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ABSTRACT 

Eukaryotic cells utilize the dynamic addition and removal of post-translational 

modifications to modulate protein function.  Two such modifiers are ubiquitin and 

SUMO (Small Ubiquitin-like MOdifier), which traditionally regulate their substrates in 

opposite ways.  The discovery of SUMO-targeted ubiquitin ligases (STUbLs), E3 ligases 

that ubiquitylate sumoylated targets, offers an opportunity for cross-talk between the 

SUMO and ubiquitin pathways.  STUbLs are crucial for the response to DNA damage 

and maintenance of genomic integrity, but currently only a few STUbL substrates are 

known.   

Recently, we observed a novel interaction between the yeast STUbL subunit Slx5 and the 

SUMO ligase Siz1 both in a yeast two-hybrid system and in vitro.  The goals of this study 

were to develop protein extraction and purification protocols for the purpose of 

determining if Slx5 and Siz1 also interact in vivo.  This study additionally seeks to 

determine if Siz1 is a target for ubiquitylation by Slx5 in vivo.  Here we report our 

finding that Slx5 and Siz1∆440 co-affinity purify in in vivo pulldown experiments, and 

that Siz1∆440 is ubiquitylated in vivo in an Slx5-dependent manner.  We also describe 

the intrinsic binding ability of the RING domain present in E3 ligases for metal affinity 

purification. 
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INTRODUCTION 

Post-translational Modification 

After translation, individual amino acid residues of a protein can be covalently linked to a 

variety of chemical groups, including lipids, polysaccharides, or other small proteins 

(Walsh, 2006).  The dynamic enzymatic addition and removal of these post-translational 

modifications modulates protein functions and activity within the cell, allowing for 

increased efficiency and timeliness in response to both internal factors and external cues.  

As an example, the most common post-translational modification of proteins is 

phosphorylation. The addition of a negatively-charged phosphate group changes the 

topology and therefore the functions or interactions of its target proteins, which are often 

involved in signal transduction pathways that modulate almost every cellular function, 

including transcriptional control, cell cycle progression and metabolism (Walsh, 2006; 

Karin and Hunter, 1995; Summers et al., 2011; Graves and Krebs, 1999).  Of importance 

for maintaining cellular homeostasis and responding appropriately to changing 

conditions, phosphorylation is reversible – phosphate groups are added to their targets by 

a class of enzymes called kinases and are taken off by phosphatases (Walsh, 2006). 

Ubiquitin 

In contrast to phosphate, which is a chemical group, proteins can also be covalently 

modified by small proteins.  In eukaryotes, one widely conserved small protein post-

translational modifier is ubiquitin, which is part of the family of ubiquitin-like proteins 

(Ubls).  Ubiquitin is a 76 amino acid protein (~8 kDa in molecular weight) that was 

named for its ubiquitous presence within cells and across eukaryotic species.  It contains 

a C-terminal diglycine repeat, through which it is conjugated to a lysine residue on its 



- 3 - 
 

target protein, forming an isopeptide bond (Walsh, 2006; Hershko and Ciechanover, 

1998).  The mechanism of conjugation for the Ubl family consists of a three enzyme 

cascade that occurs in a stepwise fashion.  The final carboxyl group of the Ubl is 

activated as a thioester by the E1 activating enzyme in an ATP-dependent manner, and 

consequently transferred to the E2 conjugating enzyme. Finally, an E3 ligating enzyme 

facilitates the transfer of ubiquitin to the ε-amino group of the lysine residue on its 

intended target protein, conferring high substrate specifity (Walsh, 2006; Kerscher et al., 

2006).  In the budding yeast Saccharomyces cerevisiae, there is only one E1 ubiquitin 

activating enzyme, Uba1 (McGrath et al., 1991).  In contrast, there are several E2 

ubiquitin conjugating enzymes: Ubc1-8, -10, -11, and -13.  Two E2s of note are Ubc4 

and Ubc6, both of which are implicated in the ubiquitylation of proteins that will 

subsequently be degraded (Hochstrasser, 1996).  E3 Ubl ligases fall into two main 

categories defined by their catalytic domain.  Those with a Homology to the E6AP 

Carboxyl Terminus (HECT) domain bind the Ubl directly, forming a thioester 

intermediate before transferring the Ubl to its target (Metzger et al., 2012).  Other 

proteins have a Really Interesting New Gene (RING) domain: a zinc-finger variant that 

consists of a combination of cysteine and histidine residues which coordinate two zinc 

ions in a cross-brace structure to maintain the catalytic function of the protein (Saurin et 

al., 1996; Perry et al., 2008) (FIG 1).   RING domain E3 ligases do not form an 

intermediate with the Ubl (e.g. ubiquitin), but instead facilitate its transfer from the E2 to 

the target protein (Metzger et al., 2012).  Like phosphorylation and dephosphorylation, 

ubiquitylation is reversible; ubiquitin molecules can be cleaved off their targets by a 

family known as de-ubiquitylating (DUB) enzymes (Hochstrasser, 1996). 
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Since ubiquitin itself contains lysine residues, the above conjugation process can be 

repeated, forming chains.  Ubiquitin has seven internal lysines – Lys 6, 11, 27, 29, 33, 48 

and 63 – allowing multiple types of chains to form, each conferring different functions to 

the original target protein (Peng et al., 2003).    Most prominently, chains of at least four 

ubiquitins linked through lysine-48 (K48) target the original substrate protein for 

degradation as a method of recycling proteins, which is crucial for cellular homeostasis 

(Johnson et al., 1995; Herrmann et al., 2007). K48 polyubiquitylated proteins are either 

escorted by chaperone proteins to or are directly recognized by the 26S proteasome, 

which unfolds proteins and feeds them into its barrel-shaped core with proteolytic activity 

(Herrmann et al., 2007). 

Ubiquitin modification can also have non-proteolytic functions in multiple cellular 

processes. For example, polyubiquitylation has a role in the immune response: K63 

chains have been implicated in protein kinase activation in the interleukin-1 and Toll-like 

receptor pathways, as well as multiple pathways that lead to the activation of NF-κB, an 
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important transcription factor.  Ubiquitylation is also involved in the coordination of 

DNA damage repair: K63 polyubiquitylation of histone proteins helps recruit the BRCA1 

complex to double stranded DNA breaks so that they can be repaired by homologous 

recombination (Chen and Sun, 2009).  Similarly, monoubiquitylated FANCD2 binds 

BRCA2 to participate in DNA damage repair, followed by deubiquitylation and cell cycle 

continuation, a process that is disrupted in patients with Fanconi anemia (Zhang et al., 

2007).  Monoubiquitination has other functions as well, including gene silencing and 

activation, endosomal trafficking, and internalization of receptors (Johnson, 2002).  

SUMO 

Another common member of the Ubl family is small ubiquitin-like modifier (SUMO), 

which is a 110-amino acid protein.  SUMO is ~11kDa in size but appears to add ~20kDa 

to its target protein upon SDS-PAGE analysis (Johnson, 2004).  Though SUMO and 

ubiquitin only have 18% sequence homology, they share a characteristic beta-grasp fold 

in their three-dimensional structure (Johnson, 2004; Perry et al., 2008).  Similar to 

ubiquitin, SUMO is conjugated onto lysine residues in a three enzyme cascade which can 

be repeated, forming chains.  However, unlike ubiquitin's classic role in proteasomal 

degradation, chains of SUMO typically alter the interactions, localization, activity and 

stability of its target protein.   

The SUMO gene was first discovered in budding yeast S. cerevisiae as a high-copy 

suppressor of a mutation in the centromeric protein Mif2; thus budding yeast's one 

SUMO protein is known as Smt3 (Meluh and Koshland, 1995). There are three legitimate 

versions of the SUMO protein in humans: SUMO-2 and SUMO-3 are 97%  homologous 

and both have internal lysines, allowing them to form chains. SUMO-1 shares only 50% 



- 6 - 
 

homology with SUMO-2/3 and does not have internal lysines, thereby terminating any 

chains into which it is incorporated (Geiss-Friedlander and Melchior, 2007). 

SUMO is originally synthesized in a precursor form that is processed by the SUMO 

protease Ulp1, exposing a diglycine repeat at the C-terminus end of the protein (Hay, 

2007).  This conjugation-competent SUMO is activated by its E1 enzyme, the 

heterodimer Aos1-Uba2, and then passed on to its E2 conjugating enzyme, Ubc9.  Ubc9 

directly binds a SUMO attachment consensus sequence, ΨKXE, where Ψ is any 

hydrophobic amino acid, K is the lysine with which the isopeptide bond is formed, X is 

any amino acid residue, and E is glutamic acid (Johnson, 2004).  In vitro, Ubc9 is 

actually capable of catalyzing the isopeptide bond between the lysine's ε-amino group 

and SUMO itself (Okuma et al., 1999).   

Siz1 – a SUMO E3 ligase in budding yeast 

In vivo, the transfer of SUMO to the target lysine is facilitated by an E3 ligase.  There are 

four E3 SUMO ligases in S. cerevisiae – Siz1, Siz2, Mms21 and Zip3 (Johnson, 2004; 

Potts and Yu, 2005; Cheng et al., 2006).  Siz1 and Siz2 carry out the majority of 

sumoylation in yeast and are homologous to the protein inhibitor of activated signal 

transducer and activator of transcription (PIAS) family of SUMO E3 ligases in humans. 

Siz1 acts in both the nucleus and cytoplasm, while Siz2 remains mostly nuclear 

(Takahashi et al., 2001; Ferreira et al., 2011; Pasupala et al., 2012).  The PIAS/Siz 

proteins contain several domains, including an SP-RING domain, similar to that of the 

RING type ubiquitin E3 ligases, which is required for the protein's ligation activity 

(Takahashi et al., 2005; Palvimo, 2007).  They also contain SUMO-interacting motifs 

(SIMs) to interact with sumoylated or SUMO-mimetic proteins.  Interestingly, 
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phosphorylation adjacent to SIMs on PIAS1 is instrumental for the function of its SIM.  

This phosphate modification is not involved in the E3 ligase activity of the protein, but 

does affect its role as a transcriptional coregulator (Stehmeier and Muller, 2009).  

Additional domains in Siz1 contribute to substrate specifity: for example, the PINIT 

domain towards the N-terminal end of this E3 ligase is required for sumoylation of 

proliferating cell nuclear antigen (PCNA), a replication processivity factor, in the 

nucleus, whereas the C-terminal domain is required for in vivo sumoylation of the septin 

proteins at the bud neck of the dividing yeast cell (Reindle et al., 2006).  In addition to 

those targets, Siz1's human homolog, PIAS1 also sumoylates p53, a crucial cell cycle 

regulator and tumor suppressor protein, and c-Jun, a similarly important transcription 

factor (Melchior et al., 2003).  Siz1, like many E3 ligases, also has the capacity for auto-

sumoylation (Kotaja et al., 2002).   

Siz1 is 904 amino acids at full-length, but a C-terminal truncation of its last 440 amino 

acids, dubbed Siz1∆440, is often used in this study.  Without this C-terminal tail, 

Siz1∆440  appears to be more stable, but still contains the major functional domains of  

the protein, including the DNA-binding SAP domain, the PINIT domain, and the RING 

domain for E3 ligase activity.  Accordingly, it still promotes in vitro sumoylation of a 

target septin, Cdc3, and also possesses in vitro auto-sumoylation activity (Takahashi and 

Kikuchi, 2005, FIG 2).  
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In contrast to ubiquitin's main role in targeting proteins for proteasomal degradation, 

SUMO modification tends to alter protein stability, localization, interactions, and activity.  

For example, the sumoylation of the septins during mitosis may help with the 

disassembly of the septin ring and completion of cytokinesis (Johnson and Blobel, 1999; 

Takahashi et al., 2008).  Additionally, SUMO chains are formed in response to heat 

shock and conjugated to a wide range of proteins involved in cell cycle regulation, 

transcription, and DNA damage repair, among many other processes (Golebiowski et al., 

2008).   

Crosstalk between SUMO and Ubiquitin 

Given the similarities between the mechanics of the ubiquitin and SUMO pathways, it is 

no surprise that there is interplay between the two modifications.  Both Ubls are 

conjugated to lysine residues, creating an opportunity for competition in binding sites.  

This occurs in the case of post-translation modification of IκBα, the inhibitor of NF-κB.  

When IκBα is polyubiquitylated on K21, it is degraded, thus activating NF-κB.  

However, if SUMO-1 is conjugated to K21, ubiquitin-targeted degradation is prevented, 

and NF-κB stays inactive.  Phosphorylation also plays a role in these dynamics – 
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ubiquitylation requires phosphorylation of certain serine resides on IκBα, while 

sumoylation is inhibited by phosphorylation.  In this situation, SUMO and ubiquitin have 

antagonistic roles, designating their protein target to vastly different fates (Desterro et al., 

1998). 

Proliferating cell nuclear antigen (PCNA), a DNA-encircling protein that increases the 

processivity of DNA polymerases and is also a binding platform for various enzymes, 

also becomes both ubiquitylated and sumoylated.  PCNA is polyubiquitylated on K164 in 

response to DNA damaging agents, allowing it to pass over lesions and continue 

replication of undamaged DNA.  During S phase, independent of DNA damage, PCNA 

can also be sumoylated at the same lysine (Papouli et al., 2005).  It was originally 

hypothesized that the two modifications compete for the binding site and have 

antagonistic roles (Hoege et al., 2002).  However, it appears that the two modifications 

actually cooperate in controlling various repair pathways at stalled replication forks 

(Papouli et al., 2005). 

SUMO-Targeted Ubiquitin Ligases 

The discovery of a new class of SUMO-targeted ubiquitin ligases (STUbLs) offers a 

more direct connection between the SUMO and ubiquitin pathways and also implicates 

SUMO in proteasomal degradation.  The formative member of the STUbL family was the 

budding yeast heterodimer Slx5/Slx8.  The SLX5 and SLX8 genes were identified from a 

synthetic lethal screen as required for viability in the absence of Sgs1, a RecQ DNA 

helicase (Mullen et al., 2001).  Slx5 was additionally identified as a high-copy suppressor 

of a SUMO protease mutant, ulp1ts, which is lethal when shifted to the non-permissible 

temperature, thus indicating a role for Slx5 in SUMO dynamics and cell health (Xie et al., 
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2007).  Slx5 and Slx8 co-immunoprecipitate from cell extracts, forming a heterodimer 

that can stimulate the ubiquitylation of substrates in vitro.  (Mullen et al., 2001, Ii et al., 

2007).   Slx5 is the targeting subunit of this heterodimer, since it contains SIMs that non-

covalently interact with sumoylated target proteins (Perry et al., 2008).  However, 

sumoylation of a protein is not required for it to be a substrate of the STUbL, as 

exemplified by the yeast transcriptional factor matα2 (Xie et al., 2010).  Slx8 is the 

catalytic subunit of the heterodimer, as it displays RING-dependent auto-ubiquitylation 

activity in the absence of Slx5 (Xie et al., 2007).   

Yeast cells lacking the SLX5 gene are sensitive to genotoxic stress by UV radiation and 

hydroxyurea treatment, which stalls replication forks by depleting nucleotides (Mullen et 

al., 2001; Cook et al., 2009).  Accordingly, both the yeast Slx5 and the human homolog 

of Slx5/Slx8, RNF4, reside at dsDNA breaks, implicating a role in repair (Cook et al., 

2009; Galanty et al., 2012).  A DNA repair and homologous recombination protein, 

Rad52, is ubiquitylated in vitro by Slx5/Slx8 in a manner enhanced by Rad52 

sumoylation (Xie et al., 2007).  Furthermore, it has recently been described that RNF4 

creates mixed SUMO-ubiquitin chains that signal the recruitment of Rap80, followed by 

BRCA1, to resolve dsDNA breaks (Guzzo et al., 2012).   

STUbLs have also been directly implicated in human cancers.  RNF4 interacts with the 

HTLV-1 oncoprotein Tax, causing it to relocalize from the nucleus to the cytoplasm 

during DNA damage, releasing DNA damage repair proteins in the nucleus and 

activating NF-κB pathways from the cytoplasm to induce an anti-apoptotic state in its 

host (Fryrear et al., 2012).  Additionally, arsenic treatment of acute promyelocytic 

leukemia (APL) induces the sumoylation of the cancerous fusion protein PML-RARα, 
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followed by the recruitment of RNF4 to subsequently ubiquitylate and degrade the 

oncoprotein (Lallemand-Breitenbach et al., 2008).  Interestingly, phosphorylation seems 

to be involved in this pathway: PML is phosphorylated through a mitogen-activated 

protein kinase pathways, which was associated with increased sumoylation and 

subsequent degradation of PML.  Accordingly, a phosphorylation-defective PML mutant 

did not respond to arsenic treatment (Hayakawa and Privalsky, 2004).  Phosphorylation 

may also help regulate RNF4 targeting to its substrates via an arginine rich region that is 

just downstream of its SIMs.  This positively charged region strongly interacts with a 

negatively charged phosphate group, thus offering a mechanism for the interaction of 

RNF4 with phosphorylated (and sumoylated) proteins (Kuo et al., 2012).   

Crosstalk between phosphorylation, sumoylation and ubiquitylation 

As described earlier in examples with IκBα and PML, phosphorylation also seems to be 

involved in the regulation of sumoylation and ubiquitylation.  In another key example, 

the human flap endonuclease, FEN1, which is crucial for cell cycle progression and 

genome maintenance, is phosphorylated.  This stimulates its modification by SUMO-3, 

which in turn stimulates its ubiquitylation by a putative STUbL PRP19 (Guo et al., 2012).  

By contrast, phosphorylation of the transcription factor Sp1 stabilizes the protein by 

preventing the binding of and ubiquitylation by RNF4 (Ulrich, 2012).  Thus, multiple 

types of crosstalk between these three modifications help tightly regulate the activity of 

their target proteins in dynamic situations, making them crucial for cell health.  

Novel targets and functions of STUbLs 

Though all three modifications discussed are of utmost importance, our lab focuses on the 

role of STUbLs to connect SUMO and ubiquitin.  Our goal is to identify new targets of 
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the Slx5/Slx8 heterodimer to further unravel its specific role within the yeast cell, which 

can then be applied to other eukaryotes.  In truncation studies of Slx5, we identified the 

regions required for interaction with Slx5, Slx8 and SUMO, as well as a novel yeast two-

hybrid interacter, the SUMO ligase Siz1 (Westerbeck et al., manuscript in preparation, 

FIG 3).  The regions of Slx5 that interact with SUMO and Siz1 are strikingly similar, 

indicating that the interaction with Siz1 may be SUMO-dependent or SUMO-enhanced.   

 

Further experiments showed that Slx5 and Siz1 interact in an in vitro pulldown assay, and 

that Slx5 ubiquitylates Siz1 in vitro, indicating that Siz1 is in fact a target of Slx5 

(Westerbeck, et al., manuscript in preparation; Matson, 2011 thesis; FIG 4, FIG 5).  

However, we had yet to show any in vivo interaction, a crucial piece of evidence for 

physiological relevance.  Interestingly, there is some precedence for the coordination and 

Figure 3:  Slx5 structure function studies
Six C-terminal and N-terminal truncations of Slx5 were created, and along with full-length Slx5, were used in yeast two-
hybrid assays against known (Slx5, Slx8, Smt3) and novel (Siz1) interacters.  Growth indicates that the two proteins 
being tested interact with each other in the yeast two hybrid system.  Note that the truncations of Slx5 that interact with 
Smt3 and Siz1 are strikingly similar, indicating that SUMO interacting motif (SIM)-containing regions of Slx5 are 
required for both interactions, and potentially that Slx5ʼs interaction with Siz1 is SUMO-dependent.  Figure by Jason 
Westerbeck.
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cooperation of SUMO E3 ligases and STUbLs, as the fission yeast SUMO ligase Nse2, 

STUbL and STUbL target Rad60 together have a role in suppressing DNA damage and 

genomic instability (Heideker et al., 2011).  Describing a novel physical and functional 

interaction between a SUMO ligase and a STUbL in budding yeast could significantly 

add to our understanding of SUMO and ubiquitin dynamics and interplay between 

machinery of the two systems for a role in DNA damage or cell cycle progression.   
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Specific Aims 

The specific aims of this thesis are as follows: 

1. Develop reliable methods for extraction and purification of native proteins from 

budding yeast.  Our lab lacks a consistently successful technique for extracting and 

purifying proteins, which is especially necessary for in vivo studies involving ubiquitin, 

SUMO and phosphate modification. 

2. Confirm an interaction between the STUbL  subunit Slx5 and the SUMO ligase 

Siz1 in vivo.  We will add to the yeast two-hybrid and in vitro evidence of the novel 

interaction between Slx5 and Siz1 by performing an in vivo pulldown assay. 

3. Determine if Siz1 is a target for STUbL-mediated ubiquitylation in vivo.  

Slx5/Slx8 target Siz1 for ubiquitylation in vitro, which we aim to confirm in vivo using 

whole cell extracts and purified proteins. 
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MATERIALS AND METHODS 

Yeast Growth Methods 

Yeast media (YPD and SD) were prepared as described in Appendix A and were used for 

growth of all yeast strains, unless otherwise noted.  Yeast strains were grown at 30
o
C. 

Yeast Strain Constructions 

All yeast strains used in this study are indicated by a "YOK" number and listed in Table 3 

(page 40).  Additionally, commonly used constructs are listed in Table 2.  To create 

deletion strains of SLX5 and MSN5 in the JD52 background, deletion cassettes were PCR 

amplified from either an slx5∆::kanMX4 strain (YOK 747) with primer pairs 

corresponding to regions 280 base pairs upstream and 300 base pairs downstream from 

the ORF (OOK 275 and 276) or from an msn5∆::hygromycin pAG32 plasmid with 

primers OOK 763 and 764.  The msn5∆::hygromycin cassette was subject to re-PCR to 

elongate its upstream and downstream overhangs (OOK 767 and 768).  The resulting 

fragments of each were then transformed into wild-type JD52 (YOK 2062) and siz1-

13xmyc/HIS5 (YOK 2397) strains, generating slx5∆ (YOKs 2373 and 2376), msn5∆ 

(YOK 2505), slx5∆ siz1-13xmyc/HIS5 (YOK 2591) and msn5∆ siz1-13xmyc/HIS5 

(YOK 2514).  Double deletion slx5∆ msn5∆ siz1-13xmyc/HIS5 strains were created by 

subsequently transforming both deletion cassettes into the siz1-13xmyc/HIS5 parent.  

Deletion strains were confirmed by PCR and restriction digest (to confirm 

msn5∆::hygromycin, primer pairs corresponding to 230 base pairs upstream and 180 

basepairs downstream from the ORF were used – OOK 761 and 762).  Additionally, SIZ1 

was tagged with 13xmyc in confirmed slx5∆ or msn5∆ deletion strains using protocols 
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from Gauss et al., 2005 (tagging done by M. Guillotte).  While msn5∆ strains were not 

immediately used in this study, they are currently being used in further experiments. 

Large Scale Protein Induction, Extraction and Purification  

(see also Appendix A; Szymanski and Kerscher, accepted manuscript) 

Yeast strains were grown in 33ml of the appropriate selective media with 2% sucrose 

until they reached log phase (OD600 = 0.5-1.5).  At this point, 17 ml of 3x YEP with 6% 

galactose was added to each culture, for a final concentration of 1x YEP and 2% 

galactose in a final volume of 50ml.  Cells were grown for another 6 hours before 

harvesting.  A 100-200 OD cell pellet was washed with 1x ice cold PBS plus 1x protease 

inhibitor cocktail (Thermo Scientific, #1860932), snap frozen in liquid nitrogen and 

stored at -80
o
C until further use.  To extract proteins, frozen cell pellets were lysed in 

500µl of desired cell lysis buffer (see Table 1 for a list of buffers) with appropriate 

protease inhibitors and 200µl of acid washed beads (425-600µm, Sigma-Aldrich) in an 

Omni Bead Ruptor 24 (six 20 second pulses with 1 minute on slushy ice in between each 

pulse).  The lysate was clarified by centrifugation at 15,000 rpm for 15 minutes at 4
o
C.  

4ODs of clarified lysate were prepared as whole cell extract by the addition of five 

volumes of 20% TCA, followed by a wash with 2% TCA and resuspension in 200µl TCA 

sample buffer with BME by extensive vortexing and a 2-5 minute incubation at 110
o
C.  

To purify select proteins, 100 µl of clarified lysate (corresponding to 20 ODs) was added 

to 50-100 µl of affinity resin that had been washed 5 times with desired wash buffer, and 

the final volume was increased to 1ml with cell lysis buffer plus protease inhibitors.  

Extracts were nutated top over bottom with the resin for 2-5 hours at 4
o
C.  The resin was 

then washed five times with wash buffer.  Affinity resin-bound proteins were eluted by 
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top over bottom nutation with 100 µl of elution buffer for five minutes.  Two to three 

elutions were performed and subsequently pooled, followed by preparation in LDS-

sample buffer. 

RING Domain Protein Purification  

To determine if RING domain proteins intrinsically bind metal affinity resin, pAG425-

GAL1-ccdB-Siz1∆440-HA (BOK 795) and GAL1/10-GST-Slx5 (BOK 629, 

OpenBiosystems Yeast GST collection YSC4515-202484078) were transformed into 

JD52 wild type background (YOK 2062), creating YOKs 2353 and 2071, respectively.  

YOK 2397, with endogenously tagged Siz1-13xmyc, was also used.  As a positive 

control, pYES2.1-GAL-Slx5-V5/His6-TOPO (BOK 390) was transformed into a JD52 

background, creating YOK 2096.  Transformants were grown by large scale induction as 

described above, with endogenously expressing strains receiving  3xYEP/6% dextrose at 

the galactose induction step.  The cell lysis buffer used was Buffer C (see Table 1 for this 

and all further buffers).  To test the purification of native proteins, 100µl of clarified 

lysate was added to 100 µl of TALON metal affinity resin (Clontech, 635502) or 100µl 

of uncharged amylose resin that had been washed five times with Buffer G, and the final 

volume was increased to 1ml with Buffer C with a different brand of protease inhibitor 

cocktail (Thermo Scientific, #1860932).  Denatured proteins were prepared by the same 

method, except that guanidinium hydrochloride was added to 6M before extracts were 

added to the resin. Extracts were rotated top over bottom with the TALON resin for 3 

hours at 4
o
C.  The resin was then washed five times with Buffer G.  TALON-bound 

proteins were eluted by incubation with 150 µl of Buffer F for five minutes.  Two 

elutions were performed and subsequently pooled together.  Western Blotting to analyze 
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protein extraction and purification of V5/His6-, GST-, myc- and HA-tagged proteins was 

performed as described below. 

Co-immunoprecipitation assay 

To determine if Slx5 and Siz1 interacted in vivo, GAL1/10-GST-Slx5 (BOK 629, 

OpenBiosystems Yeast GST collection YSC4515-202484078), pAG425-GAL1-ccdB-

Siz1∆440-HA (BOK 795) or both GST-Slx5 and Siz1∆440-HA were transformed into 

ubc4∆ ubc6∆ matα∆ cells (YOK 2501, from Xie et al., 2010), and saved as YOKs 2507, 

2508, and 2509, respectively.  Transformants were grown in 33ml of SD –uracil, –leucine 

or –leucine–uracil, respectively, induced and proteins were extracted and purified as 

described above.  The cell lysis buffer used was Buffer H.  To purify GST-tagged and co-

purifying proteins, 100µl of clarified lysate was added to 100 µl of immobilized 

glutathione agarose (Thermo Scientific, #15160) that had been washed five times with 

Buffer I, and the final volume was increased to 1ml with Buffer H containing a different 

protease inhibitor cocktail (Thermo Scientific, #1860932).  Extracts were nutated top 

over bottom with the glutathione agarose for 2.25 hours at 4
o
C.  The agarose was then 

washed five times with Buffer I.  2ODs of the flow through were saved, and proteins 

were precipitated by TCA as described above for the whole cell extract.  Glutathione 

agarose-bound proteins were eluted with 100 µl of Buffer J for five minutes.  Three 

elutions were performed and subsequently pooled.  Western Blotting to analyze protein 

extraction and purification of GST- and HA-tagged proteins was performed as described 

below. 
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SUMO-FLAG shift assay 

To confirm the SUMO modification on Siz1∆440, a pYES2.1-GAL1-V5/His6 vector 

containing the Siz1∆440 ORF (BOK 794) was transformed into ulp1∆ ulp1ts yeast cells 

also expressing FLAG-Smt3gg (YOK 428) or Smt3gg (YOK 430).  Transformants were 

grown overnight, spinning at 30
o
C in SD-uracil-leucine media with 2% sucrose.  At log 

phase (OD600 = 1.0-1.6), each culture was equally divided, spun down, and the cells were 

resuspended in either 4ml of SD-uracil-leucine with 2% dextrose or 4ml of SD-uracil-

leucine with 2%  galactose and 2% sucrose.  After a 5 hour induction, 4ODs of cells were 

harvested from each culture and proteins were extracted by TCA protein precipitation.  

V5- and FLAG-tagged proteins were visualized by Western Blotting as described below. 

Determining the Ubiquitylation Status of Siz1∆440 

To determine if Siz1∆440 was ubiquitylated and to test whether that ubiquitylation was 

Slx5 dependent, a pYES2.1-GAL1-V5/His6 vector containing the Siz1∆440 ORF (BOK 

794) was transformed into JD52 wildtype (YOK 2062) and JD52 Slx5::kan (YOK2376) 

along with either the empty 2µ TRP vector pRS424 (BOK342) or pRS314-CUP1-

Ubiquitin(G76A)-myc-Cyc1 (BOK309), creating YOKs 2377-2382.  Transformants were 

grown in SD-tryptophan-uracil as described in the large scale induction protocol above.  

After 2 hours of galactose induction, cultures were copper-induced with the addition of 

100µM CuSO4 and allowed to grow for 3 more hours.  4ODs of cells were removed and 

proteins were extracted by TCA protein precipitation, while the remaining cells were 

washed in 1xPBS with 1x protease inhibitor cocktail and snap-frozen with liquid 

nitrogen.  V5- and myc-tagged TCA-extracted proteins were analyzed by Western 

Blotting as described below.  The blot was also reprobed for PGK as a loading control. 
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Western Blot 

Proteins were separated by SDS-PAGE on either a pre-cast NuPAGE Novex 4-12% Bis-

Tris gel (Invitrogen, NP0321) for 50 minutes at 200V in 1x MOPS buffer.  Proteins were 

transferred to PVDF membrane (Millipore, IPVH00010) by semi-dry transfer in 1x semi-

dry transfer buffer (10x: 58g Tris, 29.3 Glycine, 18.75ml 20% SDS in 1L ddH2O; 1x: 

100ml 10x semi-dry, 200ml methanol, 700ml ddH2O) for 25 minutes at 19V.  Blots were 

blocked in 1x TBST containing 4% milk (10x TBS: 50ml 1M Tris-HCl pH 8.0, 150ml 

5M NaCl, 300ml ddH2O; 1x TBST: 100ml 10xTBS, 900ml ddH2O, 1ml TWEEN-20) for 

an hour at room temperature and subsequently incubated with 4% milk/1x TBST 

containing primary antibody overnight at 4
o
C.  antibodies used.  After three five minute 

washes with 1x TBST, blots were incubated with secondary antibodies for 1-3 hours at 

room temperature and then washed with 1x TBST three times for 20 minutes.  Blots were 

incubated with chemiluminescent substrate (Millipore, WBKLS0100), wrapped in plastic 

wrap, exposed to x-ray film and subsequently developed.  GST-tagged proteins were 

detected with anti-GST antibody (1:5000 dilution; Abcam, ab6613) and an anti-goat 

secondary (1:10000; Santa Cruz Biotechnology sc-2020).  HA-tagged proteins were 

detected with an anti-HA antibody (1:10000; Abcam, ab9110) and an anti-rabbit 

secondary (1:10000; Abcam, ab6721).  V5-tagged proteins were detected with an anti-V5 

antibody (1:10000; Invitrogen, R960-25) and an anti-mouse secondary (1:15000; Abcam, 

ab97040).  Myc-tagged proteins were detected with a 9E10 anti-myc antibody (1:5000; 

Covance, MMS-150R) and an anti-mouse secondary (1:10000).  FLAG-tagged proteins 

were detected with an anti-FLAG antibody (1:10000; Sigma, F3165) and an anti-mouse 

secondary (1:10000).  PGK served as a loading control and was detected using anti-PGK 
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(1:300000; Invitrogen, A6457) and secondary anti-mouse (1:30000).  Ubiquitin was 

detected with an anti-Ubi antibody (1:4000; Covance, MMS-258R) and an anti-mouse 

secondary (1:10000).  Additionally, proteins were visualized on the gel after a 10 minute 

wash in water with SimplyBlue SafeStain (Invitrogen, LC6060).  
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Table 1: Buffers for protein extraction and purification 

Buffer Composition Notes 

A 50mM HEPES pH 7.3, 500mM NaCl, 10% 

glycerol, 10mM imidazole, 1x protease inhibitor 

cocktail (Thermo Scientific, #1860932), 25mM N-

ethylmaleimide (NEM) 

Lysis buffer, used in 

FIG6a, FIG7a to extract 

Slx5 

B 50mM HEPES pH 7.3, 150mM NaCl, 10% 

glycerol 

Wash buffer, used in FIG 

8 

C  50mM HEPES at pH 7.3, 200mM NaCl, 1% 

Triton X-100, 10mM imidazole, 1x protease 

inhibitor cocktail, 25mM NEM 

Lysis buffer, used to 

extract Siz1 proteins in 

FIG 9, FIG 10b 

D  50mM Tris HCl, 150mM NaCl, 1% Triton X-100, 

0.1% deoxycholate, 1x protease inhibitor cocktail 

and 25mM NEM 

Deoxycholate lysis 

buffer, used in FIG10a to 

extract Siz1∆440 

E  200mM imidazole, 50mM Tris-HCl, 200mM 

NaCl 

Elution buffer, used to 

elute Siz1∆440-V5/His 

from TALON resin in 

FIG 10a 

F  200mM imidazole, 50mM Hepes, 200mM NaCl Elution buffer, used to 

elute Siz1∆440-HA from 

TALON resin in FIG 

10b, FIG 11 

G 50mM HEPES at pH 7.3, 200mM NaCl, 1% 

Triton X-100, 20mM imidazole 

Wash Buffer, used to 

wash TALON resin in 

FIG 11 

H 50mM HEPES at pH 7.3, 200mM NaCl, 1% 

Triton X-100, 1x protease inhibitor cocktail 

(Promega, G6521), 25mM NEM, 1mM sodium 

orthovanadate 

Lysis buffer, used for 

Slx5-Siz1 co-purification 

in FIG12 

I  50mM HEPES at pH 7.3, 200mM NaCl, 1% 

Triton X-100 

Wash buffer, used for 

Slx5-Siz1 co-purification 

in FIG12 

J  50mM HEPES at pH 7.3, 200mM NaCl, 10mM 

reduced glutathione [Acros Organics, 120000010] 

Elution buffer, used for 

Slx5-Siz1 co-purification 

in FIG12 

K Promega Mammalian Cell Lysis Buffer Lysis buffer, used to 

extract Siz1 in FIG 9 
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RESULTS 

Testing existing methods for protein extraction from Saccharomyces cerevisiae 

In order to successfully complete in vivo protein interaction and functional studies with 

Slx5, it is necessary to extract full-length, non-degraded native proteins.  This can be 

quite difficult to achieve due to the mechanical strength and elasticity of the yeast cell 

wall and the low abundance of some target proteins such as Slx5. Previous attempts in the 

lab at in vivo co-purification experiments had been largely unsuccessful, prompting us to 

develop and optimize protein extraction protocols. 

A yeast strain containing both Slx5-V5/His6 and Siz1∆440-HA (YOK 2354) (constructs 

E and B in Table 2) was grown and the cell pellet saved as described in Materials and 

Methods.  Cell pellets were added with 200µl of glass beads and 500µl of Buffer A and 

subjected to bead beating for 10 cycles of 20 seconds at 5.5m/s followed by 1 minute on  

slushy ice.  Proteins were clarified and WCE prepared in LDS-sample buffer, and the 

sample was separated by SDS-PAGE.  Upon western blotting and probing with anti-V5, 

some full length Slx5 was detected, but there were many degradation products (FIG 6a).  

Additionally, staining the gel for overall proteins revealed a smear of proteins with no 

discrete bands, indicating a low-quality protein preparation (FIG 6b).  

Extraction of full length Slx5 

While the above bead-beating methods showed promise, further optimization was 

required to consistently extract and visualize full-length proteins to be used in subsequent 

experiments.  Therefore, the procedure was modified as follows: Slx5-V5/His6 and 

Siz1∆440-HA (YOK 2354) (constructs E and B in Table 2) were co-expressed by 

galactose induction, and cell pellets were washed in 1x PBS with protease inhibitors 
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before being snap frozen in liquid nitrogen.  500µl of Buffer A was added to each pellet, 

which was subjected to bead beating 10 times for 20 seconds each with 1.5 minutes on 

slushy ice in between each cycle.  Cell lysate was clarified by centrifugation for 10 

minutes at 4
o
C, followed by centrifugation in a SpinX filter tube at 15,000 rpm for 5 

minutes at 4
o
C, and WCE was prepared for SDS-PAGE by TCA precipitation rather than 

sample buffer.  4ODs of WCE was added to 800µl of 20% TCA, washed in 800µl 2% 

TCA, and resuspended in 200µl of TCA sample buffer with BME followed by a 2 minute 

incubation at 100
o
C (see Appendix A for full method).  Preparation of whole cell extracts 

in this manner was much more successful, leading to the visualization of full-length Slx5 

upon western blotting with anti-V5 (FIG 6c).  Additionally, staining a gel of WCE 

samples prepared in TCA reveals many discrete bands, indicating a high quality protein 

extraction (FIG 6d).   
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Purification of Slx5-V5/His6 from TALON metal affinity resin 

With the successful extraction of full-length Slx5, we needed to confirm that we could 

purify the protein as well.  Slx5-V5/His6 and Siz1∆440-HA (YOK 2354) or just 

Siz1∆440-HA (YOK 2353) (constructs E and B in Table 2) were galactose-expressed and 

proteins were extracted as described in the previous section.  Clarified lysate was added 

to 100µl of TALON metal affinity resin, and the samples were nutated for 2 hours at 4
o
C.  

The resin was washed with Buffer B and bound proteins were eluted by addition of an 

equal volume of 2xLDS-sample buffer followed by a 5 minute incubation at 100
o
C.  

Western blot analysis with anti-V5 revealed that Slx5-V5/His successfully purified from 

TALON resin (FIG 7). 

 

Siz1∆440-HA

Slx5-V5/His -

+

+

+

TCA

WCE

SB

TALON 

elution

-

+

+

+

- Slx5

Figure 7:  Successful purification of full-length Slx5 from TALON metal affinity resin

Siz1∆440-HA was expressed in yeast alone or with Slx5-V5/His (YOK 2353 and 2354).  4ODs of cells were 

prepared by TCA extraction as whole cell extract (WCE).  Proteins were extracted from the remaining cells by 

bead beating in Buffer A.  Clarified lysate was incubated with TALON metal affinity resin.  After washing the 

resin with Buffer B, bound proteins were eluted with sample buffer (SB).  Separation by SDS-PAGE and 

subsequent Western Blotting (WB) with anti-V5 antibody reveals Slx5 in both the WCE and the SB elution from 

TALON resin, indicating that Slx5 can be successfully purified with our protocols. 

WB: anti-V5

100kDa -



- 28 - 
 

Extraction of full length and truncated Siz1 

Since protocols had now been developed that could successfully extract and purify Slx5-

V5/His6 from TALON metal affinity resin, the ability to extract  truncated and full-length 

versions of Siz1 needed to be confirmed as well, since we were interested in it as Slx5's 

potential binding partner and in the domains involved in this interaction.   

We first expressed the truncated version, Siz1∆440-HA, both alone and with Slx5-

V5/His6 (YOKs 2353 and 2354) (constructs B and E in Table 2).  Strains were galactose 

induced, and proteins were extracted with Buffer C as described in the Materials and 

Methods, similar to the protocol used to extract full-length Slx5 above.  WCEs were 

prepared in TCA and visualized by western blotting with the anti-HA antibody (FIG 8a).  

Several high molecular weight adducts above the main Siz1∆440 were observed, 

indicating that modified  forms of the protein exist and were preserved in our preparation.  

We were also able to extract full-length Siz1-13xmyc (YOK 2397) (construct D in Table 

2) from an endogenous promoter in Buffer K (FIG 8c).  Again note how modified forms 

of this protein were preserved with this extraction.  We then expressed full length Siz1-

V5/His6 (YOK 2510) (construct C in Table 2) as above, and were able to visualize the 

full-length protein by western blotting with anti-V5 (FIG 8b).  However, this preparation 

did not yield modified adducts on Siz1.  Finally, we expressed Siz1-V5/His6 (construct C 

in Table 2) out of multiple backgrounds (YOKs 2510, 2720, and 2721).  Cultures were 

treated with MG132 to inhibit the proteasome (methods in Appendix A), and extracted as 

above.  In this case, modified versions of Siz1 were apparent (FIG 8d). 
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Purification of Siz1∆440 with and without a 6xHIS tag from TALON metal affinity resin  

After successful extraction of truncated and full-length Siz1 protein, we attempted to 

purify these proteins.  This ability would be useful to identify proteins that co-purify with 

Siz1, for example Slx5.  Purified protein could also be used for other downstream assays, 

such as sumoylation reactions.  We expressed Siz1∆440-V5/His6 (YOK 2377) (construct 

A in Table 2) by galactose induction and extracted proteins as described previously for 

Slx5, except here we used Buffer D.  Clarified lysates were subjected to purification as 

described in Materials and Methods using TALON metal affinity resin.  The protein 

bound resin was washed in 50mM Tris-HCl with 0M, 200mM, 500mM or 1M of NaCl to 

determine the stringency of washes that would still maintain the purified protein.  

4 5

100 kDa -

WB: anti-V5

- Siz1

150 kDa -

100 kDa -

150 kDa -

1 2

- Siz1∆440

WB: anti-HA

100 kDa -

150 kDa -

3

- Siz1

WB: anti-myc

A

C

B

Figure 8:  Successful extraction of truncated and full-length Siz1

Whole cell extracts (WCE) of strains expressing various Siz1 constructs were extracted by bead beating with Buffer C and proteins 

precipitated by TCA.  Proteins were separated by SDS-PAGE followed by Western Blotting (WB) with antibodies to HA, V5, or myc 

epitope tags. (A) Lane 1 and 2: WCE from YOK 2508 and 2509 containing galactose overexpressed Siz1∆440-HA.  Note modified 

versions of Siz1∆440.  (B) Lane 3: WCE from YOK 2397 containing endogenous levels of Siz1-13xmyc.  Clarified lysate was 

prepared in Promega lysis buffer. Note sumoylated adducts of Siz1.  (C) Lane 4 and 5: WCE from YOK 2510 and 2512 containing 

galactose overexpressed Siz1-V5/His.  Note the absence of sumoylated adducts.  (D) Lane 6, 7, 8, and 9: WCE from YOK 2510, 

2720, 2721 and 2510, respectively, containing galactose overexpressed Siz1-V5/His.  These cells were also subject to 

proteasome-inhibition by MG132.  Note modifications on Siz1.

D

6 7 8 9

150 kDa -

WB: anti-V5

- Siz1
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Proteins were eluted with Buffer E and separated by SDS-PAGE.  Subsequent western 

blots were probed with anti-V5, which revealed that Siz1∆440 was successfully purified 

in every wash condition, indicating a strong interaction with the resin (FIG 9a). 

Additionally, proteins from the previously described strains that contained either 

Siz1∆440-HA alone or with Slx5-V5/His6 (YOKs 2353 and 2354) (constructs B and E in 

Table 2) were extracted and purified on TALON resin as described in Materials and 

Methods with Buffer C for lysis, Buffer G for wash and Buffer F for elution with the goal 

of purifying Slx5-V5/His6 and probing for co-purifying Siz1∆440-HA.  However, 

Siz1∆440-HA consistently purified from the TALON resin in the absence of Slx5-

V5/His6 (FIG 9b and other unpublished observations).  We hypothesized that this ability 

was due to the exposed, native metal-coordinating C-terminal SP-RING domain of the 

Siz1 truncation, which might have the ability to bind the cobalt
 
ion present on the 

TALON resin.  This finding would indicate that we were actually purifying proteins in 

their native conformations and warranted further investigation. 
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RING domain proteins intrinsically bind TALON metal affinity resin 

As detailed above, we serendipitously observed that Siz1∆440-HA purifies from TALON 

metal affinity resin, which normally binds 6xHIS tagged-proteins.  We confirmed by 

sequencing that Siz1∆440-HA does not contain a 6xHis epitope tag, but it does contain 

an exposed SP-RING domain at its C-terminal end, which naturally coordinates metal 

ions (FIG S1).  We hypothesized that the natively folded RING domain in Siz1∆440 

could be coordinating with the metal ion on TALON resin independently of a 6xHis tag.  

A precedence for intrinsic protein binding to metal affinity resins exists, as it has been 

- Siz1∆440

WB: anti-V5

[NaCl] 0M

200 

mM

500 

mM 1M WCE

Elution

Figure 9:  Successful purification of Siz1∆440 with and without a His tag from TALON metal affinity resin

Proteins were overexpressed by galactose induction and extracted by bead beating.  Whole cell extracts (WCE) were 

prepared in TCA while clarified lysates were incubated with TALON metal affinity resin.  Eluted proteins were separated 
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described that the cholera toxin B subunit binds Ni
2+ 

resin in a manner mediated by its 

native histidine residues (Dertzbaugh and Cox, 1998). 

To test this possibility for RING domain-containing proteins, we expressed several 

proteins that contain RING domains – Siz1∆440-HA (YOK 2353), Slx5-GST (YOK 

2071), Siz1-myc (YOK 2397), and Slx5-V5/His6 (YOK 2096) (constructs B, F, D and E 

in Table 2) as a positive control for TALON binding.  We then extracted the proteins by 

bead beating with Buffer C in both native and denaturing conditions, incubated samples 

with TALON metal affinity resin, followed by washes with Buffer G and elution of 

bound proteins with Buffer F.  Slx5-V5/His6 purified from TALON resin in both native 

and denaturing conditions, indicating that 6xHIS-tagged proteins purify as expected (FIG 

10a).  Siz1∆440-HA, Slx5-GST and Siz1-myc purified from TALON resin in native, but 

not denaturing conditions, indicating that a properly folded RING domain facilitates 

binding of non-His6-tagged proteins to TALON metal affinity resin (FIG 10b,c,d).  These 

proteins were eluted from the TALON resin with imidazole, which competes for histidine 

binding sites with the Co
2+

 ions, indicating that the binding of the RING domain proteins 

was specific to the metal ion.  None of the proteins were purified with uncharged amylose 

resin, again indicating that the RING domain purification is dependent on the metal ion in 

TALON resin.  Overall it appears that natively folded RING domain proteins can be 

intrinsically purified with TALON metal affinity resin, which could be useful in many 

applications.   
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Slx5 physically interacts with Siz1∆440 in vivo 

With the confirmed ability to extract and purify full-length Slx5 and Siz1∆440, we were 

now equipped to perform a co-purification experiment.  However, our previous 

observation that the RING domains of Slx5 and Siz1∆440 intrinsically purify from 

TALON resin regardless of their affinity tag necessitated the use of an additional affinity 

resin.  Thus, we decided to purify with glutathione resin instead, which binds the GST 

epitope tag.  We galactose-overexpressed Slx5-GST and Siz1∆440-HA both individually 

and together in a ubc4∆ ubc6∆ background strain to help stabilize any potential 

interaction between the two proteins (YOKs 2507, 2508 and 2509) (constructs F and B in 

Table 2).  Proteins were extracted in Buffer H with the use of a bead ruptor as described 

in Materials and Methods.  In addition to a protease inhibitor cocktail, N-ethylmaleimide 

was used to preserve sumoylation, which improves Slx5 targeting, and sodium 

orthovanadate was used to preserve phosphorylation, since work in the lab and recent 

literature indicates a role for phosphorylation in subsequent sumoylation of  proteins and 

in Siz1's ability to interact with sumoylated targets (Ulrich, 2012; Stehmeier and Muller, 

2009).  Lysates were incubated with glutathione resin, which would bind the Slx5-GST 

but not the Siz1∆440-HA.  After washing the resin with Buffer I and eluting glutathione-

bound proteins with Buffer J, samples were separated by SDS-PAGE.  As expected, 

when Western Blotting with anti-GST, Slx5 is seen in the elution samples, so the 

glutathione purification was successful.  Additionally, in the strain expressing both 

proteins, Siz1∆440 co-purifies with Slx5 (FIG 11).  When expressed alone, Siz1∆440  

does not purify with the glutathione resin, indicating that the interaction observed is 

legitimate and is not due to non-specific interactions with the resin.  
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Siz1∆440 is auto-sumoylated in vivo 

Given the evidence that Slx5 and Siz1∆440 interact in vivo, we sought to confirm the 

sumoylation status of Siz1∆440.  Slx5 often interacts with its targets via SIMs, so if 

Siz1∆440 were sumoylated, it could help explain their interaction.  Additionally, while 

Siz1∆440 has been confirmed to have many of the same properties as full-length Siz1 in 

vitro, the auto-sumoylation of the truncation construct has not been confirmed in vivo. 

To determine if Siz1∆440 is sumoylated in vivo, we performed a SUMO-FLAG shift 

assay.  Siz1∆440-V5/His6 (construct A in Table 2) was galactose expressed in a ulp1ts 
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background containing either Smt3gg or FLAG-Smt3gg.  The addition of the FLAG tag 

makes the Smt3gg slightly heavier, leading to a visible shift on a western blot of higher 

molecular weight bands on top of Siz1∆440 if the protein's modification is SUMO.  A 

noticeable shift was indeed detected, confirming that the modification on Siz1∆440 is 

SUMO (FIG 12).  Thus, Siz1∆440 is appropriately sumoylated in vivo, making it an 

acceptable replacement for full-length Siz1 in protein interaction studies. 
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Figure 12: Siz1∆440 is sumoylated in a FLAG-Smt3gg mobility shift assay.

Siz1∆440-V5/His6 (BOK 794) was overexpressed in ulp1ts strains YOK 430 and YOK 428 also expressing high 

levels of conjugation competent Smt3 (gg) or FLAG-tagged Smt3 (FLAG-gg) as indicated.  Proteins extracted from 

each strain were separated by SDS-PAGE and after western blotting (WB) were probed with an antibody to the V5 

epitope (A) or the FLAG tag (B) as indicated.  Arrows indicate the FLAG-dependent mobility shift of sumoylated 

Siz1∆440.  FLAG-Smt3gg expression leads to the formation of high molecular weight (MW) Smt3 conjugates.  A 

non-specific protein cross-reacting with the anti-FLAG antibody serves as loading control (*).  Molecular weights are 

indicated in kDa.
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Siz1∆440 is ubiquitylated in an Slx5-dependent manner 

With the confirmation that Siz1∆440 is sumoylated, and that Slx5 and Siz1∆440 interact 

in vivo, we next decided to investigate if Siz1∆440 is a substrate of Slx5-dependent 

ubiquitylation in vivo as well.  Previous work in the lab showed that Siz1∆440 was a 

substrate for Slx5 in an in vitro ubiquitylation assay, but the results had not been 

confirmed in vivo.  Visualizing ubiquitylation on a single protein can be difficult, since 

ubiquitylation often leads to proteasome-dependent degradation.  We overcame this 

challenge by expressing a modified version of ubiquitin in which the final glycine (amino 

acid 76) was mutated to an alanine.  This ubiquitin G76A is still able to form those 

isopeptide bonds, at about 20% the usual rate, but unlike bonds with wild type ubiquitin, 

formation of these bonds is irreversible, preventing deubiquitylation by the proteasome 

(Hodgins et al., 1992).  Thus, the irreversible addition of ubiquitin G76A makes it useful 

for studying potential ubiquitylation targets, such as Siz1∆440.   

To investigate the status of Siz1∆440 ubiquitylation by this method, we overexpressed 

Siz1∆440-V5/His6 (construct A in Table 2) both with and without ubiquitin G76A-myc in 

either a wild type or slx5∆ background (YOKs 2379 and 2380).  After probing whole cell 

extracts for Siz1∆440, we saw a slight increase in modification of Siz1∆440 in the 

presence of ubiquitin G76A compared to normal ubiquitin.  Looking at strains expressing 

the ubiquitin G76A, we also saw a significant increase in modification of Siz1∆440 in the 

wild type as compared to the slx5∆ background (FIG 13).  These observations together 

may indicate that Siz1∆440 is ubiquitylated in an Slx5-dependent manner. 
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DISCUSSION 

In this work, we study the interaction of STUbLs and SUMO E3 ligases, as well 

as describe an efficient method to extract and purify proteins from yeast cells under 

native conditions.  In doing so, we serendipitously discovered the intrinsic ability of 

RING domain proteins to bind TALON metal affinity resin in the absence of a 6xHIS tag 

or other moieties, which could prove useful in further studies of RING-containing 

proteins.   Development of this method allowed us to purify Slx5, a STUbL subunit, and 
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Siz1∆440, a SUMO E3 ligase and reveal their interaction in vivo.  Further investigation 

revealed that Siz1∆440 is likely an in vivo substrate of the Slx5/Slx8 ubiquitin ligase. 

Development of successful extraction and purification protocols 

 The methods of protein extraction and purification developed within this thesis 

were successful for several reasons.  First of all, during extraction, use of the bead beater 

at 4
o
C to lyse cells minimized opportunities for cell extracts to heat up, which would 

cause proteins to denature and degrade.  By contrast, the pulverizing and sonication 

method left ample opportunities for temperature increase as well as human error in 

manipulation of the cell pellet.  Additionally, preparation of the whole cell extracts with 

TCA proved much more effective than with LDS Sample Buffer.  With the TCA 

preparation, samples were washed successively with TCA to precipitate proteins while 

eliminating other macromolecules.  By contrast, LDS Sample Buffer preparation did not 

contain wash steps, so the final sample contained a mix of proteins and other 

macromolecules, which affected its separation by SDS-PAGE.  Finally, the basic buffer 

composition used in the final method consists of 50mM Hepes buffer to maintain the 

sample at a physiological pH, 200mM NaCl to keep the proteins soluble, mimic 

physiological conditions, and prevent nonspecific binding, and 1% Triton X-100 to 

prevent protein aggregation. 

Is the sumoylation of Siz1 required for its interaction with Slx5? 

Our demonstration that Slx5 and Siz1∆440 interact in vivo raises several 

important questions. Primarily, how do they interact?  Since our co-purification was 

performed with a C-terminal truncation of Siz1, that region is likely not involved in its 
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interaction with Slx5.  However, we entertain several possibilities shown in FIG 14.  

First, sumoylated Siz1 could noncovalently interact with SIMs on Slx5 (FIG 14a).  The 

SUMO-FLAG shift assay in this study revealed that Siz1∆440 is sumoylated in vivo. 

Given the ability of Slx5 to interact with sumoylated substrates via SIMs, this possibility 

seems likely.  However, there are also reports that sumoylation is not required for targets 

to interact with Slx5/Slx8 (Xie et al., 2010).  In our case, there is evidence that 

sumoylation does enhance, but is not required for, the interaction between Siz1 and Slx5.  

A yeast two-hybrid assay between Siz1(SUMO no more (SNM)), a version of Siz1 with 

all lysines mutated to arginines to prevent sumoylation, and Slx5 showed a weak 

interaction between the two proteins (unpublished observation).  Additionally, a fusion of 

Smt3 to Siz1∆440 did not enhance Slx5/Slx8's in vitro ubiquitylation activity (Matson, 

2011 thesis). In a second model (FIG 14b), SIMs present in Siz1 could recognize 

sumoylated Slx5 in a similar manner (Kerscher, unpublished observation), which would 

help explain why sumoylation of Siz1 doesn't seem necessary for the interaction.   

Further experiments can be done to confirm these two models.  Our in vivo co-

purification was performed with N-ethylmaleimide to preserve sumoylation, supporting 

that sumoylation plays an important role for in vivo targeting.  However, we could test 

this more specifically by attempting to co-purify Siz1(SNM) and Slx5.  Additionally, we 

have been conducting experiments on the assumption that only Slx5 interacts with Siz1 

since it is generally thought of as the targeting subunit of the Slx5/Slx8 heterodimer due 

to its SIMs.  However, Siz1 also interacted with just Slx8 in in vitro pulldown assays 

(Matson, 2011 thesis).  Thus, in a third model (FIG 14c), it is possible that Slx8 is 

directly involved in the heterodimer's interaction with Siz1.  Slx5, Slx8 and Siz1 all 



- 41 - 
 

contain RING domains, which could help mediate an interaction between the three 

proteins. Hetero-RING complexes involving the ubiquitin ligase Mdm2 actually enhance 

its activity (Kawai et al., 2007).  It would be interesting to attempt an in vivo pulldown 

assay with Slx8-GST and Siz1∆440-HA to see if those two proteins interact as well.  This 

result would also help explain why Siz1 sumoylation enhances its interaction with Slx5, 

but is not entirely necessary.  

Is phosphorylation of Siz1 required for its interaction with Slx5? 

In addition to being sumoylated, Siz1 is also phosphorylated and exported with 

the help of the karyopherin Msn5 in G2/M to sumoylate the septins (Takahashi et al., 

2001). Phosphorylation of Siz1 may also be involved in DNA damage signaling, since 

PIAS1 is phosphorylated by IκB kinase alpha and may be involved in the ataxia-

telangiectasia mutated (ATM)-mediated response (Kuo et al., 2012). Eight 

phosphorylation sites have been identified on Siz1 based on mass spectrometry 

sequencing.  Several kinases, such as protein kinase A, casein kinase I and glycogen 

synthase kinase 3, may be involved in these events.  Phosphorylation at S132, S139 and 

S811 are all M-phase regulated, but their functions are unknown (PhosphoGrid: 

YDR409W; FIG S2).   Our lab has observed cell cycle specific phosphorylation of Siz1.  

Furthermore, in the absence of Slx5, Siz1 phosphorylation is also enhanced.  

Therefore, in a fourth model (FIG 14d), phosphorylation may be involved in the 

interaction between Siz1 and Slx5.  As mentioned earlier, RNF4 has a positively charged 

arginine rich region (ARR) following its four SIMs, which could mediate an interaction 

with a negatively charged phosphate group (Kuo et al., 2012).  This region is conserved 

throughout the RNF4 family in other eukaryotic organisms.  While the sequence of 
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budding yeast Slx5 does not line up perfectly with the rest of the eukaryotic RNF4 

family, Slx5 does contain two putatitive ARRs from amino acids 189-208 and 241-260 

(FIG S3).  Since the four SIMs of Slx5 are in between amino acids 24 and 158, the 

placement of these arginines seems consistent with an ARR following the SIMs, and 

could interact with a negatively charged phosphate on Siz1.  Additionally, the second 

ARR falls within a region required for nuclear import and dimerization of Slx5 

(Westerbeck et al., manuscript in preparation). 

Our in vivo co-purification of  Siz1 and Slx5 was successful when the 

phosphatase inhibitor sodium orthovanadate was added to preserve phosphorylation.  

Further experiments could attempt the pulldown without phosphatase inhibitors, or with a 

Siz1 serine mutant that cannot be phosphorylated.  Additionally, if we determine that 

Siz1's phosphorylation does enhance its interaction with Slx5, we could mutate arginines 

in Slx5's putative ARR to see if that abolishes the interaction as well. Data gathered from 

the described experiments could support or refute the mechanisms of interaction 

postulated in our model.  It is also likely that multiple mechanisms are involved in the 

targeting of Slx5 to Siz1 (FIG 14e).   
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Does Slx5 ubiquitylate Siz1 in vivo? 

The evidence presented in this study suggests that Siz1 is ubiquitylated in vivo in 

an Slx5-dependent manner.  In combination with the in vivo co-purification (FIG 12) and 

the in vitro ubiquitylation assay (Matson, 2011 thesis), this indicates that Siz1 may be 

ubiquitylated by Slx5.  We sought to show ubiquitylation of Siz1∆440 in whole cell 

extracts.  For this purpose, we used ubiquitin-GA (UbGA), in which ubiquitin's final 

glycine is mutated to an alanine, allowing conjugation to substrates but preventing 

deubiquitylation by the proteasome (Hodgins et al., 1992).  We saw increased 

modification on Siz1∆440 in the presence of UbGA in the wild-type as compared to the 

slx5∆, which suggests that the modification on Siz1∆440 is indeed ubiquitin.  However, 

probing for ubiquitin to confirm this was not useful, because it just revealed the total 
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level of ubiquitin in the cell.  Therefore, we cannot exclude the possibility that the 

modification on Siz1∆440 in our figure could be a moeity other than ubiquitin (e.g., 

SUMO).   

To more definitively demonstrate that Siz1 is actually ubiquitylated, we attempted 

to purify Siz1 and then probe for ubiquitin.  Proteasome inhibitors (e.g., MG132) are 

often used in studies of ubiquitin. Due to the impermeability of the yeast cell wall, mutant 

strains (e.g. pdr5∆) that confer increased permeability or reduced drug efflux must be 

used.  However, these strains can be difficult to create, especially in an existing mutant 

background.  To this end, we employed a novel growth condition to inhibit the 

proteasome with MG132 to preserve any ubiquitylated proteins that would normally be 

targeted for degradation (Fig S4; Liu et al., 2007).  However, our attempts to purify Siz1 

were unsuccessful, and we are currently repeating the experiment with a different Siz1-

V5/His construct.  Purification of ubiquitylated Siz1 would offer solid evidence of a 

functional in vivo interaction between Slx5 and Siz1. 

Slx5 may help coordinate cell-cycle specific roles of Siz1 

As the main SUMO ligase in budding yeast, Siz1 has numerous targets in various 

locations, many of which have been discussed earlier.  In sum, Siz1 remains nuclear for 

much of the cell cycle due to its DNA-binding SAP domain, where it interacts with 

transcription factors, PCNA, and DNA damage repair (DDR) proteins, among other 

targets.  In G2/M, Siz1 is exported to the cytoplasm, where it sumoylates the septins.  In 

order to carry out all of its roles, Siz1 must be dynamically regulated.  Here we propose a 

model in which the interaction between Siz1 and Slx5 coordinates Siz1 functions (FIG 

15). 
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During S-phase, Siz1 or PIAS1 sumoylates PCNA, which recruits the DNA 

helicase Srs2, preventing unwanted homologous recombination.  If DNA damage occurs, 

resulting in a dsDNA break (DSB), a cascade of events occurs.  ATM phosphorylates 

several proteins, including MDC1, H2AX, and possibly Siz1 (Kuo et al., 2012).  

However, it is important to note that Siz1 phosphorylation does not increase its in vitro 

ligase activity, and instead may regulate in vivo protein interactions (Johnson and Gupta, 

2001).  Siz1 then sumoylates DDR proteins (e.g. BRCA1), facilitating their assembly and 

functions (Kuo et al, 2012), while also possibly auto-sumoylating itself.  Next, Slx5/8 or 

RNF4 is recruited to the DSB (Cook et al., 2009; Galanty et al., 2012) likely via its 

interaction with phosphorylated and sumoylated Siz1, as well as its SIM-mediated 

interaction with other sumoylated DDR proteins.  Slx5 ubiquitylates those DDR proteins, 

creating a hybrid SUMO-ubiquitin chain that is recognized by both ubiquitin-interacting 

motifs (UIMs) and SIMs on Rap80 (Guzzo et al., 2012).  Rap80 then recruits the BRCA1 

complex, which mediates homologous recombination to fix the break.  Once damage is 

repaired, ubiquitylation of DDR proteins and Siz1 could send them for degradation by the 

proteasome, thus eliminating excessive SUMO chains, which are toxic to the cell.  

Additionally, ubiquitylation of sumoylated Siz1 by Slx5 creates a hybrid chain on Siz1, 

which may be recognized by the Cdc48-Ufd1-Npl4 (Cdc48-UN) complex via a SIM on 

Ufd1 and the ability of the complex to interact with ubiquitin (Nie et al., 2012).  Cdc48 

unravels protein complexes, and therefore may release Siz1 from its complex with DDR 

proteins.  Once released, Siz1 could be degraded by the proteasome, or could be free to 

carry out its other functions.   
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With the DNA damage repaired, highly sumoylated proteins removed and Siz1 

available for export, the cell cycle continues.  At G2/M, Siz1 becomes phosphorylated, 

likely at a different residue than the one involved in DNA damage.  With the help of 

Msn5, Siz1 is exported from the nucleus into the cytoplasm where it sumoylates the 

septins.  This modification regulates the dynamics of septin ring formation and 

disassembly, which is critical for microtubule capture and the completion of mitosis 

(Johnson and Blobel, 1999; Takahashi et al., 2001).  Thus, in the proposed model, the 

interaction between Slx5 and Siz1 helps coordinate DNA damage repair, as well as Siz1 

localization and function, enabling the yeast cell to progress through the cell cycle while 

maintaining its genomic integrity. 
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Figure 15:  Coordination of cell-cycle specific roles of Siz1 by interaction with Slx5

Siz1 changes sub-cellular locations throughout the cell cycle, corresponding to its various targets and functions.  During S-phase in the 

absence of DNA damage, Siz1 interacts with DNA via its SAP domain and with PCNA via its PINIT domain, and sumoylates PCNA (1).  In the 

case of DNA damage, leading to dsDNA breaks, PCNA becomes ubiquitylated instead (2).  Various proteins (e.g., H2AX, MDC1 and 

potentially Siz1) become phosphorylated by ATM (3).  Siz1 sumoylates damage repair proteins, coordinating their assembly at the break, 

while also auto-sumoylating itself (4).  Sumoylated proteins may be targets for Slx5, which ubiquitylates them (5).  Hybrid SUMO-Ubiquitin 

chains bind Rap80, which recruits BRCA1, leading to homologous recombination (HR) (6).  Meanwhile, perhaps via both sumoylation and 

phosphorylation, Slx5 also interacts with and ubiquitylates Siz1 (7).  This also forms hybrid chains, which may be recognized by Cdc48-UN 

(8).  Cdc48 unravels the complex, releasing Siz1, which may then be degraded by the proteasome (9).  Free Siz1 is also becomes available 

for phosphorylation and nuclear export by Msn5 as the cell cycle continues into G2/M (10).  Once in the cytoplasm, Siz1 sumoylates the 

septins (11).
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Intrinsic RING domain purification  

 During our attempts to purify Slx5 and Siz1, we serendipitously discovered that 

natively folded RING-domain containing proteins bind to TALON metal affinity resin.  

We hypothesize that this is due to the natural ability of the RING domain to coordinate 

metal ions (FIG 1).  This is supported by our data, which show that RING-containing 

proteins bind TALON resin solely under native conditions, and do not bind uncharged 

amylose resin.  Siz1-myc purified at much lower levels than the overexpressed RING 

proteins tested, which is likely due to the fact that Siz1-myc was expressed from an 

endogenous promoter instead of by galactose overexpression, so there were lower levels 

of the tagged protein in the first place.  Additionally, the RING domain falls in the middle 

of full-length Siz1, rather being exposed at the end as in Slx5 or Siz1∆440, which could 

make it less accessible for binding to TALON resin. 

While the results so far are promising, further experiments would be helpful to 

determine how widespread this ability is.  We only tested Slx5, Siz1, and Siz1∆440 for 

intrinsic binding, and it would be useful to purify other RING-containing proteins.  

Additionally, proteins that do not contain RING domains and are known not to interact 

with RING-containing proteins should be tested as a negative control.  If those 

experiments continue to support our hypothesis, we could perform site-directed 

mutagenesis of cysteines and histidines in a RING domain, followed by an attempt at 

TALON purification as before.  This would more definitively indicate that it is indeed the 

RING domain responsible for this binding. 

A logical biochemical explanation exists for this binding ability.  TALON metal 

affinity resin consists of a tetradentate chelator charged with a cobalt ion (Co
2+

), which 
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has high affinity for histidine-tagged proteins. The imidazole group on the histidine 

contains a nitrogen with a lone pair of electrons that forms a bond with the metal cation.  

RING domains contain both histidine and cysteine residues, which normally coordinate 

zinc ions (Zn
2+

).  Similar to the imidazole group, the thiol group on cysteine contains two 

lone pairs of electrons that are available to form bonds with multiple metal cations.  Both 

Zn and Co are transition metals that lose two electrons from the 4s orbital when they 

ionize.  Given these similar properties, it is reasonable that a RING domain could bind 

Co
2+

 just as it binds Zn
2+

.  It would be interesting to also test the ability of RING domains 

to bind Ni
2+

 affinity resin. 

 This intrinsic binding ability is useful for several reasons.  First of all, if 

attempting purification and co-purification studies, it is important to know that RING-

domain proteins may bind to TALON and other metal affinity resins.  For instance, one 

of the reasons it was such a challenge to show in vivo co-purification of Slx5 and Siz1 

was because both proteins were independently purified by the TALON resin regardless of 

tag or interactions.  Second, while in some situations the intrinsic binding ability may be 

frustrating, in others it could prove useful to purify a RING-domain protein of interest 

that is not tagged.  Though other RING proteins may purify as well, the majority of 

whole cell proteins can be washed away.  Third, RING-domain proteins often have 

ubiquitin or SUMO ligase activity.  After purification in their native condition without a 

tag, they could then be used in subsequent in vitro conjugation assays.  In sum, this 

finding is both biochemically interesting and useful for the study of RING-domain 

proteins. 
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SUPPLEMENTAL FIGURES AND TABLES 

 

 

 

 

  

Figure S1: Sequence of Siz1∆440-HA 

Sequencing of Siz1∆440-HA (BOK 795) confirms that the construct contains three HA tags 

(highlighted in green) and no polyhistidine tag.  The C-terminal end of this truncated protein 

contains an exposed SP-RING domain (highlighted in yellow), which harbors several cysteine 

and histidine residues (underlined) that could be involved in RING-domain binding to TALON 

metal affinity resin.  
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Figure S3: Sequence of Slx5 

The sequence of Slx5 was obtained through the Saccharomyces Genome Database.  The C-terminal 

RING domain of Slx5 stretches from amino acids 494-619 (highlighted in yellow).  Cysteine and histidine 

residues that are involved in RING domain binding to TALON metal affinity resin are underlined (Ii et al., 

2007).  Additionally, Slx5 contains four N-terminal SIMs in between amino acids 24 and 158 (highlighted in 

purple).  Two putative arginine rich regions (ARRs) from amino acids 189-208 and 241-260 could help 

facilitate interactions with phosphorylated proteins.  Each potential ARR is underlined, and arginines are 

highlighted in blue.  
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Figure S4: Use of MG132 to inhibit proteasomal degradation

Inhibition of the proteasome with MG132 can be difficult, requiring a pdr5∆ deletion strain that does not transport the 

drug back out of the cell.  We employed a new method described by Liu et al, 2007 with a slight modification of our 

own to permeabilize wild-type yeast cells to MG132 (see Appendix A).  Yeast cells were grown, harvested, and 

extracted by bead beating as described in Materials and Methods.  After western blotting (WB), blots were probed 

with an antibody to ubiquitin (anti-Ubi, 1:4000).  More whole cell ubiquitination is seen in MG132 treated samples (+) 

than in untreated ones (-).  (A) Samples from YOK 2377. (B) Samples from YOKs 2514 and 2592, respectively.

WB: anti-Ubi WB: anti-Ubi

A B
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Table 3: Yeast strains  

Name Relevant Genotype or 

Parent Strain 

Plasmid(s) or Cassette 

insertion 

Reference  

YOK 724 Slx5Δ::kanMX pYES2.1-GAL-lacZ-

TOPO  

 

YOK 2062 JD52  Erica Johnson 

YOK 2071 JD52 GAL1/10-GST-Slx5 

(BOK 629, 

OpenBiosystems Yeast 

GST collection 

YSC4515-202484078) 

 

YOK 2096 JD52 pYES2.1-GAL-Slx5-

V5/His6-TOPO (BOK 

390) 

 

YOK 2250 JD52 pYES2.1-GAL-HALO-

Slx5(1-207)-V5/His6-

TOPO (BOK 830) 

This study 

(Appendix B) 

YOK 2251 JD52 pYES2.1-GAL-HALO-

Slx5(1-517)-V5/His6-

TOPO (BOK 829) 

This study 

(Appendix B) 

YOK 2265 JD52 pYES2.1-GAL-Slx5(1-

207)-Halo-V5/His6-

TOPO (BOK 830); 

FLAG-Smt3gg (BOK 

700) 

This study 

YOK 2266 JD52 pYES2.1-GAL-Slx5(1-

517)-Halo-V5/His6-

TOPO (BOK 829); 

FLAG-Smt3gg (BOK 

700) 

This study 

YOK 2299 JD52 pRS426/URA (BOK 

344) 

This study 

(Appendix B) 

YOK 2306 slx5Δ::kanMX4 in 

MHY500 (YOK 2286) 

pYES2.1-GAL-Slx5(1-

207)-Halo-V5/His6-

TOPO (BOK 830) 

This study 

(Appendix B) 

YOK 2307 slx5Δ::kanMX4 in 

MHY500 (YOK 2286) 

pYES2.1-GAL-Slx5(1-

517)-Halo-V5/His6-

TOPO (BOK 829) 

This study 

(Appendix B) 

YOK 2308 JD52 pYES2.1-GAL-Slx5-

V5/His6-TOPO (BOK 

390); FLAG-Smt3gg 

(BOK 700) 

This study 

(Appendix B) 

YOK 2319 JD52 pYES2.1-GAL-Slx5(1- This study 
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207)-Halo-V5/His6-

TOPO (BOK 830); 

SUMO-GFP (BOK 642) 

(Appendix B) 

YOK 2320 JD52 pYES2.1-GAL-Slx5(1-

517)-Halo-V5/His6-

TOPO (BOK 829); 

SUMO-GFP (BOK 642) 

This study 

(Appendix B) 

YOK 2321 JD52 pYES2.1-GAL-Slx5-

V5/His6-TOPO (BOK 

390); SUMO-GFP (BOK 

642) 

This study 

(Appendix B) 

YOK 2353  JD52  pAG425-GAL1-ccdB-

Siz1∆440-HA (BOK 

795) 

This study 

YOK 2354 JD52 pAG425-GAL1-ccdB-

Siz1∆440-HA (BOK 

795); pYES2.1-GAL-

Slx5-V5/His6-TOPO 

(BOK 390) 

This study 

YOK 2371 D7 ulp1Δ + ulp1ts, 

FLAG-Smt3gg (YOK 

428) 

pYES2.1-GAL- 

Siz1∆440-V5/His6-

TOPO (BOK 794) 

This study 

YOK 2372 D8 ulp1Δ + ulp1ts, 

Smt3gg (YOK 430) 

pYES2.1-GAL- 

Siz1∆440-V5/His6-

TOPO (BOK 794) 

This study 

YOK 2373 JD52 slx5Δ::kanMX4 This study 

YOK 2376 JD52 slx5Δ::kanMX4 This study 

YOK 2377 JD52 pYES2.1-GAL- 

Siz1∆440-V5/His6-

TOPO (BOK 794); 

pRS424 (BOK342) 

 

This study 

YOK 2379 JD52 pYES2.1-GAL- 

Siz1∆440-V5/His6-

TOPO (BOK 794); 

CUP1-UbG76A-myc 

(BOK 309) 

This study 

YOK 2380 slx5Δ::kanMX4 in JD52 

(YOK 2376) 

pYES2.1-GAL- 

Siz1∆440-V5/His6-

TOPO (BOK 794); 

pRS424 (BOK342) 

This study 

YOK 2381 slx5Δ::kanMX4 in JD52 

(YOK 2376) 

pYES2.1-GAL- 

Siz1∆440-V5/His6-

TOPO (BOK 794); 

CUP1-UbG76A-myc 

(BOK 309) 

This study 
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YOK 2396 slx5∆::kanMX4 in JD52 

(YOK 2373) 

 

Siz1-13xmyc/HIS5 

(endogenously tagged) 

Made by M. 

Guillotte, 2012 

YOK 2397 JD52  Siz1-13xmyc/HIS5 

(endogenously tagged) 

Made by M. 

Guillotte, 2012 

YOK 2501 MHY3765, alpha mating 

type, ura3-52, lys2-801, 

trp1-∆63, his3-∆200, 

leu2-∆1 

ubc4∆::HIS3; 

ubc6∆::TRP1; mat-

alpha2∆::kanMX 

  

Xie et al., 2010 

YOK 2505 JD52 msn5∆::hygromycin This study (not 

used in figures) 

YOK 2507 ubc4∆::HIS3; 

ubc6∆::TRP1; mat-

alpha2∆::kanMX (YOK 

2501) 

GAL1/10-GST-Slx5 

(BOK 629, 

OpenBiosystems Yeast 

GST collection 

YSC4515-202484078) 

This study 

YOK 2508 ubc4∆::HIS3; 

ubc6∆::TRP1; mat-

alpha2∆::kanMX (YOK 

2501) 

pAG425-GAL1-ccdB-

Siz1∆440-HA (BOK 

795) 

This study 

YOK 2509 ubc4∆::HIS3; 

ubc6∆::TRP1; mat-

alpha2∆::kanMX (YOK 

2501) 

GAL1/10-GST-Slx5 

(BOK 629, 

OpenBiosystems Yeast 

GST collection 

YSC4515-202484078); 

pAG425-GAL1-ccdB-

Siz1∆440-HA (BOK 

795) 

This study 

YOK 2510 ubc4∆::HIS3; 

ubc6∆::TRP1; mat-

alpha2∆::kanMX (YOK 

2501) 

pYES2.1-GAL-Siz1-

V5/His6-TOPO (BOK 

898); pRS425 (BOK 343) 

This study 

YOK 2514 Siz1-13xmyc/HIS5 

(YOK 2397) 

msn5∆::hygromycin This study (not 

used in figures) 

YOK 2592 msn5∆::hygromycin in 

JD52 (YOK 2514) 

slx5Δ::kanMX4 This study (not 

used in figures) 

YOK 2720 slx5Δ::kanMX4 in JD52 

(YOK 2373) 

pYES2.1-GAL-Siz1-

V5/His6-TOPO (BOK 

898) 

This study 

YOK 2721 JD52 pYES2.1-GAL-Siz1-

V5/His6-TOPO (BOK 

898) 

This study 
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APPENDIX A: Protocols  

Yeast Cell Growth Media  

2x YEP 

 6g Yeast Extract (Oxoid, LP0021) 

 12g Peptone (Fisher Scientific, BP1420-500) 

 300ml ddH2O 

 Stir until dissolved, filter sterilize 

3x YEP: 

 30g Yeast Extract 

 60g Peptone 

 700ml ddH2O 

 Autoclave 

 Add 6% galactose to individual aliquots of 3x YEP when ready to use 

Dropout media 

 6.7 g Yeast Nitrogen Based without amino acids (Sigma, Y0626-250G) 

 1.7g amino acid drop-out mixture 

 500ml ddH2O 

 Stir until dissolved, filter sterilize 

 

Creation of a Deletion Strain  

Preparation of Cassette from Existing Deletion Strain 

- Fast Yeast Genomic DNA prep lab protocol 

o Stop after chloroform extraction 

- PCR up the deletion cassette 

o 9x reaction 

Reagent Amount 

ddH2O Up to 360µl total 

dNTPs (1.25 mM) 56.25µl 

Elongase Buffer B 

(5x) 

90µl 

Ook 275 (100µM) 1.8µl 

Ook 276 (100µM) 1.8µl 

gDNA < 250ng 
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Elongase Enzyme 

Mix 

0.75µl per tube 

 

- PCR Program (optimized for slx5∆) 

Temperature Time Purpose 

94
o
C 45 seconds Initial 

denature 

94
o
C 45 seconds Denature 

50
o
C 30 seconds Anneal 

66
o
C 7 minutes Extend 

68
o
C 5 minutes Final 

extension 

4
o
C ∞ hold 

 

- Combine 8 tubes of PCR reaction 

- Confirm PCR product by gel electrophoresis 

o 120V, 20-30 minutes (adjusted as necessary) 

- Clean PCR product (IBI Scientific, IB47020) 

o Clean all product in one DF column with one wash 

o Elute DNA into 30µl of elution buffer 

Transformation into receiving strain 

- Inoculate receiving strain, grow until late log phase (~1.5 OD/ml) 

- Spin down cells, resuspend in 800µl of LiAce/TE, pack on ice in 4
o
C for ~24 

hours (makes cells competent for transformation) 

- Spin down cells, wash in 500µl of LiAce/TE 

- Add 5µl of ssDNA (boiled for 5 minutes, then on ice for at least 2 minutes 

beforehand) 

o Gently resuspend by pipetting up and down 

- Add 15µl of clean deletion cassette PCR product 

- Add 200µl of LiAce/TE/PEG/DTT 

- Incubate in 30
o
C heat block for 30 minutes 

- Incubate in 42
o
C heat block for 20 minutes 

- Spin down, resuspend in 1 ml YPD 

- Spin on rotator at room temperature for ~24 hours 

- Plate cells on selective media plate - 300µl on one plate, 700µl on another 

- Incubate at 30
o
C  

- Pick colonies, extract genomic DNA, and check presence of deletion cassette by 

PCR as above.  Be selective when growing up strains – add 200µM G418 or 200 

µM hygromycin as appropriate to liquid culture. 

32 cycles 
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Extraction of Proteins by TCA 

- Grow cells as desired 

- Centrifuge 4ODs of cells 

- Resuspend cell pellet in 800µl of 20% TCA and transfer to a microcentrifuge tube 

o Cells can be stored at -80
o
C at this point until the protocol is continued 

- Centrifuge at 15,000rpm for 30 seconds in 4
o
C, decant supernatant 

- Add 200µl of small acid washed glass beads and 400µl of 20% TCA 

- Vortex on a foam shaker for 4 minutes at 4
o
C 

- Let contents of the tube settle, then transfer white supernatant to a new tube 

- Centrifuge at 15,000rpm for 2.5 minutes in 4
o
C, decant supernatant 

- Resuspend pellet in 800µl of 2% TCA 

- Centrifuge at 15,000rpm for 2.5 minutes in 4
o
C, decant supernatant 

- Add 200µl of TCA Sample Buffer + BME, vortex to resuspend 

- Incubate in 100
o
C heat block for 2-5 minutes 

- Centrifuge at 15,000rpm for 30 seconds to pellet insoluble materials 

- Store at -80
o
C until further use 

TCA Sample Buffer 

- 15% glycerol 

- 80mM Tris Base (non-pH'd) 

- 3.5% SDS 

- Bromophenol blue "to taste" 

- Before use: add 40µl of β-mercaptoethanol (BME) to 1ml TCA Sample Buffer 

 

MG132 Proteasome Inhibition  

slightly modified from Liu et al., 2007  

Media – Proline as Nitrogen Source 

 6.7g yeast extract without ammonium sulfate (1.34%) [Sigma, Y1251-100G] 

 0.5g of proline (to 0.1%) 

 1.7g amino acid dropout mix (0.34%) 

 Up to 500ml with ddH2O 

 Filter sterilize 

Growth  
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Note: SDS makes the cell membranes permeable to MG132, which itself inhibits the 

proteasome 

 Inoculate cells in media/2% sugar source (sucrose, dextrose) and grow 30
o
C o/n 

 Knock down to 0.5 OD in fresh proline media with 0.003% SDS (electrophoresis 

grade) 

 Grow ~3 hr at 30
o
C to log phase 

o At this point, cells may be cell cycle arrested (e.g. nocodazole) or induced 

(e.g. galactose) 

 Add 75µM MG132 or DMSO (control) 

 Grow 30 minutes at 30
o
C  

 Harvest cells 

 

Purification of 6xHIS-tagged proteins expressed in budding yeast cells under native 

conditions (Szymanski and Kerscher, accepted manuscript) 

1. Growth of Yeast Cells and Induction of Protein Expression: 

(Modified from Gelperin et al., 2005) 

1.1) Transform cells of a Gal
+
 yeast strain with a plasmid encoding a galactose-

inducible 6xHIS-tagged protein of choice.  For example, see reagents list.   

 

1.2) Inoculate transformants in 5ml of appropriate selective media (e.g. SD-uracil) 

containing 2% sucrose.  Incubate at 30
°
C overnight, rotating. 

 

1.3) Dilute overnight culture to OD600 = 0.3 in 33ml of selective media with 2% 

sucrose. Grow at 30
°
C, shaking (~150 rpm). 

 

1.4) When the culture has reached OD600 = 0.8-1.5, induce by adding 17ml of 3x YEP 

with 6% galactose (Recipe in Table 1), for a final concentration of 1x YEP with 2% 

galactose.  Total culture volume is now 50ml.  Incubate, shaking, at 30
°
C for an 

additional 5-6 hours. 

 

Note: the culture volume can be varied.  In step 3, dilute into two-thirds of your desired 

final volume.  In step 4, add one-third the final volume of 3x YEP/6% galactose. 

 

1.5) Measure the OD600 of induced culture and centrifuge ~150-200 ODs of cells for 5 

minutes at 5,000 rpm at 4
°
C. 
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1.6) Resuspend cell pellet with 1ml ice-cold 1x PBS with 1x protease inhibitor 

cocktail and transfer to a 2ml screw cap tube.   

 

1.7) Centrifuge cells for 1 minute at 15,000 rpm at 4
o
C.  Decant supernatant.  

 

1.8) Snap freeze cell pellet in liquid nitrogen and store at -80
o
C until further use. 

OPTIONAL: Use logarithmically growing yeast cultures expressing protein of interest 

instead of the galactose-induced cultures above. 

2. Homogenization of Yeast Cells and Extraction of Proteins 

2.1) To the frozen cell pellet from the previous step, add 200µl of acid-washed glass 

beads and 500µl of ice-cold Lysis Buffer (Recipe in Table 1 or use cell lysis buffer of 

choice).   

 

2.2) Briefly pipet up and down.  It is not required to fully resuspend the cell pellet.  

Keep tubes on ice at all times. 

 

2.3) In the cold room, place the tube(s) with cells into the bead mill, balance, lock, and 

run the machine as per manufacturer's instructions. 

 

2.4) Bead beat the tube(s) for 20 seconds at 5.5 m/s, then place on slushy ice for 1 

minute.  Repeat six times in total. 

 

2.5) Clarify the extracted proteins by centrifugation for 15 minutes at 15,000 rpm at 4
°
C. 

OPTIONAL:  remove small particulates by centrifugation through a SpinX filter. 

 

2.6) Prepare a sample of the whole cell extract (WCE) to check presence of your 

protein by Western Blot: 

 

2.6.1) Add WCE (corresponding to 2 ODs of cells) to 800µl 20% trichloroacetic acid 

(TCA).  Vortex to resuspend.  

 

2.6.2) Centrifuge for 2.5 minutes at 15,000 rpm at 4
°
C.  Decant the supernatant, but be 

careful to retain the pellet. 

 

2.6.3) Add 800µl of 2% TCA, vortex, then centrifuge for 2.5 minutes at 15,000 rpm at 

4
°
C.  Decant the supernatant, but be careful to retain the pellet. 
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2.6.4) Add 100µl of TCA Sample Buffer (Recipe in Table 1), vortex to dissolve pellet. 

 

2.6.5) Incubate in a 100
°
C heat block for 2-5 minutes. 

 

2.6.6) Vortex again to fully dissolve if remnants of pellet are still present.  Pellets 

prepared by this method are notoriously difficult to fully dissolve.  It may take ~10 

minutes of vortexing to completely dissolve pellets. 

 

2.6.7) Store sample at -80
°
C until further use. 

 

2.7) Snap freeze aliquots of clarified WCE in liquid nitrogen and store at -80
o
C until 

further use. 

3. Batch Purification of Proteins from Yeast Cell Homogenates. 

Note: This purification method was optimized for purification of 6xHIS-tagged proteins 

on Co
2+

 metal affinity resin. 

 

3.1) Resin Equilibration 

 

3.1.1) For a sample with approximately 30 ODs worth of clarified WCE, add 50-100µl 

of affinity resin to a microcentrifuge tube. Uncharged agarose beads may be used as a 

control for non-specific binding. 

 

3.1.2) Wash resin five times with 1ml of Wash Buffer: invert top-over-bottom until resin 

is resuspended, and then spin for 1 minute at 5,000 rpm at 4°C.  Aspirate the supernatant. 

 

Note: if performing extraction and purification on the same day, resin equilibration can 

be performed prior to extraction. 

 

3.2) Protein Binding for Affinity Purification 

  

3.2.1) Add 100-200µl of clarified lysate to 50-100µl washed beads, and bring the total 

volume up to 1ml with Lysis Buffer. 

 

3.2.2) Nutate at 4
°
C for 2-5 hours. 

 

3.2.3) Spin for 1 minute at 5,000 rpm at 4
o
C. 
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3.2.4) If desired, save a sample of the remaining supernatant.  TCA precipitate as 

detailed above for the WCE (Step 2.6). 

 

3.2.5) Wash resin with bound proteins five times with 1ml of Wash Buffer, followed by 

a spin for 1 minute at 5,000 rpm at 4
o
C.  Keep samples cold during washes. 

 

3.3) Elution of Bound Proteins 

 

3.3.1) Add 150µl Elution Buffer to resin, nutate in cold for 5 min, spin for 1 minute at 

5,000 rpm at 4
o
C and save the supernatant in a new tube.  OPTIONAL: Repeat twice and 

pool elutions. 

 

3.3.2) Prepare elution sample for Western Blot: To 25µl of eluted proteins, add 25µl 2x 

LDS Sample Buffer with 2µl β-mercaptoethanol (BME) and incubate in a 100
°
C heat 

block for 2 minutes. 

 

3.3.3) Snap freeze excess eluted protein in liquid nitrogen.   

 

OPTIONAL: strip remaining proteins from resin with an equal volume of 2x LDS 

Sample Buffer at 65
o
C for 5 minutes, then add 2µl BME. 

 

3.3.4) Store samples at -80
o
C until further use. 

 

3.4) Western Blot and probe with appropriate antibodies to visualize proteins.   

 

3.4.1) Load 10-20µl of each sample and 3-10µl of a protein ladder in an SDS-PAGE gel 

of choice.  We routinely use 4-12% Bis-Tris and 8% Tris-Glycine. 

 

3.4.2) Run gel at 200V for 50 minutes. 

 

3.4.3) Transfer proteins from gel to a PVDF membrane by semi-dry transfer at 19V for 

20-30min (Recipe in Table 1)  

 

3.4.4) Block membrane in 4% milk/1x Tris Buffered Saline-TWEEN (TBST) for 1 hour 

at room temperature (Recipe in Table 1).  
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3.4.5) Incubate membrane with primary antibody to your epitope-tagged protein of 

interest in 4% milk/1x TBST for 1-3 hours at room temperature or overnight at 4
o
C. 

 

3.4.6) Wash membrane three times for five minutes each with 1x TBST. 

 

3.4.7) Incubate membrane with appropriate secondary horseradish peroxidase (HRP) –

conjugated antibody for 1-3 hours at room temperature. 

 

3.4.8) Wash membrane three times for 15 minutes each in a large volume of 1x TBST. 

 

3.4.9) Cover membrane with ECL substrate and wrap in saran wrap. 

 

3.4.10) Expose membrane to film and develop to visualize proteins. 

 

APPENDIX B: Additional data 

Slx5 Truncation studies 

After structure function studies of Slx5 (FIG 3; Westerbeck et al., manuscript in 

preparation) revealed that different truncations of the proteins have different sub-cellular 

localizations and different interaction properties, we thought that these constructs might 

be useful for further STUbL studies.  For instance, the Slx5(1-517) construct still 

maintains many interactions with other proteins, but doesn't contain the catalytic RING 

domain, so those protein interactions might be stabilized.  The Slx5(1-207) construct 

could be used to bind sumoylated proteins, since it contains four SIMs and exits the 

nucleus to bind the highly sumoylated septins.  Additionally, many of these constructs 

have the ability to bind other Slx5 proteins, forming homodimers that could disrupt the 

formation of the functional Slx5/Slx8 heterodimer.  This disruption could potentially lead 

to a dominant negative effect, in which we could induce an Slx5∆ phenotype by 

overexpressing Slx5 constructs.   
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Over-expression of Slx5 constructs leads to induction of high molecular weight SUMO 

chains 

Given these potential uses for the truncations, we decided to further investigate the effect 

of overexpressing them. We found that overexpression of Slx5(1-517) and full-length 

Slx5 (dubbed Slx5(FL)), but not Slx5(1-207) induced high molecular weight SUMO 

conjugates when co-expressed with Smt3gg (FIG B1).  These adducts could possibly 

indicating that the Slx5/Slx8 heterodimer was dysfunctional, allowing sumoylated 

proteins to accumulate.   
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Over-expression of Slx5 causes differential growth dynamics 

We wondered if these accumulated proteins had negative effects on the health of the 

cells.  While growing the cells in liquid media, we had noticed that different strains had 

different growth dynamics.  To further investigate this, we performed a spotting assay on 

untreated plates and plates that were treated with hydroxyurea (HU), to which slx5∆ 

strains are very sensitive.  Plates were also made with either dextrose, as a negative 

control, or galactose, to induce the constructs.  These assays revealed that upon the 

induction of Slx5(FL) and Slx5(1-207) on both untreated and HU plates, cells were 

extremely unhealthy as compared to wild-type, but upon the induction of Slx5(1-517), 

cells were just as healthy as the wild-type strain (FIG B2).  This seemed to be 

inconsistent with our hypothesis that excess sumoylated proteins are unhealthy for the 
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cell.  It is possible that Slx5(1-207) and Slx5(FL) are each lethal for different reasons, or 

that the explanation is independent of sumoylated proteins. 

Over-expression of Slx5 causes differential localization of SUMO within the cell 

Due to our previous findings, we wondered whether the localization of sumoylated 

proteins would change upon induction of the various constructs.  We co-transformed 

SUMO-GFP with Slx5(1-207), Slx5(1-517), or Slx5(FL), induced expression of the 

proteins, and then performed confocal microscopy to visualize SUMO.  The pool of 

SUMO normally resides indistinctly in the nucleus, with the septin ring becoming highly 

sumoylated and visible during G2/M phase.  In cultures expressing Slx5(1-207), SUMO 

was seen exclusively indistinctly in the nucleus and at the septin ring in the cells that 

were alive.  In cultures expressing Slx5(FL), the majority of cells showed foci of SUMO 

in the nucleus, perhaps indicating an aggregation of sumoylated proteins, which is 

consistent with the high molecular weight SUMO conjugates we observed in the western 

blot, and might also explain the lethality of this construct. In cultures expressing Slx5(1-

517), SUMO was seen in multiple locations.  In some cells, SUMO was only enriched at 

the septins; in some, it formed bright foci in the nucleus; and in others, it formed both 

foci and enriched at the septins.  This is also consistent with our previous results that 

Slx5(1-517) causes some accumulation of sumoylated proteins (in foci) but also properly 

sumoylates its septins to allow the cell cycle to continue (FIG B3).  A summary of our 

findings regarding overexpression of Slx5 truncations can be found in Table B1. 
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Figure B3: Differential localization of SUMO with various truncations of Slx5

SUMO-GFP was expressed along with Slx5(FL), Slx5(1-517) and Slx5(1-207) (YOKs 2319, 2320 and 

2321).  During logarithmic growth, cells were observed under the microscope, and the localization of 

SUMO was noted.  When expressed with Slx5(1-207), SUMO was only seen enriched at the septin ring.  

When expressed with Slx5(1-517), SUMO was seen at the septin ring, in foci in the nucleus, or in both 

locations.  When expressed with Slx5(FL), SUMO was mostly seen in foci in the nucleus, but also at the 

septin ring and in both locations.  Exact percentages can be found in Table S1. 
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The effect of over-expression of Slx5 constructs on Siz1 sumoylation and phosphorylation 

To determine if over-expression of the Slx5 truncations affected the sumoylation of a 

specific target of Slx5, Siz1, we transformed Slx5(1-207) and Slx5(1-517) into a 

background strain endogenously expressing Siz1-13xmyc.  Upon induction of the 

constructs, extraction of proteins by TCA preparation and subsequent western blotting 

with anti-myc, we observed a decrease in Siz1 sumoylation in cells expressing the Slx5 

truncations (FIG B4).  This is consistent with our hypothesis that overexpression of Slx5 

constructs could act as an inducible dominant negative, mimicking the slx5∆ phenotype.  

We also decided to look at the effect of the Slx5 constructs on the phosphorylation of 

Siz1.  We transformed Slx5(1-207), Slx5(1-517), or Slx5(FL) into a JD52 background 

strain endogenously expressing Siz1-13xmyc, induced the constructs, extracted the 

proteins by TCA preparation, and western blotted with anti-myc. These results were 

much less conclusive (unpublished observations).  While their full value is yet to be 

determined, these Slx5 constructs could still prove useful in further STUbL studies. 
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