
W&M ScholarWorks W&M ScholarWorks 

Undergraduate Honors Theses Theses, Dissertations, & Master Projects 

5-2010 

Bistability in Differential Equation Model of Oyster Population and Bistability in Differential Equation Model of Oyster Population and 

Sediment Volume Sediment Volume 

William Crowell Jordan-Cooley 
College of William and Mary 

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses 

Recommended Citation Recommended Citation 
Jordan-Cooley, William Crowell, "Bistability in Differential Equation Model of Oyster Population and 
Sediment Volume" (2010). Undergraduate Honors Theses. Paper 748. 
https://scholarworks.wm.edu/honorstheses/748 

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235417557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/748?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


 
 
 
 
 
 
 
 
 
 

Bistability in Differential Equation Model of 
Oyster Population and Sediment Volume 

 
A thesis submitted in partial fulfillment of the requirement  

for the degree of Bachelors of Science in Mathematics from  
The College of William and Mary 

 
 

by 
 

William Crowell Jordan-Cooley 
 
 
 
 
 
    Accepted for ___________________________________ 
       
 

________________________________________ 
Junping Shi, Director 
 
________________________________________ 
Rex Kincaid 
 
________________________________________ 
Romuald Lipcius 
 
________________________________________ 
Leah Shaw 
 

     ________________________________________ 
     Jian Shen 
 

Williamsburg, VA 
April 21, 2010 



Bistability in Differential Equation Model of

Oyster Population and Sediment Volume

William Crowell Jordan-Cooley

Email: wcjord@wm.edu

April 21, 2010



Abstract

The Chesapeake Bay oyster has been the focus of more than a

century of heavy harvesting and now several decades of restoration

attempts. Concerted efforts to rebuild the native oyster population

and reef structure have yielded limited results. Recent success in

the Great Wicomico River suggests that initial reef height combats

growth retarding sedimentation resulting in multiple stable states

of reefs. We use a system of three differential equations to model

volumes of live oysters, dead oysters, and sediment. We show that

multiple nonnegative equilibria exist for an ecologically reasonable

range of parameters and the initial height of oyster reefs determines

which equilibria is reached.
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Chapter 1

Introduction

1.1 Background

It is 1650 and you stand on the deck of a sailing vessel traveling up the James River

towards Jamestown. You peer into the depths and see the glory of the Chesapeake Bay

ecosystem as we can only imagine it today. At the bottom are the dominant engineers

of this ecosystem, Crassostrea virginica, the native Chesapeake Bay oyster. Bivalve mol-

lusks, they live on reefs created over time which are so large that they pose navigation

hazards to passing ships (Newell, 1988). The enormous reef structure suppresses sediment

resuspension, provides habitat for other species, and elevates the oysters into the areas

of highest water flow. They are quietly filtering the water and extracting their prize,

phytoplankton. They deal with sediment and nutrients in turn, wrapping them in mucus

and discarding them as pseudofeces (Lenihan et al., 1999). Swiftly and surely, they will

filter the bay, controlling the levels of phytoplankton and sediment (Newell, 1988).

This scene is all but gone today. The past century has seen an industry of oysters rise

and fall and with it have gone approximately 99 percent of the Bay’s oysters (Schulte et

al., 2009). Harvests peaked in 1884 at 615,000 metric tons, shortly after the introduction

of power dredges. By 1992, the harvest was 12000 metric tons (Rothschild et al., 1994).
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Figure 1.1: (left) high relief reef (HRR); (middle) low relief reef (LRR); (right) unrestored

bottom (UNB). From (Schulte, et.al. 2009).

Additionally, human activities on land have increased the flow of sediment into the bay’s

waters (Newell, 1988). The increase in sediment has weakened the oysters, lowering

fecundity and raising mortality (Rothschild et al., 1994; Schulte et al., 2009; Lenihan

et al., 1999). Exacerbating the situation, the physical profile of reefs has been leveled,

placing the oysters lower in the water column where water flow is reduced and sediment

chokes all but a few fortunate individuals (Newell, 1988; Lenihan, 1999; Shulte et al.,

2009).

Efforts to restore native oyster populations have been extensive but largely ineffectual

(Ocean Studies Board, 2004). However, a recent restoration effort in the Great Wicomico

River has yielded promising results. In 2004, the Army Corps of Engineers created more

than 80 acres of reef in the Great Wicomico River consisting of oyster shell planted at

different reef heights. The field experiment featured high-relief reefs (HRR) built at an

average of 25 − 42 cm in height, low-relief reefs (LRR) at 8 − 12 cm, and a control

of unrestored bottom (UNB). After three years, in 2007, the higher reefs (HRR) were

considerably more successful. Mean oyster density was fourfold higher on HRR (1026 ±

51.5 SE) than LRR (250.4±32.3 SE). In contrast, the average density in Chesapeake Bay

sanctuary reefs was 100− 152 oysters per squared meter (Schulte et al., 2009), see Figure

1.1.

The dramatic decline in the oyster population as well as the marked difference in suc-
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cess of the high relief and low relief reefs may be explained in the context of catastrophic

shifts and bistability. Some systems exhibit precipitous shifts in state without corre-

spondingly dramatic changes in external conditions (Scheffer et al, 2001). Such shifts

have been observed in oceans, lakes, coral reefs, and the Sahara Desert. Gradual changes

in the external conditions of a system produce correspondingly gradual changes in state

variables until sudden drastic changes occur. After the degraded state has been reached,

a return to the external conditions present before the change does not return the system

to the pre-shift state. These systems have a property called bistability (Scheffer et al.,

2001; Guill, 2009). Bistability (i.e. alternative stable states) is the existence of multiple

equilibria within a system. These equilibria exist for a non-vanishing range of constant

external environmental conditions (Guill, 2009).

1.2 Bistability

Alternative stable states are generally due to one or more feedback mechanisms (Scheffer

et al., 2001; Guill, 2009). In the Chesapeake Bay, oysters filter the sediment flowing

onto reefs, which may prevent high turbidity levels. Historically, massive reductions in

oyster biomass and degradation of the reef matrix contributed to increasing sediment in

the water column (Newell, 1988). Additionally, oysters encounter a greater proportion

of the sediment in the water column when they are closer to the bottom, which occurs

with reductions in the vertical relief of reefs. The sediment negatively affects oysters by

causing them to expend energy to filter it, thereby increasing susceptibility to disease

and mortality rates while decreasing growth and reproduction. Raising the oysters in

the water column can lead to higher fecundity and decreased mortality from reductions

in turbidity and elevated filtration rates (Rothschild et al., 1994; Lenihan et al., 1999;

Ocean Studies Board, 2004).

The ecosystem properties of shallow lakes are similar to those of Chesapeake Bay. In

shallow lakes, aquatic vegetation dampens resuspension of sediment, reduces nutrients in
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the water column, and provides protection from fish predation for zooplankton that feed

on phytoplankton. Fish control zooplankton and resuspend sediment and nutrients by

disturbing the lake floor (Scheffer, 2009).

However, aquatic vegetation and zooplankton have been depleted by herbicides and

pesticides. The reduction in vegetation leads to an increase in nutrients in the water

column which increases phytoplankton, which in turn feed on the nutrients. Declines

of zooplankton result in unchecked growth of phytoplankton. A dramatic increase in

phytoplankton precludes light from reaching the lake floor which causes the vegetation to

decline further. This exposes zooplankton to increased predation, which in turn leads to

lower predation pressure on phytoplankton (Scheffer, 2009).

It has been possible to return the lakes to a state of high vegetation and controlled

phytoplankton abundance. However, the zooplankton population must be rebuilt to a

critical level such that they can control phytoplankton, allow aquatic vegetation to return,

and thus facilitate the profusion of vegetation that provides protection from fish predation.

To do so, herbicides and pesticides must be stemmed. Then by temporarily reducing the

number of fish, zooplankton proliferate due to the abundance of phytoplankton as prey.

Once phytoplankton are reduced, the vegetation can become re-established. Increases in

zooplankton eventually allows the fish population to rebound, restoring the system to the

pristine stable state (Scheffer, 2009).

The oyster reef system is analogous to that of shallow lakes. Oysters can control the

volume of sediment and phytoplankton, but they must first be provided with optimal reef

features. The experimental results from the Great Wicomico River provide evidence of

hysteresis. We now provide the theoretical underpinnings that the interaction of oysters

and sediment can produce alternative stable states of oyster reef populations in Chesa-

peake Bay.
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1.3 Bifurcation Theory

Bifurcation theory is the mathematical study of qualitative or structural changes in the

dynamical behavior of natural or engineered systems. A bifurcation occurs when some

certain physical parameters cross through critical thresholds. The word “bifurcation” is

from the Latin bifurcus, which means ‘two forks’, and one of the fundamental bifurcation

types is the pitchfork bifurcation (Chow and Hale, 1982; Wiggins, 1991).

A typical bifurcation occurs when the stability of a known trivial equilibrium solution

changes as a parameter changes, and non-trivial equilibrium solutions emerge from the

branch of the trivial equilibrium solutions. If the new non-trivial equilibrium solution is

stable, then the local stable state of the system switches from the trivial one to the non-

trivial one. But if the bifurcating equilibrium point is unstable, the trivial state remains

stable for that parameter range, then often there exists another non-trivial stable state.

Hence a pair of alternative stable states is the result of such a bifurcation of unstable

equilibrium states, which is often called a “backward bifurcation” in literature, especially

the studies of epidemics (Hadeler and Van den Driessche, 1997).

To determine the bifurcation direction of the branch of non-trivial solutions, one can

use a classical bifurcation theorem (Crandall and Rabinowitz, 1971; Shi 1999; Liu et.al.

2007), which will be recalled in Section 3.3. Note that in earlier work, a cusp type

bifurcation occurs when a system parameter changes to produce a S-shaped bifurcation

diagram, and a hysteresis loop is generated as a result. That has been used to explain

many catastrophic shifts in the natural world (Scheffer et al., 2001; Scheffer, 2009). A

mathematical survey on catastrophic shifts and bistability can be found in (Jiang and

Shi, 2009). The bifurcation diagram in this paper is not S-shaped and the lower stable

state is the trivial one, but the bistability mechanism is similar.

Usually the bistable structure is sensitive to the initial values of the system. A small

perturbation of the initial value could change the eventual outcome from one stable state

to a different one, which is called “hair-trigger effect”. In general the basins of attraction
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of the two stable states are only separated by a surface in the phase space (Jiang and Shi,

2009). This is also evident from numerical simulations of the oyster population model

here.

1.4 Summary of results

We will construct a model of differential equations to demonstrate that the mechanisms

involved in the interaction of oysters and sediment produce bistability and explain the

success of high relief reefs in the context of multiple stable states. Analysis will show that

sediment deposition rates and the initial height of artificial reefs play a dominant role in

the long term behavior of reefs.

6



Chapter 2

Mathematical Model

We model the change of live oyster, dead oyster, and deposited sediment volume with

respect to time, t, measured in years. The live oysters will grow according to logistic

growth but be negatively affected by sediment volume. We will introduce a function, f(d),

to represent the proportion of oysters above the level of fatal sediment. The change in

dead oyster volume will be the deaths of live oysters minus a degradation rate proportional

to dead oyster volume. The volume of sediment deposited on the reef will be a constant

maximum sediment scaled a function, g(O+B), depending on the position of the reef in

the water column and a function, F (x), yielding the filtration by live oysters.

The differential equation model has three variables as in the following table:

Variable Name Variable meaning Dimension Variable defining domain

t time years t ≥ 0

O(t) live oysters m3 O ≥ 0

B(t) dead oysters m3 B ≥ 0

S(t) sediment m3 S ≥ 0

Table 2.1: Table of variables in the equations.
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We first explain the function f(d) which represents the proportion of oysters not

affected by sediment. The input, d, represents the volume of the live (O) and dead (B)

oysters not affected by sediment (S). Hence we define

d = λ (O +B)− S. (2.1)

The packing density 0 ≤ λ ≤ 1 indicates that the stacking oyster shells may not occupy

all space. Note that the volume is essentially height multiplied by a unit surface area, so

d can be understood as the height of the oysters above the sediment.

We assume that f(d) is a positive, increasing and continuously differentiable function

defined on (−∞,∞) with a sigmoid shape bounded by 0 and 1. d = λO when the dead

oysters are covered by sediment but the live oysters are not; λB = S. In this situation,

minimal oysters are affected by sediment and f(λO) ≈ 1. d = 0 when both live and dead

oysters are inundated by sediment. Hence, f(0) ≈ 0. As d approaches the positive and

negative limits, the approximations are equalities. Summarily,

f ′(d) > 0, f(0) ≈ 0, f(λO) ≈ 1, lim
d→−∞

f(d) = 0, and lim
d→∞

f(d) = 1. (2.2)

The change in live oyster volume O(t) is represented by a differential equation:

dO

dt
= rOf(d)

(

1−
O

k

)

− µf(d)O − ǫ(1− f(d))O. (2.3)

Here the live oyster is assumed to have a logistic growth. r represents the intrinsic birth

rate per cubic meter of oyster volume. The oyster population increases at a decreasing

density dependent rate until the population reaches the carrying capacity k. In the second

term of the equation, µ is the natural death rate of the oyster. Both terms are scaled by

f(d) because oysters covered in sediment will not reproduce or die by natural causes. The

third term represents the decrease in live oyster volume as a result of sediment, and ǫ is

the death rate of submerged oysters. As f(d) goes to 1, the term goes to zero. However,

as f(d) becomes smaller, the term begins to have more significance.
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The second differential equation which shows the change of dead oyster volume B(t)

is

dB

dt
= µf(d)O + ǫ(1 − f(d))O − γB. (2.4)

The first two terms are directly from dying live oyster in equation (2.3), and the third term

is the loss of dead oyster volume due to the degradation of shell. This loss is proportional

to the volume of dead oysters at the rate of γ. Note that another loss term rO2f(d)/k in

(2.3) is not included in (2.4) as it is the loss due to interspecific competition, and it does

not increase the dead oyster volume as the other two terms.

Finally the system of differential equations is completed by a third equation describing

the change of sediment volume S(t):

dS

dt
= −βS + Cge−

FO
Cg . (2.5)

Here the first term is the volume of sediment eroded which is proportional to the volume

of deposited sediment at a rate β; the second term is the rate of the sediment volume

being deposited. The sediment deposition rate in the absence of oysters is Cg, where C

is a maximum deposition rate and g is a modification that depends on reef height O+B.

The deposition rate is at maximum when the reef is in nonexistence and it decreases as

the reef height in the water column increases. Hence with the reef height represented by

x = O +B, we assume that the function g(x) = g(O +B) satisfies

g(0) = 1, g′(x) ≤ 0, x ≥ 0, and lim
x→∞

g(x) = 0. (2.6)

In the presence of (live and/or dead) oysters, the deposition term should be reduced

by a multiplicative factor due to filtration. The filtration rate per unit oyster volume

depends on the height-dependent sediment concentration Cg. It should scale linearly

with Cg when Cg is small, reach a peak M at some optimal sediment concentration, and

beyond this threshold, it decreases as oysters gills become increasingly clogged. (i.e., like
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a Ricker function of sediment concentration). Hence F = F (y) = F (Cg) satisfies

F (0) = 0, lim
y→∞

F (y) = 0, and there exists y0 > 0 such that

F ′(y) > 0, 0 < y < y0; F ′(y) < 0, y > y0, and F (y0) = F0.

(2.7)

Both g(x) and F (y) are positive and continuously differentiable functions on [0,∞).

The derivation of (2.5) begins with a mass balance of sediment deposition in a control

volume at the bottom (Chapra, 1997; Ji, 2008):

d(V Cs)

dt
= ΩsACb − VeACs − VbACs − VfO, (2.8)

where Ωs is settling velocity (m/day), Ve is erosion velocity (m/day), Vb is burial velocity

(m/day), Cs is sediment concentration at the bottom sediment (g/m3), Cb is the sediment

concentration above the bottom sediment layer (g/m3), V is the control volume, (m3), A

is the surface area, (m2), of the control volume, Vf is the filtration rate (g/day), and O

is live oyster volume, (m3).

We introduce mean erosion rate ve(1/day) and burial rate vb(1/day), which can be

considered to be a re-scaling of the erosion and burial velocities Ve and Vb by the mean

depth, and write as follows:

d(V Cs)

dt
= ΩsACb − veV Cs − vbV Cs − VfO. (2.9)

The bottom sediment can be expressed as sediment density ρ and the porosity φ as

Cs = ρ(1 − φ) (Chapra, 1997). We assume that the mean porosity, φ̄, is a constant

and divide (2.9) by ρ(1 − φ̄). Let S =
V (1− φ)

1− φ̄
as the sediment volume with porosity

normalized by the mean porosity to quantify the volume of unconsolidated sediment

deposition at the bottom, and let ωs =
ΩsA

ρ(1− φ̄)
and vf =

Vf

ρ(1− φ̄)
. Then (2.9) can be

written as
dS

dt
= ωsCb − veS − vbS − vfO. (2.10)

Rearrangement of the terms in the equation makes it

dS

dt
= ωsCb(1−

vfO

ωsCb
)− (ve + vb)S. (2.11)
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Here the first term shows the sediment deposition modified by oyster filtration, and

the second term shows the combined loss of sediment due to erosion or burial. But the

first term could be negative for large value of O, hence we replace the decreasing linear

function 1 −
vfO

ωSCb
by a decreasing nonlinear function exp

(

−vfO

ωSCb

)

whose linearization

is 1−
vfO

ωSCb

. Now we rename

ωSCb = Cg, and vf = F,

where C is a constant represents the maximum deposition rate, and g is a decreasing

function of O+B with maximum g(0) = 1, then we obtain (2.5). The estimates of C and

g come from data of ωS and Cb, information on vf can be used to determine F = Cge−θCg,

and finally ve and vb determine β.

We remark that the equation (2.5) has properties reflecting the qualifications of the

system.

• When O → 0, Ṡ ∼ Cg − βS (deposition and erosion without oysters).

• When O is small, from a Taylor expansion of the exponential we have Ṡ ∼ Cg −

FO − βS so the deposition rate is being reduced linearly by whatever amount O

oysters filter out.

• When O → ∞, Ṡ ∼ −βS (no deposition, only erosion). The negative is not a

problem, since this stops decreasing at S = 0.

• When the filtration rate per unit oyster volume F → 0, either because there is too

little sediment to filter or the oysters are being choked by it, Ṡ ∼ Cg − βS.

In summary, we propose the following differential equation model for oyster population
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and sediment growth:

dO

dt
= rOf(d)

(

1−
O

k

)

− µf(d)O − ǫ(1− f(d))O, (2.12)

dB

dt
= µf(d)O + ǫ(1 − f(d))O − γB, (2.13)

dS

dt
= −βS + Cge−

FO
Cg , (2.14)

where the quantities d, f(d), g = g(O + B) and F = F (Cg) satisfy (2.2), (2.6) and (2.7)

respectively. A set of functions satisfying these conditions will be given in Section 3.4.

The parameters of the system (2.12)-(2.14) are summarized in Table 2.2.

Parameter Meaning Dimension Value

r birth minus death by competition rate (year)−1 0.7− 1.3

k oyster capacity m3 0.1− 0.3

µ natural death rate (year)−1 0.2− 0.6

ǫ death rate of submerged oyster (year)−1 0.94

λ packing density none 1

γ oyster shell degradation rate (year)−1 0.5− 0.9

F0 maximum sediment filtration (year)−1 1

C maximum sediment deposition rate m3(year)−1 0.04− 0.08

y0 sediment amount where the filtration is maximum year ·m−3 0.02

β sediment erosion rate m−3 0.02− 0.04

h scaling factor m−3 10− 30

η decay rate of sediment deposition on the reef height m−3 3.33

Table 2.2: Table of parameters in the equations.

The last two parameters h and η are specific to the choice of f and g, which will be

explained in Section 3.4.
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Chapter 3

Model Analysis

3.1 Solving for Equilibria

We are interested in determining the values of parameters and state variables at which

the change in the state variables is equal to zero. In other words, what environmental

conditions will result in an equilibrium reef-sediment system. To answer this question, we

consider the equilibrium solutions of our model (2.12)-(2.14), which satisfy

0 = rOf(d)

(

1−
O

k

)

− µf(d)O − ǫ(1− f(d))O, (3.1)

0 = µf(d)O + ǫ(1 − f(d))O − γB, (3.2)

0 = −βS + Cge−
FO
Cg . (3.3)

A trivial solution of (3.1) − (3.3) where O = B = 0 and S = C/β is an equilibrium

solution representing the extinction of the oyster population and the accumulation of

sediment limited only by erosion. We will now solve the system in search of nontrivial

solutions where O > 0, B > 0 and S > 0.

We describe a procedure of reducing the equations (3.1)-(3.3) to a single equation.

From (3.1), we obtain (assuming O > 0)

f(d) =
ǫk

k(r − µ+ ǫ)− rO
; (3.4)
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and similarly from (3.2), we obtain

f(d) =
γB − ǫO

(µ− ǫ)O
. (3.5)

From (3.4) and (3.5), we can have an equation of O and B only:

ǫk

k(r − µ+ ǫ)− rO
=

γB − ǫO

(µ− ǫ)O
, (3.6)

and B can be solve from (3.6) as

B =
rǫO(k − O)

γ[k(r − µ+ ǫ)− rO]
≡ B(O). (3.7)

On the other hand, one can solve S from (3.3):

S ≡ S(O,B) =
C

β
ge−FO/Cg, (3.8)

where g depends on O +B and F depends on g. Now the substitution of (3.7) and (3.8)

into (3.4) results in an implicit equation of O only:

f

(

λ

(

O

2
+B(O)

)

− S(O,B(O))

)

=
ǫk

k(r − µ+ ǫ)− rO
. (3.9)

Hence for a fixed set of parameters, any root O∗ > 0 of (3.9) corresponds to an equilib-

rium point (O∗, B(O∗), S(O∗, B(O∗))) of (3.1)-(3.3). While direct analysis of (3.9) is not

easy with complicated definitions of O(B) and S(O,B), numerical calculation of (3.9) is

relatively easy with the help of a software such as Maple (see example given below).

We define the functions on the left and right hand side of (3.9) to be

L(O) = f

(

λ

(

O

2
+B(O)

)

− S(O,B(O))

)

, (3.10)

R(O) =
ǫk

k(r − µ+ ǫ)− rO
. (3.11)

From (3.9), intersection points of the graphs of L(O) and R(O) are equilibrium points. We

observe that L(O) is bounded by 1 and R(O) is unbounded as O → k∗ = k(r − µ+ ǫ)/r,

which is a modified carrying capacity. Thus if L(0) > R(0), then (3.9) has at least one
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root from intermediate-value theorem; and if L(0) < R(0), then (3.9) may have no or two

zeros. It is easy to see that

L(0) = f(−C/β), and R(0) =
ǫ

r − µ+ ǫ
.

3.2 Stability of Trivial Solution

From a different point of view, one can consider the equations (3.1)-(3.3) with bifurcation

method and linearization. Linearizing (3.1)-(3.3) at the trivial equilibrium (O,B, S) =

(0, 0, C/β), we obtain the Jacobian matrix to be a diagonal one

J(0, 0, C/β) =











f(−C/β)(r − µ+ ǫ)− ǫ 0 0

f(−C/β)(µ− ǫ) + ǫ −γ 0

Cg′(0)− F (C) Cg′(0) −β











. (3.12)

It is easy to observe that if r < µ (birth rate smaller than death rate), then the trivial

one is the only equilibrium. In the following we assume that the parameters r, µ and ǫ

satisfy

r > µ, and f(0)(r − µ+ ǫ) > ǫ. (3.13)

Notice that the second condition in (3.13) suggests that ǫ is small. Also the condition

(3.13) and the monotonicity of f assumed in (2.2) imply that there exists a unique C∗ > 0

such that f(−C/β)(r−µ+ǫ)−ǫ > 0 for C > C∗, and f(−C/β)(r−µ+ǫ)−ǫ < 0 for C < C∗.

Since the Jacobian matrix J(0, 0, C/β) is lower triangular, then the three diagonal entries

are eigenvalues. We have the following result regarding the stability of the trivial state

and existence of equilibrium points:

Proposition 3.1. Suppose that the conditions (2.2), (2.6), (2.7) and (3.13) are satisfied,

then the equilibrium (0, 0, C/β) is locally stable when C > C∗, and it is unstable when

0 < C < C∗. Moreover when 0 < C < C∗, the system has at least one positive equilibrium

point.
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The critical value C = C∗ is a bifurcation point where a branch of nontrivial equilib-

rium points emanates from the line of trivial equilibria (C,O,B, S) = (C, 0, 0, C/β). The

bifurcation is called subcritical if the branch of bifurcating positive equilibria bends to

the left of C = C∗, otherwise it is supercritical.

3.3 Supercritical versus Subcritical Bifurcations

In this section we explain the method of bifurcation of equilibrium points from a know

branch of trivial equilibria. It is well-known as “bifurcation from a simple eigenvalue” in

the studies of analytical bifurcation theory (see [2, 3, 11, 18]). Here we apply this powerful

method to a finite-dimensional problem.

Consider a smooth mapping F = F (λ, u) : R × U → Rn where U is an open subset

of Rn, n ≥ 1, λ is a parameter and u is the state variable. We consider the equilibrium

problem

F (λ, u) = 0. (3.14)

Assume that a trivial solution is known. That is, there exists u0 ∈ U so that F (λ, u0) = 0

for all λ ∈ R. So {(λ, u0) : λ ∈ R} is a line of trivial solutions of (3.14).

The linearization of F with respect to u is represented by the Jacobian matrix: Fu =

(Jij = ∂jFi), where Jij is the entry of Fu at row i and column j, and

∂jFi =
∂Fi(λ, u)

∂uj
, 1 ≤ i, j ≤ n,

is the partial derivative. Note that F = (F1, F2, · · · , Fn) and u = (u1, u2, · · · , un) are both

vectors in Rn. Similarly the second derivative of F on u is expressed as a 3-dimensional

matroid Fuu = (Kijk = ∂jkFi), where

∂jkFi =
∂2Fi(λ, u)

∂uj∂uk
, 1 ≤ i, j, k ≤ n,

is the second order partial derivative. Also the mixed derivative Fλu = (Mij = ∂λjFi)
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where

∂λjFi =
∂2Fi(λ, u)

∂uj∂λ
, 1 ≤ i, j ≤ n.

We notice that Fu defines a linear operator Rn → Rn with matrix multiplication, so is

Fλu; and Fuu defines a bilinear operator Rn ×Rn → Rn which can be expressed as

Fuu[(x1, · · · , xn), (y1, · · · , yn)] = (
∑

j,k

K1jkxjyk, · · · ,
∑

j,k

Knjkxjyk).

Finally for a linear operator L : Rn → Rn, we use N(L) and R(L) to denote the null space

and the range of L; and we use 〈x, y〉 to denote the standard dot product of x, y ∈ Rn.

Now we are ready to state a bifurcation theorem due to Crandall and Rabinowitz [3]

(here we only state a special case):

Theorem 3.2. Let F : R × U → Rn be twice continuously differentiable, where U is an

open subset of Rn. Suppose that F (λ, u0) = 0 for λ ∈ R, and at (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and N(Fu(λ0, u0)) = Span{w0};

(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)).

Then the solutions of (3.14) near (λ0, u0) consists precisely of the curves u = u0 and

(λ(s), u(s)), s ∈ I = (−δ, δ), where (λ(s), u(s)) are continuously differentiable functions

such that λ(0) = λ0, u(0) = u0, u
′(0) = w0. Moreover

λ′(0) = −
〈l, Fuu(λ0, u0)[w0, w0]〉

2〈l, Fλu(λ0, u0)[w0]〉
, (3.15)

where l ∈ Rn satisfying R(Fu(λ0, u0)) = {y ∈ Rn : 〈l, y〉 = 0}.

In laymans terms, at a bifurcation point λ = λ0, the Jabobian Fu has zero as an

eigenvalue; (F1) means that zero is a simple eigenvalue of Fu, which means that the

eigen-space of Fu is one-dimensional, and the range of Fu is (n − 1)-dimensional (called,

codimension one); (F3) means that Fλu[w0] does not belong to the range of Fu, where w0

is any nonzero eigenvector. Once these conditions are satisfied, then there is a curve of
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solutions bifurcating from the branch of trivial solutions. The formula of λ′(0) is useful

for determining the direction of the bifurcation (sub/supercritical).

To apply the above abstract theory to our problem, we notice that the trivial equilibria

(C,O,B, S) = (C, 0, 0, C/β) is not constant for C. Hence we make a change of variable

z = S − C/β then (O,B, z) = (0, 0, 0) is a constant solution. We define

G(C,O,B, z) =













rOf(d)

(

1−
O

k

)

− µf(d)O − ǫ(1− f(d))O

rf(d)
O2

k
+ µf(d)O − γB + ǫ(1− f(d))O

Cge−
FO
Cg − βz − C













, (3.16)

where d = λ(O/2 + B) − z − C/β, and definitions of f, k, g, F are same as before. Let

u = (O,B, z). Then Gu(C, 0, 0, 0) is the same as (3.12). At C = C∗, Gu(C∗, 0, 0, 0) can

be written as

L ≡ Gu(C∗, 0, 0, 0) =











0 0 0
ǫr

r − µ+ ǫ
−γ 0

C∗g
′(0)− F (C∗) C∗g

′(0) −β











. (3.17)

We take the eigenvector of L to be w0 = (1, w02, w03) where

w02 =
ǫr

γ(r − µ+ ǫ)
,

w03 =
C∗g

′(0)− F (C∗)

β
+

C∗g
′(0)ǫr

βγ(r − µ+ ǫ)
,

one can see that the range of L is {(0, y, z) ∈ R3} which is two-dimensional, so we can

take the vector l to be (1, 0, 0). A vector v does not belong to the range of L if the first

entry of v is not zero. So to apply (3.15), we only need to calculate the derivatives from

the first equation of the system.

We can calculate that 〈l, Gλu(C∗, 0, 0, 0)[w0]〉 = −f ′(−C∗/β)(r − µ + ǫ)/β < 0, and
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with a more tedious calculation, we find that

〈l,Fuu(λ0, u0)[w0, w0]〉

=
2r

k
f ′(−C∗/β)

[

λ(r − µ+ ǫ)k

2r
−

f(−C∗/β)

f ′(−C∗/β)
+

λǫk

γ
−

ǫk

γβ

(

C∗g
′(0)− F (C∗) +

C∗g
′(0)ǫr

γ(r − µ+ ǫ)

)]

.

(3.18)

Hence combining all the calculations, we find that the direction of the branch of

bifurcating positive equilibria is determined by

I =
λ(r − µ+ ǫ)k

2r
−

f(−C∗/β)

f ′(−C∗/β)
+

λǫk

γ
−

ǫk

γβ

(

C∗g
′(0)− F (C∗) +

C∗g
′(0)ǫr

γ(r − µ+ ǫ)

)

. (3.19)

So the direction of the branch of bifurcating positive equilibria is determined by the

quantity I defined above. If I < 0, then the bifurcation is subcritical and a unique

equilibrium exists for 0 < C < C∗, and there is no equilibrium for C > C∗; on the other

hand, if I > 0, then the bifurcation is supercritical, then there is a range of values of

C > C∗ for which the system has two equilibria. It is easy to observe that when the

maximum sediment deposition rate C is large, then the system (2.12)-(2.14) can only

have the trivial equilibrium.

Therefore the question of bistability for certain parameter range is reduced to whether

I > 0. Notice that g′(0) < 0 and F (C∗) > 0, hence

I1 =
λ(r − µ+ ǫ)k

2r
+

λǫk

γ
−

ǫk

γβ

(

C∗g
′(0)− F (C∗) +

C∗g
′(0)ǫr

γ(r − µ+ ǫ)

)

> 0,

and the positivity of I = I1 − I2 depends on the competition between I1 and I2 =
f(−C∗/β)

f ′(−C∗/β)
> 0. Here I2 only depends on the form of f and C∗/β, while I1 depends on

many other parameters. Notice that C∗ is determined by f and
r − µ+ ǫ

ǫ
. If we fix the

values of r, µ, ǫ, and β, then one can increase I1 by (i) increasing carry capacity k; (ii)

increasing the packing density λ; (iii) decreasing the oyster shell degrading rate γ; (iv)

increasing |g′(0)|, decay rate of sediment deposition on the reef height; or (v) increasing

F (C∗), which indicates the oyster filtration ability. Hence we have identified five ways to

achieve bistability in the system.
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3.4 Numerical Calculations

To illustrate our results, numerically calculate our model and also compare with field

data, we now explicitly define the functions f(d), g(x), and F (y). We use the following

set of desired functions satisfying the conditions (2.2), (2.6), (2.7):

f(d0) =
1

1 + e−hd0
, d0 = d−

λO

2

g(x) = e−ηx, (g(O +B) = e−η(O+B)),

F (y) = Mye−θy, (F (Cg) = MCge−θCg).

(3.20)

Here h > 0 is a parameter which adjusts the shape of the sigmoid function f—for larger h,

the sigmoid function f has narrower transition layer where the function value jumps from

0 to 1. λO
2

is subtracted from d in order to shift the sigmoid function so that f(0) ≈ 0

and f(O) ≈ 1). In the definition of g, η is the decay rate of the exponential function; the

per volume filtration rate F = F (Cg) is a function on Cg, and the form of the function

F (y) is of Ricker type, where M represents the maximum filtration rate, and θ is a decay

rate. Notice that F (y) achieves its maximum value at y = 1/θ, and the maximum value is

M/(eθ). Hence to achieve an effective maximum filtration rate of F0, one needs to select

M = eθF0.

Figure 3.1: Graphs of functions f(d), g(x) and F (y) defined in (3.20). (left) f(d) with

h = 1; (middle) g(x) with η = 10/3; (right) F (y) with θ = 50 and M = θe.
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With the nonlinear functions f , g and F defined as in (3.20), we assume the following

set of parameters:

Parameter λ r k µ ǫ γ η θ M β h C

Value 1 1 0.3 0.4 0.94 0.7 3.33 50 50e 0.01 20 0.02

Table 3.1: A sample set of reasonable parameters

Then we obtain two equilibrium points (O1, B1, S1) = (0.0566, 0.0456, 0.0326) and

(O2, B2, S2) = (0.1736, 0.1022, 1.0645×10−7), and see Fig. 3.2 left panel for an illustration

of the two intersecting curves L(O) and R(O) defined in (3.10). Freeing the parameter

C gives a bifurcation diagram (see Fig. 3.2 right panel) with a “bend back” curve. The

curve continues to C = 0 with a positive O-value, that corresponds to an equilibrium

point when C = 0: (O∗, B∗, 0) where O∗ satisfies

f

(

λ

(

O

2
+B(O)

))

=
ǫk

k(r − µ+ ǫ)− rO
. (3.21)

Here the bifurcation point C∗ = 2.24× 10−4 is very small. On the other hand, there is a

saddle-node bifurcation point C∗ ≈ 0.078 where the curve bends back. For all C values

in (C∗, C
∗), there are two positive equilibria.

We use some numerical simulation to have a close look at the bistable dynamics of

(3.1)-(3.3) with parameters given in Table 3.1. We use the initial value of O(0) = 0.01

and S(0) = 0.01, that is, there is a small amount of live oyster and also a small amount

of sediment initially. We choose several different values of B(0): B(0) = 0.20, 0.10, 0.12

and 0.11 (see Fig. 3.3). Then it is clear that for larger B(0), the oyster population

survives and reach the large stable equilibrium (O1, B1, S1), while the smaller B(0) will

drive the oyster population to zero equilibrium. The critical level of original reef height

B(0) is between 0.11 and 0.12. Observing the transient dynamics with B(0) = 0.12 and

B(0) = 0.11 when 0 ≤ t ≤ 10 (see Fig. 3.4), one can see that with slightly higher reef, the
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Figure 3.2: Equilibrium solutions and bifurcation, with parameters given in Table 3.1.

(left) The graph showing the intersection of the two curves L(O) and R(O). Here the

horizontal axis is O, and the vertical axis is the function values; (right) bifurcation diagram

of (3.1)-(3.3). Here the horizontal axis is C, and the vertical axis is O.

live oyster volume is able to keep increasing, and eventually curbs the sediment volume to

a very small value with the filtration function; on the other hand, with slightly lower reef,

the live oyster cannot keep up with the rising sediment, and the sediment later covers

both the live and dead oyster.
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Figure 3.3: Numerical solution (0 ≤ t ≤ 100) of (3.1)-(3.3) with parameters given in

Table 3.1. For all cases O(0) = 0.01 and S(0) = 0.01. (upper left) B(0) = 0.20; (upper

right) B(0) = 0.10; (lower left) B(0) = 0.12; (lower right) B(0) = 0.11.
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Figure 3.4: Numerical solution (0 ≤ t ≤ 10) of (3.1)-(3.3) with parameters given in Table

3.1. (left) Initial value O(0) = 0.01, B(0) = 0.12 and S(0) = 0.01; (right) Initial value

O(0) = 0.01, B(0) = 0.11 and S(0) = 0.01

3.5 Matlab code for Numerical Simulation

function WillBistability2

%parameters

%intervals of time which to run the model

tspan=[0 400];

%the initial condition for y0 = [O, B, S]

y0=[0.02; 0.15; 0.01];

r=1; %birth minus death by competition rate

K=.3; %oyster capacity

mu=0.4; %natural death rate

ep=0.94; %death rate of submerged oyster

lambda=1; %packing density

H=10; %scaling factor
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gamma=0.15; %oyster shell degradation rate

M=0.24; %maximum sediment filtration

C=0.02; %maximum sediment deposition rate

theta=1; %sediment amount where filtration is maximum

eta=1/0.3; %decay rate of sediment deposition on the reef height

beta=0.01; %sediment erosion rate

[T,Y]=ode45(@f,tspan,y0);

set(gcf,’DefaultAxesColorOrder’,[1 0 0;0

10;0 0 1]) plot(T,Y);

xlabel(’Time’);

ylabel(’Volume’);

legend(’Live Oyster’, ’Dead Oyster’, ’Sediment’)

function dy=f(t,y)

fd=1/(1+exp(-H*(lambda*(y(1)+y(2))-y(3))));

gx=exp(-eta*lambda*(y(1)+y(2)));

Fx=M*C*gx*exp(-theta*C*gx);

dy = zeros(3,1); % a column vector

dy(1) = r*y(1)*fd*(1-y(1)/K)-mu*y(1)*fd-ep*(1-fd)*y(1);

dy(2)=mu*y(1)*fd-gamma*y(2)*fd+ep*(1-fd)*y(1);

dy(3)=C*gx*exp(-Fx*y(1)/C/gx)-beta*y(3);

end

end
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3.6 Maple code for Symbolic Calculations

restart:with(plots): with(linalg):

%Define mechanistic functions

g:=exp(-eta*lambda*(O+B));

F:=M*C*g*exp(-theta*C*g); d:=lambda*(O/2+B)-(z+C/beta);

fd:=1/(1+exp(h*d));

%Define change in state variables with general f(d) and S = z +C/beta

u1:= r*O*f(d)*(1-O/K)-mu*O*f(d)-epsilon*(1-f(d))*O;

u2:=mu*O*f(d)-gam*B+epsilon*(1-f(d))*O;

u3:=C*g*exp(-F*O/(C*g))-beta*(z+C/beta);

%Define state variables with general f(d)

ds :=lambda*(O/2+B)-S;

u1S:= r*O*f(ds)*(1-O/K)-mu*O*f(ds)-epsilon*(1-f(ds))*O;

u2S:=mu*O*f(ds)-gam*B+epsilon*(1-f(ds))*O;

u3S:=C*g*exp(-F*O/(C*g))-beta*(S);

%Compute Jacobian with general F(y), g(x), and f(d) at trivial solution

jacobian([u1S, u2S, u3S],[O,B,S]);

subs({O = 0, B = 0, S = C/beta}, %);

%Compute lambda0

u1fd:= r*O*fd*(1-O/K)-mu*O*fd-epsilon*(1-fd)*O;

topleftentry := diff(u1fd,O);

topleftentry := subs({O = 0, B = 0, z = 0}, %);
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topleftentry = simplify(%);

lambda0 := solve(topleftentry,C);

%Compute w0

u2fd:= mu*O*fd-gam*B+epsilon*(1-fd)*O;

u3fd:=C*g*exp(-F*O/(C*g))-beta*(z+C/beta);

jacobian([u1fd, u2fd,u3fd],[O,B,z]);

Futriv:=subs({O=0, B=0, z=0, C = lambda0}, %);

Futriv:=simplify(%);

w0 := nullspace(Futriv);

%Compute u1 component matrix of matroid Fuu(lambda0, u0)

hessian(u1,[O,B,z]);

Fuutriv := subs({O=0, B=0, z=0, C = lambda0}, %);

Fuutruv := simplify(%);

%Compute u1 component of vector Fuu(lambda0, u0)[w0,w0]

A :=gam*(epsilon+r-mu)/(r*epsilon);

B:=ln((r-mu)/epsilon)*(eta*lambda*r*epsilon+gam*eta*lambda*epsilon+gam*eta*lambda*r

-gam*eta*lambda*mu+gam*M*((r-mu)/epsilon)^(theta*beta/h)*epsilon

+gam*M*((r-mu)/epsilon)^(theta*beta/h)*r

-gam*M*((r-mu)/epsilon)^(theta*beta/h)*mu)/(h*r*epsilon);

A*(A*Fuutriv[1,1]+Fuutriv[2,1]+B*Fuutriv[3,1]) + A*Fuutriv[2,1]+A*B*Fuutriv[3,1];

numtor := simplify(%);

%Compute <l, F_u(u0, u0) *w0>

u1c:=diff(u1,C);
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u2c:=diff(u2,C);

u3c:=diff(u3,C);

jacobian([u1c, u2c, u3c],[O,B,z]);

Fcutriv:=subs({O=0, B=0, z=0, C = lambda0}, %);

Fcutriv[1,1]*A;

dentor := simplify(%);

%Compute I = -1/2 * numerator over denominator

-1/2*numtor/(-(D(f))(-lambda0/beta)*(epsilon+r-mu)*A/beta);

simplify(%)
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Chapter 4

Conclusions

Let us first briefly review the purpose of this paper. The Chesapeake Bay oyster is the

natural filter of its home. Perched upon high reefs, they historically maintained suspended

sediments and nutrients at levels conducive to abundant marine life. However, human

activity has hampered their ability to provide this vital service. Oysters populations

have been decimated. Additionally, the vertical relief of reefs has been reduced, exposing

oysters to higher suspended particle density. Sediment in the present densities is harmful

to oysters, reducing fecundity and raising mortality. Faced with harvest pressure and

growing sediment densities, oyster populations have continued to decline.

Efforts to curb this decline and restore oysters to higher population levels have been

largely ineffectual. Reefs are built and populated with oysters but after a few years,

most disappear. However, high relief reefs from the Great Wicomico River experiment

have survived and flourished. Low relief reefs in the same area have been considerably less

successful and have largely returned to the state of unrestored bottom. This experimental

data argues for the existence of alternative stables states in which there exist critical

thresholds that separate different zones of attraction. Analogous to the system within

shallow lakes, the Bay can exist in a state of low turbity (suspended sediment) and high

oyster volume. However, if a critical threshold of external and internal conditions are
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passed, the Bay will go to a state of high turbity and low oyster volume.

We set out to provide theoretical evidence that the negative effect of sediment of

oysters and oyster filtration of sediment formed a feedback mechanism that could produce

alternative stables states. We constructed a model of three ordinary differential equations

to track the change in live oyster, dead oyster, and sediment volume. Live oyster volume

grew according to logistic growth with a natural death rate and a death term due to

submersion in sediment. We tracked dead oyster volume which live oyster grow on to

elevate themselves above sediment which concentrates on the Bay floor. Sediment volume

grew according to a delinearization of a standard model for sediment accumulation minus

the amount filtered by oysters. Using several techniques, we concluded that the model

contained multiple nonnegative equilibria.

Setting the change in our system to zero, we solved for the value of live oysters at

equilibria. In addition to the trivial solution, we discovered a range of parameters on

which multiple equilibria exist. Specifically, we discovered there exist two bifurcation

values of the parameter representing maximum sediment deposition, C. The bifurcation

diagram of C and O closely resembles the common S-shaped diagram featured in all

papers of bistability (Figure 3.2). The figure clearly shows that multiple equilibria exist

between the two bifurcation values of C.

We determined the slope of the curve as a function of the parameter values. Multi-

ple equilibria exist for a positive slope at bifurcation curves emergence from the trivial

solution. Conversely, only the trivial solution exists for a negative slope. Therefore, the

existence of equilibria is dependent on the parameters and can be shown by ecologists to

exist for an ecologically reasonable parameter set.

Numerical simulation done in Matlab using the common program ode45 contributes

more evidence. Parameters can be easily manipulated within and outside the ecologically

reasonable range. For a wide range of parameter values for which ecologically reasonable

range is a subset, the long term behavior of solution curves is dependent on the initial
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value of the dead oysters. Therefore, for each reasonable choice of parameter values,

there exists a value of B(0) such that above this value, live oyster volume will approach a

positive equilibrium and sediment volume will approach a negligible amount. Conversely,

below this value of B(0), sediment will overwhelm live oysters and they will approach the

trivial solution. This result explains the success of high relief reefs and the failure of low

relief reefs in the Great Wicomico River.

In summary, there is now experimental and theoretical evidence for the existence of

alternative stable states in the system of oyster reefs and sediment in the Bay. The model

used in this paper is basic and neglects many important factors in this real and complex

system. However, it does concretely show that alternative stable states do exist from

the relationship of sediment and oysters. Refinement of the model and extension of its

complexity could result in accurate prediction of the real system and provide insight into

the required heights of artificial reefs for successful restoration.

4.1 Afterward

“The world is your oyster.”

These are beautiful and inspiring words. As I face impending graduation, uncertainty

and fear of the broad unknown threatens my aspirations. For one who has been training

in the quest of certainty and objective truth, the broad expanse of paths before my feet

could immobilize me. But the world is indeed my oyster. Fear turns to excitement and

the unknown reveals itself as endless possibility.

My work on this thesis has also given me another perspective with which to view these

words. These oysters, that we have joyfully devor in our country’s youthful spirit, are

almost gone now. They have yielded themselves to our pleasure and given all they had.

Now like a confused child after a plaything has been broken, we sit back and wonder. We

have the power to destroy these oysters, the bounty of the earth laid prone in our palms.

We have the power to destroy this entire world. Thankfully, we also the power to protect
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it and if we are granted any meaning in this life, it is exercise that power.
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