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Abstract 
 

This thesis explores oxazinone and pyrazinone intermediates in the merged Diels-

Alder and retro-Diels-Alder strategies for the synthesis of substituted 

pyridines.  Dihydrooxazinone substrates are prepared and investigated in a domino 

reaction sequence that comprises an aldol condensation, alkene isomerization, Diels-

Alder, and retro-Diels-Alder reaction. Preliminary efforts intended to expand the reaction 

scope to include aliphatic aldehydes are included and potentially applicable to the 

synthesis of guaipyridine alkaloids including the rupestines. 
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CHAPTER ONE 

Introduction 

2-Pyridones and pyridines are of interest to organic chemists due to their various 

biological activities ranging from antihistamine function to chemotherapeutic agents.1 

Pyridones, piperidine, and picoline are all structurally related but somewhat distinct from 

pyridines (Figure 1.1).   

Figure 1.1 General structures of pyridine, 2-pyridone, piperidine, picoline, and 
trisubstituted 2H-1,4-oxazin-2-one 

 
Syntheses of pyridines were mass-produced via the Chichibabin pyridine 

synthesis, the Bönneman reaction, or the aerobic gas-phase condensation of croton 

aldehyde, formaldehyde, and ammonia (Scheme 1.1). The most commonly implemented 

method for achieving substitution of pyridines is classic condensation of ammonia or 

hydroxylamine with a corresponding 1,5-diketone (Scheme 1.2 A). Another route 

towards substitution reacts ammonia with an aldehyde and 2 equivalents of a 1,3-

dicarbonyl compound to perform a Hantzsch dihydropyridine synthesis (B). While this is 

not an exhaustive summary, the five reactions below demonstrate the variety of methods 

that have been previously implemented to afford pyridine compounds.2,3 
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Scheme 1.1 Syntheses of pyridine for mass-production 

Scheme 1.2 Syntheses of di- and penta-substituted pyridines 

 

The diverse synthetic methods for the preparation and derivation of pyridine and 

pyridone structures enable the practicing chemist to efficiently access many substitution 

patterns. Continued efforts directed toward the development of new methods for pyridine 

synthesis are warranted (in part due to the interesting biological and physical properties 

of the compounds).  
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Medicinal Relevance of Pyridine Structures 

 Six-membered nitrogen-containing ring structures, such as pyridines and 

pyridones, are highly prevalent structures in pharmaceutically active molecules.1 Not 

only do six-membered nitrogen-containing ring structures comprise half of the 12.5 

million compounds currently known and characterized, but the majority are bioactive, 

highlighting their utility as drug candidates.2 In particular, 2-pyridone cores have drawn 

the attention of chemists in multiple fields of study, including natural products, 

pharmaceuticals, agrochemicals, polymer and materials chemistry, and even fluorescence 

imaging.3  

 Thomas Anderson first discovered pyridine in 1851 in bone oil, a common animal 

repellent generated from the destructive distillation of bones. Later it was also identified 

in coal tar and as a substituent of many alkaloids. By observing the excretions of dogs 

exposed to pyridine, Dr. His determined that pyridine was metabolized and excreted as 

methylpyridylammoniumhydroxide, unlike piperidine and picoline. Investigating the 

effect of pyridine on the central nervous system, Dewar and McKendrick found that 

pyridine initiates convulsions and eventually kills the organism via respiratory paralysis. 

Heart muscle paralysis occurs if pyridine is administered in large quantities. As the 

experiments above show, large exposure to pyridine can be concluded to be dangerous, 

but the toxicity was minimal in normal doses of pyridine.4 

 However unlike pyridine itself, derivatives of pyridine do have medicinal 

properties. A data bank of compounds, including pyridine derivatives, from the Research 

Institute for the Biological Testing of Chemical Compounds and the Institute of Organic 

Synthesis of the Academy of Sciences of the Latvian SSR were tested for their biological 
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activity via a search engine that can discern moieties and bioactivities. The program 

revealed 46 types of activity among the pyridine derivatives (Table 1.1). It is important 

to note that the program does not address some of the more commonly known uses of 

pyridine derivatives. Table 1.1 was gathered to elucidate the frequency that pyridine 

derivatives are used for five general pharmacological actions. Pyridine derivatives are 

commonly utilized as anti-allergic drugs. Of 342 antihistamines in the bank, 43 (12.6%) 

of the compounds contained a pyridine structure, a greater percentage than any other 

category analyzed. However, pyridine derivatives are most commonly used as 

chemotherapeutics, accounting for 32% of the pyridine compounds studied.5 

          Number of Compounds 
Rank Pharmacological Action     Active Pyridine Percentage 

1 
Histamine agonists and antagonists, anti-
allergic 342 43 12.6% 

2 Anti-inflammatory     916 74 8.1% 
3 Cardiovascular     1050 65 6.2% 
4 Chemotherapeutic     2962 115 3.9% 
5 Central Nervous System Activity   1933 58 3.0% 

Table 1.1 Distributions of Pyridine Compounds According to General Pharmacological 
Action 

  

Select pyridine and pyridone structures with interesting bioactivity are illustrated 

in Figure 1.2. Syntheses of these complex organic structures have been previously 

published.6-11 Pyridone-L-697661 was initially analyzed in a combination study with 

zidovudine in 1996. Zidovudine, not pictured, is an antiretroviral drug used for the 

treatment of HIV and AIDS. L-697661 reacted very well in combination therapy with 

zidovudine for the treatment of human immunodeficiency virus (HIV-1) when 

administered to a small study, but the clinical trials had to be halted due to lack of 

support. (+)-Camptothecin inhibits the nuclear enzyme DNA topoisomerases (Type I), an 
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essential enzyme for DNA replication; therefore, (+)-Camptothecin has shown to be 

cytotoxic to some forms of carcinoma. Papaverine is used as a drug for the control of 

angina, lung embolism, baby colic, and erectile dysfunction by relaxing blood vessels and 

muscles. Cananodine is a guaipyridine alkaloid isolated from Cananga odorata (ylang-

ylang), a tree whose bark, leaves, and oil have been used in the traditional medicines of 

southeast Asia. Cananodine was recently discovered to be cytotoxic against human liver 

carcinoma. Lycopladine A has shown slight selective cytotoxicity toward murine 

lymphoma L1210 cells. (–) -Huperzine A is a useful drug for the treatment of memory 

loss, dementia, and the muscular disorder myasthenia gravis. 

Figure 1.2 Bioactive pyridine/pyridone-containing structures 

Diels-Alder/retro-Diels-Alder Reactions 

Diels-Alder reactions are [4+2] cycloaddition of diene and dienophile (Figure 

1.3). Retro-Diels-Alder reactions are observed by cycloreversion of a cyclic system to 

afford a diene and a dienophile as products. The cycloreversion is favorable when 
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expelling one of the bridges generates a more stable product.12 In Figure 1.3, ethylene is 

expelled in the retro-Diels-Alder reaction of cyclohexene. 

Figure 1.3 General Diels-Alder and retro-Diels-Alder reactions 

Diels-Alder reactivity has been determined to be dependent on HOMO/LUMO 

energy levels of educts, the distance between the reactive centers of the diene and 

dienophile, and the ΔH° for the overall reaction. By the principle of microscopic 

reversibility, retro-Diels-Alder reactivity depends on identical factors. A general 

reactivity trend (Table 1.2) has been established for common dienes and dienophiles 

involved in retro-Diels-Alder (rDA) reactions, depending on how easily extruded and/or 

unreactive the compound is once formed.12  

Table 1.2 Retro-Diels-Alder reactivity trend 

 The retro-Diels-Alder mechanism can occur as a concerted or asynchronous 

process depending on the timing of the bond cleavage. A concerted reaction occurs with 

fast bond cleavage and subsequent bond formation; whereas, an asynchronous reaction 

would require further reactants to proceed to the final product. As with Diels-Alder 

reactions, stereochemical considerations must be made in regards to endo/exo geometry 

with the retro-Diels-Alder.12  

 

+
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Oxazinone Synthesis  

The oxazinone structure was intended to be viable for Diels-Alder cycloaddition 

reactions through the azadiene system. After cycloaddition with alkynes, adducts undergo 

a retro-Diels-Alder reaction, extruding carbon dioxide and affording polysubstituted 

pyridines (Scheme 1.2). As seen in the reactivity trend, carbon dioxide is readily 

extruded, propelling this reaction to the cycloreversion product. With a dihalogenated 

oxazinone starting material, the Diels-Alder/retro-Diels-Alder reaction yields a pyridine 

core containing up to 3 substituents excluding the halogen atoms.  

Scheme 1.2 General oxazinone merged cycloaddition-cycloreversion reaction 

Previous oxazinone syntheses were scarce, lengthy, poor yielding, and did not 

give an opportunity to vary the substituent pattern.14 Two syntheses were developed to 

target an oxazinone containing two alkyl groups and one halogen. One option is treatment 

of tertbutyllithium to the 3,5-dichloro-2H-1,4-oxazin-2-one 2,  in which diazoimino-

triazolo equilibrium shifts the product towards the desired trisubstituted oxazinone 5. 

Another pathway involves nucleophilic attack to the imidoyl chloride 3 at the most 

electrophilic position under acidic conditions (Scheme 1.3). Only tri-substituted 
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oxazinones, such as 3,5-dichloro-2H-1,4-oxazin-2-one, could successfully complete the 

Diels-Alder/retro-Diels-Alder experiment designed. Substituent addition at position 3 

stabilizes the adduct and allows the [4+2] cycloaddition to move forward in the presence 

of alkenes or alkynes.15 

Scheme 1.3 Syntheses of trisubstituted oxazinones 

Prior Art of Oxazinone Diels-Alder/retro-Diels-Alder Reactions 

The oxazinones, synthesized using either route shown above, have been shown to 

undergo [4+2] cycloaddition and cycloreversion with alkynes in multiple publications.15-

21 The generalized reaction is shown between 6-alkyl-3,5-dichloro-2H-1,4-oxazin-2-one 

and an acetylenic derivative (Table 1.3).12-21 Each reaction efficiently produces a 

polysubstituted pyridine, which could potentially be bioactive, even after variation of the 

substrate at position 6. Electron donating and electron withdrawing groups were attached 

to determine whether the cycloaddition/cycloreversion would occur only under certain 

electronic demands. The electronics of the cycloaddition/cycloreversion cascade have 

been probed by varying the substitution at position 6 of the oxazinone scaffold.15-21 Both 

electron donating and withdrawing groups were observed and displayed little to no 
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change in yield or regioselectivity. From these results, it is clear that factors other than 

the relative electronics at position 6 play major roles in the reaction sequence. 

Table 1.3 Variation at position 6 of oxazinone effects on DA/rDA reaction 

Position 3 also was tested in this manner. From these results, it is clear that 

changing position 3 does not influence reactions with varied acetylenic compounds, 

regardless of the electronics of the oxazinone (Table 1.4).13-21 

Table 1.4 Variation at position 3 of oxazinone effects on DA/rDA reaction 
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In both tables, the reaction had to be run at 80°C for extended periods of time. 

2H-1,4-oxazin-2-ones also require excess dienophiles and high pressure to undergo the 

DA/rDA reaction with alkenes or alkynes. To avoid such harsh conditions, catalyst trials 

were conducted using 6-methyl-3,5-dichloro-2H-oxazin-2-one as the model compound 

with various alkenes and alkynes. The effect of the Lewis acid catalysts Et2AlCl and 

AlCl3 was explored by a comparing an uncatalyzed, elevated-temperature run with a 

catalyzed, cool (at -78˚C or room temperature) run.  The catalyst lowered the energy of 

the lowest unoccupied molecular orbital (LUMO) of the oxazinone. In the inverse 

electron demand system, adduct formation becomes favored at lower temperatures when 

the LUMO of the azadiene system directly interacts with the HOMO of the dienophile. 

Catalysis also greatly improves the regio- and stereoselectivity, forming the endo- 

cyclization product exclusively. However, exo- products can be formed if the dienophile 

contains heteroatoms.17 

Scheme 1.4 Model reaction for the Lewis Acid catalyzed, low temperature trial 

 

Oxazinone Chemistry in Natural Product Synthesis 

5,5’-dialkyl-6,6’-bipyridines are of interest to the scientific community because of 

their appearance as a substructure on cancer therapy drugs, such as camptothecin and its 

derivatives. In the synthesis of 5,5’-dialkyl-6,6’-dichloro-2,2’-bipyridines, the oxazinone 

architecture was implemented as the penultimate step towards the bicyclic species. 2,5-

norbornadiene undergoes 2 retro-Diels-Alder reactions after [4+2] cyclization with the 
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oxazinone (Scheme 1.5). The trisubstituted oxazinone offers a source of chlorine and 

alkyl substituents as well as an azadiene system that easily converts to pyridine products 

via merged cycloaddition and cycloreversion.18  

Scheme 1.5 Oxazinone reaction with norbornadiene 

An oxazinone DA/rDA was implemented as the initial step in a synthetic 

sequence towards 6-chloro-2(1H)-pyridinone. Shown in Figure 1.5, 3-methoxy and 3-

chloro-2H-1,4-oxazin-2-ones reacts with propargyl bromide, yielding 3-

bromomethylpyridines regioselectively, eventually yielding the desired product in four 

total steps.19  

Scheme 1.6 Regioselective cycloaddition of oxazinone to afford 3-bromomethylpyridines 
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antagonists. Such antagonists are valuable to the maintenance of pain, inflammatory 

diseases, migraines, rheumatoid arthritis, asthma, and nausea. In Scheme 1.7, all 

oxazinone DA/rDA reaction sequences are highlighted. All of these reactions exhibit 

regioselectivity towards the desired product.20

 

Scheme 1.7 Four natural product syntheses beginning with a regioselective DA/rDA 
reaction 

 

Conclusion 

Oxazinone reactions with alkynes are well known and have been implemented in 

multiple natural product syntheses as key steps. The [4+2] cycloaddition is immediately 

followed by cycloreversion with the loss of the carbon dioxide bridge to yield a 

substituted pyridine product, which could possibly be active in a pharmacological general 
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bioactivity. Though oxazinone syntheses were previously scarce, two syntheses have 

been conducted to produce trisubstituted oxazinone structures capable of undergoing a 

[4+2] Diels-Alder cycloaddition. In summary, pyridines have been synthesized in many 

different ways ranging from classic condensation to organometallic chemistry. Now, 

pyridines can be synthesized using a Diels-Alder/retro-Diels-Alder reaction sequence, 

which will broaden the scope of products that can be synthesized in order to procure 

other pyridine-containing compounds that display bioactivity.   
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CHAPTER TWO 
 

Introduction 

Our goal is to accomplish an intramolecular Diels-Alder and retro-Diels-Alder 

sequence featuring oxazinone chemistry. This novel reaction would only be successful if 

the substrate was able to align the alkyne and the 4π electron system to undergo [4+2] 

cycloaddition. Oxazinone architecture has proven to be highly reactive when exposed to 

alkyne substrates, affording 2-pyridine compounds. However, these reactions have only 

been explored using 6-alkyl-3,5-dichloro-2H-oxazin-2-ones. Diketopiperazine 2 contains 

pyrollidine and piperazine substructures, and is very similar to 6-alkyl-3,5-dichloro-2H-

oxazin-2-one with an electrophilic site between the carbonyl and nitrogen within the ring. 

It can isomerize to form a diene system that would cyclize [4+2] with an alkyne and 

extrude isocyanate derivatives to accomplish the retro-Diels-Alder reaction. 

Diketopiperazine can therefore be considered a substitute for the previous oxazinone 

studied. 

In Scheme 2.1, Benzaldehyde 1 was chosen as the alkyne substrate because it 

reacts first as an aldol condensation, leaving the alkyne essentially unchanged and 

forming the 4π electron system. The aldol product 3 isomerizes the alkene via acetylation 

to align the 4π electron system with the terminal alkyne. Intermediate [2.2.2]-diketo-

piperazine is thermally stable up to 180°C. The second reaction oxidizes methyl 

formimide to pyridone, where the third reaction acetylates the carbonyl, so the lactam 

bridge 6 can be extruded as an isocyanate derivative upon microwave heating to afford 2-

pyridone 7.1 
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Scheme 2.1 Diketopiperazine and ethynylbenzaldehyde Diels-Alder/retro-Diels-Alder 
reaction 

 

Proposed Mechanism of Oxazinone One-Pot Reaction 

The reaction sequence consisting of aldol condensation, alkene isomerization, and 

Diels-Alder was reasonably efficient. For example, 1 reacts with 2 to form compound 5 

in one reaction vessel by sequential addition of reagents. In most cases, the 

cycloreversion step required a three-step sequence in order to activate one lactam bridge 

for extrusion. We desired a more efficient overall sequence that would undergo the same 

reactions, but with an easier retro-Diels-Alder reaction that can occur in situ without 

addition of other reagents.  

An analogous domino reaction with a dihydro-2H-1,4-oxazin-2-one would 

accomplish the same sequence as the diketopiperazine model system all in one pot 

(Scheme 2.2). Also, the intermediates (products 10-12) would not be isolable since the 

reaction would progress towards the final product. The sequence would be initiated by 
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deprotonation at C3, alpha to the lactone, to form an enolate. Addition of the enolate to 

aldehyde 9 would generate the aldol addition product 10, which can be deprotonated by 

base at C3 to lose water to give a 4π electron system 11. The alkene would isomerize to 

align [4+2] cyclization to reveal the cycloadduct 12. Following the extrusion of carbon 

dioxide, the retro-Diels-Alder product 13 would be isolated as a tricyclic, pyridine-

containing structure. 

Scheme 2.2 Proposed mechanism of one pot oxazinone Diels-Alder/retro-Diels-
Alder reaction 
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and alkene isomerization sequence may not even be possible. There is no literature for 

this sequence using an oxazinone substrate. 

Synthesis of Starting Material 

 In order to explore this chemistry and determine the viability, we first needed to 

prepare the dihydrooxazinone precursors. The synthesis route of dihydrooxazinones 

varies slightly with the substituent at position 6: hydrogen in 14, methyl in 15, and phenyl 

in 16 (Scheme 2.3). All dihydrooxazinones utilize the steps of azide displacement, 

substitution of an ester group, and a Staudinger reduction. For 14, the azide displacement 

occurs first followed by the ester substitution and vice versa for 15 and 16. Staudinger 

reduction and cyclization occurs with triphenylphosphine in moderate yields to afford the 

desired dihydrooxazinone. The Staudinger reduction reacts triphenylphosphine with an 

azide to form an aza-Wittig intermediate, which releases nitrogen gas to generate an 

iminophosphorane. The double bond occurs in resonance with a positive charge on 

phosphine and a negative charge on nitrogen. In this resonance structure, as shown in 

Scheme 2.3 as the transition state, the lone pair on nitrogen can attack the carbonyl of the 

methyl ester, cyclizing the compound. The triphenylphosphine substituent is expelled as 

triphenylphosphine oxide. 

Triphenylphosphine oxide makes purification difficult. Stoichiometric equivalents 

of the oxide are generated and cause the desired product to be trapped within the black tar 

of the oxide. Kügelrohr distillation separates compounds based on boiling point. 

Considering triphenylphosphine oxide boils around 330°C, dihydrooxazinones are 

expected to boil around 120°C and can be purified via Kügelrohr. The consequence of 

this mode of purification is that not all desired product can be collected, so the yield 
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decreases significantly due to purification issues and not due to reaction completion. 

Compounds 15 and 16 can be purified on flash column chromatography. We investigated 

the possibility of purifying via chromatography when compound 16 could not be purified 

via distillation. Using an additive of toluene, compound 16 could be separated in 

sufficient yield from triphenylphosphine oxide and the impurity of the hydrolysis product 

20. Once chromatography was successful for compound 16, the same conditions were 

tested for compound 15 and also proved higher yielding than distillation. Compound 14 

did not significantly capture any pure product with chromatography, so it remains to be 

purified via Kügelrohr.  

Scheme 2.3 Syntheses of 5-methoxy-3,6-dihydro-2H-1,4-oxazin-2-one, 5-methoxy-6-
methyl-3,6-dihydro-2H-1,4-oxazin-2-one, and 5-methoxy-6-phenyl-3,6-dihydro-2H-1,4-

oxazin-2-one 
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The benzaldehydes also required synthesis to attach an alkyne to the aromatic 

aldehyde. 2-bromobenzaldehyde 23 reacts in a Sonogashira coupling (Scheme 2.5) with 

palladium and copper catalysts and the necessary alkyne to afford compound 24 as 2-

ethynylbenzaldehyde, 2-(hex-1-yn-1-yl)benzaldehyde, and 2-

(phenylethynyl)benzaldehyde. Herein, the benzaldehydes will be designated a, b, and c 

respectively. 2-ethynylbenzaldehyde is commercially available, so it is typically 

purchased instead of synthesized in this manner. 

 
 
 
 
 
 
 

Scheme 2.4 Synthesis of 2-ethynylbenzaldehyde, 2-(hex-1-yn-1-yl)benzaldehyde, 2-
(phenylethynyl)benzaldehyde 

 

Reaction Scope 

 The three dihydrooxazinones 14-16 each were tested in reactions with 24a-c. The 

alkyl substituents of the dihydrooxazinone were chosen to elucidate the efficiency of the 

reaction with distinct steric and electronic properties. Compounds 14 and a contain the 

least steric strain. However, hydrogen is not an effective directing group due to its 

insignificant electron donating or electron withdrawing capacity. Compounds 15 and b 

offer mild steric hindrance and tension on the cycloadduct as it mediates the methyl or n-

butyl attachment. Compound 16 and c are aromatic and large hydrocarbons with 

substantial electronic and steric effects. In theory, the reaction yields should differ 

slightly depending on the steric or electronic preference for the reaction progress. 

Discrepancies in yield between reactions 14a-c, 15a-c, and 16a-c should not be very 
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large considering all species are undergoing the same sequence outlined in Scheme 2.2. 

The nine expected products are shown with each starting material in Scheme 2.5. 

Scheme 2.5 Overview of reaction scope with 3 dihydrooxazinones and 3 benzaldehydes 
to afford 2-pyridine products 

 

Results 

The one-pot mechanism proved to be successful in cascading through the aldol 
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upon alkene isomerization; so one equivalent of water is introduced to the system for 

every equivalent of product generated. The Dean-Stark apparatus allows the reflux to 

occur along a larger column that has a two-path condenser. The reflux of toluene occurs 

in one arm, and in the other arm, 10 mL of toluene sits in a graduated separatory funnel. 

If water evaporates out of the system with toluene, the water and solvent will reflux 

through the long arm and condense onto the 10 mL of toluene in the 2nd arm. The density 

of water sinks the equivalent to the bottom of the graduated separatory funnel, displacing 

toluene into the reaction flask and removing water from interacting with the desired 

product. The addition of the Dean-Stark apparatus dramatically increased the affordance 

and was applied in the procedure to all other remaining reactions.  

Scheme 2.6 Results of dihydrooxazinone and benzaldehyde reactions 
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Discussion 

Dihydrooxazinone 14 demonstrates the largest fluctuation between its reactions 

with benzaldehydes a-c. The simplest reaction of the scope, hydrogens on both 

dihydrooxazinone and benzaldehyde, experienced high rates of conversion towards the 

desired product 14a. The methyl and phenyl groups on dihydrooxazinone however added 

more strain to the cycloadduct, so 14b and 14c were afforded equally poor yield. 

Notably, all of the reactions involving dihydrooxazinone 15 formed products 

efficiently. We hypothesize that the methyl substituent stabilizes the cycloadduct to carry 

the reaction to completion. Amongst the three benzaldehydes that reacted with 

dihydrooxazinone 15, little difference is observed. 

Reactions 16a-c show that dihydrooxazinone 16 generates varying yields for the 

one-pot mechanism depending on which benzaldehyde a-c is reacted. The reaction 

proceeds mildly towards the desired product 16a. Benzaldehyde a contains the smallest 

substituent, so the cycloadduct might not be stabilized sufficiently to carry through the 

remainder of the mechanism. The lowest yield of the reactions of dihydrooxazinone 16 

was 16b. While it is not the lowest yield in the entire scope of the reaction, it proves that 

the strain of generating a product with two neighboring phenyl groups prohibits the 

mechanism from proceeding to completion. The product 16c displayed fairly high yield 

(50%); therefore, the reaction is favorable. 

Conclusion 

 This body of work cements the argument that a dihydrooxazinone species will 

undergo a domino one-pot mechanism if introduced to a mild base and an 

ethynylbenzaldehyde. The dihydrooxazinone forms an enolate that reacts via aldol 
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condensation with the benzaldehyde. The subsequent intermediate undergoes alkene 

isomerization for the substrate to be a good candidate for a [4+2] cyclization. Upon 

cyclization, the carbon dioxide bridge is extruded and the desired product is afforded as 

2-pyridine derivatives. In conclusion, we were able to successfully synthesize the nine 

desired products, proving the mechanism in Scheme 2.2 to be correct. Also, we 

established that the reaction contains non-isolable intermediates.  

The yields of products 14b, 14c, 16a, and 16b were reproducible as the lowest 

within the reaction scope. An area that could improve would be the synthesis of the 

dihydrooxazinones. Depending on the substituent attached, the overall yield of the three 

step synthesis varies between 22-48% yield. The greatest loss of material occurs during 

the Staudinger reaction cyclization, likely during purification. If the triphenylphosphine 

oxide was easier to remove from the desired product, the synthesis would be more 

efficient. 

The merged cycloaddition and cycloreversion sequence using dihydrooxazinones 

and alkyne-containing benzaldehydes has the opportunity to be implemented in natural 

product synthesis. Oxazinone chemistry has been utilized in previous natural product 

syntheses by use of merged cycloaddition and cycloreversion. A new aim of study would 

be to synthesize molecules similar to the 2-pyridine structures produced in Scheme 2.6 

that could ultimately be manipulated into a bioactive natural product. 
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CHAPTER THREE 

Guaipyridines and Rupestines 

Characterized by a pyridine ring fused to a seven-membered carbocycle, the 

guaipyridines were first isolated from patchouli oil in 1966 as two sesquiterpene 

alkaloids, named epiguaipyridine and pacthoulipyridine (Figure 3.1).1 Cananodine was 

isolated in 1999 from Cananga odorata, a fruitful evergreen tree medicinally known to 

treat fevers and infections. Recently, 12 related compounds were discovered and isolated 

from Artemisia rupestris L, a plant that has been used in traditional Chinese medicine for 

liver health, antitumor, antibacterial, and antiviral applications.1,2 Cananodine shows the 

most promising activity, but the family in general is relatively unexplored for bioactivity 

despite historic involvement in traditional medicines. 

 

Syntheses of Guaipyridine 

 Multiple groups have undertaken syntheses of the guaipyridines (Figure 3.2).1-5 

Patchoulipyridine was obtained in two steps from β-patchoulene in an overall yield of 

30%.1 Craig and Henry published the first total synthesis of (+)-cananodine, a known 

bioactive molecule cytotoxic to liver carcinoma, in 17 steps with 4% overall yield from 

citronelle.5 The synthesis towards dihydroguaipyridine used guaiol as its starting material 

and obtained its desired product in 3 steps and 0.1% overall yield.1 

Dihydroepiguaipyridine also was synthesized via guaiol in 5 steps and 0.8% overall 

yield.1 With dihydroguaipyridine, dihydroepiguaipyridine, and cananodine synthesized, 

only the rupestines have yet to be accessed by laboratory synthesis.5 
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 Figure 3.1 Guaipyridines are natural products that resemble the products of an aliphatic 
aldehyde domino reaction. 
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Figure 3.2 Previous syntheses towards guaipyridine and related compounds 
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in low yield. However, this intermediate appeared unable to undergo alkene 

isomerization to 4a. When the reaction was attempted with 1b, the full sequence 

including the Diels-Alder and retro-Diels-Alder reactions was executed and pyridine 6b 

was obtained in up to 8% yield. A portion (22%) of the desired product remained at the 

aldol condensation product 4, demonstrating congruence with the findings of 6a. 

Scheme 3.1 Aliphatic aldehydes react in the same manner as the benzaldehydes, but 
generate a seven-membered ring fused to a pyridine rather than a tricyclic 2-pyridine. 
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anhydride. Furthermore, diketopiperazine 7 will produce a similar product, a pyridone 

fused to a seven-membered ring, as compared to dihydrooxazinone, producing 2-

methoxypyridine fused to a seven-membered ring. We decided that the mechanism in 

Scheme 3.2 would be more fruitful with diketopiperazine rather than dihydrooxazinone.  

Scheme 3.2 Mechanism of diketopiperazine with aliphatic aldehyde to afford 2-
pyridone fused to a 7-membered ring 
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concentration; whereas 6-heptynal in Scheme 3.2 is extremely volatile. Aldehyde 18 was 

easily delivered in a six-step route (Scheme 3.3). Desymmetrization of cyclopentene 14 

was achieved via an oxidative cleavage intermediate to reveal 15 as a mono-protected 

1,5-dialdehyde. Exposure of the aldehyde in 15 to the magnesium acetylide afforded 

propargyl alcohol 16. This was then protected by benzyl bromide, followed by acidic 

acetal removal to generate desired aldehyde 18.  

Scheme 3.3 Synthesis of desired aldehyde starting from cyclopentene involved 4 steps 
from cyclopentadiene. 

 

The aldehyde reacts in the cascade reaction, through aldol condensation, alkene 

isomerization, Diels-Alder, and retro-Diels-Alder reactions (Scheme 3.4). 

Diketopiperazine 7 was deprotonated, forming an enolate, and aldol condensation 

occurred with the aliphatic aldehyde 18. The product 19 isomerizes to align the substrate 

for an intramolecular [4+2] cycloaddition 20. The lactim bridge is extruded in a 

cycloreversion process, yielding the desired product 21. 

The final four to seven steps of the synthesis are still being investigated, but 

having the ability to isolate a seven-membered ring fused to a pyridone core with 
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functionality at the methyl position of rupestine M gives great hope for the total synthesis 

to be fruitful. 

Scheme 3.4 Using the cascade reaction of aldol condensation, alkene isomerization, 
Diels-Alder, retro-Diels-Alder, a target compound leading towards rupestine M is 

synthesized. 
 

Conclusion 

Oxazinone architecture has been extensively proven to easily facilitate Diels-

Alder and retro-Diels-Alder reactions. Previous chemists accomplished the 

intermolecular Diels-Alder and retro-Diels-Alder sequence, fully exploring the nature of 

stereochemistry and regiochemistry in the reaction. The intramolecular case of merged 

cycloaddition and cycloreversion was also observed to be successful through analysis of a 

one-pot mechanism with preceding steps of aldol condensation and alkene isomerization. 
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Finally, the same sequence including aldol condensation and alkene isomerization is 

being tested in a synthesis towards rupestine M. Diketopiperazine 7 shares similar 

architecture to oxazinone and can perform aldol condensation, alkene isomerization, 

Diels-Alder, and retro-Diels-Alder reactions to reveal a seven-membered ring with a 

fused pyridone core, only four to seven steps away from the natural product. In 

conclusion, rapid access to 2-methoxypyridine or pyridone products from simple acyclic 

aldehyde precursors is warranted given the many applications of such structures. 
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Chapter 2 Experimentals 

The experimentals for compounds 1-7 can be found in a previously published paper.1 
Compounds 17 and 20 are available for purchase. Compounds 24a, 24b, and 24c are all 
known molecules.2-4 

 

14 5-methoxy-3,6-dihydro-2H-1,4-oxazin-2-one. A dry flask was charged with 2-
methoxy-2-oxoethyl 2-azidoacetate (3.2g, 18.5 mmol), fitted with a Dean-Stark apparatus 
and condenser, and flushed with nitrogen. The starting material was dissolved in dry 
toluene (100 mL), triphenylphosphine (4.85g, 18.5 mmol) was added, and the reaction 
was heated to reflux in an oil bath (bath temp. 130 °C). Reaction progress was monitored 
by NMR on an aliquot. After 16 h, the reaction was cooled to RT and concentrated in 
vacuo. The resulting residue was purified by Kügelrohr distillation (1 mmHg, 160 °C) to 
afford the title compound (650 mg, 27% yield) as a clear oil: IR (film) 1678, 1437, 1188, 
1165, 1119, 1072, 997, 754, 719, 694 cm–1; 1H NMR (400MHz, CDCl3) 𝛿 4.82 (s, 2H), 
4.23 (s, 2H), 3.79 (s, 3H); 13C NMR (100MHz, CDCl3) 𝛿 167.1, 159.8, 64.9, 53.6, 47.4; 
HRMS submitted. 
 
 

15 (S)-5-methoxy-6-methyl-2H-1,4-oxazin-2-one. A dry flask was charged with (S)-
methyl 2-(2-azidoacetoxy)propanoate (3.349 g, 17.9 mmol) and flushed with nitrogen. 
The starting material was dissolved in dry toluene (60 mL), introduced to 
triphenylphosphine (4.69 g, 17.9 mmol), and heated to reflux in an oil bath (bath temp. 
130 °C). Reaction progress was monitored by NMR on an aliquot. After 20 h, the 
reaction was cooled to RT and concentrated in vacuo. A portion (3.79 g) of the resulting 
residue (7.51 g) was purified by Kügelrohr distillation (1 mmHg, 190 °C) to afford the 
title compound (796 mg, 62% yield) as a yellow oil: IR (film, cm-1) 2992, 2951, 1748, 
1695, 1456, 1391, 1375, 1354, 1339, 1321, 1294, 1265, 1231, 1206, 1128, 1101, 1080, 
1043, 988, 959, 853, 773, 692, 667, 602 cm–1;  1H NMR (400MHz, CDCl3) 𝛿 4.92 (q, J = 
1.6 Hz, 1H), 4.26 (s, 2H), 3.76 (s, 3H), 1.57 (d, J = 3.9 Hz, 3H); 13C NMR (100MHz, 
CDCl3) 𝛿 167.7, 162.5, 72.70, 53.6, 47.7, 18.4; HRMS submitted. 
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16 5-methoxy-6-phenyl-3,6-dihydro-2H-1,4-oxazin-2-one. A flame-dried flask was 
charged with methyl 3-(2-azidoacetoxy)-2-phenylpropanoate (161 mg, 0.645 mmol), 
fitted with a Dean-Stark apparatus and condenser, and flushed with nitrogen. The starting 
material was dissolved in toluene (5 mL), triphenylphosphine (169 mg, 0.645 mmol) was 
added, and the reaction was heated to reflux in an oil bath (bath temp. 130°C). Reaction 
progress was monitored by NMR on an aliquot.  After 24 h, the reaction was cooled to 
RT and concentrated in vacuo. The resulting residue (310 mg) was purified by flash 
column chromatography on silica gel (gradient elution: 5à50% EtOAc in Hexanes, 50% 
toluene additive) to afford the title compound (64 mg, 48% yield) as slightly yellow oil: 
TLC (15% EtOAc, 35% hexanes, 50% toluene), Rf = 0.33 (CAM); IR (film) 3065, 2948, 
2989, 2921, 2850, 2359, 2343, 1754, 1705, 1495, 1458, 1442, 1378, 1330, 1308, 1283, 
1254, 1201, 1111, 1079, 1050, 1002, 976, 934, 914, 846, 806, 776, 759, 700, 682, 668 
cm–1; 1H NMR (400MHz, CDCl3) 𝛿 7.43 (m, J = 6.2 Hz, 3H), 7.33 (m, J = 7.4 Hz, 2H), 
5.85 (s, 1H), 4.41 (dd, J = 20.7 Hz, 2H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl3) 𝛿 
167.6, 161.1, 134.3, 129.4, 129.1, 126.4, 76.7, 53.9, 47.7; HRMS Exact mass calc’d for 
C11H11NO3 [M+Na+] = 228.0631, found 228.0632. 
 
 

18 2-azidoacetic acid. A dry flask was charged with chloroacetic acid (2.06 g, 21.8 
mmol) and dissolved in deionized water (20 mL). Sodium azide (2.70g, 41.6 mmol) was 
added and the reaction vessel was heated slightly to 40 °C for 24 h. The reaction was 
diluted and made acidic with 1M HCl (25 mL) and extracted with Et2O (3 x 50 mL). The 
combined organic layers were washed with brine (10 mL), dried (Na2SO4), filtered, and 
concentrated in vacuo.  The resulting oil (1.034g, 49% yield) was used without further 
purification: IR (film) 2106, 1717, 1418, 1279, 1192, 1001, 943, 874, 721, 669 cm–1; 1H 
NMR (400 MHz, CDCl3): 𝛿 10.91 (s, 1H), 3.98 (s, 2H); 13C NMR (100 MHz, CDCl3) 
174.6, 49.9; HRMS submitted. Spectral data agrees with published values.5 
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19 2-methoxy-2-oxoethyl 2-azidoacetate. A dry flask was charged with 2-azidoacetic acid 
(889 mg, 8.80 mmol) and dissolved in butanone (15 mL). Methyl bromoacetate (1.26 mL, 
13.2 mmol) and potassium carbonate (1.82 g, 13.2 mmol) were added to the reaction 
mixture. The reaction vessel was warmed to 40 °C and stirred until 2-azidoacetic acid 
was entirely consumed as observed by TLC (22 h). The reaction was cooled to RT, 
diluted with Et2O, and filtered to remove most inorganic salts. The filtrate was washed 
with H2O (10 mL) and sat. aq. NaHCO3 (10 mL). The organic layer was removed and the 
aqueous portion was extracted with additional Et2O (3 x 10 mL). The combined organic 
layers were washed with brine (10 mL), dried with Na2SO4, filtered, and concentrated in 
vacuo.  The resulting colorless oil (1.113 g, 73% yield) was used without purification: 
TLC (40% EtOAc in hexanes) Rf = 0.47 (KMnO4); IR (film): 2959, 2106, 1748, 1423, 
1383, 1287, 1225, 1165, 1059 cm–1; 1H NMR (400 MHz, CDCl3): 4.78 (s, 2H), 4.01 (s, 
2H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 167.8, 167.4, 61.2, 52.5, 50.0; HRMS 
submitted. 
 
 

21a (S)-methyl 2-(2-chloroacetoxy)propanoate. Methyl-S(–)-lactate (4.59 mL, 48.1 
mmol) was dissolved in CH2Cl2 (100 mL). Pyridine (7.75 mL, 96.2 mmol) was 
introduced to the solution and the reaction vessel was cooled to 0 °C in an ice bath. 
Chloroacetyl chloride (4.17 mL, 52.9 mmol) was added dropwise to the solution over 1 h. 
After stirring for 2.5 h, the reaction was warmed to RT, diluted with 1.0 M HCl (50 mL) 
and extracted with CH2Cl2 (50 mL). The organic layer was washed with sat. aq. NaHCO3 
(50 mL), dried (Na2SO4), filtered, and concentrated in vacuo.  The resulting residue (8.26 
g) was purified by flash column chromatography on silica gel (gradient elution: 0à40% 
EtOAc in hexane) to afford the title compound (7.32 g, 83% yield) as clear oil: TLC 
(40% EtOAc in hexane) Rf = 0.6 (KMnO4); IR (film): 2997, 2959, 1744, 1452, 1437, 
1412, 1381, 1356, 1319, 1283, 1217, 1167, 1132, 1094, 1045, 980, 951, 930, 893, 853, 
839, 789, 704, 635, 613, 604 cm–1; 1H NMR (400MHz, CDCl3): 𝛿 3.98 (s, 2H), 10.91 (s, 
1H); 13C NMR (100MHz, CDCl3): 𝛿 170.4, 166.7, 77.5, 77.1, 76.8, 69.9, 52.4, 40.5, 
16.7; HRMS exact mass calc’d for C6H9ClO4Na [M + Na]+ =203.0082, found 203.0083. 
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21b Methyl 2-(2-chloroacetoxy)-2-phenylacetate. Methyl-DL-mandelate (5.00 g, 30 
mmol) was dissolved in CH2Cl2 (100 m). Pyridine (4.84 mL, 0.060 mol) was introduced 
to the solution and the reaction vessel was cooled to 0 °C in an ice bath. Chloroacetyl 
chloride (2.60 mL, 30 mmol) was added dropwise to the solution over 1 h. After 2 h, the 
reaction was warmed to RT, diluted with 1M HCl (30 mL) and extracted with CH2Cl2 (30 
mL). The organic layer was then washed with NaHCO3 (30 mL), dried with Na2SO4, 
filtered, and concentrated in vacuo.  The resulting residue (8.25 g) was purified by flash 
column chromatography on silica gel (gradient elution: 0à30% EtOAc in hexane) to 
afford the title compound (6.47 g, 89% yield) as a clear oil: TLC (40% EtOAc in hexane) 
Rf = 0.6 (CAM); IR (film) 3036, 2957, 1748, 1497, 1437, 1410, 1352, 1314, 1271, 1258, 
1217, 1155, 1080, 1038, 1005, 978, 953, 926, 854, 785, 735, 696, 617 cm–1; 1H NMR 
(400MHz, CDCl3): 𝛿 7.46 (m, J = 3.2 Hz, 2H), 7.41 (m, J = 3.2 Hz, 3H), 6.01 (s, 1H), 
4.21(q, J = 15.2 Hz, 2H), 3.74 (s, 3H); 13C NMR (100MHz, CDCl3): 𝛿 168.5, 166.8, 
133.0, 129.6, 128.9, 127.7, 75.6, 52.8, 40.6; HRMS exact mass calc’d for C11H11ClO4Na 
[M + Na]+= 265.0204, found 265.0239. 

 
22a (S)-methyl 2-(2-azidoacetoxoxy)propanoate. Methyl 2-(2-chloroacetoxy)propanoate 
(10.2 g, 41.9 mmol) was dissolved in 2-butanone (160 mL), sodium azide (5.45 g, 83.8 
mmol) was added, and the reaction was heated to 100 °C in an oil bath. Reaction progress 
was monitored by NMR on an aliquot. After 16 h, the reaction was cooled to RT and 
concentrated in vacuo. The resulting product (7.75 g, 99% yield) obtained as a clear oil 
and used without further purification: IR (film) 2998, 2959, 2106, 1744, 1452, 1368, 
1281, 1180, 1094, 1045, 980 cm–1; 1H NMR (400 MHz, CDCl3): δ 5.22 (q, J=7.1 Hz, 
1H), 3.97 (d, J=7.1 Hz, 2H), 3.78 (s, 3H), 1.55 (d, J=7.1 Hz, 3H); 13C NMR (100 MHz, 
CDCl3): δ 170.4, 167.7, 69.6, 52.4, 49.9, 16.7; HRMS submitted. 
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22b Methyl 2-((azidocarbonyl)oxy)-2-phenylacetate. Methyl 2-((chlorocarbonyl)oxy)-2-
phenylacetate (5.27 g, 21.8 mmol) was dissolved in 2-butanone (140 mL), sodium azide 
(3.79 g, 58 mmol) was added, and the reaction was heated to 100 °C in an oil bath. 
Reaction progress was monitored by NMR on an aliquot. After 24 h, the reaction vessel 
was cooled to RT and then concentrated in vacuo. The resulting clear oil (5.10 g) was 
purified by flash column chromatography on silica gel (gradient elution: 0à30% EtOAc 
in hexane) yielding the desired product (5.09 g, 94% yield) as a clear oil: IR (film): 2957, 
2106, 1746, 1437, 1275, 1217, 1167, 1038, 976, 733, 696 cm–1; 1H NMR (400 MHz, 
CDCl3): δ 7.46 (d, J=2.7 Hz, 2H), 7.42 (m, J=1.5 Hz, 3H), 6.04 (s, 1H), 4.04 (d, J=17.2 
Hz, 1H), 4.04 (d, J = 16.9 Hz, 1H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 168.6, 
167.8, 133.0, 129.6, 128.9, 127.7, 75.3, 52.8, 50.0; HRMS exact mass calc’d 
C11H11N3O4Na [M + Na]+ = 272.0642, found 272.0644.  

14a 2-methoxy-9H-indeno[2,1-b]pyridine. 5-methoxy-3,6-dihydro-2H-1,4-oxazin-2-one 
(50 mg, 0.38 mmol) was dissolved in toluene (3.0 mL) and introduced to 1,8-
Diazabicyclo[5.4.0]undec-7-ene (85 𝜇L, 0.57 mmol). 2-ethynylbenzaldehyde (74 mg, 
0.57 mmol) was added slowly and the reaction vessel was heated in an oil bath (bath 
temp. 120 °C). After 18 h, the reaction was cooled to RT, transferred to a separatory 
funnel, and partitioned between sat. aq. NH4Cl (10 mL) and EtOAc (10 mL). The organic 
layer was removed and the aqueous portion was extracted with EtOAc (3 x 10 mL). The 
combined organic layers were washed with brine (10 mL), dried (Na2SO4), filtered 
through Celite, and concentrated in vacuo.  The resulting residue (82 mg) was purified by 
flash column chromatography on silica gel (gradient elution: 20%à80% of CHCl3 in 
hexane) to afford the title compound (57 mg, 77% yield) as a yellow-tinted oil: TLC 
(50% CHCl3/Hex) Rf=0.20 (KMnO4); IR (film) 3044, 2983, 2948, 2901, 1594, 1586, 
1463, 1382, 1307, 1297, 1186, 1167, 1029, 1000, 828, 772, 744, 714, 668 cm–1; 1H NMR 
(400MHz, CDCl3,) 𝛿 7.88 (d, J = 8.6 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.4 
Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.26 (t, J = 7.4 Hz, 1H), 4.00 (s, 3H), 3.87 (s, 2H); 13C 
NMR (100 MHz, CDCl3) 𝛿 163.9, 162.5, 140.4, 139.8, 130.0, 128.4, 126.9, 126.0, 125.0, 
119.2, 108.7, 53.7, 38.6; HRMS Exact mass calc’d for  C13H9NONa [M + Na]+ = 
198.0913, found 198.0913. 
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14b 2-methoxy-4-phenyl-9H-indeno[2,1-b]pyridine. 5-methoxy-3,6-dihydro-2H-1,4-
oxazin-2-o ne (24.1 mg, 0.19 mmol) was dissolved in toluene (4 mL). The reaction flask 
was fitted with a Dean-Stark apparatus and condenser, 1,8-Diazabicyclo[5.4.0]undec-7-
ene (42 𝜇L, 0.281 mmol) was added, and the reaction was heated in an oil bath (bath 
temp. 130 °C). In a separate flask, a solution of 2-(phenylethynyl)benzaldehyde (46 mg, 
0.22 mmol) in toluene (2 mL) was prepared and added to the reaction vessel via a syringe 
pump over 1h. After 24h, the reaction was cooled to RT, diluted with sat. aq. NH4Cl (10 
mL), and extracted with EtOAc (10 mL). The organic layer was removed and the aqueous 
portion was extracted with additional EtOAc (2 x 10 mL). The combined organic layers 
were washed with brine (10 mL), dried with Na2SO4, filtered, and concentrated in vacuo.  
The resulting residue (118 mg) was purified by flash column chromatography on silica 
gel (gradient elution: 0à20% EtOAc in hexane) to afford the title compound (5.5 mg, 
10% yield) as a yellow-tinted powder: TLC (10% EtOAc/Hexanes) Rf = 0.55 (KMnO4); 
IR (film): 3057, 3020, 2945, 1685, 1591, 1560, 1498, 1477, 1460, 1444, 1396, 1351, 
1242, 1214, 1194, 1113, 1048, 1027, 862, 767, 745 cm–1; 1H NMR (400MHz, CDCl3,) 𝛿 
7.51 (m, J = 7.4 Hz, 4H), 7.19 (t, J = 7.4 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 7.4 
Hz, 1H), 6.60 (s, 1H), 4.03 (s, 3H), 3.94 (s, 2H); 13C NMR (100 MHz, CDCl3) 𝛿 163.6, 
163.3, 147.7, 140.7, 139.7, 138.6, 128.4, 128.3, 126.4, 125.8, 124.7, 121.8, 109.4, 53.8, 
38.7; HRMS exact mass calc’d for C19H15NONa [M + Na]+ = 296.1045, found 296.1044. 
 

14c 4-butyl-2-methoxy-9H-indeno[2,1-b]pyridine. 5-methoxy-3,6-dihydro-2H-1,4-
oxazin-2-one (30 mg, 0.23 mmol) was dissolved in toluene (1.5 mL), 1,8-
Diazabicyclo[5.4.0]undec-7-ene (42 𝜇L, 0.27 mmol) was added, and the reaction vessel 
heated in an oil bath (bath temp. 130 °C). In a separate flask, a solution of 2-
(phenylethynyl) benzaldehyde (55 mg, 0.29 mmol) in toluene (1 mL) was added to the 
reaction vessel via syringe pump over 2.5 h. After 24 h, the reaction was cooled to RT, 
diluted with sat. aq. NH4Cl (10 mL), and extracted with EtOAc (10 mL). The organic 
layer was removed and the aqueous portion was extracted with additional EtOAc (2 x 10 
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mL). The combined organic layers were washed with brine (10 mL), dried with Na2SO4, 
filtered, and concentrated in vacuo.  The resulting residue (54 mg) was purified by flash 
column chromatography on silica gel (gradient elution: 3%à6% EtOAc in hexanes with 
additives of 2% acetic acid and 3% CHCl3) to afford the title compound (7.7 mg, 13%) as 
a yellow-tinted oil: TLC (10% CHCl3, 5% EtOAc, 85% n-Hexanes) Rf = 0.24 (KMnO4); 
IR (film): 2956, 1597, 1570, 1381, 1345, 1320, 1192, 1161, 1050, 855, 743, 671, 665 
cm–1; 1H NMR (400MHz, CDCl3,) 𝛿 7.70 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 7.4 Hz, 1H), 
7.37 (t, J = 7.4 Hz, 1H), 7.28 (t, J = 8.2 Hz, 1H), 6.53 (s, 1H), 4.00 (s, 3H), 3.89 (s, 2H), 
2.97 (t, J = 7.9 Hz, 2H), 1.74 (m, J = 2.3 Hz, 2H), 1.70 (t, J = 2.0 Hz, 2H), 1.51 (m, J = 
7.4 Hz, 2H), 0.97 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) 𝛿 163.9, 162.9, 149.2, 
140.8, 140.5, 127.0, 126.9, 125.4, 124.9, 121.9, 108.7, 76.7, 53.6, 38.9, 33.2, 30.9, 22.6, 
13.9; HRMS submitted. 

15a 2-methoxy-3-methyl-9H-indeno[2,1-b]pyridine. 5-methoxy-6-methyl-3,6-dihydro-
2H-1,4-oxazin-2-one (32 mg, 0.22 mmol) was dissolved in toluene (0.5 mL), 1,8-
Diazabicyclo[5.4.0]undec-7-ene (31 𝜇L, 0.25 mmol) was added, and the reaction vessel 
was heated in an oil bath (bath temp. 100 °C). In a separate flask, a solution of 2-
ethynylbenzaldehyde (33 mg, 0.25 mmol) in toluene (0.5 mL) was prepared and added to 
the reaction vessel in portions over 1 h, approximately 0.2 mL every 10 min. After 24 h, 
the reaction was cooled to RT, diluted with sat. aq. NH4Cl (10 mL), and extracted with 
EtOAc (10 mL). The organic layer was removed and the aqueous portion was extracted 
with additional EtOAc (2 x 10 mL). The combined organic layers were washed with 
brine (10 mL), dried (Na2SO4), filtered, and concentrated in vacuo.  The resulting residue 
(45 mg) was purified by flash column chromatography on silica gel (gradient elution: 
0à20% EtOAc in hexanes) to afford the title compound (11 mg, 47% yield) as a yellow-
tinted oil: TLC (40% EtOAc/hexanes) Rf=0.71 (KMnO4); IR (film) 3854, 3745, 3675, 
3588, 2373, 2370, 2321, 1734, 1696, 1646, 1636, 1617, 1576, 1521, 1472, 1463, 1457, 
1437, 1393, 1339, 1315, 1294, 1239, 1203, 1179, 1036, 942, 768, 715 cm–1; 1H NMR 
(400MHz, CDCl3) 𝛿 7.73 (s, 1H), 7.61 (d, J=7.4 Hz, 1H), 7.51 (d, J=7.4 Hz, 1H), 7.35 (t, 
J = 7.4 Hz, 1H), 7.25 (t, J=7.4 Hz, 1H), 4.04 (s, 3H), 3.84 (s, 2H), 2.27 (s, 3H); 13C NMR 
(100 MHz, CDCl3) 𝛿 162.2, 159.4, 140.7, 140.2, 130.2, 128.3, 126.8, 125.7, 124.9, 119.1, 
118.7, 53.67, 38.3, 16.4; HRMS Exact mass calc’d for  C14H14NO [M+H]+ = 212.1070, 
found 212.1071. 
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15b 2-methoxy-3-methyl-4-phenyl-9H-indeno[2,1-b]pyridine. 6-methyldihydrooxazinone 
(43 mg, 0.30 mmol) was dissolved in toluene (1 mL), 1,8-Diazabicyclo[5.4.0]undec-7-
ene (45 𝜇L, 0.30 mmol) was added, and the reaction vessel was heated to reflux in an oil 
bath (bath temp. 130 °C). In a separate flask, a solution of 2-
(phenylethynyl)benzaldehyde (74.0 mg, 0.36 mmol) in toluene (2 mL) was prepared and 
added to the reaction vessel in portions over 20 min. After 24 h, the reaction was cooled 
to RT, diluted with sat. aq. NH4Cl (10 mL), and extracted with EtOAc (10 mL). The 
organic layer was removed and the aqueous portion was extracted with additional EtOAc 
(2 x 10 mL). The combined organic layers were washed with brine (10 mL), dried 
(Na2SO4), filtered, and concentrated in vacuo.  The resulting residue (69 mg) was purified 
by flash column chromatography on silica gel (gradient elution: 0à50% EtOAc in 
hexane with additive of 50% toluene) to afford the title compound (46 mg, 54% yield) as 
a yellow-tinted oil: TLC (20% EtOAc/hexanes) Rf = 0.29 (KMnO4); IR (film) 3855, 
3059, 2946, 2857, 1608, 1583, 1567, 1443, 1374, 1345, 1329, 1301, 1270, 1251, 1207, 
1189, 1168, 1137, 1095, 1072, 1056, 1028, 1008, 970, 948, 918, 787, 766, 753, 720, 668, 
640, 612 cm–1; 1H NMR (400MHz, CDCl3,) 𝛿 7.55 (m, J=7.4 Hz, 4H), 7.28 (m, J = 
7.4Hz, 2H), 7.15 (t, J=7.4 Hz, 1H), 7.00 (t, J=7.4 Hz, 1H), 6.33 (d, J=7.4 Hz, 1H), 4.08 
(s, 3H), 3.90 (s, 2H), 1.99 (s, 3H); 13C NMR (100 MHz, CDCl3) 𝛿 162.0, 159.0, 146.0, 
140.9, 140.4, 138.0, 128.9, 128.3, 127.9, 126.6, 126.4, 125.3, 124.6, 121.3, 116.7, 53.9, 
38.4, 12.6; HRMS Exact mass calc’d for C20H17NONa [M + Na]+ = 288.1383, found 
288.1384. 
 

15c 4-butyl-2-methoxy-3-methyl-9H-indeno[2,1-b]pyridine. 5-methoxy-6-methyl-3,6-
dihydro-2H-1,4-oxazin-2-one (64 mg, 0.24 mmol) was dissolved in toluene (3 mL). The 
reaction flask was fitted with a Dean-Stark apparatus and condenser, 1,8-
Diazabicyclo[5.4.0]undec-7-ene (122 𝜇L, 0.82 mmol) was added, and the reaction vessel 
was heated to reflux in an oil bath (bath temp. 130 °C). In a separate flask, a solution of 
2-(hexynyl)benzaldehyde (100 mg, 0.54 mmol) in toluene (2 mL) was prepared and 
added to the reaction vessel in portions over 20 min. After 24 h, the reaction was cooled 
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to RT, diluted with sat. aq. NH4Cl (10 mL), and extracted with EtOAc (10 mL). The 
organic layer was removed and the aqueous portion was extracted with additional EtOAc 
(2 x 10 mL). The combined organic layers were washed with brine (10 mL), dried 
(Na2SO4), filtered, and concentrated in vacuo.  The resulting residue (100 mg) was 
purified by flash column chromatography on silica gel (gradient elution: 0à10% EtOAc 
in hexane) to afford the title compound (18 mg, 30% yield) as a yellow-tinted oil: TLC 
(5% EtOAc in hexane) Rf = 0.34 (KMnO4); IR (film) 3745, 2956, 2928, 2872, 2858, 
1735, 1700, 1696, 1685, 1653, 1576, 1520, 1507, 1472, 1453, 1377, 1339, 1287, 1271, 
1234, 1207, 1189, 1170, 1159, 1143, 1124, 1102, 1059, 1030, 1018, 999, 944, 923, 784, 
751, 719, 668 cm–1; 1H NMR (400MHz, CDCl3,) 𝛿 7.74 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 
7.4 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.28 (t, J = 7.4 Hz, 1H), 4.02 (s, 3H), 3.85 (s, 2H), 
3.05 (t, J = 7.4 Hz, 2H),  2.24 (s, 3H), 1.58 (m, J = 7.4 Hz, 4H), 1.02 (t, J = 7.4 Hz, 3H); 
13C NMR (100 MHz, CDCl3) 𝛿 161.8, 159.3, 146.8, 141.1, 140.9, 126.8, 126.7, 125.1, 
124.9, 121.6, 116.1, 53.7, 38.6, 30.7, 29.3, 23.2, 14.0, 11.0; HRMS Exact mass calc’d for 
C18H21NOH [M+H]+ = 268.1696, found 268.1697. 

16a 2-methoxy-3-phenyl-9H-indeno[2,1-b]pyridine. 5-methoxy-6-phenyl-3,6-dihydro-
2H-1,4-oxazin-2-one (40 mg, 0.20 mmol) was dissolved in toluene (20 mL). The reaction 
flask was fitted with a Dean-Stark apparatus and condenser, 1,8-
Diazabicyclo[5.4.0]undec-7-ene (44 𝜇L, 0.29 mmol) was added, and the reaction vessel 
was heated to reflux in an oil bath (bath temp. 130 °C). In a separate flask, a solution of 
2-ethynylbenzaldehyde (51 mg, 0.39 mmol) in toluene (5 mL) was prepared and added to 
the reaction vessel after 5 min. After 24 h, the reaction was cooled to RT, diluted with 
sat. aq. NH4Cl (10 mL), and extracted with EtOAc (10 mL). The organic layer was 
removed and the aqueous portion was extracted with additional EtOAc (2 x 10 mL). The 
combined organic layers were washed with brine (10 mL), dried (Na2SO4), filtered, and 
concentrated in vacuo.  The resulting residue (141 mg) was purified by flash column 
chromatography on silica gel (gradient elution: 0à40% EtOAc in hexane) to afford the 
title compound (18 mg, 34% yield) as a yellow-tinted oil: TLC (10% EtOAc/hexanes) 
Rf=0.40 (KMnO4); IR (film) 2946, 2346, 1603, 1581, 1560, 1457, 1443, 1427, 1391, 
1343, 1314, 1286, 1261, 1226, 1197, 1174, 1075, 1030, 1008, 998, 947, 905, 779, 765, 
751, 697, 668 cm–1; 1H NMR (400MHz, CDCl3,) 𝛿 7.94 (s, 1H), 7.66 (m, J = 7.8 Hz, 
1H), 7.60 (m, J = 7.8 Hz, 2H), 7.54 (m, J = 7.8 Hz, 1H), 7.47 (m, J = 7.8 Hz, 2H), 7.44 
(m, J = 7.8 Hz, 1H), 7.33 (m, J = 7.8 Hz, 1H), 4.05 (s, 3H), 3.94 (s, 2H); 13C NMR (100 
MHz, CDCl3): 𝛿 161.3, 160.7, 140.6, 139.9, 137.5, 130.3, 129.4, 128.9, 127.4, 127.0, 
126.1, 125.0, 122.8, 119.4, 53.9, 38.5; HRMS Exact mass calc’d for C19H16NO [M+H]+= 
274.1226, found 274.1228.  
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16b 2-methoxy-3,4-phenyl-9H-indeno[2,1-b]pyridine. 5-methoxy-6-phenyl-3,6-dihydro-
2H-1,4-oxazin-2-one (31 mg, 0.15 mmol) was dissolved in toluene (4 mL). The reaction 
flask was fitted with a Dean-Stark apparatus and condenser, 1,8-
Diazabicyclo[5.4.0]undec-7-ene (33 𝜇L, 0.220 mmol) was added, and the reaction vessel 
was heated to reflux in an oil bath (bath temp. 130 °C). In a separate flask, a solution of 
2-(phenylethynyl)benzaldehyde (45 mg, 0.22 mmol) in toluene (2 mL) was prepared and 
added to the reaction vessel in portions over 20 min. After 24 h, the reaction was cooled 
to RT, diluted with sat. aq. NH4Cl (10 mL), and extracted with EtOAc (10 mL). The 
organic layer was removed and the aqueous portion was extracted with additional EtOAc 
(2 x 10 mL). The combined organic layers were washed with brine (10 mL), dried 
(Na2SO4), filtered, and concentrated in vacuo.  The resulting residue (60 mg) was purified 
by flash column chromatography on silica gel (gradient elution: 0à20% EtOAc in 
hexane, additive of 50% toluene) to afford the title compound (11 mg, 22% yield) as a 
yellow-tinted oil: TLC (10% EtOAc/hexanes) Rf = 0.3 (KMnO4); IR (film) 3076, 3022, 
2947, 1564, 1495, 1456, 1439, 1373, 1344, 1260, 1217, 1057, 1026, 799, 756, 718, 698, 
644, 603 cm–1; 1H NMR (400MHz, CDCl3,): 𝛿 7.54 (d, J = 1.6 Hz, 1H), 7.29 (m, J = 1.6 
Hz, 3H), 7.18 (m, J = 1.6 Hz, 3H), 7.13 (m, J = 1.6 Hz, 5H), 7.09 (t, J = 1.6 Hz, 1H), 6.43 
(d, J = 7.8 Hz, 1H), 4.01 (s, 3H), 4.00 (s, 2H). 13C NMR (400 MHz, CDCl3): 𝛿 161.4, 
161, 140.8, 140.2, 137.2, 135.4, 130.9, 129.1, 128.2, 127.5, 127.4, 126.8, 126.6, 126.5, 
125.6, 124.7, 122.1, 121.7, 77.2, 54.1, 38.7; HRMS Exact mass calc’d for C25H19NONa 
[M + Na]+ = 372.1359, exact mass calc’d for [M2 + Na]+ = 721.2826, found = 
721.282568.  

16c 4-butyl-2-methoxy-3-phenyl-9H-indeno[2,1-b]pyridine. 5-methoxy-6-phenyl-3,6-
dihydro-2H-1,4-oxazin-2-one (31 mg, 0.15 mmol) was dissolved in toluene (4 mL). The 
reaction flask was fitted to a Dean-Stark apparatus and condenser, 1,8-
Diazabicyclo[5.4.0]undec-7-ene (45 𝜇𝐿, 0.30 mmol) was added, and the reaction vessel 
was heated to reflux in an oil bath (bath temp. 100 °C). In a separate flask, a solution of 
2-(hex-1-yn-1-yl)benzaldehyde (56 mg, 0.30 mmol) in toluene (2 mL) was prepared and 
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added to the reaction vessel in portions over 20 min. After 20 h, the reaction was cooled 
to RT, diluted with sat. aq. NH4Cl (10 mL), and extracted with EtOAc (10 mL). The 
organic layer was removed and the aqueous portion was extracted with additional EtOAc 
(2 x 10 mL). The combined organic layers were washed with brine (10 mL), dried 
(Na2SO4), filtered, and concentrated in vacuo.  The resulting residue (80 mg) was purified 
by flash column chromatography on silica gel (gradient elution: 0à8% EtOAc in hexane, 
additive of 50% toluene) to afford the title compound (25 mg, 50% yield) as a yellow-
tinted oil: TLC (10% EtOAc/hexanes) Rf = 0.3 (KMnO4); IR (film) 2956, 2926, 2859, 
1726, 1564, 1454, 1375, 1341, 1221, 1206, 1190, 1107, 1057, 1028, 1007, 945, 797, 758, 
721, 700 cm–1; 1H NMR (400MHz, CDCl3): 𝛿 7.70 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 7.5 
Hz, 1H), 7.46 (t, J = 7.0 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.30 (m, J = 7.0 Hz, 3H), 3.95 
(s, 2H), 3.93 (s, 3H), 2.76 (q, J = 8.2 Hz, 2H), 1.54 (m, J = 6.6 Hz, 2H), 1.30 (m, J = 7.4 
Hz, 2H), 0.80 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3): 𝛿 161.5, 147.1, 141.0, 
136.2, 130.3, 128.1, 127.1, 127.0, 126.8, 125.4, 124.9, 121.8, 7.210, 54.0, 38.9, 31.3, 
29.8, 22.9, 13.7; HRMS Exact mass calc’d for C23H24NO [M+H]+ = 352.1672, found 
352.1673. 
 
 
Chapter 3 Experimentals 
Compound 7 has been previously characterized.6  

 15 5,5-dimethoxypentanal. Following the procedure of Schreiber7, cyclopentene (5.0 g, 
74 mmol) was dissolved in dry dichloromethane (250 mL) and methanol (50 mL). The 
reaction vessel was cooled to –78 °C and connected to an ozonolysis flow reactor. The 
reaction was stirred until an iridescent blue remains in solution (3 h). Excess ozone is 
displaced with O2, followed by N2. p-Toluenesulfonic acid (1.12 g, 80 mmol) was added 
under inert gas. The reaction vessel was warmed to RT and stirred. After 1.5 h, NaHCO3 
(1.85 g, 30 mmol) was added to the system and stirred for 15 min. Dimethyl sulfide 
(10.77 mL, 2.0 mol) was introduced, stirred at RT for 12 h, and the heterogeneous 
mixture was concentrated. The resulting product was partitioned between CH2Cl2 (100 
mL) and H2O (75 mL). The aqueous layer was extracted with CH2Cl2 (2 x 100 mL). The 
combined organic layers were dried (Na2SO4) and concentrated in vacuo. The crude 
product (14 g) was contained desired product and was used without further purification: 
IR (film) 1722, 1192, 1152, 1121, 1059, 1009, 943, 920, 895 cm–1; 1H NMR (400 MHz, 
CDCl3,) 𝛿 9.77 (s, 1H), 4.37 (t, J = 8.4 Hz, 1H), 3.49 (t, J = 8.6 Hz, 2H), 3.32 (s, 6H), 
1.69 (m, J = 8.6 Hz, 2H), 1.64 (m, J = 8.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) 𝛿 
202.1, 100.9, 52.8, 40.9, 31.8, 17.2; HRMS submitted. 
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16 7,7-dimethoxyhept-1-yn-3-ol. 5,5-dimethoxypentanal (3.00 g, 21 mmol) was dissolved 
in THF (100 mL) and cooled to –78 °C. Ethynylmagnesium bromide (0.5 M in THF, 116 
mL, 58 mmol) was added to the reaction vessel via syringe over 2 h. After 2.5 h, the 
reaction was quenched with sat. aq. NH4Cl (100 mL) and the resulting aqueous layer was 
extracted with Et2O (2 x 100 mL). The combined organic layers were washed with brine, 
dried (Na2SO4), and concentrated in vacuo. The residue (2.50 g) was purified via flash 
column chromatography on silica gel (gradient elution: 25à70% EtOAc in hexane), 
yielding desired product (1.41 g, 40%) as a colorless oil: TLC (30% EtOAc in hexane) Rf 
= 0.26 (KMnO4); IR (film) 2089, 2095, 2116, 2832, 2949 cm–1; 1H NMR (400MHz, 
CDCl3,): 𝛿 4.40 (t, J = 5.8, 1H), 4.38 (t, J = 5.8, 1H), 3.33 (s, 6H), 2.48 (s, 1H), 1.84 (br s, 
1H), 1.74 (m, J = 5.5 Hz, 2H), 1.64 (m, J = 5.5 Hz, 2H), 1.56 (m, J = 5.5 Hz, 2H); 13C 
NMR (100 MHz, CDCl3): 𝛿 104.4, 73.0, 62.0, 52.8, 52.7, 37.3, 32.0, 20.2; HRMS 
submitted. 

 
17 (((7,7-dimethoxyhept-1-yn-3-yl)oxy)methyl)benzene. 7,7-dimethoxyhept-1-yn-3-ol 
(158 mg, 0.92 mmol) was dissolved in THF (5 mL). In a separate reaction vessel, sodium 
hydride (50% dispersion on oil, 46 mg, 1.10 mmol) was taken up in DMF (5 mL) and the 
flask was cooled to 0 °C. The starting material in THF is transferred to the reaction 
funnel, followed by benzyl bromide (0.13 mL, 1.10 mmol). After 3 h, the reaction 
mixture was diluted in sat. aq. NH4Cl (10 mL) and H2O (10 mL) and extracted with 
EtOAc (3 x 30 mL). The combined organic layers were washed with brine, dried 
(Na2SO4), and concentrated in vacuo. The resulting residue (363 mg) was purified by 
flash column chromatography on silica gel (gradient elution: 0à30% EtOAc in hexane) 
to afford the title compound (67 mg, 28%) as a colorless oil: TLC (30% EtOAc in 
hexane) Rf = 0.64 (KMnO4); IR (film) 2112, 2833, 2868, 2947, 3032, 3063, 3088 cm–1; 
1H NMR (400MHz, CDCl3) 𝛿 7.35 (m, J = 6.3 Hz, 4H), 7.32 (m, J = 5.5 Hz, 1H), 4.81 (d, 
J = 8.9 Hz, 1H), 4.49 (d, J = 5.5 Hz, 1H), 4.36 (t, J = 5.5 Hz, 1H), 4.08 (t, J = 5.5 Hz, 
1H), 3.31 (s, 6H), 2.48 (s, 1H), 1.78 (m, J = 7.1 Hz, 2H), 1.61 (m, J = 7.0 Hz, 2H), 1.52 
(m, J = 5.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) 𝛿 137.8, 128.5, 128.4, 128.0, 127.7, 
104.4, 82.7, 74.1, 70.5, 68.2, 52.7, 35.4, 32.1, 20.4; HRMS submitted. 
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18 5-(benzyloxy)hept-6-ynal. (((7,7,-dimethoxyhept-1-yn-3-yl)oxy)methyl)benzene (61 
mg, 0.23 mmol) was dissolved in THF (13 mL). 3M HCl (13 mL) was added via syringe. 
After 25 h, the reaction was diluted with sat. aq. NaHCO3 (15 mL) and the resulting 
aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layer was 
washed with brine, dried (Na2SO4), and concentrated in vacuo. The crude product (109 
mg) was purified via flash column chromatography on silica gel (gradient elution: 
0à20% EtOAc in hexane) to afford the desired product (18 mg, 36%) as a colorless oil: 
TLC (10% EtOAc in hexane) Rf = 0.44 (CAM); 1H NMR (400MHz, CDCl3,) 𝛿 9.76 (s, 
1H), 7.35 (d, J = 4.3 Hz, 2H), 7.33 (m, J = 5.0 Hz, 2H), 7.30 (m, J = 5.5 Hz, 1H), 4.80 (d, 
J = 11.7 Hz, 1H), 4.49 (d, J = 11.8 Hz, 1H), 4.11 (t, J = 5.5 Hz, 1H), 2.49 (s, 1H), 2.45 (t, 
J = 7.4 Hz, 2H), 1.83 (m, J = 7.0 Hz, 2H), 1.80 (m, 2H, J = 7.8 Hz); HRMS submitted. 

 
19 (Z)-1-acetyl-3-(5-(benzyloxy)hept-6-yn-1-ylidene)piperazine-2,5-dione. 5-
(benzyloxy)hept-6-ynal (14 mg, 0.063 mmol) was diluted with DMF (0.5 mL) and 
introduced to 1,4-diacetylpiperazine-2,5-dione (14 mg, 0.069 mmol). Oxygen was 
evacuated from the reaction vessel and nitrogen was backfilled three times. Cesium 
carbonate (23 mg, 0.069 mmol) was added and the oxygen evacuation and nitrogen 
backfill was repeated three times. After stirring for 24 h, the reaction was quenched with 
H2O (10 mL). The resulting aqueous layer was extracted with EtOAc (3 x 5 mL). The 
combined organic layers were washed with brine, dried (NaSO4), and concentrated in 
vacuo. The crude product (26 mg) was purified via flash column chromatography on 
silica gel (gradient elution: 25à70% EtOAc in hexane) to afford the title compound (3.5 
mg, 16%) as a colorless oil: TLC (40% EtOAc in hexane) Rf = 0.22 (CAM); 1H NMR 
(400MHz, CDCl3,) 𝛿 7.36 (m, J = 4.3 Hz, 2H), 7.34 (m, J = 4.7 Hz, 2H), 7.31 (m, J = 5.1 
Hz, 1H), 6.29 (t, J = 7.5 Hz, 1H), 4.60 (s, 2H), 4.42 (s, 2H), 4.14 (t, J = 2.0 Hz, 1H), 2.53 
(s, 3H), 2.23 (q, J = 7.5 Hz, 2H), 1.81 (q, J = 7.5 Hz, 2H), 1.77 (m, J = 6.3 Hz, 2H); 
HRMS submitted. 
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