
W&M ScholarWorks W&M ScholarWorks 

Undergraduate Honors Theses Theses, Dissertations, & Master Projects 

2013 

The Pseudophosphatase MK-STYX Induces Neuronal The Pseudophosphatase MK-STYX Induces Neuronal 

Differentiation in PC12 Cells Differentiation in PC12 Cells 

Brittany M. Flowers 
College of William and Mary 

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses 

Recommended Citation Recommended Citation 
Flowers, Brittany M., "The Pseudophosphatase MK-STYX Induces Neuronal Differentiation in PC12 Cells" 
(2013). Undergraduate Honors Theses. Paper 773. 
https://scholarworks.wm.edu/honorstheses/773 

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235417582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/773?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F773&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


The Pseudophosphatase MK-STYX Induces Neuronal Differentiation in PC12 Cells 

A thesis submitted in partial fulfillment of the requirement for the degree of 
Bachelor of Science in the Department of Biology from 

The College of William and Mary 

by 

Brittany Maria Flowers 

Accepted for ______________________________
      

______________________________
       Dr. Shantá Hinton, Advisor

 
______________________________

       Dr. Lizabeth Allison

______________________________
       Dr. Mark Forsyth

______________________________
       Dr. Randolph Coleman 

Williamsburg, VA 
April 30, 2013



ABSTRACT 

 MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/
tyrosine binding protein] is a pseudophosphatase of the MAPK phosphatase family. 
Though structurally related to the MAPK dual specificity phosphatases, MK-STYX lacks 
both the critical nucleophilic cysteine and adjacent histidine residues in the active site 
signature motif (HCX5R) required for catalysis. Thus, MK-STYX is catalytically 
inactive. Despite its lack of catalytic activity, MK-STYX maintains its ability to bind 
phosphorylated proteins but not dephosphorylate them. This thesis focuses on the role of 
MK-STYX in neuronal differentiation signal transduction cascades. The rat 
pheochromocytoma (PC12) cell line was used as a model system to study neuronal 
differentiation. Prior studies have shown that stimulation by neurotrophin nerve growth 
factor initiates sustained activation of a Ras-dependent MAPK phosphorylation cascade. 
Specifically, it is the sustained activation of extracellular signal-regulated kinase (ERK) 
1/2 that leads to neuronal differentiation in PC12 cells. The results presented here 
confirm that MK-STYX causes neuronal differentiation in PC12 cells, suggesting a role 
in modulation of the MAPK pathway. Initially, MK-STYX modulation of the small G-
protein Ras was investigated, because activation of Ras is known to lead to activation of 
the MAPK signal transduction cascade. This thesis shows that MK-STYX causes a very 
transient decrease in the activation of Ras. To further investigate the role of MK-STYX in 
the MAPK cascade, the kinase activity of MEK was inhibited.Without MEK activation of 
ERK 1/2, PC12 cells should not be able to differentiate. However, despite the presence of 
an inhibitor, MK-STYX continued to induce neuronal differentiation, suggesting MK-
STYX acts independently of the MAPK pathway. This finding led to investigation of the 
small G-protein, RhoA. RhoA is involved in actin cytoskeleton remodeling. Prior studies 
have shown that activation of RhoA inhibits the initiation of neuronal outgrowths, 
whereas inactivation of RhoA promotes it. These studies provide evidence that MK-
STYX decreases activation RhoA leading to the induction of neurite outgrowth. In 
summary, this thesis demonstrates that MK-STYX can induce PC12 neuronal 
differentiation through inactivation of RhoA and independently of the MAPK pathway. 
This strongly supports a model in which the pseudophosphatase MK-STYX has a critical 
role as a regulator in PC12 neuronal differentiation.
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INTRODUCTION

Phosphorylation Signaling Cascades

 Signal transduction cascades are critical for controlling and coordinating cellular 

responses. Protein phosphorylation is an important post-translational modification of 

these transduction cascades. Phosphorylation modifications induce reversible protein 

conformational changes to regulate protein activity. In mammalian cells, the hydroxyl 

group of threonine, serine, or tyrosine amino acid residues can be reversibly 

phosphorylated by kinases and phosphatases to control protein-protein interactions.  

Kinases catalyze the transfer of a phosphoryl group (PO32-) from adenosine triphosphate 

(ATP) to the hydroxyl group of the target protein, whereas phosphatases catalyze the 

removal of the phosphoryl group and regeneration of the hydroxyl group (Roskoski, 

2012). Protein phosphorylation and de-phosphorylation allow kinases to control the 

amplitude of a signal response and phosphatases to control the rate and duration of a 

response (Hornberg et al., 2005). This control of cellular signal responses is critical to the 

regulation of neuronal development. Pseudoenzymes such as pseudophosphatases and 

pseudokinases add another layer of complexity to the control of theses signal transduction 

cascades. These pseudoenzymes are catalytically inactive but maintain the ability to bind 

target substrates. Therefore, it is critical to understand the role these pseudoenzymes play 

in the regulation of signal transduction cascades. This thesis focuses on the role of 

pseudophosphatase MK-STYX in neuronal differentiation signal transduction cascades.
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The Rat Pheochromocytoma (PC12) cell line

 The rat pheochromocytoma (PC12) cell line is a model system for the study of 

neuronal signal transduction. PC12 cells respond reversibly to simulation by extracellular 

neurotrophins such as nerve growth factor (NGF) causing a cessation of cellular 

proliferation and induction of neuronal differentiation into sympathetic-like neurons 

(Fujita et al., 1989).  Unlike sympathetic neurons, PC12 cells do not require NGF for 

survival (Green and Tischler, 1976). NGF mediates a cellular response through binding 

receptor tyrosine kinases (RTKs). RTKs are transmembrane receptors. A subfamily of the 

RTKs are the neurotrophic tyrosine kinase (Trk) receptors; TrkA, TrkB, and TrkC 

(Kaplan and Stephens, 1994;Choura and Rebaï, 2011;Basson, 2012). TrkA has a high 

ligand affinity for NGF (Weismann and de Vos, 2001;Talebian et al., 2013).  Upon ligand 

binding, TrkA homodimerizes and trans-autophosphorylates the tyrosine residues of its 

cytoplasmic domain allowing proteins to bind the phospho-tyrosine residues leading to 

the recruitment of adaptor proteins with Src homology 2 (SH2) domains to activate 

intracellular signaling pathways (Kaplan and Stephens 1994; Cheung and Ip, 2008; Lim 

and Pawson, 2010). The activity of kinases initiates the phosphorylation cascade of the 

signaling pathway.  

Kinases in Neuronal Development

 The most well-characterized neuronal signal transduction pathways are the 

mitogen activated protein kinase (MAPK) cascade, phosphatidylinositol 3-kinase (PI3K) 

cascade, and the phospholipase C cascade (Hausott et al., 2009). The MAPK and PI3K 

cascades are strongly associated with the regulation of neuronal development, whereas 
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the phospholipase C pathway is mainly involved in neurotrophin release (Canossa et al., 

1997; Hausott et al., 2009). It is well characterized that sustained activation of the MAPK 

cascade induces neuronal differentiation in PC12 cells. 

Mitogen Activated Protein Kinase Signaling 

 The mechanism of MAPK signal transduction is a three-tier phosphorylation 

cascade of MAPK kinase kinase, MAPK kinase, and MAPK (Figure 1). GTPase Ras 

activates the three-tiered MAPK cascade. As a GTPase, Ras cycles between an inactive 

GDP bound form and an active GTP bound form (Wennerberg et al., 2005). These 

conversions are tightly regulated by guanine nucleotide exchange factors (GEFs) and 

GTPase activating proteins (GAPs). GEFs increase the GDP/GTP exchange rate and 

GAPs stimulate intrinsic GTPase activity (Bishop and Hall, 2000).  Adaptor proteins 

Grb2 and SOS mediate RTK activation to Ras (Kao et al., 2001). This action occurs at the 

plasma membrane. Ras is targeted to the membrane due to lipid modifications of its 

cysteine-aliphatic-aliphatic-X (CAAX) motif (Wennerberg et al., 2005).  Ras activates 

cytoplasmic effectors MAPK kinase kinase, MAPK kinase, and MAPK to induce cellular 

proliferation, differentiation, and apoptosis dependent on the intensity and duration of the 

signal response (Rojas et al., 2012). In neuronal cells, it is the activation of MAPK that 

regulates the transcription of genes for neuronal development. 
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Figure 1.  MAPK and MK-STYX signaling cascade in PC12 cells. Neurotrophins such 

as NGF induce the homodimerization and trans-autophosphorylation of the receptor 

tyrosine kinase (RTK). This signal is mediated to the small-G-protein Ras. Ras cycles 

between an inactive-GDP bound form and an active GTP-bound form. Ras can activate 

the MAPK phosphorylation cascade. Sustained activation of MAPK, also known as 

ERK1/2, induces neuronal differentiation in PC12 cells. Mitogen activated phosphatases 

(MKPs) inactivate MAPKs. Due to shared structural homology with active MKPs, 

pseudophosphatase MK-STYX may directly affect activation of MAPK, indirectly affect 

the activity of MKPs, or play a role in a different signal transduction pathway.
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Mitogen Activated Protein Kinase 

 In mammalian cells, the activation of the different families of MAPKs initiates 

various cellular responses. The main families consist of the extracellular signal-regulated 

kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 kinases (Roskoski, 2012). Each 

MAPK family is based on different threonine-Xxx-tyrosine motifs (Peng et al., 2010).  

Ras can activate the signal transduction pathway for all MAPK families. Though the p38 

and JNK family kinases primarily play a role in cellular stress responses, p38 and JNK 

activation has been found to play an important role in morphological changes associated 

with neuronal differentiation of PC12 cells (Kim et al., 2004; Sarina et al., 2013). 

However, it is well characterized that the sustained activation of ERK1/2 induces 

neuronal differentiation in PC12 cells. 

 Distinguishing it from the other MAPK families, ERK has a threonine-glutamic 

acid-tyrosine motif (Peng et al., 2010). ERK1 and ERK2 have 84% sequence identity 

sharing many, if not all, functions (Roskoski, 2012). ERK1/2 is activated by 

phosphorylation of threonine and tyrosine residues by dual specificity kinase, MAPK 

kinase (MEK) (Sweatt, 2001). Activation of ERK1/2 leads to the activation of 

transcription factors important for neuronal survival and plasticity (Sweatt, 2001; 

Cavanaugh et al., 2001). Temporal regulation of ERK1/2 is very important for the 

induction of neurite outgrowths. In PC12 cells, transient activation of ERK1/2 only 

induces cellular proliferation, whereas the sustained activation of ERK 1/2 leads to the 

induction of neuronal differentiation. This has been demonstrated through cellular 
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response to epidermal growth factor (EGF) and nerve growth factor (NGF) stimulus. 

NGF induces the sustained activation of ERK1/2 resulting in PC12 neuronal 

differentiation whereas EGF induces transient activation of ERK 1/2 resulting in PC12 

cellular proliferation (Nakafuku and Kaziro, 1993; Kao et al., 2001). Phosphatases 

catalyze the inactivation of ERK1/2 therefore regulating sustained or transient activation 

of ERK 1/2. Therefore, attention must be given to phosphatases as critical regulators of 

the rate and duration of signal responses. 

Protein Tyrosine Phosphatases in Neuronal Development

 Phosphatases are critical to regulating the phosphorylation cascades initiated by 

kinases. Unlike kinases which evolved from a common family, phosphatases evolved 

from structurally and mechanistically distinct families (Tonks, 2006). Protein tyrosine 

phosphatases (PTPs) are characterized by their catalytic signature motif: His-Cys-X5-Arg 

(HCX5R) (Pannider et al., 1998; Tonks, 2006).  PTPs can be divided between classical 

protein tyrosine phosphatases and dual-specificity phosphatases (Zhang, 2002; Anderson 

et al., 2004). The cysteine and arginine residues are critical for the PTP catalytic activity. 

PTPs catalyze protein dephosphorylation with a two step mechanism involving a 

nucleophilic attack of the phosphate by the sulfur atom of the cysteine residue, and 

function of the asparagine as a general acid for the protonating of the leaving group 

(Pannifer et al., 1998; Tonks, 2013).  Classical PTPs catalyze the removal of phospho-

tyrosine residues, whereas the dual-specificity phosphatases can accommodate both 

phospho-tyrosine and phospho-serine/phospho-tyrosine residues due to a broader active 

site (Tonks, 2006; Lim and Pawson, 2010). 
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PTPs can be positive or negative regulators of neuronal differentiation.  Studies have 

shown that the classical PTP, SHP-2, plays a positive role in the induction of PC12 

neuronal differentiation (Wright et al., 1997; Huang et al., 2012), whereas the classical 

PTP, SHP-1, negatively regulates the survival of neurons (Zhang, 2002). Similar to 

SHP-2, the dual-specificity phosphatase, PTEN, has been shown to promote neuronal 

differentiation (Lachyankar et al., 2000). Because prolonged activation of MAPK leads to 

neuronal differentiation of PC12 cells, this thesis focused research on the mitogen 

activated phosphatases (MKPs) family which dephosphorylate the MAPKs. 

Dual-specificity Mitogen Activated Phosphatases

  MKPs act antagonistically to the MAP kinases. Mammalian cells have 10 

catalytically active MKPs (Dickinson and Keyse, 2006; Caunt and Keyse, 2013). Dual-

specificity MKPs have a non-catalytic N-terminal cdc25 homology (CH2) domain and a 

C-terminal catalytic PTP domain (Tonks, 2006; Owens and Keyse, 2007). The CH2 

domain contains a kinase interaction motif (KIM) which mediates the specificity of 

interaction between the MKPs and the MAPK substrates (Caunt and Keyse, 2013; Tonks, 

2013). MKPs can recognize and inactivate a single class of MAP kinases or regulate 

more than one MAPK pathways (Owens and Keyse, 2007; Staples et al., 2010). MKP-1 

and MKP-2 are nuclear phosphatases that have substrate preferences for all three classes 

of MAPKs (Owens and Keyse, 2007). PC12 cell stimulation with EGF and NGF have 

been shown to induce an increase of MKP-1 and MKP-2 transcription (Misra-Press et al., 

1995). In constrast, in the case of MKP-3, a cytoplasmic phosphatase with a substrate 
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preference of ERK, transcription levels are increased only when stimulated with NGF in 

PC12 cells (Camps et al., 1998). MKP-3 expression is sustained for five days, suggesting 

its role in regulating sustained activation of MAPK induced by NGF stimulation (Camps 

et al., 1998). MKPs play an important role in the spatial-temporal regulation of MAPKs. 

However, phosphatases and kinases are not the sole regulators of phosphorylation 

cascades. Naturally occurring pseudo-enzymes are emerging as critical regulators of 

phosphorylation cascades. 

Pseudophosphatase MK-STYX

 Pseudo-enzymes are proteins that maintain the ability to bind the substrates of 

their active homologues but have amino acid substitutions rendering them catalytically 

inactive. Thus, they cannot catalyze the removal of phosphate groups. The prototype, 

pseudophosphatase STYX, named as an allusion for  the river of underworld, has a 

glycine substution for the nucleophilic cysteine rendering STYX catalytically inactive 

(Wishart et al., 1995). Sequence analysis of the STYX domain shows structural 

homology with the dual-specificity PTPs (Wishart and Dixon, 1998). 

Pseudophosphatases were thought to only function as “dominant-negative proteins” 

however our investigations strongly suggest that pseudophosphatase MK-STYX [MAPK 

(mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] is a 

critical regulator of signal transduction cascades. 

 MK-STYX is a pseudophosphatase member of the MKPs (Wishart et al., 1995; 

Hinton et al., 2010). MK-STYX is catalytically inactive due to phenylalanine and serine 

substitutions for critical active residues, histidine and nucleophilic cysteine, respectively 
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in the PTP signature motif (Tonks, 2006; Hinton et al., 2010). In the non-catalytic N-

terminal domain, MK-STYX has a cdc homology 25 (CH2) motif which is responsible 

for the specificity of MKP-MAPK interactions (Wishart and Dixon, 1998). MK-STYX is 

structurally homologous to active MKPs. Point mutations converting the phenyalalanine 

and serine residues to histidine and cysteine residues, respectively, generates a 

catalytically functional mutant of MK-STYX (Hinton et al., 2010).  As an inactive 

homolog to MKPs, we investigated the role of MY-STYX in neuronal differentiation of 

PC12 cells. 

Thesis Objectives

 Sustained activation of MAPK (ERK 1/2) induces neuronal differentiation in 

PC12 cells. MKPs regulate the duration of MAPK activation. Despite being catalytically 

inactive, MK-STYX shares structural homology with MKPs suggesting its role in 

neuronal differentiation of PC12 cells. This thesis investigated the role MK-STYX has in 

PC12 cell neuronal differentiation. The specific aims were as follows:

1) Does MK-STYX induce differentiation in PC12 cells? 

2) Does MK-STYX affect the small GTPases, Ras or Rho?
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METHODS 

Plasmids

 pMT2-FLAG-MK-STYX-FLAG was constructed as described in Hinton et al. 

(2010). The N-terminal and C-terminal ends of human MK-STYX were flanked by the 

FLAG epitope for MK-STYX detection. The integrity of the construct was confirmed by 

sequencing. 

Cell Culture

 All experiments used rat pheochromocytoma PC12 cells (ATCC). PC12 cells were 

grown at 37°C and 5% CO2 in Roswell Park Memorial Institute (RPMI) 1640 

(Invitrogen) supplemented with 10% horse serum (Invitrogen) and 5% fetal bovine serum 

(Invitrogen) or Dulbecco’s Modified Eagle Medium [DMEM] (Gibco) supplemented 

with 10% fetal bovine serum.  Cells were maintained with 15 ml per flask (Thermo 

Scientific) or 5 ml per 60 mm plate (Thermo Scientific). The medium of the cells was 

changed daily. 

Transfection

 Twenty-four hours post seeding, transient transfection of PC12 cells was 

performed using 2 µl Lipofectamine 2000 reagent per 2 µg DNA (Invitrogen). Cells were 

incubated with transfection reagents for five to six hours before the cell medium was 

removed and replaced with fresh medium.

MEK Inhibition Treatment

 PC12 cells were seeded at a confluency of  1.5!105 cells per well (Fischer). 

Twenty-four hours post transfection PC12 cells were treated with 50 µM of MEK 
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inhibitor, PD980509 (Cell Signaling). Two hours post inhibitor treatment, PC12 cells 

were stimulated with 100 ng/ml of NGF for three days. Live imaging of PC12 cells was 

conducted with differential interference contrast microscopy (DIC) and fluorescence 

microscopy using Nikon Eclipse Ti inverted fluorescence microscopy.

Time-dependent NGF Stimulation 

 Twenty-four hours post-transfection, PC12 cells were serum-starved in RPMI 

supplemented with 1% horse serum or DMEM with no serum supplementation for 

approximately 8 to 12 hours. PC12 cells were stimulated with 100 ng/ml of NGF 

(Prospec) for time points consisting of 0 minutes, 1 minute, 3 minutes, 5 minutes, 12 

minutes, 30 minutes, 24 hours, and 48 hours. PC12 cells were promptly lysed after nerve 

growth factor stimulation. 

Cell Lysis

  PC12 cells were lysed using lysis buffer (50 mM HEPES, pH 7.2, 150 mM NaCl, 

10% glycerol, 10 mM NaF, 1% Nonidet P-40 alternative [Calbiochem] and protease 

inhibitor cocktail tablets [Rochel]) or G-LISA lysis buffer (Cytoskeleton) and protease 

inhibitor cocktail (Cytoskeleton). On ice, cells were rinsed with 3 ml of cold 1!D-PBS. 

Cells were lysed and scrapped for approximately 1 minute. For the G-LISA assays, liquid 

nitrogen was used to snap-freeze the lysates for storage at 80°C. 

Immunoblotting 

 Lysates were sonicated and centrifuged at 14,000 rpm for 10 min. Protein 

concentration was determined using NanoDrop quantification. Lysates were diluted to 

obtain samples of 50 µg of protein with 6X Laemmli sample loading buffer and 
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dithiothreitol (DTT). Proteins were separated on a 10% SDS-PAGE for 45 minutes at 150 

volts. Protein gels were transferred to a PVDF membrane (GE Healthcare) using Trans-

Blot Semi-Dry Transfer Cell (BioRad). Proteins were immunoblotted with anti-STYXL1

(Sigma) or anti-FLAG (Sigma) to detect MK-STYX, anti-"-tubulin (Thermo Scientific) 

for loading control, and  in 5% milk 1X TTBS (Tween 20 Tris Saline Buffer). Protein 

bands were detected with enhanced chemiluminescence plus (GE Healthcare) and 

analyzed by autoradiography.

Fluorescence Microscopy 

 For live imaging, cells were plated at a confluency of 1.5!105 cells per well 

(Fischer). Live imaging of PC12 cells was conducted with differential interference 

contrast microscopy (DIC) and fluorescence microscopy using Nikon Eclipse Ti inverted 

fluorescence microscopy.

Ras G-LISA

 The protocol of the Cytoskeleton Ras G-LISA Activation Assay Biochem Kit was 

followed using the reagents provided.

 Protein concentration was determined using NanoDrop quantification of a 6 µl 

aliquot of sample prior to snap-freezing. Lysates were thawed in a room temperature 

water bath then clarified by centrifugation for 1 minute at 4°C and 10,000 rpm. Control 

protein, blanks, and equalized sample protein concentrations of 0.4 mg/ml to 2.0 mg/ml 

were added to appropriate wells of the G-LISA plate. The G-LISA plate was incubated on 

a rotator at 4°C for 30 minutes. The G-LISA plate was washed three times with wash 

buffer. The G-LISA plate was incubated for 2 minutes with antigen presenting buffer. The 
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plate was washed three times with wash buffer. The G-LISA plate was then incubated 

with an anti-Ras primary solution of 1:50 dilution in antibody dilution buffer for 45 

minutes at room temperature on a rocker. The primary solution was removed and the G-

LISA plate was washed three times with wash buffer. Subsequently, the G-LISA plate 

was incubated with a horseradish peroxidase secondary solution of 1:250 dilution in 

antibody dilution buffer for 45 minutes at room temperature on a rocker. The secondary 

solution was removed and the G-LISA plate was washed three times with wash buffer. 

The G-LISA plate was then incubated at room temperature with 50 #l of mixed 

horseradish peroxidase (HRP) detection reagent for 15 minutes. After 15 minutes, 50 #l 

of HRP Stop Buffer was added to each well. The signal was detected by measuring 

absorbance at 490 nm using a microplate spectrophotometer.

RhoA G-LISA

 The protocol of the Cytoskeleton Inc. RhoA G-LISA Activation Assay Biochem 

Kit was followed using the reagents provided.

 Protein concentration was determined using NanoDrop quantification of a 6 µl 

aliquot of sample prior to snap-freezing. Lysates were thawed in a room temperature 

water bath then clarified by centrifugation for 1 minute at 4°C and 10,000 rpm. Control 

protein, blanks, and equalized sample protein concentrations of 0.4 mg/ml to 2.0 mg/ml 

were added to appropriate wells of the G-LISA plate. The G-LISA plate was incubated on 

a rotator at 4°C for 30 minutes. The G-LISA plate was washed three times with wash 

buffer. The plate was incubated for 2 minutes with antigen presenting buffer. The G-

LISA plate was washed three times with wash buffer. The G-LISA plate was then 
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incubated with an anti-RhoA primary solution of 1:250 dilution in antibody dilution 

buffer for 45 minutes at room temperature on a rocker. The primary solution was 

removed and the plate was washed three times with wash buffer. Subsequently, the plate 

was incubated with a horseradish peroxidase secondary solution of 1:62.5 dilution in 

antibody dilution buffer for 45 minutes at room temperature on a rocker. The secondary 

solution was removed and the plate was washed three times with wash buffer. The plate 

was then incubated at 37°C with 50 #l of mixed horseradish peroxidase (HRP) detection 

reagent for 15 minutes. After 15 minutes, 50 #l of HRP Stop Buffer was added to each 

well. The signal was detected by measuring absorbance at 490 nm using a microplate 

spectrophotometer.

RhoA ELISA

 The protocol of the Cytoskeleton Inc. Total RhoA ELISA Kit was followed using 

the reagents provided and the lysates used in the RhoA G-LISA assay. 

 RhoA wild-type His-tag positive controls and samples were prepared at a ratio of 

1:4 with sample dilution buffer. Diluted RhoA positive controls and samples were added 

to each well. The ELISA plate was incubated for 2 hours undisturbed at room 

temperature. After 2 hours, the ELISA plate was washed three times with wash buffer. 

The ELISA plate was then incubated with antigen presenting buffer at room temperature, 

undisturbed for 2 minutes. After 2 minutes, the ELISA plate was washed three times with 

wash buffer. The ELISA plate was next incubated with an anti-RhoA primary solution 

dilution of 1:2000 in wash buffer for 1 hour at room temperature, undisturbed. After 1 

hour, the ELISA plate was washed three times with wash buffer. Subsequently, the 
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ELISA plate was incubated with a horseradish peroxidase secondary solution dilution 

1:300 in wash buffer for 1 hour at room temperature, undisturbed. After 1 hour the 

ELISA plate was washed five times with wash buffer. The ELISA plate was incubated at 

room temperature with Horseradish peroxidase detection reagent for 15 minutes. After 15 

minutes, a stop solution of 1.8 M sulfuric acid was added to each well. The signal was 

detected by measuring absorbance at 490 nm using a microplate spectrophotometer.

RESULTS  

MK-STYX is endogenously expressed in PC12 cells

 It is well characterized that sustained activation of MAPK, also known as 

ERK1/2, induces neuronal differentiation of PC12 cells. ERK1/2 is activated by serine/

threonine and tyrosine residue phosphorylation. MKPs such as MKP1 inactivate ERK1/2 

by hydrolysis of the phosphorylated residues. MK-STYX is structurally homologous to 

the MKPs that regulate the duration of ERK1/2 activation. This suggests that MK-STYX 

may play a role in neuronal differentiation by sustaining activation of ERK1/2. Therefore, 

to begin the investigation of MK-STYX in PC12 cells, the presence of endogenous MK-

STYX was first confirmed.

 Previous studies have detected MK-STYX in human embryonic kidney (HEK) 

cells (Hinton et al., 2010). This finding was confirmed as a control. PC12 and HEK 

lysates transfected with MK-STYX and non-transfected PC12 and HEK lysates were 

immunblotted with anti-STYXL1 antibody. Over-expression of MK-STYX was also 

detected by anti-FLAG, the tag to MK-STYX within the pMT2 vector (Hinton et. al, 
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2010). The presence of endogenous MK-STYX suggests that MK-STYX would be 

available to serve as a regulator of signal transduction cascades in PC12 cells (Figure 2). 

Figure 2.  MK-STYX is endogenously expressed in PC12 cells. PC12 and HEK cells 

were transiently transfected with a pMT2-FLAG-MK-STYX-FLAG. Transfected and 

non-transfected whole cell lysates were lysed and resolved on a 10% SDS-PAGE gel. 

Immunoblot analysis was performed with anti-STYXL1. (A) Immunoblot analysis 

confirmed the presence of endogenous and over-expressed MK-STYX in PC12 and HEK 

cells. (B) To confirm that FLAG-tagged MK-STYX was over-expressed, immunoblot 

analysis was performed with anti-FLAG. 

MK-STYX induces neuronal differentiation

The expression of endogenous MK-STYX in PC12 cells suggests it could play a role as a 

regulator of signal transduction cascades. In order to investigate the effect MK-STYX has 

on the morphological changes of PC12 cells, MK-STYX was over-expressed. PC12 cells 

were transfected with pEGFP and pMT2 or pEGFP and pMT2-FLAG-MK-STYX. PC12 
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cells were scored for the presence of neurite extensions, defined as protrusions greater 

than 20 µm in length. For each experiment 100 cells were scored (Figure 3).

Within 5 days, over-expression of MK-STYX alone was found to induce more cells to 

have neurite outgrowths. This strongly suggests that MK-STYX induces neuronal 

differentiation of PC12 cells.

 

21



Figure 3. MK-STYX induces neuronal differentiation of PC12 cells. Representative 

examples are presented to illustrate the growth of neurites in PC12 cells 5 days after 

transfection (A). Cells were scored for neurite extensions greater than 20µm in length 

(B). Cells transfected with pMT2-FLAG-MK-STYX-FLAG showed significant induction 

of neurite outgrowth. This work was performed in collaboration with Kristen Wong. 

Three replicates of this experiment were performed.
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MK-STYX promotes neurite extensions in the absence and presence of NGF

 Based on the previous observation that MK-STYX alone was inducing more cells 

to have neurite outgrowth, we wanted to observe the effects of MK-STYX in nerve 

growth factor (NGF) stimulated PC12 cells. It is well known that NGF induces the 

differentiation and neuronal outgrowth of PC12 cells. Previous studies have shown that 

NGF dose dependently induces neurite outgrowth (Waetzing and Herdegen, 2003).  

Compared to cells treated with lower concentrations, 50 or 100 ng/ml NGF stimulation of 

PC12 cells resulted in more cells with neurite outgrowths (Waetzing and Herdegen, 

2003).  

 PC12 cells were treated with 100 ng/ml of NGF to determine if MK-STYX 

enhanced the effect of NGF stimulation. We found that PC12 cells expressing MK-STYX 

had longer neurite extensions. These findings suggest that MK-STYX sustains MAPK 

activity. (Figure 4)
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Figure 4. MK-STYX produces neurite extensions in the absence (A) and presence of 

NGF (B). PC12 cells were plated at a concentration of 1.5 x 105 cells. PC12 cells were 

transfected with pEGFP and pMT2 or pMT2-FLAG -MK-STYX and pEGFP. 24 hours 

post-transfection, PC12 cells were stimulated with 100 ng/ml of NGF. 48 hours post-

transfection, live PC12 cells were imaged using DIC and fluorescence microscopy. NGF 

induced all of the PC12 cells to differentiate: however, PC12 cells expressing MK-STYX 

were found to have longer neurite extensions. Three replicates of this experiment was 

performed.

 MK-STYX does not stimulate Ras activation

 We have found that MK-STYX induces neuronal outgrowth in PC12 cells, as well 

as promotes the extension of neuronal outgrowths in the presence of NGF. This leads to 

the question of the molecular mechanism by which MK-STYX plays a role in PC12 

neuronal differentiation and outgrowth. 

 The Ras-MAPK cascade is a critical component of neuronal differentiation. It is 

well characterized that NGF binding to TrkA activates a Ras-dependent mitogen activated 

protein kinase (MAPK) cascade (Nusser et al., 2002). Through this cascade, sustained 

24



activation of ERK1/2 results in the arrest of the growth cycle and stimulation of the 

differentiation of PC12 cells (Jeon et al., 2012). To begin investigations of the mechanism 

of action, we studied the activation patterns of the initiator of the MAPK cascade, 

GTPase Ras. Within minutes of RTK stimulation, Ras is activated leading to the 

induction of the MAPK pathway (Schiller, 2006). PC12 cells were time-dependently 

stimulated with NGF to characterize whether MK-STYX induced activation of Ras.  

PC12 cells were lysed and Ras activation was analyzed using a Ras G-LISA Activation 

Assay Biochem Kit. Statistical t-test analysis found that MK-STYX caused a significant 

decrease in Ras activation within 1 minute (Figure 5 and Table 1). However, this decrease 

was transient and Ras returned to active control levels within 3 minutes. GTPase Ras 

activates multiple signal transduction pathways. This decrease in Ras inactivation may 

not affect the activation of the MAPK pathway; however, which lead us to investigation 

further downstream of the MAPK pathway.
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Figure 5. MK-STYX does not stimulate prolonged Ras activation. PC12 cells were 

transfected with pMT2 or pMT2-FLAG-MK-STYX. 24 hours post-transfection, PC12 

cells were serum-starved for approximately 12 hours to bring Ras activity to basal levels. 

PC12 cells were stimulated with 100 ng/ml of NGF for 1, 3, 5, and 30 minutes.  PC12 

cells were lysed and activation of Ras was quantified with a Ras GLISA. Three replicates 

of this experiment were performed. Error bars indicate +/- Standard Error Mean (SEM). 

* = p = 0.013 (see Table 1)
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Time point T-test Significance

0 minutes 0.859 Not Significant

1 minute 0.013 Significant 

3 minutes 0.127 Not Significant

5 minutes 0.498 Not Significant

30 minutes 0.537 Not Significant

Table 1. MK-STYX causes a transient decrease of Ras activation. Statistical two-

tailed, equal variant t-test analysis was conducted comparing activation of PC12 cells 

transfected with pMT2 or MK-STYX at each time point. Statistical analysis showed that 

MK-STYX induced a transient significant decrease in Ras activation. GTPase Ras is an 

activator of multiple signal transduction cascades so this inactivation may not affect the 

activity of the MAPK cascade. 

MK-STYX induces neurite growth independent of the MAPK pathway 

To determine whether MK-STYX functions through modification of the MAPK pathway, 

we inhibited the activity of dual-specificity kinase, MEK. MEK induces activation of 

ERK1/2 through phosphorylation. Sustained activation of ERK1/2 mediates the initiation 

of neurite outgrowths in PC12 cells. Therefore, inhibition of MEK kinase should inhibit 

the induction of neurite growths of PC12 cells. The MEK inhibitor prevented neurite 

outgrowth in PC12 control empty pMT2 vector expressing control cell.  However, cells 
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transfected with MK-STYX maintained expression of neurite outgrowths. This strongly 

suggests that MK-STYX functions independently of the MAPK cascade (Figure 6). 

Figure 6. MK-STYX causes neurite outgrowth despite addition of a MEK inhibitor. 

PC12 cells were transfected with pMT2-FLAG-MK-STYX. 24hr post-transfection, cells 

were treated with PD980509 for 2 hr prior to NGF stimulation. Cells were treated with 

100 ng/ml NGF and scored for neurites 72 hr after stimulation. Three replicates of this 

experiment were performed.  Error bars indicate +/- Standard Error Mean. This work was 

performed in collaboration with Kristen Wong.
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MK-STYX decreases activation of RhoA 

 MK-STYX was found to function independently of the MAPK cascade shifting 

our focus to other pathways involved in neuronal differentiation. PC12 cells grow and 

proliferate in a relatively round shape. This round morphology must be changed for 

formation of neurite outgrowths, and involves reorganization of the actin cytoskeleton 

(Govek et al., 2005). The Rho GTPases are involved in actin cytoskeleton remodeling. 

Studies utilizing dominant-negative RhoA, shRNA-mediated RNA interference, and Rho-

ADP-ribosyltransferase C3 toxin (Clostridium botulinum C3 Rho-ADP-ribosylating 

exoenzyme), which specifically inactivates Rho isoforms, RhoA, RhoB, and RhoC, have 

verified that RhoA inactivation is necessary for the induction of neurite outgrowths in 

PC12 cells (Sebök et al, 1991; Bishop and Hall, 2000; Fan et al., 2008). Similar to the 

activation of Ras, RhoA responds to receptor tyrosine kinase activation (Schiller, 2006). 

We conducted time-dependent NGF stimulation trials to determine if MK-STYX induced 

a decrease of RhoA activation.

 Activation of RhoA was quantified with a RhoA GLISA. RhoA GLISA data were 

normalized for total RhoA using a RhoA ELISA.  PC12 cells expressing MK-STYX had 

lower levels of RhoA activation. This correlates with studies showing that over-

expression of MK-STYX induces neuronal differentiation of PC12 cells (Figure 7).
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Figure 7.  MK-STYX decreases RhoA activation. Inactivation of RhoA is required for 

the induction of neurite outgrowths in PC12 cells. PC12 cells were transfected with 

pMT2 or MK-STYX. 24 hours post-transfection, PC12 cells were stimulated with 100 

ng/ml NGF at various time points. PC12 cells were lysed, and activation of RhoA was 

quantified with a RhoA G-LISA. Total RhoA was normalized with a RhoA ELISA.  Three 

replicates of this experiment was performed.  Error bars indicate +/- Standard Error 

Mean. 
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DISCUSSION 

PC12 cell differentiation

The PC12 cell line is a model system for the study of neuronal differentiation. The 

neurotrophin NGF signals through the Trk receptor inducing sustained activation of 

ERK1/2.  It is well characterized that sustained activation of ERK1/2 causes a cessation 

of PC12 cellular proliferation and induces neuronal outgrowths. We have shown that 

MK-STYX plays a critical role in the induction of PC12 neuronal differentiation. We 

have confirmed that MK-STYX is endogenously expressed in PC12 cells and over-

expression of MK-STYX alone can induce neuronal outgrowths of PC12 cells.  

Furthermore we have found that MK-STYX enhances the effect of NGF by promoting 

longer neurite outgrowths in PC12 cells stimulated with NGF. This study strongly 

suggests that MK-STYX plays a role in signal transduction pathways involved in 

neuronal differentiation and neuronal outgrowth of PC12 cells. MK-STYX is structurally 

homologous to MKPs. Like MKPs, MK-STYX has a N-terminal CH2 domain for 

protein-protein interaction and a C-terminal dual-specificity phosphatase domain 

(Wishart and Dixon, 1998). The structural homology of MKPs and MK-STYX suggests 

that these proteins share similar substrates and may directly interact with each other. 

Therefore, we began our investigations with the modulation of the MAPK cascade.  

 NGF factor stimulation activates a Ras-dependent MAPK cascade leading to 

sustained activation of ERK1/2 (Nusser et al., 2002). We investigated the activation 

pattens of the initiator of the MAPK cascade, GTPase Ras. Ras cycles between an active 

GTP-bound form and inactive GDP-bound form. The action of GEFs and GAPs regulate 
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Ras activation. Studies have shown, despite NGF stimulation, that dominant-negative Ras 

blocks neuronal differentiation of PC12 cells; therefore, GTPase Ras is critical for 

initiating the sustained Ras-dependent MAPK signal transduction cascade for PC12 

neuronal differentiation (Nakafuku and Kaziro, 1993). Our time-dependent NGF 

stimulation studies of PC12 cells found a transient decrease in Ras activation at 1 minute 

for PC12 cells over-expressing MK-STYX. Ras activation returned to control activation 

levels within 3 minutes. This finding may seem contradictory of earlier observations that 

MK-STYX induced neuronal differentiation of PC12 cells. However, Ras is involved in 

the activation of various signaling pathways involved in cellular proliferation, stress 

responses, apoptosis, and other cellular responses (Owens and Keyse, 2007). 

Furthermore, the mammalian subfamily of Ras proteins has various isoforms. These 

isoforms have a high degree of sequence identity, common downstream effectors, 

upstream activators, and overlapping functions (Castellano and Santos, 2011). The Ras 

G-LISA activation assay does not differentiate between the different isoforms of the Ras 

subfamily.  The decrease of Ras activation may have been a Ras isoform not involved in 

neuronal differentiation. This leads to investigations further downstream MAPK cascade 

effectors.

MEK is a dual specificity kinase of ERK1/2 (Sweatt, 2001). Inhibition of MEK 

with PD980589 should cease activation of ERK1/2 (Crews et al. 1992). PC12 cells 

transfected with the empty pMT2 vector had a significant reduction of PC12 cells 

expressing neurite outgrowths in the presence of the MEK inhibitor despite stimulation 

with NGF. However, PC12 cells expressing MK-STYX maintained expression of neurite 
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outgrowths similar to the control. This strongly suggests that MK-STYX functions 

independently of the MAPK cascade. Previous studies of MK-STYX siRNAs in HeLa 

cells found that RNA-silencing of MK-STYX did not have a significant effect on the 

activation of ERK 1/2 (Niemi et al., 2011). This suggests that MK-STYX does not 

directly sustain activation of phospho-ERK1/2. Further studies of phospho-ERK1/2 

immunoblotting of PC12 cells with MEK inhibition will verify if MK-STYX induces 

activation of ERK1/2 independent of the MAPK cascade. Furthermore, co-

immunoprecipitation analysis can be performed to establish whether ERK1/2 and MK-

STYX interact directly, though we hypothesize these proteins do not due to previous 

studies in HeLa cells (Niemi et al., 2011).

 Due to the structural homology with MKPs, MK-STYX may play a role in the 

modulation of other MAPKs such as JNK and p38 kinases. JNK and p38 kinases are 

associated with roles in regulation of cellular stress and apoptosis. However, activation of 

JNK and p38 kinases are critical for neuronal differentiation of PC12 cells (Waetzing and 

Herdegen, 2003; Sarina et al., 2013). Waetzing and Herdegen suggest that ERK1/2 and 

JNK synergistically activate NGF-stimulated PC12 cell neuronal differentiation and 

neurite outgrowth (2003). Their studies suggest that JNKs are responsible for neurite 

formation, whereas ERK 1/2 is responsible for neurotransmission (Waetzing and 

Herdegen, 2003). MK-STYX has structural homology with MKP-1 and MKP-2, both of 

which bind all classes of MAPK (Wishart and Dixon, 1998). Therefore, MK-STYX may 

play a role in the activation of other MAPKs or effect the activity of the associated 

MKPs. 
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Inactivation of RhoA

 Within the Ras GTPase superfamily is the Rho subfamily consisting of Rac, Rho, 

and Cdc25.  These highly conserved, eukaryotic GTPases dynamically regulate the actin 

cytoskeleton morphology. Rho GTPases cycle between an inactive GDP bound form and 

an active GTP bound form. These conversions are tightly regulated by GEFs and GAPs. 

Rho GTPases have an additional level of regulation with Rho guanine nucleotide 

dissociation inhibitors (RhoGDIs), which inhibit the spontaneous exchange of GDP to 

GTP by isolating GDP-bound Rho in the cytoplasm (Bishop and Hall, 2000). 

 It is well characterized that RhoA inactivation is required for the induction of 

neuronal outgrowths in PC12 cells. Studies utilizing dominant-negative RhoA, shRNA-

mediated RNA interference, and C3 toxin have verified that RhoA inactivation is 

necessary for the induction of neurite outgrowths in PC12 cells (Sebök et al, 1991; 

Bishop and Hall, 2000; Fan et al., 2008). Furthermore, Sebök et al. produced a simple 

model to verify the different roles of RhoA in PC12 neuronal differentiation. Sebök et al., 

established that the rate of neurite extension of postmitotic, neuronally differentiated 

PC12 cells was accelerated by activated RhoA expression, but decelerated by dominant 

negative RhoA expression (1991).

 Our studies found that MK-STYX inactivated RhoA. PC12 cells expressing MK-

STYX maintained low levels of RhoA activation compared to control activation levels. 

Activation of RhoA increased within 48 hours of NGF-stimulation of PC12 cells. This 

correlates with our live imaging findings that MK-STYX promotes NGF-induced 
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neuronal outgrowth in PC12 cells. Within 48 hours, PC12 cells seems to shift from 

inducing neurite outgrowth to extending neurite outgrowth length. RhoA has different 

roles for the different stages of PC12 neuronal differentiation and outgrowth. RhoA 

inactivation is required for the induction of neurite outgrowths, whereas activation of 

RhoA promotes neurite outgrowth extension (Sebök et al., 1991). MK-STYX seems to 

follow this pattern of activation. We found that MK-STYX alone can induce neuronal 

differentiation of PC12 cells, explaining the low RhoA activation levels prior to NGF 

stimulation. We have also visualized PC12 cells with longer neurite outgrowths at 48 

hours post-NGF stimulation explaining the increase in RhoA activation. Future 

investigations of downstream effectors of RhoA such as Rho-associated protein kinase 

(ROCK) are required to further verify inactivation of RhoA. GTP-bound RhoA disrupts 

the intramolecular autoinhibitory interactions within ROCK to expose the functional 

domains (Bishop and Hall, 2000; Nusser et al., 2002).  

 The role of MK-STYX in the mechanism of RhoA inactivation remains to be 

determined. Other studies have suggested mechanisms of RhoA inactivation in PC12 

neuronal differentiation. Nusser et al. demonstrated that NGF induces protein kinase A 

(PKA) to mediate phosphorylation of RhoA on serine188  in the C-terminal tail rendering 

RhoA unable to bind to ROCK (2006). The RhoA and MAPK pathways are not 

independent signal transduction cascades. These pathways have important mechanisms of 

crosstalk. 
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Crosstalk between MAPK and RhoA

Similar to the activation of the Ras-MAPK pathway by RTKs, RhoA GTPases are 

activated within minutes of RTK stimulation due to Rho GEF mediation (Schiller, 2006).  

Previous studies have demonstrated that 16 of the 69 known human Rho GEFs are 

involved in the connection of RTK simulation and Rho GTPase activation (Schiller, 

2006). The Rho GEFs may take advantage of Rho GTPase recruitment to the membrane. 

Rho GTPases have a CAAX (Cysteine-aliphatic-aliphatic-Xxx) motif in the C-terminus 

that mediates their localization to the membrane (Schiller, 2006). Rho GEF can directly 

interact with the RTK allowing the quick activation of the Rho GTPase due to their 

proximity at the membrane (Schiller, 2006). MK-STYX may be involved in inhibition of 

Rho GEF activity or stimulation of Rho GAP activity. 

Summary and Future Directions

 This study has initiated investigations of the role of MK-STYX in neuronal 

differentiation. This thesis provides evidence that over-expression of MK-STYX alone 

can cause neuronal differentiation, MK-STYX induces neuronal differentiation 

independent of the MAPK cascade, and MK-STYX causes inactivation of RhoA. These 

studies implicate a potential therapeutic use of MK-STYX. The disruption of the 

coordination of protein phosphorylation and dephosphorylation leads to the 

neurological diseases such as Alzheimer’s disease. Proteins such as Tau have been shown 

to be hyperphosphorylated in patients diagnosed with Alzheimer’s disease (Hu et al., 

2002). Gaining insight on the role of MK-STYX in neuronal differentiation can lead to 
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future development of MK-STYX as a therapeutic for the treatment of neurological 

disorders and injuries.  

 Further studies of MK-STYX in PC12 neuronal differentiation will focus on 

understanding the mechanism of action of MK-STYX.  Phospho-ERK1/2 

immunoblotting of PC12 cells with MEK inhibition will be conducted to verify whether 

MK-STYX induces activation of ERK1/2 independent of the MAPK cascade. 

Immunoblotting for ROCK will be done to verify inactivation of RhoA. Co-

immunopreciptation analysis will be performed to establish whether MK-STYX interacts 

directly with MAPKS and MKPs. Finally, MK-STYX knockdown studies will be 

conducted to determine whether MK-STYX is necessary for PC12 neuronal 

differentiation. This work was funded by a NSF grant (MCB 1113617 to SDH). 
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