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Abstract

An Open Locating Dominating set is a subset of vertices of a graph

such that (i) every vertex in the graph has at least one neighbor

in the Open Locating Dominating set and (ii) no two vertices in

the graph have the same set of neighbors in the Open Locating

Dominating set. Such a set can provide insight into the structure

of the graph as well as give network control or increase network

robustness. We give an Integer Linear Program which finds Open

Locating Dominating sets on finite graphs. Finally, we prove that

the Open Locating Dominating density of the Infinite Triangular

Grid is 4/13.
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Chapter 1

Introduction

1.1 Motivation

We often use graphs as a theoretical tool to represent actual networks. These could

be physical networks such as routers or factories, or they could be more conceptual, like

friendship networks or publication networks. On any of these networks, it may be useful

to have some concept of security and the ability to detect failures at the nodes of the

network. These failures will be defined in different ways for each kind of network but

regardless of the precise network application, the ability to detect failures is crucial for

the network to be able to function effectively. Open Locating Dominating sets provide

us with this ability. If we represent any of these networks as a graph and find an Open

Locating Dominating set on that graph, we will have the ability to detect a failure at any

of the nodes. If we endow the nodes that belong in the Open Locating Dominating set

with the ability to detect failures at any of it’s neighbors, whether it be with physical

software or some more cerebral method, we will be able to detect failures on the entire

network. Whether or not the specific node that has failed can be identified relies on the

specific type of network and the kind of detection mechanism used on each node. We will

explain this in detail for the example network types given above.
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First, consider a network of routers, passing information amongst themselves. If one of

these routers ceases to function properly, the network will at best pass information more

slowly and at worst stop passing information completely. As such, the ability to detect

failures at any of the routers is critical. Suppose we can install software that allows each

router to detect a failure at each of its neighbors and, furthermore, return the specifics

of which neighbor(s) failed. If we represent this network of routers as a graph where

the vertices represent the routers and there is an edge between two routers if they are

connected, then finding an Open Locating Dominating set on this graph would specify

the routers on which the software should be installed. Not only would any failure of any

router be detected, but furthermore, a failed router could be pinpointed and fixed in a

timely manner.

Next, consider a group of factories, or any group of related buildings, which require

security, perhaps all owned by the same company. Suppose that these factories have

the ability to communicate with one another and furthermore, it’s possible to install

security systems which have the ability to detect break-ins at the factories with which they

communicate. Then, if we model this network of factories as a graph where the vertices are

the factories and there is an edge between two factories if they are able to communicate

with one another, then finding an Open Locating Dominating set on this graph, will

provide us with exactly the buildings in which we should install the security system.

Since such security is cost prohibitive, finding the smallest Open Locating Dominating

set would minimize the cost while still providing security for every factory.

Finally, consider the more conceptual example of a friendship network. To build the

graph representation of a friendship network, let each vertex represent a person and let

there be an edge between two people if they are friends. While these networks may

have begun purely as a thought exercise to help conceptualize graphs, they have become

a reality, and a programming problem to tackle with the advent of social media like

Facebook. What might security or robustness look like on such a network? Let us
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consider the example of a false or malicious rumor spreading through a school. Let us

consider the belief of that rumor as a failure, and assume that a person can detect this

failure in any of their friends. Then by finding an Open Locating Dominating set on the

friendship network made up of all the students at this school, we identify the students

who believe the rumor and the fallacy of the rumor can be explained to them.

Clearly, Open Locating Dominating sets can be used to increase network robustness

or security. Furthermore, it may be of use to find the smallest possible Open Locating

Dominating set to minimize effort or cost. As such, most of this research is centered around

finding the smallest possible Open Locating Dominating set on a variety of graphical

structures.

We also seek to find the size of the smallest Open Locating Dominating sets, both on

finite graphs with a specific structure, as well as on a particular class of infinite graphs.

There is a significant difference between the structure of Open Locating Dominating sets

on finite graphs and those on infinite graphs. These differences largely stem from the

boundaries of the finite graphs and how they are dealt with in constructing the Open

Locating Dominating set.

1.2 Introduction

1.2.1 Graphs

Formally, a graph is a pair of sets. The set, V , is a set of unique items called vertices

and a set, E, containing pairs of vertices called edges. Often we represent a graph picto-

rially rather than with these two sets. The vertex for the graph below is V = {1, 2, 3, 4}

and the edge set is E = {{1, 2}, {2, 3}, {2, 4}, {3, 4}}.

Note that neither the two vertices that make up a pair, nor the pair itself, need to be

unique. That is, we can allow be more than one edge between the same two vertices as

well as an edge from a single vertex to itself. When we allow these things, we have what
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Figure 1.1: Graph

is called a multi-graph. When we restrict the edge set to unique and distinct pairs, we

have a simple graph. We restrict our study in this paper to simple graphs.

Figure 1.2: A Simple Graph And A Multigraph

Any vertex that shares an edge with a vertex, v, is called a neighbor of v. The degree of

a vertex is the number of neighbors that v has. In the multigraph above, for example, the

degree of vertex 2 is 5. If every vertex in a graph has the same degree, that graph is called

regular. The open neighborhood of a vertex v is denoted N(v) and is a set containing all of

the neighbors of v. The closed neighborhood of v is denoted N [v] and is a set containing

all of the neighbors of v as well as v itself.

A path between two vertices, v and w, is a list of distinct vertices, xi, (v, x1, x2, ..., xm, w)

such that each xi and xi+1 share an edge. The length of such a path is m+ 1, the number
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of edges traversed. We define the distance between two vertices v and w, d(v, w), as the

length of the shortest path between v and w. Note that the distance between v and itself

is 0.

Note, also, that neither the vertex nor the edge set must be finite. Consider the

infinite triangular grid, with which we work extensively. The infinite triangular grid has

an infinite vertex set and each vertex has a degree of 6, so it is regular. As you can see

below, each face of the grid is a triangle, hence the name. Since each vertex has a non-zero

degree, the edge set is clearly also infinite.

Figure 1.3: The Infinite Triangular Grid

1.2.2 Open Locating Dominating Sets

This paper is focused on finding Open Locating Dominating Sets on both infinite and

finite graphs. An Open Locating Dominating Set, hereafter referred to as OLD sets or

OLDs, is defined as a subset, S, of vertices that satisfy the following conditions:

• For every vertex, v, S ∩N(v) 6= ∅.

• For any vertices v and w such that v 6= w, (N(v) ∩ S) 6= (N(w) ∩ S).
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So for every vertex, v, in the graph, v has some vertex adjacent to it in the OLD and

no two vertices have the same adjacent vertices in the OLD. The idea behind OLD sets is

that every vertex has some vertex watching it and there are no two vertices being watched

by exactly the same vertices. We can easily see how this structure would be useful for the

security problems presented in section 1.1.

As we saw in the example of factory security, it can be desirable to design an OLD

with the smallest number of vertices. For any graph, G, the Open Locating Dominating

Number, denoted OLD(G), is the size of the smallest possible OLD on that graph. Below

we have have an example of a graph with an OLD Number of 3. The red are an OLD set.

Figure 1.4: The Smallest OLD Set

Extending this measure of the Open Locating Dominating Number, we define the

Open Locating Dominating Density, denoted OLD%(G), as

OLD%(G) = min
v∈V (G)

{ lim
k→∞

|Nk[v] ∩ S|
|Nk{v}|

|S is an OLD for G}

Where Nk[v] = {w ∈ V (G) : d(v, w) ≤ k}. That is Nk[v] is the set of all vertices in G

that are within k distance of v. We can think of this as the percent of vertices of a graph

which are included in the OLD set.

1.2.3 The Discharging Method

A method which is often used in graph theory proofs, the discharging method, lends

itself well to Open Locating Dominating Sets. The discharging method works as follows:
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first, we assign an initial charge to each vertex in the graph, then the vertices give or

receive charge amongst themselves according to predetermined rules, and after this, the

vertices have a final amount of charge. We use this final charge distribution to gain insight

into some aspect of the graph, in our case, the size of the OLD set for that graph. Below

is a small example, displaying the discharging process. We initially assign all of the red

nodes a charge of 1 and the black nodes a charge of 0. The discharging rule is: all red

nodes give 1/6 of their charge to any adjacent black nodes. After the discharging, every

node has a charge of 1/6.

Figure 1.5: Discharging

The idea behind discharging is that, if we pick our initial charges well, the final charges

should give us an idea of the number of some specific type of vertex on the graph. It is

especially useful, when the structure you are measuring involves some concept of taking
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care of all of the vertices, as is the case for OLDs. So for our uses, we assign initial charges

of one to any vertex in the OLD set and 0 to any vertex not in the OLD set. After we

allow the vertices to discharge, according to rules that coincide with the structure of

OLDs, then the final charge should tell us the OLD percentage, or at least a lower bound

for the OLD percentage. We describe this method in greater detail in section 3.1.
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Chapter 2

Integer Linear Program

We formulated an Integer Linear program to find the smallest possible OLD on a

given finite graph. First, we represent the graph, G, using its adjacency matrix, A(G).

Let n = |V (G)|. Then A(G) is an n × n matrix with elements ai,j such that ai,j = 1 if

there is an edge between vertices i and j and ai,j = 0 if there is not an edge between

vertices i and j.

Figure 2.1: A Simple Graph
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So for our example simple graph from above, the adjacency matrix would be:
0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0


Let x = [x1 . . . xn] be a vector of size n which indicates which vertices of G are in the

OLD; x[i] = 1 if vertex i is in the OLD and 0 otherwise. So to find the OLD on G which

contains the fewest number of vertices, we need to minimize the number of 1’s in v, so we

want to minimize the sum of the elements of x,
∑n

i=1 x[i].

We require constraints that ensure that the vertices we select to put in the OLD satisfy

the conditions of an OLD. First, we must ensure that every vertex of G has a neighbor in

the OLD. Let Ai denote the ith column of the adjacency matrix and that each of these

columns describes N(i) for every vertex, i. If we multiply the adjacency matrix A by the

OLD vector, x, we obtain an n× 1 matrix, that is, a vector of size n. Since each 1 in the

jth row of A represents a neighbor of vertex j, when one of these 1’s is multiplied by a

1 in x, it means that that neighbor is in the OLD. When we sum up all of these 1 × 1

multiplications, we have the number of neighbors of j in the OLD.

Now, we must ensure that no two vertices have the same neighbors in the OLD. We do

this using Hadamard multiplication, or element-wise multiplication of matrices, denoted

by ◦. Since Ai and x are both n× 1, we may take the Hadamard product of Ai and x to

obtain another n× 1 binary vector. This vector, Ai ◦ x describes exactly which of vertex

i’s neighbors are in the OLD. If (Ai ◦ x)[j] = 1, then that means both Ai[j] and x[j] are

1, thereby indicating that vertex j is both in the OLD and a neighbor of vertex i. So if

we compute Ai ◦ x for each vertex in G, and compare (Ai ◦ x) and (Aj ◦ x) for every pair

of vertices i and j, we require that these two vectors not be equal to ensure that no two

vertices i and j share the same neighbors in the OLD. This is equivalent to requiring that

the difference between the two vectors is not the 0-vector, that is, that none of the 1’s in

10



Ai ◦ x or Aj ◦ x match up. Therefore, we need (Ai ◦ x)− (Aj ◦ x) 6= ~0.

As a result, we have the following integer linear program

min
∑n

k=1 xk

subject to

Ax ≥ ~1

(Ai ◦ x)− (Aj ◦ x) 6= 0 ∀ i, j

x ∈ {0, 1}n

Below is the AMPL code for this integer linear program, which will provide a solution

as long as the adjacency matrix of the graph is not prohibitively large.

11
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Chapter 3

OLD Number and Density Results

3.1 The OLD Density of the Infinite Triangular Grid

We now turn to the task of finding the OLD density of the Infinite Triangular grid,

denoted Tr. Since this is a graph that consists of an infinite number of vertices, the

number of vertices in the OLD set is necessarily also infinite, otherwise, we would not

satisfy the first condition to form an OLD set: that every vertex have a neighbor in the

OLD set. So we want to find the proportion of vertices of Tr which are included in the

OLD which uses the smallest proportion of vertices possible.

3.1.1 Previous Results

Previously, it has only been possible to give bounds on the OLD density of Tr. First,

[2] gives a lower bound for any graph which is regular: if G is countable infinite and

regular of degree r, then OLD%(G) ≥ 2
1+r

. As we stated above, Tr is regular of degree

6, so from this given lower bound we have OLD%(Tr) ≥ 2
7
.

Seo and Slater give a construction with a density of 1
3

in [2].

The outlined pattern repeats over the whole grid. Since for every 3 vertices in the

outlined triangle pattern, 1 is included in the OLD, we have a density of 1
3
. Therefore,

13



Figure 3.1: An OLD Set With Density 1/3

we are able to say that

1

3
≥ OLD%(G) ≥ 2

7

A tighter upper bound is given in [1] by Honkala.

Figure 3.2: A Better Bound On The OLD Density

In the outlined hexagon, there are 19 vertices and 6 of them are included in the OLD

set. So now we have an upper bound of 6
19
< 1

3
.

3.1.2 Upper Bound

We present a construction which gives an upper bound on the OLD density of the

infinite triangular grid.

14



Lemma. For the infinite triangular grid, Tr, we have OLD%(Tr) ≤ 4
13

.

Proof. Consider the following construction:

Figure 3.3: An OLD Set with Density 4/13

In the outlined area, there are 13 vertices and 4 of them, the red ones, are included

in the OLD set. We need to make sure that this structure is, indeed, an OLD set. First,

consider the vertices included in the potential OLD. Every vertex has at least one neighbor

in the OLD; the two red vertices on the end of the red path have one neighbor each and

they are not the same neighbor and the two other red vertices have two neighbors each

in the OLD and again these are not the same two therefore both conditions for an OLD

set are satisfied for the vertices in the potential OLD.

Consider the following graphic where vertices which are not included in our potential

OLD set are color-coded by the number of neighbors they have in the OLD. For any

vertex, v, let us denote this number as degO(v). Every green node, g, has degO(g) = 2

and the two neighbors are in different 4-clusters in the potential OLD. Every orange

node, o, has degO(o) = 2 and the two neighbors form a 2-cluster. Every purple node, p,

has degO(p) = 3 and all three neighbors are a cluster. Finally, every pink node, f , has

degO(f) = 1. Since all the nodes of Tr fall into one of these categories, we can conclude

that every vertex in Tr has a neighbor in the OLD since for each v not in the potential

OLD, degO(v) > 0. Since every color category has a different number of neighbors in the

15



OLD except for the orange and green nodes which both have two, we need only look at

these two sets of vertices to ensure that no vertices have the same set of neighbors in the

OLD. However, since the two neighbors of the green vertices are in different red 4-clusters,

they cannot be the same as the 2-cluster-neighbors of the orange vertices. Therefore, no

two vertices which are not included in the potential OLD have the same neighbors in the

potential OLD.

Figure 3.4: An OLD Set with Density 4/13 with Vertices Color-Coded

Finally, we must make sure that for v in the potential OLD and u not in the potential

OLD, that v and u do not share the same neighbors in the potential OLD. We must only

check vertices which have the same number of neighbors in the potential OLD. First, we

consider the two outer red vertices and the pink vertices. Since for each pink node, the

one neighbor which is included in the potential OLD is an outer red node, they cannot

share the same neighbors in the potential OLD, since a vertex cannot be its own neighbor

in a simple graph. Now, consider the two inner red vertices, and the green or orange

vertices. Since the inner red vertices must necessarily have neighbors in the 4-cluster and

the green vertices’ neighbors are in two different 4-clusters, these two groups cannot share

the same neighbors in the potential OLD. Each orange vertex is adjacent to one inner

red vertex. Again, because a vertex cannot be its own neighbor, the inner red vertex

to which the orange vertex is adjacent cannot share the same neighbors in the potential

OLD as the orange vertex. The other inner red vertex, to which the orange vertex is

not adjacent, has, as one of it’s neighbors, an outer red vertex, which is not adjacent to

16



the orange vertex. Therefore, these too do not share the same neighbors in the potential

OLD. Therefore we can conclude that no two vertices of Tr share the same neighbors in

the potential OLD. Hence, the conditions of an OLD set are met and our potential OLD

is officially an actual OLD.

Since we have a construction which is an OLD set which gives an OLD density of 4
13

,

we know that we do not need a density higher than this and 4
13

is therefore an upper

bound on the OLD density of the infinite triangular grid.

3.1.3 Lower Bound and Equality

We now show that not only is the OLD density of the infinite triangular grid bounded

from above by 4
13

, but it is also bounded from below by 4
13

and it is therefore exactly 4
13

.

Theorem. For the infinite triangular grid, Tr, OLD%(Tr) = 4
13

.

Proof. We proceed by showing that 4
13

is a lower bound as well as an upper bound.

Suppose that we have an OLD set on Tr; let us call it S. Further, suppose that this OLD

set achieves a density on Tr which is equal to Tr’s OLD density. We need to show that

this OLD has a density of at least 4
13

in Tr.

Note that nowhere in this OLD is there an isolated vertex, that is, there is no vertex

included in the OLD for which all six of its neighbors are not in the OLD. This is because

that vertex would have no neighbor in the OLD and therefore the first condition for an

OLD would be broken.

A cluster is defined as any subset of vertices such that any two vertices in the cluster

are connected by a path. This is the same as a connected component An n − cluster

is a cluster consisting of exactly n vertices. We sometimes wish to count the number of

neighbors a vertex has which are in a cluster, C. We denote this degC(v).

Therefore, every vertex included in the OLD must be part of a n-cluster with n ≥ 2.

So now we show that for every possible cluster size, OLD%(Tr) = 4
13

. We do this using

the discharging method. We assign an initial charge of 1 to any vertices in S and 0 to

17



any vertices not in S. Our goal is to show every vertex has a charge of at least 4
13

. Our

discharging rules are as follows, where α = 4
13

:

1. Every vertex gets α
k

charge from each of the k clusters to which it is adjacent.

2. A vertex which gains a charge of β from a cluster and is adjacent to l vertices in

that cluster gains β
l

from each of those l vertices.

Now we show that every vertex will have a charge of at least 4
13

. We break this down

into two cases: clusters of size less than five, and clusters of size greater than or equal to

five.

Case 1: Let C be an n-cluster with n < 5. We consider three possible cluster sizes:

n = 2, n = 3, and n = 4. This will result in all the vertices not in the cluster having

a final charge of kα
k

= α. If we count up the charge on the vertices in the cluster after

the discharging, we determine what values of α ensure that there is a non-zero amount of

charge left on these vertices in the cluster. If we let α = 4
13

and there is a non-negative

charge left on the vertices in the cluster, then we have a density of no less than 4
13

.

Note that all we know about the structure of S is that the n vertices in the cluster

are in S and any neighbors of these vertices which aren’t in the cluster are necessarily not

in S, or else the cluster would be bigger than n. Our assumptions don’t tell us anything

about vertices which are farther than a distance of 1 away from any vertices in the cluster.

However, we can use the conditions for an OLD to reason about these vertices for the

specific cluster structures.

Case 1a: Let n = 2, so we have two adjacent vertices in S which are not adjacent to any

other vertices in S.

Consider the two sets of green vertices. For each of these sets of three green vertices,

there is a red vertex which is not adjacent to them. This red vertex and the three green

vertices share a single vertex in the cluster, namely the other red vertex in the cluster.

Since all four of these vertices share the same set of vertices in the OLD, it must be
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Figure 3.5: Case 1a

the case that three of these four must be adjacent to other clusters in the OLD. Since it

would violate the definition of a cluster for it to be the red vertex, it must be the three

green vertices that are adjacent to some other cluster. So we know that each of the green

vertices are adjacent to at least two clusters. Next consider the two light blue vertices,

which are both adjacent to the whole 2-cluster. Again, these two vertices share the same

neighbors in the OLD, so it must be the case that one of them is adjacent to at least

one other cluster. So of the 8 vertices that surround the 2-Cluster, 7 of them must be

adjacent to at least one other cluster. So these 7 are adjacent to 2 clusters and they gain

α
2

from the 2-Cluster. The last of the 8 vertices may only be adjacent to this 2-Cluster, so

it gains α from the 2-Cluster. Since each vertex in the cluster, is by definition, adjacent

to only one cluster, each of those vertices gain α from the 2-Cluster. So let us count the

total charge on the 2-Cluster after the discharging occurs.

2− 2(α)− 7(
α

2
)− α = 2− 13

2
α

Let α = 4
13

. Then this becomes

2− 13

2

4

13
= 2− 2 = 0

Since this is non-negative, we can conclude that for all 2-Clusters, we have a density

of at least 4
13

.

Case 1b: Let n = 3. The only way for this to occur is if we have three adjacent
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vertices in a triangle. We cannot have three in a path because then the two outer vertices

would share the same neighborhood in the OLD, specifically the middle vertex.

Figure 3.6: Case 1b

Consider one of the vertices in the triangle. It has two neighbors in the OLD, specif-

ically the other two vertices in the cluster. Note that there is another vertex, one of the

purple vertices, which has this same set of neighbors in the OLD, the vertex across from

our original vertex in the triangle. Since these two share the same neighbors in the cluster,

it must be that one of these two vertices must be adjacent to another cluster. Since it

can’t be the one in the cluster, it must be the purple vertex. Furthermore, there are two

vertices, the blue vertices, adjacent to our original vertex which only have it as a neighbor

in the cluster. Since these two vertices have the same neighbor in the OLD, it must be

true that at least one of them is adjacent to another cluster. Since this is true for all

three of the vertices in the cluster, we have a final count of 6 vertices that are adjacent to

2 total cluster and 3 vertices which are only adjacent to this cluster. So if we count the

total charge still on the 3-Cluster after discharging, we have

3− 3α− 3α− 6
α

2
= 3− 9α

Let α = 4
13

3− 9
4

13
=

3

13
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Since we have a non-negative amount of charge left on the cluster after the discharging,

we know that in the case of 3-clusters, we have a density of at least 4
13

.

Case 1c: Let n = 4. Unlike the previous cases there are several possible structures

for 4-Clusters. The following two structures do not satisfy the definition of an OLD, so

we do not need to ensure that they will have enough charge after discharging:

Figure 3.7: 4-Cluster Structures Which Are Not Permitted

In both cases, these 4-Clusters could not be in an OLD because the outer vertices

share the inner vertex(ices) as their only neighbors in the OLD. So we need only consider

the following cases of 4-Cluster:

Case 1c(i): Consider the following 4-cluster structure:

Figure 3.8: Case 1c(i)

Consider either of the end vertices in the cluster. All of the adjacent green vertices

have only that vertex as their neighbor in the OLD, so at least two of them must be

adjacent to another cluster. We cannot determine anything about either the yellow or

purple vertices, so we must assume they are adjacent only to this cluster. However, each

of the blue nodes are adjacent only to one of the inner red vertices in the cluster. The two
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outer red vertices are also only adjacent to these same inner vertices, so we must conclude

that these blue vertices must each be adjacent to at least one other cluster. So now we

know that there are 6 vertices which we must assume are only adjacent to this cluster,

and 6 vertices which are adjacent to 2 total clusters. Our count for the amount of charge

on this cluster after discharging is

4− 4α− 6α− 6
α

2
= 4− 13α

If we let α = 4
13

,

4− 13
4

13
= 0

Since we have a non-negative charge left on the cluster after discharging, we conclude

that this 4-Cluster structure has a density of at least 4
13

.

Case 1c(ii): Consider the following 4-cluster structure:

Figure 3.9: Case 1c(ii)

The three green vertices all share the outer red vertex in the cluster as their only

neighbor in the OLD, so at least two of them must be adjacent to another cluster. We

cannot say anything about the purple, orange, or dark blue vertices, so we must assume

that they are only adjacent to this cluster. The yellow vertex and the red vertex which

isn’t in line with the rest of the cluster both share the same two vertices in the cluster,

so the yellow vertex must be adjacent to at least one other cluster. The two sets of light

blue vertices each share one of the red vertices of the cluster as their only neighbor in the
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OLD so one vertex in each set of light blue must be adjacent to at least one other cluster.

From this, let us count the charge on the cluster after discharging:

4− 4α− 6α− 5
α

2
= 4− 25α

2

Let α = 4
13

.

4− 25α

2
=

2

13

Again, this non-negative charge left on the cluster tells us that for this cluster structure

we have a density of at least 4
13

.

Case 1c(iii): Consider the following 4-cluster structure.

Figure 3.10: Case 1c(iii)

For each red vertex at the end of the cluster, there are three green vertices which

have that red vertex as their only neighbor in the OLD, so at least two of the three

green vertices for each of these red end-vertices must be adjacent to another cluster.

Furthermore, each of these end vertices have only their adjacent red inner-vertex as their

only neighbor in the OLD, and this is also true of each light blue vertex, so we know

that each light blue vertex is also adjacent to another cluster. We cannot say anything

about either the purple vertex or the orange vertices, so we must assume that they are

only adjacent to this cluster. From this, we count the amount of charge left on the cluster

after discharging:

4− 4α− 6α− 6
α

2
= 4− 13α
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Letting α = 4
13

,

4− 13α = 4− 13
4

13
= 0

Since this is non-negative, we conclude that for this cluster structure we have a density

of at least 4
13

.

Case 1c(iv): Consider the the following 4-cluster structure.

Figure 3.11: Case 1c(iv)

For each red vertex on the end of the path, there are three green vertices which only

have that red vertex as their only neighbor in the OLD, so at least two of three of the

green vertices on each side must be adjacent to some other cluster. Then each pair of

the purple, blue, and orange vertices share the same two red vertices in the path as their

only neighbors in the OLD, so in each pair there must be one vertex which is adjacent to

another cluster. So we have on the cluster after discharging,

4− 4α− 5α− 7
α

2
= 4− 25α

2

Letting α = 4
13

,

4− 25α

2
=

2

13

Since this is non-negative, we know that this cluster structure has a density of at least

4
13

. So we know that for every 4-Cluster structure possible in an OLD, we have a density

of at least 4
13

. We have shown that for any n < 5, any n-cluster in an OLD will have a
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density of at least 4
13

on the infinite triangular grid. Next, we show that this is true for

n ≥ 5.

Case 2: Consider a k-cluster, C, with k ≥ 5. This cluster starts out with a total

charge of k since our initial charge set up assigns a charge of 1 to each vertex included

in the OLD. Then after discharging, this cluster must retain kα for itself. So the amount

of charge left on the cluster to take care of adjacent vertices is k − kα = k(1 − α). For

each of the k vertices there is k(1−α)
k

= 1− α available to cover any adjacent vertices not

in the cluster. If we let α = 4
13

then this is 1− 4
13

= 9
13

. So each vertex in the cluster has

9
13

charge to give out.

Note that in the previous case, when a vertex outside of the OLD was forced to have

some other neighbor in the OLD we could assume that this vertex was in a different cluster

because we specified the size of the cluster. But with general clusters of size k ≥ 5, we

cannot assume this. In fact we must assume the worst case, which is that these forced

neighbors are in fact in the same cluster as the original neighbor.

Case 2a(i): Suppose that degc(v) > 1 and it is not adjacent to any vertices, u, such

that degC(u) = 1, where u, v ∈ C. In the figure below, one such v is circled in purple.

Figure 3.12: Case 2a(i)

For each such vertex, v, there are four neighbors, shown in purple, which are not in

the cluster that this vertex must cover with its charge. There are two pairs of vertices

which share the same neighborhood in the OLD. Therefore, one purple vertex in each pair

must be adjacent to some other vertex of the OLD; let us assume it is also in this cluster.
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Then each of these two purple vertices are adjacent to three vertices in this cluster and

therefore v must contribute α
3

to each of these two vertices. For the other two purple

vertices, they may only be adjacent to two vertices in the cluster and v must therefore

contribute α
2

to each of these two. For all four neighbors, the total charge that must be

given out is at most 2α
3

+ 2α
2

= 5α
3

. If we let α = 4
13

, then this is 20
39

. Since this is less than

9
13

, we know that we don’t need to worry about this kind of vertex in the cluster.

Case 2a(ii): Consider another such v, circled in purple below:

Figure 3.13: Case 2a(ii)

The red vertices are included in the OLD set and the blue ones are not. The vertex,

v, must therefore provide enough charge for all four blue vertices. The two dark blue

vertices are adjacent to the two shown red vertices and some other vertex in the OLD.

Let us assume that this other vertex is part of this cluster. Therefore, each of these dark

blue vertices require α
3

from v. The light blue vertices both share the neighborhood of v

and one of them must, therefore, be adjacent to some other vertex in the OLD, and let

us again assume it is part of this cluster. From this we obtain a total charge given out by

v of

2
α

3
+
α

2
+ α =

13α

6

If we let α = 4
13

then we have a total charge given out of 2
3
< 9

13
. So this kind of vertex

is also not a problem.

Case 2c: Now suppose that the vertex, v, is adjacent to exactly one vertex, u, such

that degC(u) = 1. In the figure below such a v is circled in purple and u is circled in
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green.

Figure 3.14: Case 2b

Let us count the charge that these two vertices must give out. The purple circle vertex,

v, must cover half of the charge given to the two dark blue vertices because they are shared

by the next red vertex. These two blue vertices share the same two red vertices in the

OLD so at least one must be adjacent to another vertex in the OLD. Together v and u

must cover the two purple vertices, which also share the same two vertices in the OLD,

so at least one must be adjacent to some other vertex in the OLD. Finally, the 3 green

vertices all share the end red vertex as a neighbor in the OLD, so at least two of them

must be adjacent to another vertex in the OLD. In order to take care of the worst case,

let us assume any other forced neighbor in the OLD are in the same cluster. So together

these two vertices must give out

(
α

2
+
α

2
+
α

3
+
α

3
)

(
α

2
+
α

2
+ α +

α

2
+
α

3
)

= 4α +
α

2
=

9α

2

If we let α = 4
13

, then this becomes 18
13

. Since this is not greater than 2 9
13

= 18
13

, we

know that for this type of vertex we have a density of at least 4
13

.

Note that we do not consider the case of a vertex, v, in the cluster with degc(v) > 1

and two neighbors u and w such that degc(u) = degc(w) = 1. This is because this case

cannot happen for the following reasons.
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Figure 3.15: A Cluster Structure That Is Not Permitted

First, such a vertex v would have to be at the end of a path of vertices in the cluster or

it would not be possible for v to have neighbors with degc(u) = 1 because they would be

forced to be adjacent to other vertices in the cluster. So let v be the circled red vertex in

the picture. The two neighbors cannot include either of the two purple vertices because

they are adjacent to other vertices in the cluster, making their degree with respect to the

cluster greater than 1. This implies that the two neighbors must be some combination of

the green vertices and the orange vertex. It cannot be a green vertex or an orange vertex

because then degc(orange) = degc(green) = 2. So we are left only with the option of the

two green vertices. However, if this is the case, then these two green vertices only have

the vertex v as a neighbor in the OLD and, therefore, one of them must be adjacent to

some other vertex in a the OLD. Note however, that these green vertices are in the cluster

so if one of them is adjacent to another vertex in the OLD, then that extends the cluster

and thereby makes the degree of this green vertex with respect to the cluster greater than

1. Therefore we cannot have this construction.

Since we have a density of at least 4
13

for every cluster size, we know that the density

of an OLD on the infinite triangular grid must be at least 4
13

.

Since we know that it must be at least 4
13

and we showed with our example that it

need not be greater than 4
13

, we know that the density of the smallest possible OLD on

the infinite triangular grid is exactly 4
13

.
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3.2 Conclusion

Open Locating Dominating sets can be a useful tool in real life network models. We

provided an Integer Linear Program to find OLDs on finite graphs. We also showed that

the density of the smallest possible OLD on the infinite triangular grid is 4
13

by first giving

a construction which showed that 4
13

is an upper bound. Then we used the discharging

methods and broke down a potential OLD into different cluster sizes to show that 4
13

is a

lower bound.
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