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Abstract

A two-patch Rosenzweig-MacArthur system describing predator-

prey interaction in a spatially inhomogeneous environment is in-

vestigated. The global stability of equilibrium solutions for the

homogeneous case is proved using Lyapunov functional, and stabil-

ity analysis for the coexistence equilibrium is also given. Numerical

bifurcation diagrams and numerical simulations of the limit cycle

dynamics for the inhomogeneous case are obtained to compliment

theoretical approach. Some of our results help to explain and clar-

ify possible solutions to the Paradox of Enrichment in ecological

studies.
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Chapter 1

Introduction

1.1 Background

In ecology, predation describes a biological interaction where a predator feeds on its prey.

It takes on various forms in nature. Predators might or might not kill their prey prior to

feed on them, but the act of predation always results to benefit of the predator. We can

recognize a population of “predators” that benefits from feeding, and a population of “vic-

tims” that suffers. The key characteristic of predation, however, is the predator’s direct

impact on the prey population. A predator-prey model gives insight into the dynamics

of predation through studying the population changes of predator and prey. Predation

can also be described as a competitive interaction in nature that is mediated through

populations of resources [7]; thus predation is called a “consumer-resource interaction” in

a more general sense. In [24], the authors stated that the consumer-resource interaction

is arguably the fundamental building block of ecological communities. Virtually every

species is part of a consumer resource interaction, as a consumer of living resources, or

as a resource for another species. If we are to understand population regulation and its

various manifestations, we need to focus on consumer-resource interactions.

The equations describing predator-prey interaction were first derived independently
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by Alfred J. Lotka in 1925 [18, 19] and Vito Volterra in 1926 [31]. Volterra’s interest in the

subject stemmed from his daughter’s fiance, Humberto D’Ancona, a fisheries biologist who

was trying to explain the observed increase in predator fish (and corresponding decrease

in prey fish) in the Adriatic Sea during World War I. At the same time in the United

States, the equations studied by Volterra were derived independently by Alfred Lotka to

describe a hypothetical chemical reaction in which the chemical concentrations oscillate.

The Lotka–Volterra model is based on linear per capita growth rates, which can be written

as










dN

dt
= aN − bNP,

dP

dt
= cNP − dP,

(1.1)

where N and P are the population densities of prey and predator, respectively; a and d

are their per-capita rates of change in the absence of each other; and b and c are their

rates of change due to interaction. Since the 1930s, modifications have been made on the

original Lotka–Volterra equations. To correct the unreasonable assumption that the prey

population grows infinitely in the absence of predators, a logistic self-limitation term is

often added to the prey equation (see Pearl [25]):

dN

dt
= aN

(

1 − N

K

)

− bNP. (1.2)

Later, a logistic predator equation was considered by Leslie [21]:

dP

dt
= cP

(

1 − e
P

N

)

, (1.3)

where 1/e is the marginal reproductive value of the resource, and N/e is the carrying

capacity of predators when provided with constant supply of prey. This modification

makes the predator isocline slanting rather than vertical, which solves the paradox of

enrichment and biological control, as stated by Berryman in [1].

One of the other unrealistic assumptions of the Lotka–Volterra model is that the

predator can always increase their prey consumption as the prey population increases. The

assumption of linear functional response [30], that the feeding rate per predator as a linear
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function of prey abundance, later refereed as a Holling Type I functional response was

unrealistic because there is a limit to the rate at which individual predator can consume

prey. Thus, the term feeding rate n/t, the rate at which individual predator captures prey

was introduced and new types of predator functional response were constructed. Holling

[9] derived his famous “disk” function which is identical to the Michaelis–Menten equation

of enzyme kinetics [27]:
n

t
=

mN

w + N
, (1.4)

where m is the maximum and constant rate of prey consumption per predator, and w is

the prey density where the attack rate is half-saturated. This is also called Holling Type

II functional response. Finally, a Holling Type III functional response can be described

as
n

t
=

mN2

w2 + N2
, (1.5)

where the feeding rate is accelerated at low prey density, but decreases at high prey density

as the asymptote is reached. Figure 1.1 shows the graph of all three types of functional

responses.

Figure 1.1: Three Types of Holling Functional Responses

3



The functional responses have important consequences for the ability of predators to

control victim populations. Figure 1.2 shows the proportion of the prey population that

is consumed by an individual predator as prey abundance increase.

Figure 1.2: Prey Population Control Under Different Types of Functional Responses

For the Type I response of the simple Lotka-Volterra model, this proportion of predator

and prey remains a constant, because each predator increases its individual feeding as prey

abundance increases. For the Type II response, the proportion decrease steadily because

each predator can only process prey at a maximum rate k. The Type III response shows

an initial increase because of the accelerated feeding rate, but this quickly decreases and

converges on the Type II curve. These curves show that, at a high prey abundance,

predators with a Type II and Type III response may not be able to effectively control

prey populations.

A later version of predator-prey model was developed by Rosenzweig and MacArthur

[28] has a logistic growth rate and a Holling type II functional response. Their equations
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(in modern notation) are

dU

ds
= γU

(

1 − U

K

)

− CMUV

A + U
,

dV

ds
= −DV +

MUV

A + U
, (1.6)

where the number of prey U satisfies a logistic growth pattern; γ > 0 represents the

intrinsic growth rate of the prey; K > 0 is the carrying capacity of the prey; D > 0

is the death rate of the predator; C > 0 measures the relative loss of the prey; the

functional response of the predator, which corresponds to saturation of their appetites and

reproductive capacity, is of Holling type II in form MU/(A + U) here. The Rosenzweig–

MacArthur model (1.6) is considered to be a realistic predator-prey model [7, 23, 24]. In

many recent investigations, it has been used as prototypical predator-prey model as the

base of more advanced models [5, 6, 8].

For a class of conventional predator-prey interaction models including Rosenzweig-

MacArthur model (1.6), it is known that a stable limit cycle exists for a range of pa-

rameters. Extensive studies [14, 32] have shown that equilibrium solutions and periodic

solutions dominate the asymptotic behavior of the system. Mathematical theory has been

established [12, 13] to show that, for certain parameters, the prey-only equilibrium or co-

existence equilibrium is globally stable; and for other parameters, a periodic orbit attracts

all solutions [2, 15]. In 1971, Rosenzweig showed in [26] that increasing the supply of lim-

iting nutrients or energy tends to destroy the steady state, which is known as “Paradox

of Enrichment”.

The two-patch model in this thesis is based on Rosenzweig-MacArthur model, and a

detailed analysis of Rosenzweig-MacArthur model (1.6) will be reviewed in Section 2.1.

1.2 Spatial Predator-Prey Models

The natural environment for most biological species is heterogeneous in space. There-

fore it is reasonable to expect the dynamics of their populations to be influenced by the

heterogeneity of the environment, apart from the interactions between the species. This
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query has inspired studies focused on equilibriums of predator-prey system with diffusion.

As early as 1979, de Mottoni and Rothe [4] generalized the Volterra–Lotka system with

diffusion, and they obtained asymptotic stability of homogeneous equilibrium states. An-

other paper by Holt [10] in 1984 studied the impact of spatial heterogeneity and indirect

interactions on the coexistence of prey species.

Similar questions concerning coupled chemical reactors have also been raised and

widely studied in chemistry. Lengyel and Epstein [20] analyzed conditions for stable

homogeneous steady state to lose stability as a result of coupling, and they found that

diffusion-induced instability can lead to multiple stable steady states, oscillatory states

and even chaos. The model of the Chlorine Dioxide-Iodine Malonic Acid (CDIMA) reac-

tion that Lengyel and Epstein built in 1990 has also inspired other researchers to work

on Turing instability in diffusively coupled chemical model [11, 29].

More recent biological studies have yielded various results. Commins and Hassell [3]

extended the question of spatial interactions to wider question of community structure

by considering various three-species systems, and they found multi-species coexistence

can occur despite unstable local populations. Jansen argued in [17] that spatial predator-

prey populations can be regulated through the interplay of local dynamics and migration.

Furthermore, he suggested in [16] that this regulation through spatial interactions can

be a possible solution to the Paradox of Enrichment. In more recent studies, Goldwyn

and Hastings stated in [5, 6] that small heterogeneity has large effects on synchronizing

populations. Holland and Hastings [8] showed a contrasting result that randomizing

the structure of dispersal networks tends to favor asynchrony and prolonged transient

dynamics.

1.3 Summary of Results

This paper investigates the global dynamical behavior of a spatially heterogenous bio-

logical system with two patches. The system describes a predator-prey interaction and
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the dispersal between two spatial patches. We use both analytic techniques such as Lya-

punov functions, linearization and bifurcation theory, as well as numerical approach using

Matlab. In Chapter 2, we prove the global stability of equilibrium solution with Lyapunov

functional technique, and we also use the linearization method and linear algebra to con-

sider the stability of equilibrium solutions. Numerical bifurcation diagrams of equilibria

and limit cycles motivated by these theoretical studies are obtained with Matlab function

MatCont. In Chapter 3, we consider spatially non-homogenous systems, and we study the

impact of the spatial heterogeneity to the global dynamics.
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Chapter 2

Mathematical Analysis of Symmetric

Model

2.1 Analysis of Rosenzweig-MacArthur Model

The original Rosenzweig-MacArthur predator-prey model is as (1.6), and it has been

thoroughly studied in existing papers. We review this well-known dynamics, and we

mostly follow [14]. A series of change of variables is carried out to simplify the equations:

t = γ · s, u =
U

K
, and v =

C

K
· V,

then the dimensionless system of equations










u′ = u
(

1 − u

K

)

− muv

1 + u
,

v′ =
muv

1 + u
− ev,

(2.1)

is obtained where

m =
M

γ
, d =

D

γ
, and a =

A

K
.

Equation (2.1) is the local predator-prey system in each patch for our model.

The predator-prey system (2.1) has three steady state solutions: (0, 0), (K, 0), (λ, vλ),

where λ =
e

m − e
and vλ =

(K − λ)(1 + λ)

mK
. The coexistence equilibrium (λ, vλ) is in the
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first quadrant if and only if e <
mK

K + 1
(or 0 < λ < K). When e ≥ mK

K + 1
(or λ ≥ K),

(K, 0) is globally asymptotically stable. Hence we always assume that 0 < e <
mK

K + 1
in

the following.

The global stability of (λ, vλ) can be established through a Lyapunov function (see

[12, 13]):

W (u, v) =

∫ u

λ

p(ξ) − e

p(ξ)
dξ +

∫ v

vλ

η − vλ

η
dη, (2.2)

where p(u) =
mu

1 + u
. From straightforward calculation,

Ẇ (u(t), v(t)) = [p(u) − p(λ)] · [v0(u) − v0(λ)], (2.3)

where

v0(u) =
u(1 − u/K)

p(u)
=

(1 + u)(K − u)

mK
. (2.4)

If K ≤ 1, then v′

0(u) < 0 for any u > 0. Hence when K ≤ 1, Ẇ < 0 along an orbit

(u(t), v(t)) of (2.1) and Ẇ = 0 only if (u(t), v(t)) = (λ, vλ). Thus (λ, vλ) is globally

asymptotically stable when K ≤ 1. On the other hand, if K > 1, but vλ ≤ 1/m (which

is equivalent to v0(λ) ≤ v0(0)), then [p(u) − p(λ)] · [v0(u) − v0(λ)] ≤ 0 for any u > 0,

and (λ, vλ) is also globally asymptotically stable in this case. We notice that vλ ≤ 1/m is

equivalent to

λ ≥ K − 1. (2.5)

That leaves the case: for any K, m > 0,

K > 1, and 0 < e <
m(K − 1)

K
(or equivalently 0 < λ < K − 1). (2.6)

The dynamics of (2.1) under (2.6) is completely understood. The local stability of (λ, vλ)

can be determined from the linearization at the equilibrium. We use λ as the bifurcation

parameter. The Jacobian at (λ, vλ) is

J =









λ(K − 1 − 2λ)

(1 + λ)K
− mλ

1 + λ
K − λ

K(1 + λ)
0









. (2.7)
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Then λ∗ =
K − 1

2
is a Hopf bifurcation point. When

K − 1

2
< λ < K, (λ, vλ) is locally

asymptotically stable. Indeed the local stability implies the global asymptotical stability

of (λ, vλ) from the Poincaré–Bendixon theory. Finally when 0 < λ <
K − 1

2
, (λ, vλ) is

locally unstable, and (2.1) possesses a unique limit cycle which is globally asymptotically

orbital stable (see [2, 15]).

Figure 2.1: Phase portraits of (2.1). (upper)
K − 1

2
< λ < K, (λ, vλ) is globally asymp-

totically stable; (lower) 0 < λ <
K − 1

2
, the unique limit cycle is globally asymptotically

orbital stable.

In summary, there are three possible asymptotic dynamic behaviors for the predator-

prey model (2.1):

11



1. When λ ≥ K, the equilibrium (K, 0) is globally asymptotically stable (predator

extinction);

2. When K > 1 and
K − 1

2
< λ < K, or K ≤ 1 and 0 < λ < K, the coexistence

equilibrium (λ, vλ) is globally asymptotically stable (coexistence);

3. When K > 1 and 0 < λ <
K − 1

2
, a limit cycle is globally asymptotically stable

(oscillatory).

If the parameters m and e are fixed, and we use the carrying capacity K as a bifurcation

parameter, then

1. When 0 < K ≤ e

m − e
, the equilibrium (K, 0) is globally asymptotically stable

(predator extinction);

2. When
e

m − e
< K <

m + e

m − e
, the coexistence equilibrium (λ, vλ) is globally asymp-

totically stable (coexistence);

3. When K >
m + e

m − e
, a limit cycle is globally asymptotically stable (oscillatory).

The latter sequence of bifurcations when the carrying capacity increases is called paradox

of enrichment [26]: the better environment destabilizes the coexistence of predator and

prey; the oscillation puts the population density of either species very low for an extended

period, which makes the population more vulnerable to the stochastic fluctuation.

2.2 Two-Patch Model

In this paper, we study a two-patch model for a Rosenzweig-MacArthur system, which is

one of most widely used predator-prey models for ecological studies (see [7, 8, 12, 14, 22,

24, 26, 28]). This yields a system of four coupled ordinary differential equations. Within

each patch, the prey population follows logistic growth, and the predation has a Holling

Type II ([9]) functional response of predator to prey density. The two patches are coupled

12



through migration of both prey and predator. We assume the same migration rates over

patches for prey and predator, respectively. The system of the equations takes the form:







































u′ = f1(u, v) + a(w − u),

v′ = g1(u, v) + c(x − v),

w′ = f2(w, x) − a(w − u),

x′ = g2(w, x) − c(x − v),

(2.8)

where, for i = 1, 2,

fi(u, v) = u

(

1 − u

Ki

)

− miuv

1 + u
, gi(u, v) =

miuv

1 + u
− eiv. (2.9)

The variables u and w denote the densities of the prey populations in each patch, while

v and x denote the densities of the predator populations. The variables in (2.8) has

been nondimensionalized to reduce the number of parameters. The parameters have the

following interpretation: Ki, carrying capacity of the prey population; mi, the saturation

value of the functional response; ei, the predator death rete in the absence of prey; a and c,

the per capita prey migration rate and predator migration rate, respectively. If K1 = K2,

m1 = m2 and e1 = e2, then the two patches are spatially homogeneous (symmetric);

otherwise they are heterogeneous (nonsymmetric).

We comment that similar models have been used in several previous studies. In [16, 17],

(2.8) was considered, but with immobile prey species (a = 0); in [20], a system of form

(2.8) was considered but with the kinetic model being the CDIMA chemical reaction not

ecological ones. Numerical approaches were used in both papers. In [8], a coupled system

with 10 patches with Rosenzweig-MacArthur predator-prey model was considered, and it

is assumed the whole system is homogeneous with identical local dynamics.
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2.3 Stability with Lyapunov Functional

For the two-patch model (2.8), we first consider the homogeneous patch case, that is: all

parameters (K, m, e) are same for the two patches. The model then describes a homoge-

nous environment where the effect of migration cancels out. The model is also symmetrical

in the sense that we can construct the solution of (2.8) based on known solutions of (2.9).

Thus we want to know whether the symmetric equilibrium points (K, 0, K, 0) and

(λ, vλ, λ, vλ) are globally stable for the symmetrical model of (2.8). To prove global

stability, we will follow the methods introduced in [13] and construct Lyapunov functions.

Define p(u) =
mu

1 + u
and v(u) =

(K − u)(1 + u)

mK
. Then (2.8) is equivalent to







































u′ = p(u)(v(u) − v) + a(w − u),

v′ = v(p(u) − e) + c(x − v),

w′ = p(w)(v(w) − x) − a(w − u),

x′ = x(p(w) − e) − c(x − v).

(2.10)

When λ ≥ K, construct Lyapunov functions

V1(u, v) =

∫ u

K

p(ξ) − p(K)

p(ξ)
dξ + v (2.11)

and

V2(w, x) =

∫ w

K

p(ξ) − p(K)

p(ξ)
dξ + x. (2.12)

Then taking derivatives with respect to time t, we get

d

dt
V1(u(t), v(t)) =

p(u) − p(K)

p(u)

du

dt
+

dv

dt

=(p(u) − p(K))(v(u) − v) + v(p(u) − e)

+
p(u) − p(K)

p(u)
a(w − u) + c(x − v)

14



and

d

dt
V2(w(t), x(t)) =

p(w) − p(K)

p(w)

dw

dt
+

dx

dt

=(p(w) − p(K))(v(w) − x) + x(p(w) − e)

− p(w) − p(K)

p(w)
a(w − u) − c(x − v).

We construct a Lyapunov function for the two-patch model from (2.11) and (2.12),

and we get

d

dt
V1(u(t), v(t)) +

d

dt
V2(w(t), x(t)) =

(p(u) − p(K))v(u) + v(p(K) − p(λ))

+ (p(w) − p(K))v(w) + x(p(K) − p(λ)) + ae(w − u)

(

1

p(w)
− 1

p(u)

)

.

When λ ≥ K, (p(u)−p(K))v(u) ≤ 0 for all u ≥ 0; similarly, (p(w)−p(K))v(w) ≤ 0 for

all w ≥ 0. Notice that p is an increasing function, then (p(K)−p(λ))v ≤ 0 for all v ≥ 0 and

(p(w)−p(K))v(w) ≤ 0 for all x ≥ 0. Finally the last term a(w−u)p(k)

(

1

p(w)
− 1

p(u)

)

≤
0 because p is increasing. V1 and V2 are Lyapunov functions in this case, and it follows

from Theorem 3.2 in [12] that (K, 0, K, 0) is globally stable.

Now we consider the case when K − 1 < λ < K. The equilibrium solution considered

here is (λ, vλ, λ, vλ), where u∗ = λ =
e

m − e
and v∗ = vλ =

(u + 1)(K − u)

mK
.

We define Lyapunov functions

V3(u, v) =

∫ u

u∗

p(ξ) − p(u∗)

p(ξ)
dξ +

∫ v

v∗

η − v∗
η

dη (2.13)

and

V4(w, x) =

∫ w

w∗

p(ξ) − p(w∗)

p(ξ)
dξ +

∫ x

x∗

η − x∗

η
dη. (2.14)

Thus,

d

dt
V3(u(t), v(t)) =

p(u) − p(u∗)

p(u)

du

dt
+

v − v∗
v

dv

dt

= (p(u) − e)(v(u) − v∗) + a(w − u)
p(u) − e

p(u)
+ c(x − v)

v − v∗
v
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and

d

dt
V4(w(t), x(t)) =

p(w) − p(w∗)

p(w)

dw

dt
+

x − x∗

x

dx

dt

= (p(w) − e)(v(w) − w∗) − a(w − u)
p(w)− e

p(w)
− c(x − v)

x − x∗

x
.

Now we have

d

dt
V3(u(t), v(t)) +

d

dt
V4(w(t), x(t))

=(p(u) − p(λ))(v(u) − vλ) + (p(w) − p(λ))(v(w) − vλ)

+ ae(w − u)

(

1

p(w)
− 1

p(u)

)

+ cvλ(x − v)

(

1

x
− 1

v

)

.

When K − 1 < λ < K, p(u) is increasing while v(u) is decreasing, which makes the

first two terms both less than or equal to 0. The last two terms are also less than or equal

to 0. Then we know d
dt

V3(u(t), v(t)) + d
dt

V4(w(t), x(t)) ≤ 0. We can again apply Theorem

3.2 in [12] to show that (λ, vλ, λ, vλ) is a globally stable equilibrium.

We summarize the results in this section in the following theorem:

Theorem 2.1. For the system of differential equations (2.10), if λ ≥ K, then the equilib-

rium (K, 0, K, 0) is globally asymptotically stable; if K − 1 < λ < K, then the equilibrium

(λ, vλ, λ, vλ) is globally asymptotically stable.

2.4 Linear stability and instability

In an effort to examine the local stability of the two-patch model, we now consider a more

general symmetric system:







































u′ = f(u, v) + a(w − u),

v′ = g(u, v) + c(x − v),

w′ = f(w, x) − a(w − u),

x′ = g(w, x) − c(x − v),

(2.15)
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where

f(u, v) = u
(

1 − u

K

)

− muv

1 + u
, g(u, v) =

muv

1 + u
− ev, (2.16)

or any two variable functions f and g modeling the interaction. We then apply a transfor-

mation similar to what Lengyel and Epstein used in [20] on population variables (u, v, w, x)

by taking sums and differences. Let







































U = u + w,

V = v + x,

W = u − w,

X = v − x,

(2.17)

where U and V denote the sums of prey and predator population in the two patches,

respectively, and W and X are the differences of the population. This transformation

leads to a new system describing the dynamics of population sums and differences, this

new parametrization can be expressed by the following set of equations:















































U ′ = f

(

U + W

2
,
V + X

2

)

+ f

(

U − W

2
,
V − X

2

)

,

V ′ = g

(

U + W

2
,
V + X

2

)

+ g

(

U − W

2
,
V − X

2

)

,

W ′ = f

(

U + W

2
,
V + X

2

)

− f

(

U − W

2
,
V − X

2

)

− 2aW,

X ′ = g

(

U + W

2
,
V + X

2

)

− g

(

U − W

2
,
V − X

2

)

− 2cX.

(2.18)

Based on the symmetry of the system and previous analysis in Section 2.1, local stability

can be confirmed with the steady states (0, 0, 0, 0) and (2K, 0, 0, 0). We are interested

in the local stability of the new coexistence equilibrium (U, V, W, X) = (2λ, 2vλ, 0, 0) of

(2.18), where λ =
e

m − e
and vλ =

(K − λ)(1 + λ)

mK
. The local stability of (λ, vλ) with

respect to (2.1) has been determined from the linearization at the equilibrium in Section

2.1, where we use λ as the bifurcation parameter. Here we use that information to consider

the stability of (2λ, 2vλ, 0, 0) with respect to (2.18). The Jacobian at (2λ, 2vλ, 0, 0) is a
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block matrix that can be described as

J =





M1 0

0 M2



 =

















a11 a12 0 0

a21 a22 0 0

0 0 a11 − 2a a12

0 0 a21 a22 − 2c

















(2.19)

where we notice that

M1 =









λ(K − 1 − 2λ)

(1 + λ)K
− mλ

1 + λ
K − λ

K(1 + λ)
0









and

M2 =









λ(K − 1 − 2λ)

(1 + λ)K
− 2a − mλ

1 + λ
K − λ

K(1 + λ)
−2c









.

Let λ1, λ2, λ3, and λ4 be the eigenvalues of (2.19), then we can assume that λ1, λ2 are

the eigenvalues of M1 and λ3, λ4 are the eigenvalues of M2.

The local stability of (λ, vλ, λ, vλ) is determined by the values of λ1, λ2, λ3, and λ4.

If the real parts of all eigenvalues of J are negative, then the equilibrium (λ, vλ, λ, vλ)

is stable, otherwise it is unstable. When a single real eigenvalue crosses the boundary of

stability as parameter changes, an equilibrium bifurcation will occur, and we can identify

it if one of λi = 0; when a conjugated complex eigenvalue pair crosses the boundary of

stability as parameter changes, a Hopf bifurcation (bifurcation of periodic orbits) will

occur, and we can identify it if λ1,2 = ±bi or λ3,4 = ±bi for b > 0. From linear algebra,

we will focus on the trace and determinant of M1 and M2 to find bifurcation points of the

model.

Let Tr(A) and Det(A) denote the trace and determinant of a square matrix A. It is

easy to show that

Tr(M1) =
λ(K − 2λ − 1)

(1 + λ)K
, Det(M1) =

mλ

1 + λ
· K − λ

K(1 + λ)
,
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and

Tr(M2) =
λ(K − 2λ − 1)

(1 + λ)K
− 2a − 2c = Tr(M1) − 2(a + c),

Det(M2) =
mλ

1 + λ
· K − λ

K(1 + λ)
− 2c

λ(K − 2λ − 1)

(1 + λ)K
+ 4ac = Det(M1) − 2cTr(M1) + 4ac.

The matrix M1 determines the local stability of (λ, vλ) with respect to one-patch model

(2.1). Recall from the analysis in Section 2.1 that, when
K − 1

2
< λ < K, Tr(M1) < 0

and Det(M1) > 0. Then it is easy to see that Tr(M2) < 0 and Det(M2) > 0 for
K − 1

2
< λ < K. Thus (2λ, 2vλ, 0, 0) is locally stable when

K − 1

2
< λ < K.

When 0 < λ <
K − 1

2
, the signs of Tr(M2) and Det(M2) could change. Choosing λ

as the bifurcation parameter, we want to investigate for which values of a > 0 and c > 0,

there are bifurcation points.

2.4.1 Hopf bifurcations

Suppose that λ = λH ∈
(

0,
K − 1

2

)

is a Hopf bifurcation point. With eigenvalues being

±bi, it must be true that Tr(M2) = 0 and Det(M2) > 0. Thus we seek a and c that

satisfies both conditions given below.

Condition H1 : Tr(M2) = 0 at λH .

Define

h1(λ) =
λ(K − 2λ − 1)

(1 + λ)K
.

After taking derivative of h1(λ) with respect to λ, we find that the function h1(λ) is

increasing in (0, λa) and it is decreasing in (λa, (K − 1)/2), where λa = 2
√

2K − 2 − 1 is

the only critical point of h1(λ) in

(

0,
K − 1

2

)

. Let h1(λa) = M∗ which only depends on

K. Then max
λ∈[0,(K−1)/2]

Tr(M2) = M∗ − 2(a + c) is achieved at λ = λa.

• If 2(a + c) < M∗, Tr(M2) < 0 for all 0 < λ <
K − 1

2
, and there will be no Hopf

bifurcation points.
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• If 2(a + c) > M∗, then there are exactly two λ values so that Tr(M2) = 0, with one

in (0, λa) and one in (λa, (K − 1)/2).

Condition H2: Det(M2) > 0 at λH .

Notice that Det(M2) can also be written as

Det(M2) =
λ(K − 2λ − 1)

(1 + λ)K

[

m(K − λ)

(1 + λ)(K − 2λ − 1)
− 2c

]

+ 4ac

= c · (h1(λ) [mch2(λ) − 2] + 4a)

where

h2(λ) =
(K − λ)

(1 + λ)(K − 2λ − 1)
, and mc =

m

c
.

After taking the derivative of h2(λ) with respect to λ, we find that h2(λ) is positive and

it has a positive minimum value M∗ when 0 < λ <
K − 1

2
. The minimum value M∗ is

either achieved at λb =
(
√

2 − 1)K − 1√
2

or at λ = 0. Hence if mcM∗ > 2 then Det(M2) is

always positive, and the condition is automatically satisfied. We notice that mcM∗ > 2

is equivalent to

0 < c <
mM∗

2
.

In summary of the investigation of the above two conditions, if

2(a + c) > M∗ and 0 < c <
mM∗

2
, (2.20)

then there exist two Hopf bifurcation points λ1
H and λ2

H . We remark that the condition

for (a, c) is sufficient but not necessary for existence of Hopf bifurcation points.

2.4.2 Equilibrium Bifurcations

With one of the eigenvalues of M2 being 0, the conditions for an equilibrium bifurcation

to occur require that Tr(M2) 6= 0 and Det(M2) = 0. Thus, we look for a and c that

produce λ-values λE satisfying both conditions.
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Condition E1 : Tr(M2) 6= 0 at λE .

We can deduce from previous discussions on Hopf bifurcation that for all a > 0 and c > 0,

there are at most two λ-values so that Tr(M2) = 0. Hence only for exceptional values of

a and c, Tr(M2) = 0 and Det(M2) = 0 occur at the same time.

Condition E2: Det(M2) = 0 at λE.

Notice that

h3(λ) = K(1 + λ)2 · Det(M2) = mλ(K − λ) − 2cλ(1 + λ)(K − 2λ − 1) + 4Kac(1 + λ)2,

is a cubic polynomial, and Det(M2) = 0 is equivalent to h3(λ) = 0. Hence there are

at most three λ-values which make Det(M2) = 0. In fact, h3(0) = 0 and, for any

c > 0, lim
λ→−∞

h3(λ) = −∞, so h3(λ) = 0 has at least one negative root from intermediate

value theorem in calculus. Therefore there are at most two positive λ-values which make

Det(M2) = 0. As h3(0) = 0 and h3((K − 1)/2) > 0, then for most parameter values, we

should have two or zero positive λ-values in (0, (K − 1)/2) such Det(M2) = 0.

To guarantee that there exist λE such that Det(M2) = 0, one can make m and a

smaller (but keep the c value constant) so that the negative term in h3(λ) can dominate

the positive terms. To be more precise, we only need min
λ∈[0,(K−1)/2]

h3(λ) < 0. We observe

that for λ ∈ [0, (K − 1)/2],

λ(K − λ) ≤ K2

4
, and 4Kac(1 + λ)2 ≤ Kac(K + 1)2.

Hence

h3(λ) ≤ mK2

4
+ Kac(K + 1)2 − 2cλ(1 + λ)(K − 2λ − 1),

and

min
λ∈[0,(K−1)/2]

h3(λ) ≤ h3

(

K − 1

4

)

≤mK2

4
+ Kac(K + 1)2 − c(K − 1)(K + 1)(K + 3)

16

≤mK2

4
+ Kac(K + 1)2 − c(K − 1)(K + 1)K

16

≤0,
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if we make

c >
8m

K
and 0 < a <

1

32
. (2.21)

In summary of the investigation of the above two conditions, for a > 0 and c >

0 satisfying (2.21) (but may exclude finite many exceptional values), there exist two

equilibrium bifurcation points λ−

E and λ+
E that lie in (0,

K − 1

2
).

2.4.3 Numerical examples and numerical bifurcation diagrams

We have identified conditions on diffusion rates a and c so that Hopf bifurcations and

equilibrium bifurcations can occur for certain λ ∈
(

0,
K − 1

2

)

. In general for most given

values of (a, c), (2.15) and (2.16) can have one, tow or three Hopf bifurcation points, and

zero or two equilibrium bifurcation points for λ ∈ (0, K).

In this subsection, we use numerical examples to show all these numbers are possible,

and for each case we use MatCont, a software package based on Matlab, to produce a

corresponding numerical bifurcation diagram. In each of Fig. 2.2, 2.3 and 2.4, the left

panel shows the graphs of Tr(M2) and Det(M2) as functions of parameter λ. From the

discussions presented above, a Hopf bifurcation point λ = λH satisfies Tr(M2) = 0 and

Det(M2) > 0, while an equilibrium bifurcation point λ = λE satisfies Tr(M2) 6= 0 and

Det(M2) = 0.

In each bifurcation diagram on the right panel of Figure 2.2, 2.3 and 2.4, the curve

emerged from (e, u) = (0, 0) and ended at (e, u) = (emax, 5) (in all graphs, K = 5) is the

curve of equilibria (e, u, v, w, x) = (e, λ, vλ, λ, vλ). The upper bound (e, u) = (emax, 5) is

where it meets the line of trivial solution (e, u, v, w, x) = (e, K, 0, K, 0) = (e, 5, 0, 5, 0).

In each bifurcation diagram, the first bifurcation point on the left of emax is the Hopf

bifurcation for the symmetric periodic orbits, which is where Tr(M1) = 0 (Tr(M1) > 0

always holds). From results in Section 2.1, this curve of periodic orbits can be extended

to all e > 0. This part of bifurcation diagram is same as the one for one-patch model

(2.1).
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(a) Graphs of Tr(M2) and Det(M2)
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(b) Bifurcation diagram

Figure 2.2: Two Hopf bifurcations and no equilibrium bifurcation. with K = 5, m = 1.5,

a = 0.03 and c = 0.01. In (a), the horizontal axis is λ, and the vertical axis is the values

of Tr(M2) and Det(M2); in (b), the horizontal axis (bifurcation parameter) is e, and the

vertical axis is u for equilibria and the maximum of u for periodic orbits.

For 0 < λ <
K − 1

2
, the bifurcation structure of three graphs in Figure 2.2, 2.3

and 2.4 are dramatically different. In Figure 2.2, there are two additional Hopf bifur-

cation points where asymmetric periodic orbits bifurcate from the symmetric equilibria

(λ, vλ, λ, vλ). The branch of asymmetric periodic orbits appears to be a loop which joins

two Hopf bifurcation points. On the branch of asymmetric periodic orbits, there are

four Neimark-Sacker bifurcation points (NS) and two branching points of periodic orbits

(BPC). Investigating these secondary bifurcations is beyond the scope of this thesis, but

the presence of these additional bifurcation points shows that the 2-patch model has much

richer structure than the 1-patch one.

In Figure 2.3, there are two additional equilibrium bifurcation points where asymmetric

equilibria bifurcate from the curve of symmetric equilibria (λ, vλ, λ, vλ). Again the branch

of asymmetric equilibria is a loop. The curves above and below the primary curve shows
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(a) Graphs of Tr(M2) and Det(M2)
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(b) Bifurcation diagram

Figure 2.3: Two equilibrium bifurcations and no Hopf bifurcation. Here K = 5, m = 0.3,

a = 0.001 and c = 0.2. In (a), the horizontal axis is λ, and the vertical axis is the values

of Tr(M2) and Det(M2); In (b), the horizontal axis (bifurcation parameter) is e, and the

vertical axis is u for equilibria and the maximum of u for periodic orbits.

two additional equilibria between the two bifurcation points, which are symmetric if we

switch (u, v) and (w, x). The two equilibrium bifurcations are both pitchfork bifurcations.

For that range of e (or λ), the system has five equilibria. It is possible to find an analytic

form of these equilibria, as the equations are polynomials. One can show that the system

has at most nine equilibria from the fundamental theorem of algebra. Indeed Jansen [16]

found the exact form of nine equilibria when a = 0 (immobile preys). We also note that

there are two secondary Hopf bifurcation points on the curve of asymmetric equilibria,

and asymmetric periodic orbits bifurcate from there, which shows the system can have

three periodic orbits for some e.

Finally in Figure 2.4, there are two additional Hopf bifurcation points and two ad-

ditional equilibrium bifurcation points. The loop of asymmetric equilibria contains two

pairs of Hopf bifurcation points, and the curve of periodic orbits also possesses more
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(a) Graphs of Tr(M2) and Det(M2)
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(b) Bifurcation diagram

Figure 2.4: Two Hopf Bifurcations and Equilibrium Bifurcations. Here K = 5, m = 0.12,

a = 0.01 and c = 0.07. In (a), the horizontal axis is λ, and the vertical axis is the values

of Tr(M2) and Det(M2); in (b), the horizontal axis (bifurcation parameter) is e, and the

vertical axis is u for equilibria and the maximum of u for periodic orbits.

bifurcation points, which needs further investigation.

Overall these bifurcation diagrams show that the 2-patch model could have many more

equilibria and periodic orbits even when the two patches are identical. The number of

such asymmetric equilibria and periodic orbits sensitively depends on the diffusion rates

a and c, as well as m (the strength of the predator-prey interaction).
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Chapter 3

Numerical Simulation of the

Non-Symmetric Model

3.1 Non-Symmetric Model

In order to observe the dynamic behavior of the model in a more realistic context, we

revise our symmetrical model by adding spatial heterogeneity to it. Specifically, for equa-

tion (2.8), we assume same carrying capacity, K, has the same saturation value of the

functional response, m. However, we make the death rates of predators different from

one to each other (e1 6= e2). One possible explanation of this modification could be the

environment in one patch is more suitable for the predator to live. Hence the equation to

consider in this chapter is











































u′ = u
(

1 − u

K

)

− muv

1 + u
+ a(w − u),

v′ =
muv

1 + u
− e1v + c(x − v),

w′ = w
(

1 − w

K

)

− mwx

1 + w
− a(w − u),

x′ =
mwx

1 + w
− e2x − c(x − v).

(3.1)
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From the conclusions of Section 2.1 on single-patch predator-prey, we know that the local

system has its Hopf bifurcation at λ =
K − 1

2
. When 0 < λ <

K − 1

2
, the local system

has a limit cycle; when
K − 1

2
< λ < K, the local system has a stable equilibrium (λ, vλ);

when K < λ. the local system has a stable equilibrium (K, 0). In this asymmetric two-

patch model, different predator death rates (often referred as an intrinsic environment

heterogeneity factor) give rise to different values of λi, the respective steady states and

limit cycles of each patch without migration. In this chapter, we are interested in the

effect of migration on the metapopulation of two patches; thus we simulated the model

with different sets of parameters.

3.2 Numerical Simulations

Jensen [16, 17] argued that weak coupling can reduce the chance of extinctions and can

thus be a possible solution to the Paradox of Enrichment. We confirmed this statement

when we coupled two oscillators through migration.

In Figure 3.1(a), patch-1 exhibits limit cycles where prey population is 0 for a long

period, while patch-2 has much shorter limit cycles where prey extinction is not a threat.

When we couple these two patches together through prey migration rate 0.1 and predator

migration rate 0.2, the coupled population on the whole now has shorter limit cycle and

prey population in patch-1 experience a much shorter period of zero prey population. In

addition, we can identify a degree of synchronization since the prey populations in the

two patches reach population highs and lows at the same time. The same applies to the

predator population.

When the migration rates are larger, this synchronization becomes more obvious. In

Figure 3.1:(b), migration rates are higher than Figure 3.1:(a), and a more obvious degree

of synchronization can be identified. Both of the prey and predator populations in two

patches have almost the exact same periodic cycle after coupling. This also leads to
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another conclusion drew from these two figures. Larger the migration rates are, the

more synchronized the system is. This also makes sense intuitively because more isolated

patches tend to preserve their local population without coupling, and when the migration

becomes very large, the two-patch system can be interpreted as one system with almost

no boundaries.

We also found that when an oscillator is coupled with a patch with constant equilib-

rium, the population of the coupled system will converge and eventually reach a constant

equilibrium. Figure 3.2 shows examples of this situation. In these figures, patch-1 rep-

resents a local patch with steady state and patch-2 is a oscillator. The meta-population

of the coupled system shows periodic behavior at first and eventually converges to con-

stant equilibrium. This is very encouraging evidence because it is additional support for

the argument that regulation of ecological systems through migration is useful for the

persistence of species. Again, by comparing Figure 3.2:(a) and Figure 3.2:(b), we found

that greater migration rates give rise to shorter adjusting time for the coupled system to

converge to steady equilibria.

Coupling two identical oscillating patches may lead to chaos in the system. Jensen’s

simulations in [16] with certain parameters generated a quasi-periodic solution and a

chaotic solution. Our simulation yielded similar results.

Knowing the range of parameters for specific solutions of each local patch, we sum-

marize the global population dynamics of the coupled system in Table 3.1.

patch 1 \ patch 2 predator extinction coexistence oscillation

predator extinction predator extinction predator extinction coexistence

coexistence predator extinction coexistence oscillation

oscillation coexistence oscillation oscillation

Table 3.1: Summary of dynamics of two-patch predator-prey model
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(a) Diffusion rates: a = 0.1; c = 0.2.
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(b) Diffusion rates: a = 1; c = 2.

Figure 3.1: Oscillating patches coupled by diffusion rates. For both graphs, x0 =

[0.95; 0.05; 0.2; 0.5]; k = 3; m = 2; e1 = 0.2; e2 = 0.9.
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(a) Diffusion rates: a = 0.1; c = 0.2.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

time

pa
tc

h−
1 

po
pu

la
tio

n

 

 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

time

pa
tc

h−
2 

po
pu

la
tio

n

 

 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

time

co
up

le
d 

po
pu

la
tio

n

 

 

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

time

co
up

le
d 

po
pu

la
tio

n

 

 

prey−1
predator−1

prey−2
predator−2

prey−1
predator−1
prey−2
predator−2

total prey population
total predator population

(b) Diffusion rates: a = 1; c = 2.

Figure 3.2: Oscillating and coexisting patches coupled by diffusion rates. For both graphs,

x0 = [0.95; 0.05; 0.2; 0.5]; k = 3; m = 2; e1 = 1.8; e2 = 0.45
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(a) Quasi periodic solution: k = 7; a = 0; c = 0.7.
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(b) Chaotic solution: k = 5; a = 0; c = 0.6.

Figure 3.3: Identical Oscillating Patches Coupling Yield Chaos. For both graphs, x0 =

[0.95; 0.05; 0.2; 0.5]; m = 9.96; e1 = 1; e2 = 1.
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Chapter 4

Conclusions

This paper investigated the population dynamics of a coupled predator-prey model. Our

model is based on the Rosenzweig–MacArthur predator-prey model with Holling Type II

functional response. We conducted mathematical and numerical analysis on the symmet-

ric two-patch models.

Based on the existing knowledge of the one patch model, we proved the steady states

(K, 0, K, 0) and (λ, vλ, λ, vλ) are globally stable using Lyapunov functional. We then

conducted local stability analysis after tweaking the model using population sums and

differences. By studying the Jacobian matrix, we were able to identify different cases of

bifurcation results and some necessary conditions for each case. Using computing soft-

ware Maple and Matcont, this paper provided specific examples. This paper approached

the non-symmetric system only through numerical simulations due to the difficulty of

conducting mathematical analysis generated by increased number of parameters. Results

from numerical simulations support recent supposition to use coupling as a possible so-

lution to the Paradox of Enrichment. Different degrees of coupling in some systems with

certain parameters show different degrees of synchronization, and usually decrease the

chance of population extinction to a certain extent.

This study can also be compared with results in a recent paper [32], where a Rosenzweig–
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MacArthur predator-prey partial differential equation model is considered. In [32], the

bifurcation of periodic orbits and equilibria were also showed with the spatial domain

being an interval. Our results here show that even a discrete spatial model can produce

such complexity of bifurcation structure. However we have also observed from our stud-

ies, that even for the simple two patch model with four ordinary differential equations, a

complete classification of the dynamics is still out of reach.
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