
W&M ScholarWorks W&M ScholarWorks 

Undergraduate Honors Theses Theses, Dissertations, & Master Projects 

5-2010 

Equitable and Defective Coloring of Sparse Graphs Equitable and Defective Coloring of Sparse Graphs 

Harold Lee Williams II 
College of William and Mary 

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses 

Recommended Citation Recommended Citation 
Williams, Harold Lee II, "Equitable and Defective Coloring of Sparse Graphs" (2010). Undergraduate 
Honors Theses. Paper 676. 
https://scholarworks.wm.edu/honorstheses/676 

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235417485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F676&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/676?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F676&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


 

 

 

 

 

 

 

 

 

 

 

Equitable and Defective Coloring of Sparse Graphs 

 

 

A thesis submitted in partial fulfillment of the requirement  

for the degree of Bachelors of Science in Mathematics from  

The College of William and Mary 

 

 

by 

 

Harold Lee Williams II 

 

 

 

 

 

    Accepted for ___________________________________ 

       

 

________________________________________ 

Gexin Yu, Director 

 

________________________________________ 

Chi-Kwong Li 

 

________________________________________ 

Christopher Abelt 

 

 

 

 

Williamsburg, VA 

April 19, 2010 



Contents

1 Introduction 1
1.1 Graph Theory Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Equitable and Defective Coloring . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Results and Proof 9
2.1 Main Theorem and Related Results . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Proof, Part I: Structure Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Proof, Part II: Discharging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Theorem on Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Future Work and Possible Improvements 21

Bibliography 23



Acknowledgments

A special thanks to CSUMS and NSF for the funding of the research for this thesis project.
A special thanks to my advisors Gexin Yu and Chi-Kwong Li. Thanks to Christopher Abelt
who was on my defense committee.

Thanks to my mother, father, brother and girlfriend, Ericca Dent, who gave me much
support during the time that I was working. A special thanks to my roommate, Ben Cotting-
ham, who listened to my many complicated proofs and unorganized explanations although
his interest is in education, not math.



Abstract

Many application problems can be phrased in terms of graph colorings. A defective coloring
of a graph assigns colors to vertices so that a vertex can have at most one neighbor with the
same color. We may further require the color classes of a defective coloring to have almost
the same sizes, namely equitable-defective coloring. Take notice that a graph may have an
equitable-defective t-coloring, but may not have an equitable-defective (t+1)-coloring. We
study the equitable-defective coloring of sparse graphs. It is known that a planar graph with
minimum degree at least 2 and girth at least 10 has an equitable (proper) t-coloring for any
t ≥ 4. In this thesis, we show that under the same conditions, the graphs have an equitable
defective 3-coloring as well.



Chapter 1

Introduction

1.1 Graph Theory Background

A graph G is a collection of vertices and a collection of edges that connect pairs of

vertices where G = [V, E] such that V = {v1, v2, . . . , vn} and E = {uv|u, v ∈ V }. Every

graph has n number of vertices and e number of edges. Each edge has a set of two vertices

attached to it, which are called endpoints. A vertex u and an edge e are incident if u is an

endpoint of e. Vertices u, v ∈ V are neighbors, adjacent, if they are incident to the same

edge. It is possible that u and v could share more than one edge. The neighborhood of a

vertex u in a graph G, which is denoted N(v) is the set of all neighbors of u.

Each vertex in the graph has a degree d, which is the number of edges that each vertex

individually has. This number is different than |N(v)|, the cardinality of the neighborhood

of v, which is the number of neighbors of v. The following figure shows this difference. For

the graph on the left, the degree of the center vertex is 5 and the vertex has 5 neighbors

but for the graph on the right, the center vertex has degree 7 but it has 5 neighbors like the

graph on the left. This is the main difference between degree and neighborhood.
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Given a vertex v ∈ V , the d(v) = {vu|vu ∈ E, u ∈ V } The maximum degree ∆ of a graph

G is the highest degree that a vertex in graph G can have. ∆(G) = maxv∈V d(v). The δ(G)

of the graph G is the minimum degree of the graph G. δ(G) = minv∈V d(v). Thus for a

normal graph, the minimum degree is 1 if there is more than 1 vertex.

The g(G) of the graph G is the girth of the graph G which is smallest number of vertices

in a cycle, c′, that the graph G can contain. g(G) = min c′(G). The mad(G) of the graph

G is the maximum average degree of G. This number is the maximum average degree of

any subgraph taken out of the graph G. This mad(G) allows us to utilize the charging rules

which will be discussed later.

A subgraph H = [V ′, E ′] of a graph G = [V, E] is a graph where the vertices and edges

in H are in G as well. Thus H is a subgraph when V ′ ⊆ V and E ′ ⊆ E.Subgraphs are

extremely useful when you want to get a closer look at a graph.

A graph is connected if every vertex in the graph can be reached by some path. A

tree is a graph where any two vertices in the graph is connected by one path. From the

definition, you see that a tree is a connected graph that has no cycles. A complete graph

is a graph where every vertex is connected to every other vertex in the graph by one edge.

This means that every vertex in the complete graph has degree n− 1. A complete graph is

denoted by Kn, where n is the total number of vertices in the graph. The following is an

example of a complete graph with 7 vertices: K7.

A bipartite graph is a graph whose vertices can be split into two disjoint sets A

and B where vertices in A and B share edges with vertices in the other set but vertices in
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either set don’t share edges with other vertices in the same set. The following figure is an

example of a bipartite graph.

A complete bipartite graph is a graph with two distinct vertex sets C and D where

the vertices in C and D don’t share vertices amongst vertices in their own set but every

vertex in C shares an edge with every vertex in D. The following figure is an example of a

bipartite graph with 3 vertices in one set then 3 vertices in the other set: K3,3.

A path is a sequence of vertices where an edge connects one vertex to the next vertex

in the sequence. A path always has a start vertex and if it isn’t infinite, it always has an end

or terminal vertex. The names start vertex and end vertex can be switched to either end

of the path. A cycle is a path where the start vertex and the end vertex are the same vertex

x. Here it is implied that it is a (simple) path has no repeated vertices in the sequence and

a (simple) cycle has no vertices that are repeated in the sequence until after you progress

past the x.

There exists a matching M in a graph G if M is a set containing pairwise non-adjacent

3



edges. This means that no two edges in M share a common vertex. A vertex is matched if

it is connected to an edge that is in M . A perfect matching is a matching where every

vertex is incident to an edge in M or where every vertex is matched.

Now we get into graph coloring which goes more in-depth into our problem. A graph

coloring is basically graph labeling where each vertex in the graph is labeled with a color.

A proper vertex coloring C of a graph G is an assignment of colors to vertices of G such

that adjacent vertices have different colors. The function

C : V → {1, 2, . . . , k} such that c(v) 6= c(u) if uv ∈ E

Proper coloring is the most basic form of vertex coloring. There are other ways of coloring

graphs but proper coloring has been the most researched of all the colorings.

1.2 Equitable and Defective Coloring

Let’s say that you run a company that has over 100 employees. Your company is

growing and sometimes you lack the resources to provide for the growing needs of your large

group of employees. One day, you find that you need to have company-wide meetings. To

assign people to meeting times, you use graph theory and create a conflict graph of your

employees.

To set-up the conflict graph, you name your graph G and you set each employee as a

vertex and if an employee had a conflict with another person, you put an edge between those

two vertices. Basically, you have a graph G where G = [V, E] such that V is the vertex set

E is the edge set. The following is an example of a graph.

Definition 1. A conflict graph is a graph but the vertices of this graph represents employ-

ees and the edges represent a conflict between the two vertices connected by the the edge.

Now you go to assign your employees in a meeting. To do this, you may use the

graph coloring. You assign each vertex a color where each color represents one meeting time.

Using a basic coloring, you try to color your graph using a proper vertex coloring. As defined
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earlier, a proper coloring is a coloring such that no two adjacent vertices will have the same

color. This implies that there will be no conflict in any of your meetings.

Definition 2. A proper vertex coloring C (proper coloring) of a graph G is an assign-

ment of colors to vertices of G such that adjacent vertices have different colors. A coloring

can be defined as a function as such:

C : V → {1, 2, . . . , k} such that c(v) 6= c(u) for any uv ∈ E

You want to make it so that you have an almost equal number of people attend each

meeting, so you have to define a new coloring, an equitable coloring. For example, the graph

K2,10 can be colored properly with two colors, blue and red, but the red color set will only

have two vertices while the blue color set will have ten vertices in the set. We want a coloring

that will make the color sets more equal. The following is an the K2,10 graph colored with

two colors.

In this coloring you want to make each color/meeting time set to be almost equal.

To do this, you say that the cardinality of all the color sets must be equal and if they differ,

each set differs from any other set by at most 1. Your graph is equitable when the number

of people in each meeting time is almost the same or differs by at most one person. Using

equitable coloring, it is implied that you are using a proper coloring as well.
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Definition 3. An equitable coloring of a graph G is is a coloring to equally distribute

vertices in a graph. The cardinality of all each color set must be equal and if they differ,

they differ by at most 1. Let V1, V2, . . . , Vk be the set of vertices colored i for i = 1, 2, . . . , k

in a proper coloring. Thus V1 = C−1(1) for each color i ∈ {1, 2, . . . , k}. Thus a coloring is

equitable if

||Vi| − |Vj|| ≤ 1,∀i, j

Coloring your graph equitably is tough but you find out that you can do it. You find

that you can have at least 4 meeting times. You want to shorten your colors from 4 to 3 so

that you will have less meetings. The only way to do this is to allow some conflict in each

meeting room. To only allow a small amount, you allow that each person can have at most

one person that they have had a conflict with in the past. This type of coloring is called a

defective coloring.

Using defective coloring demands that each vertex in your graph have at most one

neighbor that has the same color and will thus attend the same meeting. With this defective

coloring, the graph K8 can save four colors. The graph K8 can be properly colored with 8

colors but can be defectively colored with 4 colors.

A proper coloring is a subset of defective coloring. Meaning that a graph that is

colored properly is deemed defectively colored as well. For example, the graph on the top is

proper colored and defectively colored while the graph on the bottom is defectively colored

but not proper.

Definition 4. Defective Coloring is defined as a function C : V → {1, 2, . . . , k} such

that if uv, uv′ ∈ E then c(u) = c(v) but c(u) 6= c(v′)
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With all the rules that you already have, want to combine your defective and equi-

table coloring rules. This gives you an equitable and defective coloring which is called an

ED-coloring. Your ED-coloring keeps your color sets almost equal by following the rules of

equitable coloring and it also allows very little conflict using the rules from defective coloring.

If you can color a graph equitably and defectively with a k number of colors, you have thus

used a k-ED-coloring.

Definition 5. An ED-Coloring is a coloring that is both equitable and defective. A k-

ED-Coloring is a coloring that is both equitable and defective but the coloring only uses k

number of colors.

Using this k-ed-coloring, we want to investigate what is the smallest number of colors

used to color each one of your graphs. While investigating the graph K7,7, it was noticed

that the lowest number of colors used to ed-color was 2. While that is significant, this graph

is not 3-ed-colorable. Thus we wanted to find the number of colors used to color the graph

such that the graph can be colored with any number of colors higher than this number. For

this graph, we found that number to be 8. Thus χed(K7,7) = 2 while χ∗
ed(K7,7) = 8. The first

number mentioned is the equitable chromatic number of G, denoted by χed(G). The second

number mentioned above is the equitable chromatic threshold of G, denoted by χ∗
ed(G). It

is clear that χed(G) ≤ χ∗
ed(G) for any graph G. We notice in some graphs that these two

numbers could be the same but as we see from the above example, these numbers are likely

to be different.

Definition 6. The equitable-defective (ed) chromatic number of G, denoted by χed(G),

is the smallest integer m such that G is m-ed-colorable.

Definition 7. The equitable-defective (ed) chromatic threshold of G, denoted by

χ∗
ed(G), which is the smallest integer m such that G is equitably n-colorable for all n ≥ m.

1.3 A Research Problem

The last two definitions led us to our research and results. For different graphs, it

was studied what was the chromatic number for more specific graphs. What was even more

interesting was investigating the chromatic threshold. It was noticed that with certain graph

specifications, the chromatic threshold of these graphs can be really low. This led to the

following question:
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When is χ∗
ed(G) at most a small constant?

The study of the χ(G) of graphs with constraints proved to have a low threshold. χ∗
ed(G)

is interesting from the fact that adding more relaxation in the coloring can allow a lower

chromatic threshold for these graphs.
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Chapter 2

Results and Proof

2.1 Main Theorem and Related Results

The motivation for this research stems from work done previously by Luo, Stephens and

Yu, [1]. Their work was done for planar graphs with minimum degree at least 2 and girth

at least 10. They proved that planar graphs with those two constraints can be equitably

(proper) colored with 4 colors.

Theorem 8 (Luo, Stephens and Yu, [1]). If G is a planar graph with δ(G) ≥ 2 and g(G) ≥
10, then χ∗

eq(G) ≤ 4.

Here is our theorem.

Theorem 9. Let G be a planar graph with g(G)≥ 10 and minimum degree δ(G) ≥ 2 then G

is k-ed-colorable for k ≥ 3.

When the research began on this theorem, it began as just an investigation of a new

coloring called defective coloring. After seeing its uses, it was noticed that this coloring

could be used to color the same type of graphs as in Theorem 8. Using this coloring, we

noticed that we could save one color using the same constraints as in Theorem 8. Thus we

have proven that any planar graph with minimum degree at least two and girth at least 10

can be defectively colored with at least three colors.

Remark 10. δ(G) ≥ 2 cannot be removed

If δ ≥ 0 then this is trivial since this graph is just a single node. If δ = 1 then there is

not a proof to show that all of these are reducible. For example, given any graph G that is

already 3-ed-colorable, pick one vertex and add m number of 1-degree vertices to this vertex
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where m ≥ 100. The graph G’, which includes graph G and the m 1-degree vertices, will

not be 3-ed-colorable. This is true because the color c(v)= 1 will only receive 1 more vertex

while colors 2 and 3 will receive 49 and 50 vertices to the set. G’ will be 3-colorable but not

3-equitably colorable since the sets of colors 2 and 3 will be more than 1 more the color set

1.

The above graph is the example mentioned in the previous paragraph. The vertex

which has the 100 edges incident to it, is a vertex that is included in the 3-ed-coloring of the

graph G. The edges of this vertex represents the 100 1-degree vertices that are adjacent to

this one vertex.

Remark 11. g(G) ≥ 10 cannot be improved

The girth of this graph cannot be improved since its importance lies in the second part of

the proof for our theorem. We use the girth to calculate the maximum average degree of our

planar graphs. The maximum average degree of a graph G, mad(G), is the maximum

average degree of any subgraph H of G. This mad(G) is largest number possible when you

add up the total degrees of every possible H and divide by the total number of vertices

in each H. Using this maximum average degree, we show by Euler’s formula that certain

graphs of G cannot exist

We use girth rather than the maximum average degree because a valid proof for graphs

with small girth has not been achieved. Rather we say that our planar graphs are very

sparse.

Remark 12. k ≥ 3 cannot be improved (reduced)
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This part is significant since if a graph is k-ed-colorable then the graph is not necessarily

k+1-ed-colorable. For example, the bipartite graph K8,8 is 4-ed-colorable but it isn’t 5-ed-

colorable. This is true since there is no way to partition the 4 sets of colors into 5 sets of

colors where the sets will be equitable and the coloring will be defective.

2.2 Proof, Part I: Structure Lemmas

In order to prove this result, it took special usage of some different tools used in graph

theory. From the two constraints in our main theorem, there should be no graph G which

cannot be k-ed-colored. This means that any graph that has minimum degree at least 2

and girth at least 10 can be colored with at least 3 colors. To prove this, we use a proof by

contradiction.

We suppose that there is such a graph G that cannot be k-ed-colored, thus we consider G

to be a minimal counterexample. This minimal counterexample is the graph that we try and

succeed to prove cannot happen with the given constraints. To do this, we use two steps:

Structure Lemmas and the Discharging Method.

In this part of the proof, we take a graph G and we look at any subgraph H of G where

H ⊂ G. Thus we take H and say that if the graph G−H is 3-ed-colorable, can we extend

this coloring on to H, no matter what the situation may be for the vertices in G −H that

are adjacent to vertices in H? If we can do this to a subgraph, we say that the subgraph is

reducible and thus cannot be a part of the minimal counterexample. This section shows the

subgraphs that we have found to be reducible.

To start off, let us define some new terminology. A t-thread is a path of t number of

consecutive degree 2 vertices, where t ≥ 1. The t(v) of a vertex v is the cardinality of

the 2-degree environment of the vertex v. To count the number of 0-threads, 1-threads and

2-threads incident to v, we use ai where i = {0, 1, }.

The 2-degree environment of the vertex v is the set of adjacent t-threads connected
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to v. If v is adjacent to no t-threads then t(v) = 0.

Lemma 13. For any graph G, if there exists a t-thread then t ≤ 2

Proof. Let there be a graph G and G contains a subgraph H which is a t-thread. Let vertex

u and vertex v, where u, v ∈ G be the first neighbors on either side of the t-thread that

has degree higher than two. We also assume that G − H has a m-ed-coloring such that

|V1| ≤ |V2| ≤, . . . ,≤ |Vm|. We then label the vertices in the t-thread with w1, w2, . . . , wt

where w1, wt are the neighbors of u, v, respectively. We want it to be true that c(w1) 6= c(u)

and c(wt) 6= c(v). We assign colors 1 mod m, 2 mod m,. . . , t mod m to vertices w1, w2, . . . , wt,

respectively. This coloring is is non-increasing equitable and guarantees that |V1| ≥ |V2| ≥
, . . . ,≥ |Vm| and thus the entire graph G will be equitably colorable. This coloring does not

work when either c(u) = 1, c(v) = t mod m, or both c(u) = 1 and c(v) = t mod m.

1. If c(u) = 1, then we switch the colors of w1 and w2.

2. If c(v) = t mod m, then we switch the colors of wt and wt−1.

3. If both c(u) = 1 and c(v) = t mod m, where t 6= 1 mod m, then we switch the colors

of w1 and wt.

4. If both c(u) = 1 and c(v) = t mod m where t mod m= 1, then we switch the colors of

w1, wt with w2, wt−1, respectively.

5. If both c(u) = 1 and c(v) = t mod m where t mod m= 1 and w2 = wt−1, thus t = 3.

Therefore we have to use a different coloring. Since m ≥ 3, we color w1, w2, w3 with 2,1,

3, respectively. Thus if a t-thread exists in our graph G, then t ≤ 2.

Lemma 14. If d(v) = 3, then t(v) ≤ 3

Lemma 15. If d(v) = 4, then t(v) ≤ 4 or t(v) = 6 with a1(v) = a2(v) = 2

Lemma 16. Let u be a vertex in the subgraph H of the graph G and d(u) = 3. Let v be

another vertex in the subgraph H that is connected to u by a 1-thread. u also has a 2-thread

and a 0-thread incident to it. Then:

(i) d(v) ≥ 5, or

(ii) d(v) = 4 with either t(v) ≤ 3 or

(iii) d(v) = 3 with t(v) = 1.
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Lemma 17. Let u be a vertex in the subgraph H of the graph G and d(u) = 3. Let v be

another vertex in the subgraph H that is connected to u by a 1-thread. u is incident to two

other 1-threads. Then:

(i) d(v) ≥ 5 or

(ii) d(v) = 4, t(v) ≤ 3 or t(v) = a1(v) = 4 or

(iii) d(v) = 3, t(v) = a1(v) = 3.

Lemma 18. Let u, v be vertices in the subgraph H of the graph G where d(u), d(v) = 3). Both

u and v are incident to three 1-threads. u and v are incident to each other by a 1-thread. Let

w be another vertex in the subgraph H where d(w) ≥ 3 and w is incident to v by a 1-thread.

Then d(w) ≥ 5 or d(w) = 4 with t(w) ≤ 3

To prove the previous five lemmas, we use the following theorem.

Theorem 19 (Hall, P., [2]). For any bipartite graph G = (X,Y ), There exists a matching

saturating X if and only if For any S ⊆ X, | N(S) |≥| S |

Proof of Lemmas 14–18. Consider the earliest lemma to fail in G.

When Lemma 14 or Lemma 15 fails, let H1 be the graph induced by u and the 2-vertices

in its incident threads. When Lemma 16 or Lemma 17 fails, let H2 be the graph induced

by u, v and the 2-vertices in their incident threads. When Lemma 18 fails, Lemma 17 must

hold, hence d(w) = t(w) = a1(w) = 3 or d(w) = t(w) = a1(w) = 4. In this case, let

H3 be the graph induced by u, v, w and the 2-vertices in their incident threads. Note that

δ(G−H) ≥ 2, since g(G) ≥ 10 and the diameter of H is at most 9. Further, the only vertex

in H that can have more than one neighbor in G − H is w (if H = H3), which may have

two.

For H ∈ {H1, H2, H3}, a vertex in H is free if it has no neighbors in G − H. Let

n(H) = |V (H)| and s0(H) be the number of vertices that are not free in H. Observe:

n(H1) = t(u) + 1 ≤ 9 (by Lemma 13), and s0(H1) = d(u) ∈ {3, 4};

n(H2) = t(v) + 4 ≤ 10 (by Lemmas 14 and 15), and s0(H2) = d(v) + 1 ∈ {4, 5};

n(H3) = t(w) + 7 ∈ {10, 11} (by Lemmas 14–17), and s0(H3) = d(w) + 2 = t(w) + 2 ∈ {5, 6}.

Further, note that n(H2) = 10 if and only if Lemma 16 is the earliest lemma to fail,

d(v) = 4, and t(v) = 6. Since the girth of G is at least 10, it is easy to verify that each Hi

is a tree.
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By the minimality of G, the graph G−H has an ED-m-coloring for any integer m ≥ 3.

Let c : G−H → [m] be an ascending equitable ED-m-coloring.

We claim that c can be extended to an equitable (but not necessarily proper or defective)

coloring of G so that vertices of H that are not free receive a different color from their

neighbor(s) outside H.

Construct an auxiliary bipartite graph B(H) = (V (H), [n(H)]) so that u ∈ V (H) is

adjacent to i ∈ [n(H)] if and only if color i mod m is not used in the neighbors of u in the

coloring c of G−H.

Here are a few facts about the graph B(H):

(F1) Since m ≥ 3, each v ∈ V (H) has degree at least n(H) − dn(H)
3
e, with the possible

exception of w (if H = H3), which has degree at least n(H)− 2dn(H)
3
e.

(F2) If s0(H) ≤ n(H) − dn(H)
3
e, then B(H) has a perfect matching. (By Hall’s Theorem,

B(H) has a perfect matching if and only if for any S ⊆ V (H), |N(S)| ≥ |S|. Note

that if S contains a free vertex, then |N(S)| = n(H). Thus if B(H) contains no

perfect matching, then a set S violating |N(S)| ≥ |S| contains no free vertices, and

s0(H) ≥ |S| > |N(S)| ≥ n(H)− dn(H)
3
e.)

(F3) A perfect matching in B(H) gives rise to a coloring c′ of V (H) such that

(a) no vertex receives the color of its neighbor(s) outside H,

(b) c′ is descending equitable, and

(c) c′ fails to be defective only if it contains a monochromatic subtree with b vertices

for some b ≥ 3. We call such a subtree a bad subtree.

(F4) If a perfect matching does not induce an ED-m-coloring, then dn(H)
3
e ≥ dn(H)

m
e ≥ b,

where b is the maximum size of a bad subtree.

We will refer to the following table for some computations.

n(H) 4 5 6 7 8 9 10 11 12 13 14 15
dn(H)/3e 2 2 2 3 3 3 4 4 4 5 5 5
n(H)− dn(H)/3e 2 3 4 4 5 6 6 7 8 8 9 10

By (F2) and the above table, B(H) contains a perfect matching. Each perfect matching

in H induces an equitable (not necessarily proper or defective) coloring in H.
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We will always choose a perfect matching which minimizes the number of vertices con-

tained in bad subtrees. We will show that such a perfect matching induces an ED-m-coloring.

Suppose by contradiction that L is a maximum bad subtree in H with size b ≥ 3. Since

n(H) ≤ 11, by (F4), b ∈ {3, 4}. We consider the cases H = H1, H2, H3 separately.

CASE 1: H = H1. Since dn(H1)
m

e ≥ 3, there are at least 7 vertices in H1. Recall that

n(H1) = t(u)+1. Thus t(u) ≥ 6, and it follows that u is incident to at least three 2-threads.

Let u, xi, yi, zi with i ∈ [3] be the three 2-threads with zi ∈ G − H. Since n(H1) ≤ 9, we

have b ≤ 3. Thus we may assume that x1, y1 6∈ L. Observe also that u must be in L, hence

L is the only bad subtree in H1.

If u is not the center of L, then switching the colors of x1 and the center yields a valid

ED-m-coloring. Otherwise, L consists of the path x2, u, x3. If u is free, then switch the colors

of u and x1. This also yields a valid ED-m-coloring unless u has a fourth incident 2-thread

that is monochromatic in the new color given to u. In this case, do not swap the colors on

u and x1; instead, switch the color of u with the color of its neighbor x 6= x1, x2, x3.

If u is not free, then n(H1) = 7, and thus c(u) is the only color appearing three times.

Let z be the neighbor of u outside H. If c(x1) 6= c(z), then switch the colors of x1 and u

to obtain a valid ED-m-coloring. Otherwise, assume by symmetry that c(x1) 6= c(y2). If

c(z2) 6= c(x1), then swap the colors of x1 and y2 before swapping the colors of u and x1. If

c(z2) = c(x1), then c(z2) 6= c(x2); swap the colors on x2 and y2.

CASE 2: H = H2. As in Case 1, we may assume n(H2) ≥ 7; this implies that u or

v is incident to a 2-thread. Recall that n(H2) ≤ 10, with equality only if Lemma 16 is the

earliest lemma to fail, d(v) = 4, and t(v) = 6. Thus no color is used more than three times

(hence b = 3) except possibly in this one case, when one color may appear four times. Let

u, u1, v be the path in H2 from u to v. Note that v or a neighbor v′ 6= u1 of v is free. The

vertex u is free if and only if a1(u) = 3 (i.e. Lemma 17 is the earliest to fail); when u is not

free, let u′ be the neighbor of u in its incident 2-thread.

Subcase (a): u1 ∈ L. At least one of u, v ∈ L. If both are in L, since u or v is incident to

a 2-thread, we may switch the colors of u1 and the neighbor of u or v in the 2-thread. This

will eliminate L as a bad subtree, and will not create a new bad subtree unless the color

on u and v appears four times. In this case, since t(v) = 6, the vertex v has two incident

2-threads, and we may choose a vertex from the appropriate thread to avoid creating a new

bad subtree. If u ∈ L and v 6∈ L, then switch the colors of u1 and v (if v is free) or v′. If u 6∈ L
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but v ∈ L, then switch the colors of u1 and u (if free) or u′. In either case, the recoloring

reduces the size of L, and since no color appears more than four times, it does not produce a

new bad subtree. (Note that switching u1 and v′ may preserve a second bad subtree, but we

have still reduced the number of vertices contained in bad subtrees, providing the necessary

contradiction.)

Subcase (b): u1 6∈ L. Here, exactly one of u, v is in L. If u ∈ L, then b = 3; switch the

color of u1 with the center (u or u′) of L. This either eliminates the bad subtree of color

c(u), or (if n(H2) = 10) it may move the bad subtree to the vertices u, u1, v; in this case,

we proceed as in Subcase (a). If v ∈ L and b = 4, then v is free; switching the colors of v

and u1 eliminates the original bad subtree and at worst creates a new bad subtree of size 3,

which is an overall decrease in the number of vertices contained in bad subtrees. Otherwise,

b = 3. If the center of L is free, switch the color of u1 with the center of L. If the center is

not free, then v is the center and v′ ∈ L, and we switch the color of u1 with the color of v′.

In either case, this either eliminates the bad subtree of color c(v), or creates a bad subtree

of color c(v) containing u1, in which case we now recolor as in Subcase (a).

CASE 3: H = H3. Recall that n(H3) ∈ {10, 11}, hence no color appears on more than

four vertices of H3. Let u, u1, v, v1, w be the path from u to w and F = {u, u1, v, v1, w}. Note

that vertices in F are free, and L both contains a vertex in F and omits a vertex in F . Let

xy ∈ E(H3) such that x ∈ F ∩ L and y ∈ F − L. colored c′. Switch the colors of x and y.

It is easy to see that this reduces the size of L, and since no color appears more than four

times, it can only reduce the size of other bad subtrees, a contradiction.

2.3 Proof, Part II: Discharging

We uses the structure lemmas to limit what subgraphs are allowed in this minimum

counterexample. With the remaining or allowed subgraphs, we say that a graph with these

subgraphs could not make a graph. From Euler’s Formula, it is known that the maximum

average degree of a graph G, denoted mad(G), is less than 2 + 4
g−2

. With g(G)=10 thus

mad(G) < 5
2
. Given the fact that for each vertex v in G,

∑
v∈V d(v) ≤

∑
v∈V mad(G) we

see that
∑

v∈V d(v) <
∑

v∈V
5
2
. After subtracting from both sides the inequality becomes∑

v∈V d(v)−
∑

v∈V
5
2

< 0. We want to show that
∑

v∈V d(v)−
∑

v∈V
5
2
≥ 0. This is done by

the assignment of ”points” to each vertex in the minimum counterexample where the points

are what remains when we subtract 5
2

from the degree of each vertex. We then show that
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after the exchanging of these points that the total number of points for any of the subgraphs

will be greater than zero thus proving that there isn’t a minimum counterexample.

Discharging Rules

1. Let d(v) ≥ 5, then we give 1
2

charge to each 2-degree in a 1-thread and 1
4

charge to

each 2-degree in a 2-thread.

2. Let d(v) = 4 and if t(v) ≤ 3 then give 1
2

charge to each 2-degree in the neighborhood

of v; t(v) = 4 then give 3
8

charge to each 2-degree; t(v) = 6 then give 1
4

charge to each

2-degree.

3. Let d(v) = 3 and

(a) if t(v) = 1 then give 1
2

charge each 2-degree

(b) t(v) = 2 then give 1
4

charge to each 2-degree

(c) t(v) = 3 then first give 1
4

charge to each 2-degree in a 2-thread or give 1
6

charge

to all three 2-degrees but if vertex v is connected to a vertex u by a 1-thread

with d(u) = 3 with t(u) = 3 and a1(v) = a1(u) = 3 then give the 2-degree in the

1-thread connected with u, 1
4

charge and the other 2-degrees 1
8

charge each.

Check of Discharging Rules

We need to check the discharging rules to make sure that the final charges µ∗(v) of every

vertex v is ≥ 0. This means that
∑

µ∗(v) ≥ 0.

For any vertex v, let d(v) ≥ 5, then v gives at most 1
2

charge to each incident thread,

thus µ∗(v) = d(v)− 5
2
− d(v) ∗ 1

2
≥ 0.

Let d(v) = 4 with

1. t(v) ≤ 3 then v give 1
2

charge to each 2-degree vertex, then µ∗(v) = 3
2
− t(v) ∗ 1

2
≥ 0

2. t(v) = 4 then give 3
8

charge to each 2-degree vertex,then µ∗(v) = 3
2
− 4 ∗ 3

8
= 0

3. t(v) = 6 then give 1
4

charge to each 2-degree, thenµ∗(v) = 3
2
− 1

4
∗ 6 = 0.

Let d(v) = 3 with

1. t(v) = 1 then give 1
2

charge each 2-degree, µ∗(v) = 1
2
− 1

2
= 0

2. t(v) = 2 then give 1
4

charge to each 2-degree, then µ∗(v) = 1
2
− 2 ∗ 1

4
) = 0
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3. t(v) = 3

(a) First, give 1
4

charge to each 2-degree in a 2-thread, then µ∗(v) = 1/2−2∗(1/4) = 0

(b) Then give 1/6 charge to all three 2-degrees, then µ∗(v) = 1/2− 3 ∗ (1/6) = 0

(c) If vertex v is connected to a vertex u by a 1-thread with d(u) = 3 with t(u) = 3

and a1(v) = a1(u) = 3 then give the 2-degree in the 1-thread connected with

u, 1/4 charge and the other 2-degrees 1/8 charge each and thus µ∗(v) = 1/2 −
(1/4)− 2 ∗ (1/8) = 0.

Let d(v) = 2 then vertex v needs to receive charge from it’s neighbors u or w where u

and w are the closest two neighbors from both sides of v with degree higher than 2.

1. Let v be in a 2-thread then d(u), d(w) ≥ 3, thus v receives at least a 1
4

from u and w,

then µ∗(v) = −1
2

+ (1
4
) ∗ 2

2. Let v be in a 1-thread.

(a) If both d(u),d(w) ≥ 4 then v receives at least 1
4

charge from u and v, then

µ∗(v) = −1
2

+ (1
4
) ∗ 2 = 0.

(b) Let d(u) = 3.

i. If d(w) ≥ 4, v receives at least 1
4

charge from u and at least a 1
4

charge from

w.

ii. If t(u) = 3, then v receives

A. 0 charge

B. 1
8

charge

C. 1
6

charge

D. 1
4

charge

iii. If a2(u) = 1 then v receives 0 from u but we showed that these cases are

graphically reducible

iv. If a1(u) = 3 and d(w) = 4 with t(w) = 4

A. v receives 1
6

charge from u

B. v receives 3
8

from w

C. thus µ∗(v) = −1 + 1
6

+ 3
8

> 0.
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(c) If d(u) = d(w) = 3 with t(u) = t(w) = 3 and a1(u) = a1(w) = 3

i. If v is in the 1-thread between u and w, v receives 1
4

from u and w and

µ∗(v) = −1/2 + (1/4) ∗ 2 = 0

ii. If v is in the 1-thread not between u and w then v receives a 1
8

thread from

u or w and v will receive at least 3
8

charge from the other vertex on the other

side of v. If v does not receive 3
8

charge from this vertex then that entire

subgraph is reducible.

2.4 Theorem on Trees

One of the first uses of defective coloring, was to study the coloring of trees. With trees,

the minimum degree, δ, is one. While studying to see what trees could be colored with 3

colors, it was noticed that trees with degree higher than at least 8 could not be 3-ed-colored.

Thus while studying to see if every tree could be colored with 3 colors, it was noticed that

there was a correlation between the maximum degree of any tree and the possible coloring

of that tree. Given any tree, if the maximum degree is extremely high, it is difficult to color

the tree with a low number of colors like three. It is possible that we can still color it with a

certain number of colors such that we can color the tree with any higher number of colors.

Thus we are trying to find the chromatic threshold for trees using an ed-coloring

Theorem 20. For any tree T with maximum degree ∆, T is k-ed-colorable if k ≥ d∆+2
3
e.

Proof. Let T be a tree. T has a maximum degree ∆. Let there be an ed-coloring, C, of T .

C uses k number of colors. This coloring is a function where C:V (T ) → [k]. We want to

show that k ≥ d∆+2
3
e.

We take the longest path of T . We know that the end vertex of this path is of degree

one. The vertex that is adjacent to this end vertex, we label it v. Let the degree of v equal

the maximum degree of T . Thus d(v) = ∆. Let H be the neighborhood of v and the 1

degree neighbors of v. Thus v has one neighbor, u which is included in the initial path, that

is in T −H and has degree higher than one. This is true because of the fact that the path

chosen was the longest path in T and if v had another neighbor in T −H besides u then the

path chosen would not have been the longest path. It would have been possible to continue

the path along this other vertex. Each neighbor of v, except u which already has a label, is

labeled with a different number from 1 to ∆− 1.
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Let T−H have a k-ed-coloring. Let size of the color classes be increasingly equitable. This

means that the lowest numbered color will have the lowest number of vertices. Thus let Vi

where i = 1, 2, . . . , k be the color classes. We set it so that |V1| ≤ |V2| ≤ . . . ≤ |Vk| ≤ |V1|+1.

We want to say that we can ed-color H with k colors.

The only restriction to color H is the color of vertex u. Let c(u) 6= k. Thus we color

v and v1 with k. We then color the remaining vertices, v2, v3, . . . , v∆−1, so that each color

class receives 3 vertices other than k. Thus we color v2, v3, v4 with 1 and so on until we run

out of vertices. If you run out of vertices before you get to a vertex, then your k is too high

and should be lowered. To color this part we know that ∆ ≤ 3(k− 1) + 2. Thus k ≥ d∆+1
3
e.

Let c(u) = k. Thus we will color v and v1 with k − 1. We then color the remaining

vertices, v2, v3, . . . , v∆−1, so that each color class from 1 to k − 2 receives 3 vertices. k must

receive at most 2 vertices in order to maintain being equitable since k − 1 only receives 2

vertices. Thus we color v2, v3, v4 with 1 and so on until we run out of vertices. To color this

part we know that ∆ ≤ 3(k − 2) + 4. Thus k ≥ d∆+2
3
e.

The previous paragraph is only problematic when k = 2. Thus we have to color v with

1. Therefore we can color at most two vertices with 2. If k = 2 then ∆ ≤ 4. Since d∆+2
3
e is

a larger number than d∆+1
3
e, k ≥ d∆+2

3
e is chosen to suffice for all possible graphs. It even

suffices for when k = 2. This satisfies every possible situation. Thus our theorem is proven.
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Chapter 3

Future Work and Possible
Improvements

Maximum Average Degree

As mentioned earlier in Theorem 9, we had to use the constraint, girth at least 10. When

we look at our proof, we use the maximum average degree more so than the girth of planar

graphs. The maximum average degree was used in the discharging method of our proof. We

want to improve this theorem using the mad(G) < 2.5 constraint instead of using the girth

constraint.

Finding a proof that allows us to prove our theorem but also proves that subgraphs with

with small girth are also satisfied is difficult to find. There are many cases and subcases.

Trying to generalize a pattern for every case would take longer than our entire thesis thus

far. A more generalized proof has not been formulated.

Even further, there are certain subgraphs that would make that theorem not true for

every case. For example, look at the following graph.

The mad(G) constraint could be lower than 8
3

at most because of the above picture.

Note that the girth constraint could be improved to be at least 5. This is shown by the

complete bipartite graph K2,n.

Less Strain

This idea of less strain spans from allowing more flexibility in our coloring rules. It is possible
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that the number of colors used to color a graph could become less depending on how many

vertices of the same color a vertex can be adjacent to. This would be very helpful when

studying trees since the biggest problems with coloring trees are long chains of 2-degree

vertices and vertices with a very high degree and surrounded with 1-degree vertices.
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