = 2n.

Now consider an (x, y)-match such that x ∈ V1 with (d2(x), d3(x)) = (2, 1) and
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(d2(y), d3(y)) = (2,≤ 1). Note that y could be chosen with d3(y) = 1 if e3 > 1. Then

f(x, y) = e3/2 + 2e1 + 2e2 − 2n+
n− 2

2
(1 + d3(y)) ≥ e3/2 + 2(e1 + e2)− 1.5n+

n− 2

2
d3(y)

≥ e3/2 + 2(2n− e3)− 1.5n+
n− 2

2
d3(y) = 2.5n− 1.5e3 +

n− 2

2
d3(y).

Clearly, if e3 = 1, then f(x, y) ≥ 2n. Let e3 > 1. Choose y with d3(y) = 1. As

e3 ≤ e1/2 ≤ 3n/8, f(x, y) ≥ 3n− 1.5e3 ≥ 3n− 9n/16 ≥ 2n.

4 Future Research

For future research, we will extend Theorem 6 by showing that it is also true when e1 <
n
2
.

This section shows preliminary work to proving Theorem 6 with e1 <
n
2
.

Since e1 + e2 + e3 ≥ 2n− 3, for e1 <
n
2
,

e2 + e3 ≥
3n

2
− 3. (5)

Since e1 <
n
2
, there must exist a 0-vertex u in G1. That is, n0 > 0.

Lemma 34. n0 >
n
2

and 2n0 + n1 > n.

Proof. Since n0 is minimum when all other vertices have degree 1, n− n0 ≤ e1 <
n
2

and

n0 >
n
2
. By the handshaking lemma,

2e1 =
∑
u∈G1

d1(u) ≥ n1 + 2(n− n0 − n1).

So 2n0 + n1 > n.

Lemma 35. n0 ≥ n−2e1 and for v0 ∈ N3(u), either d3(v0) ≤ 3 or d3(v0) ≥ n0 ≥ n−2e1.

Proof. Suppose 4 ≤ d3(v0) < n0 where v0 is a neighbor of 0-vertex u ∈ G1 in G3. Then

we can find a 0-vertex u ∈ G1 such that d3(u) + d3(v) ≥ 4. By Claim 9, we are done.

We divide this section into three cases based on the structures of the graphs. In the

first case, there is some 0-vertex u ∈ G1 and some v ∈ G2−N3(u) such that d3(u)+d3(v) =

3. In the second case, d3(u)+d3(v) = 2 for some (u, v)-match where u ∈ G1 is a 0-vertex.

In the last case, d3(u) + d3(v) ≤ 1 for all (u, v)-match where u ∈ G1 is a 0-vertex.
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Case 1: For some u ∈ G1 with d1(u) = 0 and v ∈ G2−N3(u) there is d3(u)+d3(v) = 3

For such a (u, v)-match, we have

f(u, v) =
e3
2

+ d2(v)e1 +
3(n− 1)

2
.

Let v0 be the vertex in G2 with maximum degree in G3.

Lemma 36. e3 ≥ n0.

Proof. First we claim that either d3(v0) ≤ 3 or d3(v0) ≥ n0, for otherwise there is some

0-vertex u ∈ G1 with d3(u) + d3(v0) ≥ 4.

Suppose e3 < n0. Then d3(v0) ≤ 3. Take three vertices v0, v1, v2 ∈ G2 with the three

largest degrees in G3. Map three 0-vertices u0, u1, u2 ∈ G1 − N3(v0) − N3(v1) − N3(v2)

onto v0, v1, v2. Then
e′1 = e1

e′2 = e2 − d2(v0)− d2(v1)− d3(v2)

e′3 = e3 − d3(u0)− d3(u1)− d3(u2)− d3(v0)− d3(v1)− d3(v2).

There is some 0 < δ < ε such that

e′1e
′
2 +

n− 4

2
e′3 = e1(e2 − d2(v1)− d2(v2)− d2(v3)) +

n− 4

2
e′3

< (2− ε)
(
n

2

)
− (d2(v1) + d2(v2) + d2(v3))e1 −

n− 3

2
e3

< (2− δ)
(
n− 3

2

)
.

So d3(v0) ≥ n0 and thus e3 ≥ n0 ≥ n− 2e1.

Corollary 37. It follows that e3 ≥ n0 ≥ n− 2e1 and e1 + e3
2
≥ n

2
− n0

2
.

Lemma 38. e3
2

+d2(v)e1 <
n
2
. Consequently, d2(v) = 0 for d3(u)+d3(v) = 3 and e2 >

n
2
.

Proof. If e3
2

+ d2(v)e1 ≥ n
2
, then f(u, v) > (2 − ε)n and we are done. Consequently,

e3 < n and d2(v) = 0 for all d1(u) = 0 and d3(u) + d3(v) = 0. By e2 + e3 ≥ 3n
2

, have

e2 >
n
2

and
e3
2

+ e2 =
e3 + e2

2
+
e2
2
>

3n

4
+
n

4
≥ n. (6)

Lemma 39. If d1(u) = 0, then d3(u) ≤ 1.
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Proof. First, note that d3(u) ≤ 3 by Claim 9.

Suppose that there is some 0-vertex with d3(u) = 3. Then d2(v) = d3(v) = 0 for all

v 6∈ N3(u). Then e2 ≤ 3 and we have a contradiction.

Suppose that there is some 0-vertex with d3(u) = 2. There is some v ∈ G2 − N3(u)

such that d3(v) + d3(u) = 3. Note that d2(v) = 0. Take x ∈ G1 −N3(v) with d1(x) ≥ 1.

Then

f(x, v) ≥ e3
2

+ e2 +
n− 1

2
· 2 > (2− ε)n.

Lemma 40. If there is a 0-vertex v ∈ G2 with v 6∈ N3(u) and 2 ≤ d3(v) ≤ 3, then there

is no 1+-vertex x ∈ G1 such that x 6∈ N3(v).

Proof. Otherwise, we have

f(x, v) ≥ e3
2

+ e2 +
n− 1

2
· 2 ≥ n+

2n− 2

2
> (2− ε)n.

Choose u ∈ G1 with d1(u) = 0 and d3(u) ≤ 1, and v ∈ G2 such that d3(u)+d3(v) = 3.

Take a x ∈ G1 such that d1(x) > 1 and x 6∈ N3(v). Map x with v. Then
e′1 = e1 − d1(x)

e′2 = e2

e3 − 3 ≤ e′3 ≤ e3 − 2.

For the triple (G′1, G
′
2, G

′
3), have

e′1e
′
2 +

n− d1(x)− 1

2
e′3 ≤ (e1 − d1(x))e2 +

n− d1(x)− 1

2
(e3 − 2)

< (2− ε)
(
n

2

)
− [d1(x)e2 +

e3
2
d1(x) + n− d1(u)]

< (2− ε)
(
n

2

)
− [d1(x)n+ (n− d1(u))]

< (2− ε)
(
n

2

)
− (2n+

n

2
), since 2 ≤ d1(x) ≤ n

2

< (2− ε)
(
n− 1

2

)
.

So (G′1, G
′
2, G

′
3) pack with the exceptions. It follows that the triple (G1, G2, G3) pack

with exceptions.
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Case 2: For some 0-vertex u ∈ G1 and v ∈ G2 −N3(v) there is d3(u) + d3(v) = 2.

We can divide this case into sub-cases such as (i) d3(u) = 2, d2(v) = 0 for all v 6∈ N3(u);

(ii) d3(u) = 1, d2(v) = 1 for some v 6∈ N3(u); d3(u) = 0 for all 0-vertex in G1 and

d3(v) = 2 for some v ∈ G2.

Case 3: For all d1(u) = 0 and v ∈ G2 −N3(u), there is d3(u) + d3(v) ≤ 1.

Suppose there is some d3(u) = 1 for d1(u) = 0. Let N3(u) = {v0}. Then e3 = d3(v0) and

either d3(v0) ≤ 3 or d3(v0) ≥ n0. If d3(v0) = 3, then by Case 1, (G1, G2, G3) pack with

exceptions. If d3(v0) = 2, then by Case 2, (G1, G2, G3) pack with exceptions. So we only

need to consider d3(v0) ≥ n0 and d3(v0) = 1 in this case.

Lemma 41. e3 = d3(v0) = 1.

Proof. For an (u′, v0)-match such that u′ ∈ G1 −N3(v0) and d1(u
′) = 0,

f(u′, v0) =
e3
2

+ d1(u
′)e2 + d2(v0)e1 −

n

2
d1(u

′)d2(v0) +
n− 2

2
(d3(v0)) + d3(u

′))

=
n− 1

2
e3 + d2(v0)e1.

If e3 ≥ 4, then we are done. So e3 = d3(v0) ≤ 3. Consequently, d3(v0) = 1. If there is

some v ∈ G2 with d2(v) = 0, then for a (x, v)-match where d1(x) > 0,

f(x, v) =
e3
2

+ d1(x)e2 +
n− 2

2
(d3(x) + d3(v)).

If d1(x) ≥ 2, clearly f(x, v) > (2− ε)n
Since e2 + e3 ≥ 3n

2
− 3 and e3 = 1, the number of edges in G2 is e2 ≥ 3n

2
− 4.

Lemma 42. There is no 0-vertex in G2.

Proof. There must exist a 1+-vertex in G1, for otherwise e1 = 0. Suppose there is a

0-vertex v ∈ V2. Then for a (u, v)-match with u ∈ G1 −N3(v) and d1(u) ≥ 1, have

f(u, v) =
e3
2

+ d1(u)e2 +
n− 2

2
(d3(u) + d3(v))

>
3n

2
− 4 +

e3
2

+ (d1(u)− 1)e2 +
n− 2

2
(d3(u) + d3(v)).

If d3(u) + d3(v) ≥ 1, we are also done. So d3(u) = d3(v) = 0 for all (u, v)-match with

d1(u) ≥ 1. But then e3 = 0 and we have a contradiction.

Suppose for all 0-vertex u ∈ G1, d3(u) = 0. Then there exists a v ∈ G2 such that

d3(v) = 1. In this case, e3 ≤ n− n0 <
n
2

and so e2 > n.
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Lemma 43. Every vertex in G2 that has a positive degree in G3 is a 2+-vertex in G2.

Proof. Choose a (x, v)-match such that x ∈ G1 with d3(x) ≥ 1 and v ∈ G2 − N3(x).

Then

f(x, v) =
e3
2

+ d1(x)e2 + d2(v)e1 −
n

2
d1(x)d2(v) +

n− 2

2
(1 + d3(v))

>
n

2
(2d1(x)− d1(x)d2(v) + 1 + d3(v)) +

e3
2

+ d2(v)e1.

If there is some d2(v) ≤ 1 and d3(v) = 1, we are done. So d2(v) ≥ 2 for all v ∈ G2−N3(x)

with d3(v) = 1.
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