
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

5-2006

A Prototype for In Situ Packet Filtering A Prototype for In Situ Packet Filtering

William Watson Cline
College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

Recommended Citation Recommended Citation
Cline, William Watson, "A Prototype for In Situ Packet Filtering" (2006). Undergraduate Honors Theses.
Paper 591.
https://scholarworks.wm.edu/honorstheses/591

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235417195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/591?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

A Prototype for In Situ Packet Filtering

William Cline

April 2006

Abstract

Traditional packet-filtering firewalls control network traffic based on pre-defined rules. These

rules operate on packet envelope information, such as the ip or Ethernet headers. Some

new firewall applications use “deep filtering,” operating on packet payloads. This requires

quick access to the full contents of network packets, as well as the ability to modify those

contents while the packet is in transit. The Linux kernel includes tools or performing both

“shallow” header-based filtering and deep filtering. However, the current deep filtering

implementation is too slow for some applications.

We present a modified implementation of the Netfilter Project’s ip queue module with

the goal of higher performance. Our prototype yields a modest but substantial speed

improvement. We discuss this prototype and present suggestions for further improvements.

CONTENTS i

Contents

1 Introduction 1

1.1 Packet filtering firewalls in Linux: netfilter 1

1.2 Deep packet filtering in Linux: the ip queue kernel module 2

1.2.1 Important data structures . 4

1.2.2 Operation . 5

2 Description of modified implementation 7

3 Discussion and evaluation 10

3.1 Compatibility . 10

3.2 Performance . 10

3.2.1 Reading packets . 11

3.2.2 Writing packets . 14

4 Conclusions 15

A Selected code from original implementation 18

A.0.3 net/ipv4/netfilter/ip queue.c 18

A.0.4 Queue processing daemon . 23

B Selected code for new implementation 26

B.0.5 net/ipv4/netfilter/ip queue.c 26

B.0.6 Queue processing daemon . 32

LIST OF FIGURES ii

List of Figures

1 Overview of ip queue module operation . 4

2 Kernel data structures . 5

3 Operation of ip queue in base implementation 6

4 Operation of ip queue in new implementation 9

5 Read performance for varying datagram sizes 12

LIST OF TABLES iii

List of Tables

1 Read performance for varying datagram sizes (95% confidence intervals) . . 13

2 Read performance for varying data positions (1KB datagram, 95% confidence

intervals) . 13

3 Packet round trip performance comparison (1 kilobyte datagram) 14

1 INTRODUCTION 1

1 Introduction

As computer networks have become more pervasive and their applications more varied, the

need to secure them has grown commensurately. When a computer connects to a network

(becomes a “network host”), its owner may wish to control how it communicates with other

hosts. Firewalls are commonly-used tools for controlling access to a network host or group

of network hosts.

A firewall is a software package running on a network host that filters incoming and

outgoing communication. On an Internet Protocol (ip) network, messages are split into

discrete, individually-delivered units called packets. Packets in transit may be processed

by a firewall on the network host from which they originate, the host to which they are

addressed, or by any host in between. When a packet reaches a firewall at any point along

its journey, it may be allowed to pass or blocked (“dropped”).

In a traditional rule-based packet filtering firewall, each packet is individually examined.

The system administrator programs a set of rules, and the firewall consults these rules

whenever a packet arrives on one of its network interfaces. Firewall rules are based on a

packet’s “envelope” information—the packet’s source and destination addresses, its source

or destination ports, its size, et cetera. Each rule defines a set of characteristics and an

action to be taken on packets with matching envelope information.

For example, one rule might be to, “Block all incoming traffic destined for the http

server port,” Another might, “Block all SMTP traffic coming from the network host at ip

address 192.168.0.1.”

1.1 Packet filtering firewalls in Linux: netfilter

The GNU/Linux family of operating systems includes a packet filtering framework known

as netfilter. Netfilter comprises a packet-filtering firewall along with a number of

extensions and utilities [8]. One of the most important parts of netfilter is iptables,

1 INTRODUCTION 2

a command-line utility for viewing, adding, removing, and modifying firewall rules. These

rules are applied by the kernel itself to evaluate network traffic. Like other rule-based

firewall solutions, iptables allows the construction of sophisticated rule sets based on

packets’ source and destination addresses, source and destination ports, and other header

information. Furthermore, the set of rules in effect can be dynamically modified, either by

the system operator or by automated scripts. Thus, iptables can be used to respond to

changing conditions and requirements without rebooting the host or otherwise interrupting

the flow of network traffic.

iptables is highly versatile, as rules can be written for any network protocol supported

by Linux. Furthermore, it is application-agnostic; the envelope information for traffic fol-

lowing a given protocol is all formatted similarly. iptables does not examine the actual

packet data (the “payload”). There are times, however, when it would be useful to control

the flow of packets based on their contents. In these cases, the agnosticism of iptables

becomes a weakness.

1.2 Deep packet filtering in Linux: the ip queue kernel module

There are a number of uses for filters that are aware of the contents of a packet, rather

than merely where it came from and where it is going [2, 1, 3, 4, 5, 6, 7]. Many commercial

vendors, including Microsoft, Cisco, and Symantec, have begun to develop deep filtering

tools [9]. These “deep filtering” applications require greater functionality than that supplied

by iptables and other traditional packet filters.

Some or all of the network traffic arriving at a host may be subjected to deep filtering.

Choosing which packets to filter deeply remains the task of conventional rule sets set up

and maintained with iptables. In addition to accepting or rejecting packets that meet

specified header-based criteria, netfilter allows the kernel to defer certain packets—those

that match the appropriate rule(s)—for further processing. Packets deferred in this manner

1 INTRODUCTION 3

are “queued” until they can be undergo deep processing.

This extra processing is not performed within the operating system. The application-

specific nature of deep filtering makes the inclusion of deep filtering code in the operating

system kernel inappropriate. Deep filtering schemes are many and varied, and some are

even specific to network traffic generated by particular software packages. Custom kernel

code, in the form of one or more dynamically loaded modules, would have to be developed

for every filtering application. This would be needlessly difficult from a software engineering

perspective. Adding custom code to the kernel also poses security and stability issues, as

an operating system is not protected against errors (security or otherwise) in its own kernel,

as it is against userland code.

Because it is application-specific and requires dynamic change during a system’s runtime,

and because we wish to protect the operating system from errors in the filtering software,

deep filtering ought to be carried out at the user level. Using the netfilter ip queue

kernel module and the accompanying libipq C library, one can develop a userland packet

filtering daemon that partners with the kernel to provide deep packet filtering.

The ip queue module interfaces with the kernel by introducing new functionality into

iptables. Rather than accept or reject a packet matched by one of the rules in the kernel’s

firewall table, a rule may be cause a packet to be queued for further processing. The queued

packet is sent to a daemon running on the system, processed, and then accepted or rejected.

As required by some applications [2], the contents of the packet can also be modified by

the daemon. The kernel then continues to either deliver or drop the packet in the usual

fashion. Figure 1 describes the operation of the kernel/userland partnership.

The userland daemon itself is written using the libipq library, which provides a set of

functions for receiving a packet from the kernel, examining its contents, and returning a “ver-

dict” (accept or reject) to the kernel. Packets are received from the kernel by the processing

daemon via a special socket connection using a special protocol called netlink firewall,

1 INTRODUCTION 4

ip_queue

kernel
iptables

netlink

queue processor

iptables −A INPUT −p all

−s 192.168.2.0/24
−j QUEUE

...

...

Figure 1: Overview of ip queue module operation

part of the pf netlink protocol family.

1.2.1 Important data structures

To understand how ip queue works, we must first understand how network packets are

stored in the kernel. Figure 2 shows the two primary data structures involved. struct

sk buff stores a single datagram fragment; the data field is a pointer to the packet payload.

When a datagram is fragmented, it is stored in the kernel as a linked list of sk buff

structures. At every point in a packet’s journey through the Linux kernel network stack, it

is referenced by a pointer to its sk buff.

That structure is ordinarily destroyed when the packet is sent on for delivery, dropped,

or otherwise done with. So, when ip queue selects packets for deep filtering, it must make

extra provisions for storing those packets. This necessitates an extra data structure to store

references to queued packets while the kernel waits for the userland daemon to perform

its processing task. The ip queue module maintains these references in a datastructure,

named ipq queue entry.

1 INTRODUCTION 5

struct ipq_queue_entry {

};

struct sk_buff *skb;

struct nf_info *info;

...

struct sk_buff {
...

struct sk_buff *next;

...
};

unsigned char *data;

Figure 2: Kernel data structures

1.2.2 Operation

Although ip queue provides all the functionality needed to perform deep packet filtering on

gnu/Linux hosts, it is not currently suitable for all applications. Specifically, it is too slow

for applications in which a high number of large packets must be quickly filtered. Under such

conditions, packets cannot be processed quickly enough, leading to unacceptable slowdowns

in service or triggering reliability protocol intervention (e.g., TCP retransmisssions) [2].

Figure 3 illustrates the operation of the queuing mechanism. When a packet arrives on

a network interface, the kernel scans its iptables firewall rule set for the first rule that

matches the packet. That rule may instruct the kernel to queue the packet. Since the

packet being queued is removed from the stream of network traffic, the ip queue module

must keep it in a separate data structure called ipq queue entry.

1. The kernel then crafts a message to send to the queue processing daemon. This

message contains the packet’s header information along with the contents of the packet

itself.

2. The message is sent to the daemon via the special socket connection.

3. The daemon reads the message, extracts and examines the packet information, and

determines a verdict for the queued packet.

4. Finally, the daemon sends a socket message back to the kernel indicating its verdict.

1 INTRODUCTION 6

*data

...

sk_buff

*data

...

sk_buff

kernel

socketnetlink

pmsg

3

ipq_queue_entry

*skb

1

... 2

3

queue processing daemon

4

socket
netlink

Figure 3: Operation of ip queue in base implementation

2 DESCRIPTION OF MODIFIED IMPLEMENTATION 7

The kernel either accepts or rejects the packet based on the signal received on the

socket connection.

Two things are worth noting here. First, the original packet has been removed from the

stream of packets passing through the network host, but it remains stored in kernel memory

in the ip queue module’s list of queued packets. Second, the entire contents of the packet

are copied into a new area of kernel memory before being pushed onto the netlink socket.

The latter operation is where the performance of the firewall is thought to suffer most

[2]. This slowdown is enough to make ip queue’s queueing scheme prohibitively expensive

for some applications. In order to bring the power and utility of deep packet filtering to a

wider variety of applications, the performance of ip queue must be improved. We describe

our modification of the module in the next section.

2 Description of modified implementation

When performing deep packet filtering with the ip queue module there are essentially four

steps taken for every packet received by the firewall. First, the kernel must signal to the

userland daemon that a new packet is ready for processing. Second, the daemon must

somehow gain access to that packet’s contents. Third, the daemon must signal its verdict

back to the kernel—whether to accept the packet, reject the packet, et cetera. Fourth, the

modified contents of the packet must replace the original contents of the queued packet.

The established implementation of ip queue accomplishes all four tasks using socket

communication. As outlined above, a socket message both alerts the queue processing

daemon to the presence of a new packet and contains that packet’s data for examination.

The verdict is returned to the kernel via another socket message sent back to the kernel; a

modified copy of the packet is also included in that message, when needed.

Our implementation modifies the second and fourth tasks. We do not copy the contents

2 DESCRIPTION OF MODIFIED IMPLEMENTATION 8

of the incoming packet into a new data structure to be sent for processing via the socket

connection. Instead, we only supply the incoming packet’s address in kernel memory; the

prototype implementation described in this paper uses a pre-set portion of static kernel

memory to hold this address for retrieval by the userland daemon. A more practical final

solution would be to include the address as part of the Netlink socket message.1 The user

program then directly accesses the packet’s contents in kernel memory. The packet payload

can then be both read and modified in situ.

Direct access to kernel memory is provided by the /dev/kmem pseudo-device, available in

both the 2.4 and 2.6 Linux kernel branches. /dev/kmem is a character special device that can

be opened by a root-privileged user with the open() system call. Kernel memory can then

be inspected and modified directly using ordinary file operations (such as the read() and

write() system calls). The cursor, corresponding to the position within an ordinary file,

here corresponds to an address in kernel address. By passing an address to the lseek64()

system call, one can access any portion of kernel memory.

Recalling that the kernel retains the original packet in memory while waiting for the

queue processing daemon to return a verdict, we can use file operations on /dev/kmem to

access it directly, rather than waiting to receive a copy of it. Figure 4 demonstrates the

new implementation.

1. Once again, a reference to the packet is saved.

2. A message containing only packet meta-data is prepared.

3. The message sent to userland via the netlink socket connection.

4. The queue processing daemon uses the /dev/kmem to read the packet contents in

kernel memory.

5. Finally, the daemon returns a verdict message by the usual method.

1Thanks to Michael L. Weissberger for his assistance in developing a test of this method.

2 DESCRIPTION OF MODIFIED IMPLEMENTATION 9

*data

...

sk_buff

kernel

socketnetlink

pmsg

3

ipq_queue_entry

*skb

1

... 2

(packet meta−data)

3

queue processing daemon

4

5

netlink
socket

Figure 4: Operation of ip queue in new implementation

3 DISCUSSION AND EVALUATION 10

3 Discussion and evaluation

3.1 Compatibility

One advantage of this approach is that it carries few implications for existing queue pro-

cessing daemon behavior. While any pre-existing queue processing daemon would need to

be modified to use /dev/kmem (in addition to the changes in ip queue itself), the basic

paradigm has not been changed; the modified daemon will still listen on a socket for a

new packet, and the issuance of the verdict is unchanged. The daemon’s basic structure of

operation remains unchanged.

One risk of this implementation is its reliance on the availability of the /dev/kmem

pseudo-device. Some see the existence of such a mechanism for directly accessing kernel

memory as a security vulnerability that ought to be eliminated. For the time being however,

it seems likely to remain part of Linux, since it is used by kernel developers for debugging.

In any event, a user must have root privileges to access /dev/kmem; anyone user who already

has root access can disrupt the system however she wishes, regardless of whether /dev/kmem

is available or not.

3.2 Performance

Evaluating the performance of deep filtering schemes is challenging, because it depends

greatly on the particular filtering application. As we explain below, the base (socket-based)

implementation is sensitive to total datagram size. Our shared memory implemenation,

by contrast, is sensitive to the size of the subset of packet data to be examined. Differ-

ent filtering applications call for different portions of the filtered traffic to be examined.

Applications that only require the daemon to examine a few bytes fare better under our

particular shared memory implementation than applications calling for large portions of the

datagram to be examined.

3 DISCUSSION AND EVALUATION 11

So, the independent variables for our tests were:

• The total size of the datagram

• The number of bytes in the diagram to be inspected—i.e., the number of “bytes of

interest”

• The position of the bytes of interest within the datagram

Our test firewall machine contained a Pentium 4 processor running at 2.26 GHz. Per-

formance of the different implementations was measured using the Pentium processor’s

built-in cycle counter, which counts the number of cycles elapsed since system boot time.

By reading the value of this counter at different points in both the kernel and the queue pro-

cessing daemon, we could find the time required for any portion of the ip queue module’s

operation.

Sample code can be found in the Appendix. All tests followed the same general proce-

dure:

1. Set firewall rule (with iptables) to divert all incoming traffic destined for port 42 to

ip queue.

2. Start queue processing daemon

3. Generate a number of packets from a remote network host.

4. Record the CPU cycle counter timing results produced by the kernel and/or the

daemon (as appropriate) for each packet processed

3.2.1 Reading packets

For reading packets, we compared the times required to carry out the following steps:

3 DISCUSSION AND EVALUATION 12

Datagram size (bytes)

T
im

e
(C

P
U

 c
yc

le
s)

 35000

 36000

 37000

 38000

 39000

 40000

 41000

 42000

 43000

 44000

 45000

 46000

 200 300 400 500 600 700 800 900 1000 1100

Figure 5: Read performance for varying datagram sizes

1. Prepare and send a Netlink message from the kernel to the user daemon indicating

that a new packet has arrived. This message contains the entire packet contents in

the original implementation; it contains only header information in our prototype.

2. Receive the message at the user daemon.

3. Read the contents of the packet payload, either in the Netlink message itself (base

implementation) or directly in kernel memory (our implementation)

We tried varying both the size of the datagram to be examined while holding the bytes

of interest constant (one byte of interest, located at the end of the datagram). The results

are shown in Table 1 and Figure 5. We also tried holding the datagram size constant (at 1

kilobyte) and varying the location of the byte of interest. Those results are shown in Figure

2.

Compared with the base implementation, our shared memory implementation yields

modest but substantial performance gains. As seen in Figure 5, the time complexity of the

base implementation grows linearly with total datagram size. A larger datagram requires

3 DISCUSSION AND EVALUATION 13

Size (bytes) Base implementation (CPU cycles) New implementation (CPU cycles)

256 38333 ± 877.77 36325 ± 1006.7
512 41383 ± 740.92 36060 ± 1127.6
768 42077 ± 611.98 35747 ± 1184.5
1024 45639 ± 1171.9 37057 ± 1452.4

Table 1: Read performance for varying datagram sizes (95% confidence intervals)

Byte of interest Time (base implementation) Time (new implementation)

1st 43794 ± 997.04 36531 ± 1987.8
256th 44403 ± 1021.7 37017 ± 1114.9
512th 44743 ± 2560 36890 ± 1165.5
1024th 44019 ± 1133 36929 ± 1111.8

Table 2: Read performance for varying data positions (1KB datagram, 95% confidence
intervals)

more data to be copied for transmission to the queue processing daemon. By contrast,

our implementation’s time complexity does not grow with datagram size (to a point—see

below). When the datagram is unfragmented (that is, it resides in a single sk buff) and

the bytes of interest are contiguous, only a single file seek/read operation is required. The

expected time complexity of a seek is constant as packet size grows (see Table 2).

However, the assumption that the packet will be unfragmented in kernel memory will

not always hold. When a packet is fragmented (e.g., because it it is large), the daemon

may have to traverse the linked list of sk buffs to locate the bytes of interest. Every “hop”

down the link list requires (1) a call to lseek64() to find the address of the sk buff’s

next field, (2) a read() operation to retrieve the address of the next fragment, and (3)

an additional call to lseek64() to move the file cursor to that fragment. This operation

can be performed quickly (3448 ± 81.97 CPU ticks, on average), but the number of “hops”

required to process a particular packet will grow with packet fragmentation. So, given that

larger packets are split among more sk buff structures in the kernel, our implementation

is actually linear in the size of the datagrams processed.

3 DISCUSSION AND EVALUATION 14

Base implementation New implementation

40308 ± 1780.6 33229 ± 1930.9

Table 3: Packet modify-and-return performance comparison (1 kilobyte datagram)

This is not entirely discouraging, as we expect the bytes of interest to be a small contigu-

ous subset of the total packet contents for some applications [2]. This will not always be the

case, however, and the performance gains made by using shared kernel memory are partly

lost to additional file input/output operations as the bytes of interest grow in number and

spatial disparity. While we have demonstrated the potential performance gains of shared

memory in our prototype, more effort will be required before it can offer an unequivocally

faster solution under a wide variety of usage scenarios.

3.2.2 Writing packets

For writing packets, we measured the time required to carry out the following:

1. Change one byte of interest at the end of the packet payload—either the copy re-

ceived via Netlink (in the base implementation) or directly in kernel memory (in our

prototype)

2. Report an “accept” or “reject” verdict back to the kernel (in the base implementation,

this step includes sending a modified copy of the packet back to the kernel along with

the verdict)

In other words, we are measuring the time for a return trip for a packet from the queue

processor back to the kernel, including the time required for the userland daemon to modify

the packet’s contents.

The results are given in Table 3. In addition to improving the speed with which packet

data can be read by the queue processing daemon, using direct kernel memory access also

4 CONCLUSIONS 15

yields gains when modifying packets as they pass through the firewall host. In the original

implementation, the queue processing daemon sends a modified payload back to the kernel

along with its verdict. The kernel completely replaces the payload of the queued packet

with that received from the processing daemon. These two steps of (1) sending a complete

payload replacement via the Netlink socket and (2) copying the contents of into the kernel

socket buffers can both be avoided using shared memory.

In our implementation, the queue processing daemon simply opens the /dev/kmem device

with write ability, instead of read-only. Any byte of the payload can then be modified in

situ. We tested the performance with 1 kilobyte datagrams and 1 byte of interest (see Table

3). Again, we expect this performance gain to shrink as the number and spatial disparity

of the bytes of interest grow.

4 Conclusions

Deep packet filtering has many useful applications. The ip queue Linux kernel module

provides tools to perform deep packet filtering on GNU/Linux operating systems, but its

performance is not adequate for some applications. We have presented a faster prototypical

implementation of deep packet inspection. By partly replacing ip queue’s socket-based

message passing scheme with one that uses shared kernel memory accessible by a privileged

user packet processing daemon, we can speed up the operation of a deep packet filtering

firewall.

We have demonstrated the value of shared memory as a practical method of user/kernel

communication that is faster than using socket communication. Our prototypical imple-

mentation demonstrates some gains, but they are dependent upon the characteristics of

the filtering application. There are almost certainly more performance gains to be made.

Using /dev/kmem to access kernel memory spares the time required to copy packet contents

between the kernel and the userland daemon, but it introduces new costs associated with

REFERENCES 16

the file input/output operations.

Optimization of these file operations may be possible. Dedicating a contiguous segment

of kernel memory for the storage of queued packets might reduce the amount of movement

of the file position cursor, although this would require more extensive changes to the kernel

than those presented here.

Casual experimentation suggested that using the mmap() system call to access kernel

memory might be faster than calling file input/output operations. The costs of seeking

within /dev/kmem are eliminated, and directly accessing kernel memory bytes as an array

ought to be faster than using the read()/write() system calls. Unfortunately, the Linux

kernel’s internal functions that allow mmap()ing of the /dev/kmem pseudo-device to memory

are in disrepair. Patching the kernel to fully enable this functionality is a promising avenue

of future performance gains.

Finally, even more invasive changes to the ip queue module could be made that com-

pletely eliminate the netlink socket communication. For example, shared memory could

be used for all aspects of userland/kernel communication, not merely the transmission of

packet data; the userland queue processor could repeatedly poll a section of kernel memory

for information about new packets (rather than reading that information in a socket mes-

sage), access those packets using the methods presented here, then return a verdict using

some other shared kernel memory data structure. That would require major changes to any

queue processors already written, but the cost of rewriting them might be worthwhile for

some applications. Further experimentation is needed.

References

[1] Young H. Cho and William H. Mangione-Smith. “Deep packet filtering with dedicated

logic and read only memories.” In Proceedings of the 12th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines. IEEE, 2004.

REFERENCES 17

[2] James W. Deverick. “A Framework for Active Firewalls.” http://www.cs.wm.edu/

~kearns/dissertations.d/jim_abstract.html. 2005.

[3] I. Dubrawsky. Firewall evolution - deep packet inspection. http://online.

securityfocus.com/infocus/1716. 2003.

[4] Muralidaran Gangadharan and Kai Hwang. “Intranet security with micro-firewalls and

mobile agents for proactive intrusion response”. In Proceedings of the 2001 Interna-

tional Conference on Computer Networks and Mobile Computing, 2001.

[5] Paul A. Henry. “Protocol and application awareness: a new trend or an established

tradition?” Information Systems Security, 12(6), January 2004.

[6] Kai Hwang and Muralidaran Gangadharan. “Micro-firewalls for dynamic network se-

curity with distributed intrusion detection.” In Proceedings of the IEEE International

Symposium on Network Computing and Applications, 2001.

[7] Sotiris Ioannidis, Angelos Keromytis, Steve Bellovin, and Johnathan Smith. “Imple-

menting a distributed firewall”. In ACM Computer and Communication Security, 2000.

[8] The Netfilter Project. http://www.netfilter.org/.

[9] Thomas Porter. “The Perils of Deep Packet Inspection”. 11 January 2005. http://

www.securityfocus.com/infocus/1817.

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 18

A Selected code from original implementation

A.0.3 net/ipv4/netfilter/ip queue.c

static struct sk_buff *

ipq_build_packet_message(struct ipq_queue_entry *entry, int *errp)

{

unsigned char *old_tail;

size_t size = 0;

size_t data_len = 0;

struct sk_buff *skb;

struct ipq_packet_msg *pmsg;

struct nlmsghdr *nlh;

read_lock_bh(&queue_lock);

switch (copy_mode) {

case IPQ_COPY_META:

case IPQ_COPY_NONE:

size = NLMSG_SPACE(sizeof(*pmsg));

data_len = 0;

break;

case IPQ_COPY_PACKET:

if (entry->skb->ip_summed == CHECKSUM_HW &&

(*errp = skb_checksum_help(entry->skb,

entry->info->outdev == NULL))) {

read_unlock_bh(&queue_lock);

return NULL;

}

if (copy_range == 0 || copy_range > entry->skb->len)

data_len = entry->skb->len;

else

data_len = copy_range;

size = NLMSG_SPACE(sizeof(*pmsg) + data_len);

break;

default:

*errp = -EINVAL;

read_unlock_bh(&queue_lock);

return NULL;

}

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 19

read_unlock_bh(&queue_lock);

skb = alloc_skb(size, GFP_ATOMIC);

if (!skb)

goto nlmsg_failure;

old_tail= skb->tail;

nlh = NLMSG_PUT(skb, 0, 0, IPQM_PACKET, size - sizeof(*nlh));

pmsg = NLMSG_DATA(nlh);

memset(pmsg, 0, sizeof(*pmsg));

pmsg->packet_id = (unsigned long)entry;

pmsg->data_len = data_len;

pmsg->timestamp_sec = entry->skb->tstamp.off_sec;

pmsg->timestamp_usec = entry->skb->tstamp.off_usec;

pmsg->mark = entry->skb->nfmark;

pmsg->hook = entry->info->hook;

pmsg->hw_protocol = entry->skb->protocol;

if (entry->info->indev)

strcpy(pmsg->indev_name, entry->info->indev->name);

else

pmsg->indev_name[0] = ’\0’;

if (entry->info->outdev)

strcpy(pmsg->outdev_name, entry->info->outdev->name);

else

pmsg->outdev_name[0] = ’\0’;

if (entry->info->indev && entry->skb->dev) {

pmsg->hw_type = entry->skb->dev->type;

if (entry->skb->dev->hard_header_parse)

pmsg->hw_addrlen =

entry->skb->dev->hard_header_parse(entry->skb,

pmsg->hw_addr);

}

if (data_len)

if (skb_copy_bits(entry->skb, 0, pmsg->payload, data_len))

BUG();

nlh->nlmsg_len = skb->tail - old_tail;

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 20

return skb;

nlmsg_failure:

if (skb)

kfree_skb(skb);

*errp = -EINVAL;

printk(KERN_ERR "ip_queue: error creating packet message\n");

return NULL;

}

static int

ipq_enqueue_packet(struct sk_buff *skb, struct nf_info *info,

unsigned int queuenum, void *data)

{

int status = -EINVAL;

struct sk_buff *nskb;

struct ipq_queue_entry *entry;

if (copy_mode == IPQ_COPY_NONE)

return -EAGAIN;

entry = kmalloc(sizeof(*entry), GFP_ATOMIC);

if (entry == NULL) {

printk(KERN_ERR "ip_queue: OOM in ipq_enqueue_packet()\n");

return -ENOMEM;

}

entry->info = info;

entry->skb = skb;

nskb = ipq_build_packet_message(entry, &status);

if (nskb == NULL)

goto err_out_free;

write_lock_bh(&queue_lock);

if (!peer_pid)

goto err_out_free_nskb;

if (queue_total >= queue_maxlen) {

queue_dropped++;

status = -ENOSPC;

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 21

if (net_ratelimit())

printk (KERN_WARNING "ip_queue: full at %d entries, "

"dropping packets(s). Dropped: %d\n", queue_total,

queue_dropped);

goto err_out_free_nskb;

}

/* netlink_unicast will either free the nskb or attach it to a socket */

status = netlink_unicast(ipqnl, nskb, peer_pid, MSG_DONTWAIT);

if (status < 0) {

queue_user_dropped++;

goto err_out_unlock;

}

__ipq_enqueue_entry(entry);

write_unlock_bh(&queue_lock);

return status;

err_out_free_nskb:

kfree_skb(nskb);

err_out_unlock:

write_unlock_bh(&queue_lock);

err_out_free:

kfree(entry);

return status;

}

static int

ipq_mangle_ipv4(ipq_verdict_msg_t *v, struct ipq_queue_entry *e)

{

int diff;

struct iphdr *user_iph = (struct iphdr *)v->payload;

if (v->data_len < sizeof(*user_iph))

return 0;

diff = v->data_len - e->skb->len;

if (diff < 0)

skb_trim(e->skb, v->data_len);

else if (diff > 0) {

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 22

if (v->data_len > 0xFFFF)

return -EINVAL;

if (diff > skb_tailroom(e->skb)) {

struct sk_buff *newskb;

newskb = skb_copy_expand(e->skb,

skb_headroom(e->skb),

diff,

GFP_ATOMIC);

if (newskb == NULL) {

printk(KERN_WARNING "ip_queue: OOM "

"in mangle, dropping packet\n");

return -ENOMEM;

}

if (e->skb->sk)

skb_set_owner_w(newskb, e->skb->sk);

kfree_skb(e->skb);

e->skb = newskb;

}

skb_put(e->skb, diff);

}

if (!skb_make_writable(&e->skb, v->data_len))

return -ENOMEM;

memcpy(e->skb->data, v->payload, v->data_len);

e->skb->ip_summed = CHECKSUM_NONE;

return 0;

}

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 23

A.0.4 Queue processing daemon

/* Based on "The quick intro to libipq"

http://www.crhc.uiuc.edu/~grier/projects/libipq.html */

#include <linux/netfilter.h>

#include <netinet/in.h>

#include "libipq.h"

#include <sched.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/resource.h>

#include <sys/time.h>

#define BUFSIZE 2048

static void die(struct ipq_handle *h)

{

ipq_perror("passer");

ipq_destroy_handle(h);

exit(1);

}

/* Read Timer Stamp Counter */

/* From http://www.cs.wm.edu/~kearns/001lab.d/rdtsc.html */

unsigned long long int rdtsc(void)

{

unsigned long long int x;

__asm__ volatile(".byte 0x0f,0x31" : "=A" (x));

return x;

}

int main(int argc, char **argv)

{

int status;

unsigned char buf[BUFSIZE];

struct ipq_handle *h;

struct sched_param sched_parameters;

unsigned long long int start_time = 0;

unsigned long long int curr_time = 0;

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 24

/* SET SCHEDULING PRIORITY */

sched_parameters.sched_priority = 99;

status = sched_setscheduler(0,SCHED_RR,&sched_parameters);

if (status != 0) {

perror("Set scheduler error: ");

exit(1);

} else {

status = setpriority(PRIO_PROCESS,0,-20);

if (status != 0)

perror("setpriority: ");

status = getpriority(PRIO_PROCESS,0);

printf("Scheduling priority: %d\n", status);

status = sched_getscheduler(0);

printf("Scheduling status: %d\n", status);

}

/* PREPARE FOR NETLINK COMMUNICATION */

h = ipq_create_handle(0, PF_INET);

if (!h)

die(h);

status = ipq_set_mode(h, IPQ_COPY_PACKET, BUFSIZE);

if (status < 0)

die(h);

do{

status = ipq_read(h, buf, BUFSIZE, 0);

if (status < 0)

die(h);

switch (ipq_message_type(buf)) {

case NLMSG_ERROR:

fprintf(stderr, "Received error message %d\n",

ipq_get_msgerr(buf));

break;

case IPQM_PACKET: {

ipq_packet_msg_t *m = ipq_get_packet(buf);

A SELECTED CODE FROM ORIGINAL IMPLEMENTATION 25

/* TIMING */

start_time = *(unsigned long long int *) m->payload;

curr_time = rdtsc();

// PRINT KERNEL MEMORY CONTENTS

//printf("Kernel memory contents:\n");

printf("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n");

int j;

start_time = rdtsc();

for (j = 256; j < (int) m->data_len; j++) {

printf("%x ", m->payload[j]);

if (m->payload[j] == ’X’) {

printf("Byte 1f found at index %d\n",j);

m->payload[j] = ’R’;

break;

}

}

printf("Time diff: %llu\n", rdtsc() - start_time);

printf("Issuing NF_ACCEPT verdict.\n\n");

printf("Sending verdict at %llu\n",rdtsc());

status = ipq_set_verdict(h, m->packet_id, NF_ACCEPT, m->data_len, buf);

if (status < 0) {

die(h);

break;

}

/* TIMING */

break;

}

default:

fprintf(stderr, "Unknown message type!\n");

break;

} // switch

} while (1);

ipq_destroy_handle(h);

return 0;

} // main

B SELECTED CODE FOR NEW IMPLEMENTATION 26

B Selected code for new implementation

B.0.5 net/ipv4/netfilter/ip queue.c

static struct sk_buff *

ipq_build_packet_message(struct ipq_queue_entry *entry, int *errp)

{

unsigned char *old_tail;

size_t size = 0;

size_t data_len = 0;

struct sk_buff *skb;

struct ipq_packet_msg *pmsg;

struct nlmsghdr *nlh;

read_lock_bh(&queue_lock);

switch (copy_mode) {

case IPQ_COPY_META:

case IPQ_COPY_NONE:

size = NLMSG_SPACE(sizeof(*pmsg));

data_len = 0;

break;

case IPQ_COPY_PACKET:

if (entry->skb->ip_summed == CHECKSUM_HW &&

(*errp = skb_checksum_help(entry->skb,

entry->info->outdev == NULL))) {

read_unlock_bh(&queue_lock);

return NULL;

}

if (copy_range == 0 || copy_range > entry->skb->len)

data_len = entry->skb->len;

else

data_len = copy_range;

size = NLMSG_SPACE(sizeof(*pmsg) + data_len);

break;

default:

*errp = -EINVAL;

read_unlock_bh(&queue_lock);

return NULL;

}

B SELECTED CODE FOR NEW IMPLEMENTATION 27

read_unlock_bh(&queue_lock);

skb = alloc_skb(size, GFP_ATOMIC);

if (!skb)

goto nlmsg_failure;

old_tail= skb->tail;

nlh = NLMSG_PUT(skb, 0, 0, IPQM_PACKET, size - sizeof(*nlh));

pmsg = NLMSG_DATA(nlh);

memset(pmsg, 0, sizeof(*pmsg));

pmsg->packet_id = (unsigned long)entry;

pmsg->data_len = data_len;

pmsg->timestamp_sec = entry->skb->tstamp.off_sec;

pmsg->timestamp_usec = entry->skb->tstamp.off_usec;

pmsg->mark = entry->skb->nfmark;

pmsg->hook = entry->info->hook;

pmsg->hw_protocol = entry->skb->protocol;

/* WWC */

//memcpy(&pmsg->mem_location,&entry->skb->data,4);

memcpy(pmsg->mem_location,&entry->skb->data,sizeof(int));

//pmsg->mem_location = (void *) entry->skb->data;

if (entry->info->indev)

strcpy(pmsg->indev_name, entry->info->indev->name);

else

pmsg->indev_name[0] = ’\0’;

if (entry->info->outdev)

strcpy(pmsg->outdev_name, entry->info->outdev->name);

else

pmsg->outdev_name[0] = ’\0’;

if (entry->info->indev && entry->skb->dev) {

pmsg->hw_type = entry->skb->dev->type;

if (entry->skb->dev->hard_header_parse)

pmsg->hw_addrlen =

entry->skb->dev->hard_header_parse(entry->skb,

B SELECTED CODE FOR NEW IMPLEMENTATION 28

pmsg->hw_addr);

}

/* WWC */

//WWC_PACKET_LOCATION = (int) entry->skb->data;

WWC_PACKET_LOCATION = (int) entry->skb;

//pmsg->mem_location = WWC_PACKET_LOCATION;

//pmsg->mem_location = 0;

printk(KERN_WARNING "WWC_PACKET_LOCATION: %x -> %x\n", (unsigned int) &WWC_PACKET_LOCATION,

unsigned long long int timestamp = rdtsc2();

memcpy(entry->skb->data, ×tamp, sizeof(timestamp));

//printk(KERN_WARNING "NL START: %llu\n",timestamp);

if (data_len) {

/* WWC */

//memcpy(entry->skb->data + sizeof(timestamp), &entry->skb->data, sizeof(entry->skb->data

if (skb_copy_bits(entry->skb, 0, pmsg->payload, data_len))

BUG();

nlh->nlmsg_len = skb->tail - old_tail;

return skb;

nlmsg_failure:

if (skb)

kfree_skb(skb);

*errp = -EINVAL;

printk(KERN_ERR "ip_queue: error creating packet message\n");

return NULL;

}

static int

ipq_enqueue_packet(struct sk_buff *skb, struct nf_info *info,

unsigned int queuenum, void *data)

{

int status = -EINVAL;

struct sk_buff *nskb;

struct ipq_queue_entry *entry;

B SELECTED CODE FOR NEW IMPLEMENTATION 29

if (copy_mode == IPQ_COPY_NONE)

return -EAGAIN;

entry = kmalloc(sizeof(*entry), GFP_ATOMIC);

if (entry == NULL) {

printk(KERN_ERR "ip_queue: OOM in ipq_enqueue_packet()\n");

return -ENOMEM;

}

entry->info = info;

entry->skb = skb;

nskb = ipq_build_packet_message(entry, &status);

if (nskb == NULL)

goto err_out_free;

write_lock_bh(&queue_lock);

if (!peer_pid)

goto err_out_free_nskb;

if (queue_total >= queue_maxlen) {

queue_dropped++;

status = -ENOSPC;

if (net_ratelimit())

printk (KERN_WARNING "ip_queue: full at %d entries, "

"dropping packets(s). Dropped: %d\n", queue_total,

queue_dropped);

goto err_out_free_nskb;

}

/* netlink_unicast will either free the nskb or attach it to a socket */

status = netlink_unicast(ipqnl, nskb, peer_pid, MSG_DONTWAIT);

if (status < 0) {

queue_user_dropped++;

goto err_out_unlock;

}

__ipq_enqueue_entry(entry);

B SELECTED CODE FOR NEW IMPLEMENTATION 30

write_unlock_bh(&queue_lock);

return status;

err_out_free_nskb:

kfree_skb(nskb);

err_out_unlock:

write_unlock_bh(&queue_lock);

err_out_free:

kfree(entry);

return status;

}

static int

ipq_mangle_ipv4(ipq_verdict_msg_t *v, struct ipq_queue_entry *e)

{

int diff;

struct iphdr *user_iph = (struct iphdr *)v->payload;

if (v->data_len < sizeof(*user_iph))

return 0;

diff = v->data_len - e->skb->len;

if (diff < 0)

skb_trim(e->skb, v->data_len);

else if (diff > 0) {

if (v->data_len > 0xFFFF)

return -EINVAL;

if (diff > skb_tailroom(e->skb)) {

struct sk_buff *newskb;

newskb = skb_copy_expand(e->skb,

skb_headroom(e->skb),

diff,

GFP_ATOMIC);

if (newskb == NULL) {

printk(KERN_WARNING "ip_queue: OOM "

"in mangle, dropping packet\n");

return -ENOMEM;

}

if (e->skb->sk)

skb_set_owner_w(newskb, e->skb->sk);

B SELECTED CODE FOR NEW IMPLEMENTATION 31

kfree_skb(e->skb);

e->skb = newskb;

}

skb_put(e->skb, diff);

}

if (!skb_make_writable(&e->skb, v->data_len))

return -ENOMEM;

memcpy(e->skb->data, v->payload, v->data_len);

e->skb->ip_summed = CHECKSUM_NONE;

return 0;

}

B SELECTED CODE FOR NEW IMPLEMENTATION 32

B.0.6 Queue processing daemon

/* Based on "The quick intro to libipq"

http://www.crhc.uiuc.edu/~grier/projects/libipq.html */

#define _LARGEFILE64_SOURCE

#include <linux/netfilter.h>

#include <netinet/in.h>

#include "libipq.h"

#include <sched.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/resource.h>

#include <sys/time.h>

#include <sys/types.h>

#define BUFSIZE 4096

#define KERNEL_ADDRESS_LOC 0xe11cde00

static void die(struct ipq_handle *h)

{

ipq_perror("passer");

ipq_destroy_handle(h);

exit(1);

}

/* Read Timer Stamp Counter */

/* From http://www.cs.wm.edu/~kearns/001lab.d/rdtsc.html */

unsigned long long int rdtsc(void)

{

unsigned long long int x;

__asm__ volatile(".byte 0x0f,0x31" : "=A" (x));

return x;

}

int main(int argc, char **argv)

{

int status;

unsigned char buf[BUFSIZE];

unsigned char buf2[BUFSIZE];

struct ipq_handle *h;

B SELECTED CODE FOR NEW IMPLEMENTATION 33

int fd;

char outbuf[BUFSIZE];

outbuf[0] = ’X’;

unsigned long long int desired_offset = 0;

unsigned long long int actual_offset = 0;

struct sched_param sched_parameters;

//unsigned long long int start_time = 0;

unsigned long long int curr_time = 0;

unsigned long long int file_start = 0;

unsigned long long int file_end = 0;

int nextptr = 0;

/* SET SCHEDULING PRIORITY */

sched_parameters.sched_priority = 99;

status = sched_setscheduler(0,SCHED_RR,&sched_parameters);

if (status != 0) {

perror("Set scheduler error: ");

exit(1);

} else {

status = setpriority(PRIO_PROCESS,0,-20);

if (status != 0)

perror("setpriority: ");

status = getpriority(PRIO_PROCESS,0);

printf("Scheduling priority: %d\n", status);

status = sched_getscheduler(0);

printf("Scheduling status: %d\n", status);

}

/* PREPARE FOR NETLINK COMMUNICATION */

h = ipq_create_handle(0, PF_INET);

if (!h)

die(h);

status = ipq_set_mode(h, IPQ_COPY_META, BUFSIZE);

B SELECTED CODE FOR NEW IMPLEMENTATION 34

if (status < 0)

die(h);

/* OPEN KERNEL MEMORY DEVICE */

fd = open("/dev/kmem",O_RDWR);

do {

status = ipq_read(h, buf, BUFSIZE, 0);

if (status < 0)

die(h);

switch (ipq_message_type(buf)) {

case NLMSG_ERROR:

fprintf(stderr, "Received error message %d\n",

ipq_get_msgerr(buf));

break;

case IPQM_PACKET: {

ipq_packet_msg_t *m = ipq_get_packet(buf);

/* READ MEMORY ADDRESS (MLW) */

file_start = rdtsc();

lseek64(fd,(unsigned long long int) KERNEL_ADDRESS_LOC, SEEK_SET);

read(fd,&desired_offset,sizeof(int));

file_end = rdtsc();

/* READ KERNEL MEMORY */

file_start = rdtsc();

lseek64(fd,(unsigned long int) desired_offset + 256,SEEK_SET);

status = write(fd,outbuf,1);

if (status < 0) {

perror("read: ");

//exit(1);

}

// PRINT KERNEL MEMORY CONTENTS

printf("~~~\n");

printf("Kernel memory contents:\n");

int j;

for (j = 0; j < (int) 2048; j++) {

printf("%x ", buf2[j]);

B SELECTED CODE FOR NEW IMPLEMENTATION 35

if (buf2[j] == ’X’) {

printf("\nByte X found at index %d\n",j);

break;

}

}

printf("\n");

/* PRINT TIMINIG RESULTS */

//printf("NL_END (corrected): %llu\n",curr_time - (file_end - file_start));

/*

printf("Time diff: %llu\n", curr_time - start_time);

printf("File time: %llu\n",file_end - file_start);

printf("Non-file time: %llu\n",(curr_time - start_time) - (file_end -

*/

//printf("Issuing NF_ACCEPT verdict.\n\n");

status = ipq_set_verdict(h, m->packet_id, NF_ACCEPT, 0, NULL);

if (status < 0) {

die(h);

break;

}

file_end = rdtsc();

printf("Adjusting packet contents took %llu\n",file_end - file_start);

break;

}

default:

fprintf(stderr, "Unknown message type!\n");

break;

} // switch

} while (1);

ipq_destroy_handle(h);

return 0;

} // main

	A Prototype for In Situ Packet Filtering
	Recommended Citation

	thesis.dvi

