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Abstract

Conley Index theory has inspired the development of rigorous computational meth-

ods to study dynamics. These methods construct outer approximations, combina-

torial representations of the system, which allow us to represent the system as a

combination of two graphs over a common vertex set. Invariant sets are sets of

vertices and edges on the resulting digraph. Conley Index theory relies on isolated

invariant sets, which are maximal invariant sets that meet an isolation condition,

to describe the dynamics of the system. In this work, we present a computationally

efficient and rigorous algorithm for computing all isolated invariant sets given an

outer approximation. We improve upon an existing algorithm that “grows” iso-

lated invariant sets individually and requires an input size of 2n, where n is the

number of grid elements used for the outer approximation.
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Chapter 1

Introduction

Dynamical systems theory seeks to understand the mathematics of motion. As

such, dynamical systems theory provides a mathematical way to study a variety

of natural phenomena, playing an important role in understanding physical, bio-

logical, social, and economic systems. Mathematicians, including Henri Poincaré,

George Birkhoff, Stephen Smale, and Alexander Sharkovsky, made significant con-

tributions to dynamical systems theory throughout the 19th and 20th century. The

work of these mathematicians established new methods of understanding dynam-

ical systems, both globally and locally. Since then, old notions of the nature of

motion were shattered by surprising discoveries, such as the discovery of chaotic

dynamics. This new mathematics has since been applied to the natural world. They

have had far-reaching, deep, and meaningful impacts on the natural sciences.

Within dynamical systems, two modeling approaches to studying systems in-

clude continuous-time dynamical systems, i.e. differential equations, and discrete-

time dynamical systems, i.e. iterated maps. The work discussed in this paper will

focus on the latter. Iteration of a map f : X → X, on the phase/state space X

defines a discrete-time dynamical system. The forward iterates of the map are,

xn+1 := f(xn), n ∈ N, x0 ∈ X

and γ+x0
= x0, x1, . . . is the forward trajectory of x0. We can also define a bi-infinite

sequence,

xn+1 := f(xn), n ∈ Z, xi ∈ X

yielding a full trajectory γx0 = . . . , x−1, x0, x1, . . . through x0.

A forward trajectory describes the deterministic path starting at a point in the

state space as the map is applied to that point. Despite the determinism of these

maps, the behavior of dynamics may be surprising. A major result from the study

of dynamical systems is the phenomena of chaos (discussed further in [1]). One
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example discussed in this paper is the famous tent map, which has been shown to

be chaotic under the parameter values we choose to study here, also discussed in

[1].

In the mid-20th century, a mathematician named Charles Conley developed a

topological theory based on Morse theory that facilitated a rigorous computational

approach for extracting the dynamics of systems. Following the work of Conley, a

group of mathematicians has since been developing computational tools that allow

further study of dynamical systems. To this end, software has been developed that

uses the results of the theory to prove the dynamics of maps. The work presented

in this paper attempts to improve upon existing methods of the software presented

in [3] and [4].

Important objects of study are invariant sets when computing dynamics. These

are sets S ⊂ X, such that f(S) = S. An example of an invariant set is a fixed

point, i.e. a point x ∈ X such that f(x) = x. If fk(x) = x for some k, the

set {x, f(x), f 2(x), . . . , fk−1(x)} is a periodic orbit, another invariant set. These

sets are important in the dynamics, since bounded trajectories limit to invariant

sets. Isolated invariant sets are invariant sets that meet an isolation condition

(discussed in Chapter 2). They are the basis for computing a Conley index, which

is then used to prove the dynamics of a map. The Conley index is designed to

extract information about the existence and structure of isolated invariant sets.

We present an algorithm designed to find all combinatorial isolated invariant sets,

that is, those that are representable in our chosen computational framework. We

seek to determine a reasonably efficient method that conducts such a search. Lastly,

this paper will attempt to provide possible directions for further improvement in

achieving this goal.



Chapter 2

Background

Understanding the dynamics of maps is a central goal of dynamical systems the-

ory. Using trajectories, it is possible to study the long term behavior of the system.

Bounded trajectories limit to invariant sets, hence we focus on finding and under-

standing invariant sets including, fixed points, periodic orbits, etc. However, we

come across two major problems when analyzing maps by their trajectories. First,

there can be infinitely many distinct trajectories generated by a map. Tracking

each trajectory is infeasible. A second problem stems from computing the trajec-

tories. Often trajectories will pass through values that are unrepresentable by a

computer. These values are rounded off by the computer. This becomes especially

problematic when studying chaotic orbits, since the orbits may behave drastically

differently under slight differences in initial conditions (see [1] for definition of

chaotic orbits).

Instead, we need to find a way to make our problem finite. In this spirit, meth-

ods have been developed that create a uniform cubical grid, defined in Section

2.1 below in Definition 2.0.1, over a rectangular region in X and use Conley Index

theory to compute dynamical information about the map (see [2]). In what follows,

we assume the X is a rectangular region, perhaps by restricting it to a rectangular

domain of interest.

Definition 2.0.1. A uniform cubical grid G at depth d produced by a subdivision

of a rectangular set X =
∏n

k=1[x
−
k , x

+
k ] ⊂ Rn is defined as {

∏n
k=1[x

−
k + ikrk

2d
, x+k +

(ik+1)rk
2d

] | ik ∈ {0, ..., 2d − 1}} where rk = x+k − x
−
k is the radius of X in the kth

coordinate and the depth d is a nonnegative integer.

The grid subdivides the space into (closed) boxes, i.e. the product of closed

intervals whose interiors are not overlapping. After placing a grid over our space, we

can construct a combinatorial/finite representation of f . With this representation,

we will have made our problem finite and computable. The following definitions
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provide us with the construction of graphs that form a combinatorial representation

of the dynamical system.

Definition 2.0.2. Let V to be the vertex set consisting of boxes in the grid G,

that is for each box b ∈ G there is a vertex v ∈ V , such that v = b.

Definition 2.0.3. Given the vertex set V for the grid G on X. Define the undi-

rected edge set EX to be

EX = {(B1, B2) ∈ G×G | B1 ∩B2 6= ∅} ⊂ V × V

.

Definition 2.0.4. For f : X → X and the vertex set V for the grid G on X.

Define the directed edge set Ef to be

Ef = {(B1, B2) ∈ G×G | x ∈ B1, f(x) ∈ B2} ⊂ V × V

.

The undirected edges of EX represent the adjacency information for boxes in

the phase space and the directed edges of Ef give possible transitions between

boxes under the map f . Thus, with this information, we can create the following

definition.

Definition 2.0.5. Given f : X → X and G a grid on X. The triple, F =

(V,EX , Ef ), is a combinatorial representation of the dynamical system. This en-

codes a (minimal) outer approximation of the map f : X → X in that it contains

the smallest outer bounds on images under f .

The combinatorial representation, F , contains information about phase space

and the action of the map f . F offers a coarse picture of the dynamical system. As

we increase resolution, i.e. subdivide the grid further, the dynamics of the combina-

torial representation may resemble many aspects of the dynamics of the underlying

map. At coarse resolutions (few grid elements), the combinatorial representation

envelopes and represents many possible maps, typically containing little informa-

tion about the dynamics of the target map. For example, consider the complete

graph, i.e. a directed graph where every element is connected to every other el-

ement in the graph. Any underlying map f : X → X may have the complete

graph as its combinatorial representation if there are too few boxes that cover the

map. This is considered a “low resolution”. For any isolated invariant set in f ,

however, there is an appropriate resolution that allows us to represent this set in

a combinatorial representation.
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To illustrate this approach we consider the tent map f : [0, 1] → [0, 1] defined

by,

f(x) =

{
rx : if x ≤ 0.5

r(1− x) : if x > 0.5

The tent map is a common conceptual model when studying the dynamics of

iterative maps. Despite its simple formulation, the tent map gives rise to suprisingly

complicated dynamics. At certain parameters, the tent map has been shown to be

chaotic and topologically equivalent, via a change of coordinates, to the famous

logistic map (see [1]). In Figure 2.1, we have a cobweb diagram of a trajectory

from the tent map. This cobweb diagram is read by taking an initial point x in

the domain and tracing a vertical line to the value f(x) under the map. Then, the

horizontal line from f(x) to the diagonal y = x places f(x) in the domain. Iteration

of this process produces a trace in the graph of a trajectory from an inital point

x. In Figure 2.1, the trajectory is shown to eventually become periodic, since it

eventually repeats. However, in Figure 2.2, we can see a seemingly more chaotic

trajectory from a different initial condition.

Figure 2.1: Example of a ”periodic”
trajectory on the tent map with pa-
rameter r = 2.

Figure 2.2: Example of a ”chaotic”
trajectory on the tent map with pa-
rameter r = 2.

Studying the eventual behavior of the tent map can be computationally diffi-

cult. The chaotic nature of the map implies that a small error in initial conditions

used to start a trajectory can lead to vastly different behavior. Instead, to study

the tent map, we can create a combinatorial representation, Ftent. In Figure 2.3,
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we place a grid over the interval [0, 1] to form the vertex set

V = {[0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1]}. (2.1)

To simplify notation, we label the intervals in V as 0, 1, 2, 3 respectively. So,

V = {0, 1, 2, 3}. (2.2)

Now, we can create

EX = {(0, 0), (0, 1), (1, 1), (1, 0), (1, 2), (2, 2), (2, 1), (2, 3), (3, 3), (3, 2)}. (2.3)

Figure 2.5 shows the graphical representation of EX . In Figure 2.4, we can see how

to construct Ef . The shaded regions in Figure 2.4 represent the range for each

domain interval in the grid. Now, we can create

Ef = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)(1, 3), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2)}.
(2.4)

Figure 2.6 shows the graphical representation of Ef . With V , EX , and Ef , we

have now constructed a combinatorial representation, F of the tent map. This

combinatorial representation is very coarse with only a depth of 2, or resolution of

22 = 4 elements. However, if we were to increase our resolution, we would obtain

more information about the dynamics of the tent map.

Figure 2.3: EX of Tent Map (2.3). The
space is divided into closed intervals,
forming a cubical grid G, with |G| = 4.

Figure 2.4: Ef of Tent Map (2.4).
The shaded region represents mini-
mal outer bounds on the image of
each interval in G, with |G| = 4.
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0 1 2 3

Figure 2.5: The Undirected Graph (V,EX) from (2.3) for the Tent Map at |G| = 4.

0 1 2 3

Figure 2.6: Directed Graph of (V,Ef ) from (2.4) for the Tent Map at |G| = 4

Towards our goal of using F to study invariant sets, we define the combinatorial

invariant sets of a region in terms of Ef and EX from the following definitions.

Definition 2.0.6. A combinatorial (full) trajectory for u0 ∈ V is

γu0 = (un)n∈Z where (un, un+1) ∈ Ef .

Definition 2.0.7. A combinatorial invariant set of a set S ⊂ V is

Inv(S) = {u ∈ S | ∃ a combinatorial trajectory γu ⊆ S}.

There are many invariant sets in F that do not give us meaningful information

about the dynamics. For example in a complete graph, every vertex subset V ′ ⊆ V

is an invariant set. Thus, we restrict our attention to combinatorial invariant sets

that satisfy an isolation condition. In other words, restricting our attention to

the combinatorial invariant sets that give us the meaningful information about

dynamic structure of our system. These isolated invariant sets are used to compute

a Conley index, which in turn is used to prove results about the actual dynamics

of the underlying system (see [2] for a further discussion). Although not the focus

in this discussion, sample results obtained using Conley indices in this manner

including proving fixed points, periodic points, and chaotic orbits is found in [4].

But first, we must define a neighborhood of a set in V ,

Definition 2.0.8. A combinatorial neighorhood of S is defined as o(S) := {v ∈
V | (u, v) ∈ EX for some u ∈ S}.
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Definition 2.0.9. A set S ⊆ V is an isolated invariant set if S = Inv(o(S)).

Equivalently, if S = Inv(o(S)), we say that S satisfies the isolation condition.

Before computing these isolated invariant sets, we should establish some in-

tution regarding the resolution of our combinatorial representation. The relation

between resolution of the combinatorial representation of a dynamical system and

the underlying dynamics of the system is important. We can ask how fixed points,

periodic points, etc, of the map are stored in a combinatorial representation. We

can quickly see that a fixed point should appear as a selfloop in Ef . That is, for

a fixed point x ∈ u ⊆ V , we have (u, u) ∈ Ef . Similarly, periodic orbits appear

as cycles. At coarse resolutions we usually obtain a representation that is close to

the complete graph, since we have fewer elements over the same space, resulting

in a more interconnected graph. We introduce Fcomplete as one example. For illus-

tration, let V = {0, 1, 2, 3} as in the tent map example in Figure 2.3. Let EX to

be the set in (2.3), we define Ef = V × V . Then, Fcomplete = (V,EX , Ef ).

0 1 2 3

Figure 2.7: Directed Graph (V,Ecomplete) for Fcomplete

As a second example, consider the graph depicted in Figure 2.9. This is a

combinatorial represention for the map, f : [0, 1]→ [0, 1], f(x) = 0.3 on the same

grid used for the previous examples. For this map, x = 0.3 is a superstable fixed

point, that is all points in [0, 1] are immediately mapped to the fixed point after

one iteration of f .

Figure 2.8: The combinatorial representation of f(x) = 0.3.
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0 1 2 3

Figure 2.9: Directed Graph Representation of the Single Selfloop example

Note that Ef = {(v, u) | u, v ∈ V and 0.3 ∈ u}. So, there is a selfloop at u

and the in-degree for u (the number of edges into u) in Ef is |V |, the number of

elements in the grid. As we increase resolution, the vertex set grows, but there is

always only one selfloop (u, u).



Chapter 3

Algorithms

The motivation to find all isolated invariant sets of a dynamical system stems

from the importance of these sets in describing the eventual behavior of the sys-

tem. However, computing all isolated invariant sets is no trivial task. As discussed

in the previous section, we must first create a combinatorial representation of

the dynamical system that a computer can process. Now, we must search for

isolated invariant sets in the combinatorial representation that we have created.

A naive approach is to examine all subsets of the vertex set in the combinatorial

representation, testing each to determine whether it is both invariant and isolated.

This forms the power set, the collection of all subsets of V . For example the power

set of a set S = {0, 1} is P (S) = {∅, {0}, {1}, {0, 1}}. Note that the size of the

power set is |P (S)| = 2|S|. So, for V , the power set increases as 2|V |. Improving

the resolution of F by increasing the size of V leads to an exponential increase

in the size of P (V ). Since we need high resolutions to prove certain dynamics of

the map, the power set method becomes unreasonably large and time consuming.

Thus, there is a need for an algorithm that significantly reduces this search. The

following algorithm is one such attempt at a solution.

3.1 ALLIIS Algorithm

The algorithm begins with the full grid, V , and stores its maximal invariant

set in the a list sets that will be processed, denoted TBP. Then, we remove a set in

TBP of maximal length (Step 1). We test if this set is isolated and, if it is isolated,

we store it in ALLIIS list (Step 2). Next, we look at the maximal invariant sets

of subsets of one element less (Step 3). If these subsets are not already in TBP,

either as listed sets are as subsets of listed sets, then they are placed in TBP.

Next, we process the next set of maximal length in TBP the same way as the full

11



ALLIIS Algorithm 12

graph was processed (Step 4). By continuing this process, we guarantee that all

isolated invariant sets are found, shown in Theorem 3.1.4.

Algorithm: ALLIIS

Begin with TBP = {Inv(V )},
1. Remove a set of maximal length from TBP,

call this V ′.

2. If V ′ = Inv(o(V ′)), then place V ′ in ALLIIS list.

3. Now, TBP = TBP∪{Inv(V ′ − {v}) | i ∈ V ′}.
4. Repeat steps 1-3 until TBP = ∅.
Output: ALLIIS list

The following is the justification for the algorithm,

Lemma 3.1.1. The ALLIIS algorithm will terminate.

Proof. It suffices to show that eventually TBP= ∅. Initially, TBP= {Inv(V )}. At

each step a set of maximal length in TBP is removed. While processing this set,

every set that is placed in TBP is of a strictly smaller size. For any given size,

there are a finite number of sets of that size. Once all sets of a size are processed,

the maximal length of sets in TBP decreases. Thus, eventually, the sets in TBP

are of size 0. In other words, TBP= ∅ and the ALLIIS algorithm terminates.

Lemma 3.1.2. If a set S ⊆ V and S = Inv(o(S)), then S ⊆ Inv(V ).

Proof. For contradiction, suppose S 6⊆ Inv(V ). Now consider, M = S∪ Inv(V ). M

is invariant. Also, Inv(V ) ⊂ M ⊆ V . Then, Inv(V ) is not the maximal invariant

set of V , which is a contradiction.

Corollary 3.1.3. Let S = Inv(o(S)). If S ( S ′, then S ⊆ Inv(S ′ − {i}) for some

i ∈ S ′.

Proof. For S ( S ′, S ⊆ S ′ − {i} for some i ∈ S ′. By the arguments used to prove

Lemma 3.1.2, S ⊆ Inv(S ′ − {i}).

Theorem 3.1.4. If TBP is initialized as the set {Inv(V )}, then ALLIIS list will

contain all the isolated invariant sets in V by the termination of ALLIIS.

Proof. Note that for all isolated invariant sets S ⊆ V , S ⊆ Inv(V ).

At Step 1, V ′ = Inv(V ), if V ′ = Inv(o(V ′)), then place V ′ in ALLIIS list.

Now, for V ′ ∈ TBP, suppose for some isolated invariant set S ⊆ V ′. Let V ′′ be

some child of V ′, that is V ′′ =Inv(V ′ − {v}) for some v ∈ V ′.



ALLIIS with LookUp Algorithm 13

Claim: S is not lost.

Case 1: S = V ′, then S is added to TBP in Step 2.

Case 2: S ( V ′, then S ⊆ V ′′ by Corollary 3.1.3. V ′′ is added to TBP in Step 3.

In other words, S is not lost. Since, TBP terminates by Lemma 3.1.1, we have that

ALLIIS list contains all isolated invariant sets in V .

3.2 ALLIIS with LookUp Algorithm

An obvious drawback to the ALLIIS algorithm is that given F with a well-

connected graph (V,Ef ), the algorithm will search through a set near the size of

the power set. For example Fcomplete from Chapter 2 will search the power set

since all subsets are invariant. However, we can avoid this problem. Let us suppose

for nonempty sets S = Inv(S), we can compute the smallest isolated invariant set

IIS(S) that contains S ([4] contains an algorithm called grow isolated for producing

IIS(S)). We can further reduce the number of sets that must be added to TBP.

This reduction is based on the following lemma and corollary.

Lemma 3.2.1. If Si ⊆ V ′ ⊆ V but IIS(Si) 6⊆ V ′, then for any isolated invariant

set S ⊆ V ′, Si 6⊆ S.

Proof. Note that Si = Inv(Si). Suppose Si ⊆ V ′ = Inv(V ′) and IIS(Si) 6⊆ V ′. So,

for any S ⊆ V ′, IIS(Si) 6⊆ S. Otherwise, if IIS(Si) ⊆ S, then IIS(Si) ⊆ V ′, a

contradiction. Thus, Si ⊆ IIS(Si) 6⊆ S. So, Si 6⊆ S.

We can conclude from this lemma that if we process a set V ′ such that Si ⊂ V ′,

but IIS(Si) 6⊆ V ′, then for any isolated invariant set S ∈ V ′, Si 6⊆ S. So, we must

cut at least one element of Si from V in order to find an isolated invariant set in

V .

Corollary 3.2.2 (Directed cut). Suppose Si ⊆ V ′ ⊆ V but IIS(Si) 6⊆ V ′. For any

isolated invariant set S ( V ′, then S ⊆ Inv(V ′ − {v}) for some v ∈ Si.

Proof. From Lemma 3.2.1, we have Si 6⊆ S. So, S ⊆ V ′−{v} for some v ∈ Si ⊆ V ′.

By Corollary 3.1.3, S ⊆ Inv(V ′ − {v}) for some v ∈ Si.

Following proof of Corollary 3.2.2, note that Corollary 3.2.2 is stated in a form

that allows for a direct replacement of Step 3 in ALLIIS with the directed cut set

Si listed in Step 3 of ALLIIS with Look Up below. We reduce the number of new

sets produced in Step 3 from at most |V | in {Inv(V ′ − {v}) | v ∈ V } to at most
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|Si| < |V | in {Inv(V ′−{v}) | v ∈ Si}, In order to take advantage of what could be

a drastic reduction in the number of sets produced in Step 3, we populate a look

up table with pairs (Si, IIS(Si)) with Si very small. The reason for choosing small

recurrent sets to fill the look-up table is that the subsets of IIS(Si) are not isolated.

So, IIS(Si) are the smallest isolated invariant sets in V . The following is a sketch

of the look-up table, where each Si is a recurrent set. This table is ordered from

smallest to largest length of Si. The right column is constructed as the smallest

isolated invariant set containing Si.

LookUpTable
Si Isolated invariant set (IIS(Si))

S1 IIS(S1)
...

...

Sn IIS(Sn)

The following is the improved algorithm with the look-up table,

Algorithm: ALLIIS with LookUp

Begin with TBP = {Inv(V )}
1. Remove a set of maximal length from TBP,

call this V ′.

2. If V ′ = Inv(o(V ′)), then place V ′ in ALLIIS list.

3. For the first Si ∈ LookUpTable

such that Si ⊂ V ′ and IIS(Si) 6⊆ V ′,

set TBP = TBP ∪ {Inv(V ′ − {v}) | v ∈ Si}.
If no such Si exists

set TBP = TBP ∪ {Inv(V ′ − {v}) | v ∈ V ′}.
4. Repeat steps 1-3 until TBP = ∅.
Output: ALLIIS list

Lemma 3.2.3. The ALLIIS with Look-Up algorithm will terminate.

Proof. The argument for the termination of the ALLIIS algorithm suffices, since

sets added to TBP is a subset of those added under ALLIIS.

Theorem 3.2.4. If TBP is initialized as the set {Inv(V )}, then ALLIIS list pro-

duced from ALLIIS with LookUp will contain all the isolated invariant sets in V

by the termination of ALLIIS with LookUp.

Proof. Let V ′ be some set pulled from TBP at Step 1. If V ′ = Inv(o(V ′)), then V ′

is placed in ALLIIS list in Step 2.
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Claim: S is not lost.

Case 1: For some Si ∈ LookUpTable, Si ⊂ V ′ and IIS(Si) 6⊆ V ′. By Corollary 3.2.2,

S ⊆ Inv(V ′ − {v}) for some v ∈ Si. So, {Inv(V ′ − {v}) | v ∈ Si} is added to TBP.

Case 2: No such Si exists. So, {Inv(V ′ − {v}) | v ∈ V ′} is added to TBP. By

Corollary 3.1.3, S ⊆ Inv(V ′ − {v}) for some v ∈ V ′.

In other words, S is not lost. Since, TBP terminates by Lemma 3.2.3, we have that

ALLIIS list contains all isolated invariant sets in V .



Chapter 4

Results and Discussion

4.1 Application of Algorithms on Fselfloop
The algorithms from Computational Dynamics Software (CDS), [3], and the

algorithms discussed in Chapter 3 are implemented on the examples we have con-

structed from Chapter 2, namely Fselfloop, Fcomplete, and Ftent. The results of this

study demonstrates the effectiveness of each algorithm. As expected, Fselfloop is

a good example of the effectiveness of the ALLIIS algorithm over the power set

approach. Consider, a grid of four elements as described in Chapter 2. The power

set method would search through 24 sets. However, we can see that ALLIIS consid-

ers fewer sets. Table 4.1 shows how ALLIIS processes Fselfloop with four elements,

where parent is the set being processed.

Step of While-Loop State of TBP Current Parent Children ALLIIS list

0 {{1}} − − ∅
1 ∅ {1} ∅ [{1}]

Table 4.1: ALLIIS Processes Fselfloop

As we can see, the algorithm considers the set Inv({0, 1, 2, 3}) = {1}. This set

happens to be an isolated invariant set, so it is placed in ALLIIS list. It has no

children (the subsets formed in Step 3), so the algorithm terminates after one step.

As discussed in Chapter 2, there is only one isolated invariant set in Fselfloop at

any given resolution. Thus, in this example, we only consider one set as opposed

to 2|V | sets under the power set approach.

16
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4.2 Application of Algorithms on Fcomplete
Now, we can consider a very different extreme case, Fcomplete. This example

highlights the effectiveness of the LookUp Table. First, we implement ALLIIS. We

begin at Step 1 by pulling from the TBP,

Inv(V ) = {0, 1, 2, 3}.

Since this set is isolated, we place it in ALLIIS list, Step 2. In Step 3, we form the

children of {0, 1, 2, 3}, which are

{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}.

Each of these sets are placed in TBP. Step 4 sends us back to Step 1. Now, we

process {1, 2, 3}. However, this set is not isolated, since

Inv({1, 2, 3}) = {1, 2, 3} 6= Inv(o({1, 2, 3})) = Inv({0, 1, 2, 3}) = {0, 1, 2, 3}.

So, it is not added to ALLIIS list in Step 2. At Step 3, we consider the children of

{1, 2, 3}, which are

{2, 3}, {1, 3}, {1, 2}.

They are not placed in TBP at this moment, since each set is a subset of a set

already in TBP. At this point, we notice that for any set S ⊂ {0, 1, 2, 3}, we

have Inv(S) = S 6= Inv(o(S)) = o(S). Thus, none of those sets will satisfy the

isolation condition. The algorithm will consider 24−1 sets by the time the algorithm

terminates, since every subset (except the empty set) is added to TBP. Fcomplete

is an extreme example, but it shows the weakness of ALLIIS when processing

highly connected sets. To avoid this problem, we introduce a LookUp Table of

pre-processed isolated invariant sets.

Si IIS(Si)

{0} {0, 1, 2, 3}
{1} {0, 1, 2, 3}
{2} {0, 1, 2, 3}
{3} {0, 1, 2, 3}

Table 4.2: LookUp Table for Complete Graph at depth 2

ALLIIS with LookUp begin at Step 1 with

Inv(V ) = {0, 1, 2, 3},
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which is placed in ALLIIS list at Step 2. At Step 3, we consider the children,

{1, 2, 3}, {0, 1, 3}, {0, 1, 2}.

Each of these sets are placed in TBP. Step 4 sends us back to Step 1. In Step 2,

{1, 2, 3} is not added to ALLIIS list, since it is not isolated. In Step 3, we test

{1, 2, 3} against the LookUp Table in Table 4.2 and find that {1} ⊂ {1, 2, 3}, but

IIS({1}) = {0, 1, 2, 3} 6⊆ {1, 2, 3}. So, we apply a directed cut (Corollary 3.2.2/Step

3 of ALLIIS with LookUp) as necessary. The only child is {2, 3} and is added

to TBP. Similarly, for the other sets in TBP, we will obtain {1, 3} and {1, 2},
respectively. Now, we consider {2, 3}. After applying directed cuts, the child is {3}.
Eventually, the algorithm terminates after processing the last set, {2}. Overall, the

algorithm terminated after 8 steps. We considered only 8 sets when using ALLIIS

with LookUp, instead of 24 − 1 sets using ALLIIS without LookUp.

4.3 Application of Algorithms on Ftent
Lastly, we will look at how ALLIIS and ALLIIS with LookUp behave on Ftent.

The tent map is a more interesting dynamical system, with more complicated dy-

namics. Figure 4.1 compares the performance of ALLIIS and ALLIIS with LookUp

against the power set. We can see that as we increase our resolution, TBP increas-

ingly becomes a smaller fraction of the power set. Even better, TBP in ALLIIS

with LookUp is significantly smaller. Note, for book-keeping, we only add a child

when it is not already a subset of some set in TBP.

Figure 4.1: Log2(number of sets added to TBP) vs size of vertex set. Ftent for
|V | = 2, 4, 8, 16. The values at each grid resolution |V | = 2, 4, 8, 16 are marked.
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The tent map with parameter r = 2 will only have three self-loops at resolu-

tions of 8 elements or greater. So, the LookUp Table will only have at most three

selfloops. Thus, one explanation of why the the difference between ALLIIS and AL-

LIIS with LookUp does not continue to increase could be that the LookUp Table is

only seeded with self-loops. Thus, the number of directed cuts increases at a much

slower rate than the increase in elements. If we consider the difference between

ALLIIS and ALLIIS with LookUp (Figure 4.2), we can see this more clearly.

Figure 4.2: Log2(number of sets added to TBP) vs size of vertex set. Ftent for
|V | = 2, 4, 8, 16. The values at each grid resolution |V | = 2, 4, 8, 16 are marked.
The difference between ALLIIS and ALLIIS with LookUp does not increase with
the increase in elements.
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Figure 4.3: Log2(Total Number of Children) vs size of vertex set. Ftent for |V | =
2, 4, 8, 16. The values at each grid resolution |V | = 2, 4, 8, 16 are marked. The
difference between ALLIIS and ALLIIS with LookUp does not increase with the
increase in elements.

We can see this phenomenon, again, in Figure 4.3. ALLIIS (in green) considers

more children than ALLIIS with LookUp (in red), and the advantage of ALLIIS

with LookUp does not continue to increase. The difference between the two al-

gorithms ceases to increase. So, the total number of sets that we process is still

increasing exponentially.

Resolution |V | Runtime of ALLIIS (seconds) Runtime of LookUp (seconds)

2 <1 <1

4 <1 <1

8 1 <1

16 667 189

Table 4.3: Comparison of runtimes between ALLIIS and ALLIIS with LookUP for
Ftent for |V | = 2, 4, 8, 16.

The runtime also increases greatly as seen in Table 4.3. Attempts at running

the algorithms at resolution |V | = 32 failed to halt after 12 hours.
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Resolution |V | Isolated Invariant Sets

2 {0, 1}
4 {0, 1, 2, 3}
8 {0, 1}, {0, 1, 2, 3, 4, 5, 6, 7}
16 {0, 1}, {9, 10, 11}, {0, 1, 9, 10, 11},

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

Table 4.4: Resulting isolated invariant sets for Ftent for |V | = 2, 4, 8, 16.

Finally, both algorithms return the same output. Table 4.4 shows the isolated

invariant sets found by these algorithms at each resolution. These isolated invari-

ant sets can also be verified by computing by hand. As we increase our resolution,

we should expect more isolated invariant sets for the tent map at parameter r = 2.

With the isolated invariant sets computed, we may use Conley Index theory to

prove things about the dynamics of the tent map. For example at a resolution of

16 elements, we can already determine, via arguments from the theory, that there

exists a fixed point in the interval corresponding to {0} and the interval corre-

sponding to {10}. We can verify that this is true, analytically (see [2]). Improving

the LookUp Table and directed cuts, it should be feasible to compute the isolated

invariant sets for depths that are too high to compute by hand and determine more

complicated dynamics.

4.4 Discussion

With the limited success of ALLIIS and ALLIIS with LookUp algorithms, we

immediately ask if there is room for improvement. If we were to seed the LookUp

Table with more recurrent sets, such as 2-cycles, 3-cycles, etc., we should expect

the difference between ALLIIS and ALLIIS with LookUp to increase, since we

are applying more direct cuts. I speculate that there is a relation between the

resolution, |V |, and the recurrent sets, |V |-cycles that should seed the LookUp

Table to optimize this algorithm for the tent map. Work in determining such a

relationship may also be beneficial to the application of ALLIIS with LookUp to

other maps. This would allow us to further investigate how the performance of the

algorithms scale with the resolution.
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