
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

2011

Factoring Banded Permutations and Bounds on the Density of Factoring Banded Permutations and Bounds on the Density of

Vertex Identifying Codes on the Infinite Snub Hexagonal Grid Vertex Identifying Codes on the Infinite Snub Hexagonal Grid

Chase A. Albert
College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

Recommended Citation Recommended Citation
Albert, Chase A., "Factoring Banded Permutations and Bounds on the Density of Vertex Identifying Codes
on the Infinite Snub Hexagonal Grid" (2011). Undergraduate Honors Theses. Paper 557.
https://scholarworks.wm.edu/honorstheses/557

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235417125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/557?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Factoring Banded Permutations

&

Bounds on the Density of Vertex Identifying

Codes on the Infinite Snub Hexagonal Grid

Chase Albert

Abstract

A permutation may be characterized as b-banded when it moves no element

more than b places. Every permutation may be factored into 1-banded per-

mutations. We prove that an upper bound on the number of tridiagonal

factors necessary is 2b− 1, verifying a conjecture of Gilbert Strang.

A vertex identifying code of a graph is a subset D of the graph’s vertices

with the property that for every pair of vertices v1 and v2, N [v1] ∩ D and

N [v2] ∩ D are distinct and nonempty, where N [v] is the set of all vertices

adjacent to v, including v. We compute an upper bound of 1/3 and a strict

lower bound of 3/10 for the minimum density of a vertex identifying code on

the infinite snub hexagonal grid.

Contents

1 Bounds on the Number of Tridiagonal Factors of a Banded

Permutation 4

1.1 Introduction . 4

1.2 Sorting Networks . 5

1.3 Construction . 8

1.3.1 Partitioning the Permutation into Blocks 8

1.3.2 Odd-Even or Even-Odd is Sufficient 10

2 Vertex Identifying Codes on the Infinite Snub Hexagon Grid 16

2.1 Introduction . 16

2.2 An Upper Bound . 18

2.3 A Lower Bound . 19

2.4 Automated Proof . 21

2.5 The Lower Bound is Strict . 24

3 Future Research 26

2

Acknowledgments

Thank you professors Chi-Kwong Li and Gexin Yu for your support and

giving me the opportunity to research. Thanks to CSUMS for funding this

research. Thank you Professors Virginia Torczon, Ryan Vinroot, and Gexin

Yu for reviewing this thesis in committee. Your efforts are appreciated.

3

Chapter 1

Bounds on the Number of

Tridiagonal Factors of a

Banded Permutation

1.1 Introduction

Definition 1.1.1. A b-banded permutation is a bijection π from [n] =

{1, 2, . . . , n} to [n], such that for all i from 1 to n, |π(i)− i| ≤ b.

We write a permutation π as (π(1), . . . , π(n)). It may also be written as

a permutation matrix A = [ai j], where ai,j is 1 if j = π(i) and 0 otherwise.

Bandedness has direct interpretations in many representations of permu-

tations. In the canonical matrix representation, a b-banded permutation has

ones in only the 0th through bth diagonals, where we take the 0th diagonal

4

to be the main diagonal. The following is the matrix representation of the

3-banded permutation (4, 5, 6, 1, 2, 3):

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

.

Permutations may be factored into products of other permutations. Of

particular interest here will be 1-banded permutations, which swap disjoint

pairs of adjacent elements. One may ask how few 1-banded factors are

needed. The following theorem is the main consideration of this chapter,

which was first offered as a conjecture by Gilbert Strang [7].

Theorem 1.1.2. A b-banded permutation may always be factored into 2b−1

1-banded permutations.

1.2 Sorting Networks

Definition 1.2.1. A comparison network is a sequence of steps, such that

on each step the network compares disjoint pairs of elements of a sequence,

and swaps the elements if they are out of order.

5

Definition 1.2.2. A sorting network is a comparison network which sorts

whatever sequence it is applied to.

Sorting networks are discussed at length in [6]. The importance of sorting

networks for proving Theorem 1.1.2 is that if we consider just the pairs of

elements on a step which are swapped, together they help us construct a

factorization of the permutation.

Here is an example of a sorting network. Consider the elements of the

permutation (3, 4, 2, 1), listed on the left of the network, as all traveling

rightwards along the “wires”. Where two wires are connected by a vertical

bar, the elements currently on those wires are compared and, if they are

out of order, swapped. On the right are the elements in order after sorting,

arranged in the identity permutation.

3 • • 1
4 • • • • 2
2 • • • • 3
1 • • 4

If we watch the elements travel along the wires, this diagram becomes:

3 • 3 3 • 1 1

4 • 4 • 1 • 3 • 2

2 • 1 • 4 • 2 • 3

1 • 2 2 • 4 4

Sorting a permutation is exactly the problem of calculating its inverse.

Each step of a sorting network can be seen as a factor of this inverse, if

6

we view only the swaps that it actually performs. Inverses of products of

1-banded permutations may be calculated by simply reversing the order of

the factors. Thus from the above sorting network we have that:

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

.

Definition 1.2.3. An n-line odd-even comparison network on every odd step

compares the pairs of elements (1, 2), (3, 4), . . . , (2k−1, 2k) for all 2k ≤ n. On

every even step it compares the pairs of elements (2, 3), (4, 5), . . . , (2k, 2k+1)

for all 2k + 1 ≤ n.

An n-line even-odd comparison network in the odd steps compares the

pairs of elements (2, 3), (4, 5), . . . , (2k, 2k+ 1) for all 2k+ 1 ≤ n, and on the

even steps compares the pairs of elements (1, 2), (3, 4), . . . , (2k−1, 2k) for all

2k ≤ n.

The example network above, repeated below, is a 4-line odd-even sorting

network.

• •
• • • •
• • • •
• •

7

1.3 Construction

Instead of proving Theorem 1.1.2, we prove the following stronger result

about blocks of permutations, where block is defined below in Definition

1.3.2.

Theorem 1.3.1. A block of a b-banded permutation can be sorted in at most

2b− 1 odd-even steps or 2b− 1 even-odd steps.

1.3.1 Partitioning the Permutation into Blocks

A block of a permutation is a subpermutation that is a diagonal block in the

matrix form of the permutation. More formally,

Definition 1.3.2. A block of a permutation π : [n] → [n] is a subpermutation

σ : {i, i + 1, . . . , k} → {i, i + 1, . . . , k}, such that there is no j < i where

π(j) > k.

As stated above, this is the same as splitting the matrix into block-

diagonal form. For example,

(
4, 5, 6, 1, 2, 3, 7, 11, 12, 10, 8, 9

)
can be partitioned (equivalently) as:

(
4, 5, 6, 1, 2, 3 7 11, 12, 10, 8, 9

)

8

or

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

.

It is well known that the blocks of block-diagonal matrices may be fac-

tored independently. Were we to continue the application of Theorem 1.3.1

on this permutation, we would obtain the following comparison network:

4 • • • 1
5 • • • • • 2
6 • • • • • 3
1 • • • • • 4
2 • • • • • 5
3 • • • 6
7 7
11 • • • 8
12 • • • • • 9
10 • • • • • 10
8 • • • • • 11
9 • • 12

9

1.3.2 Odd-Even or Even-Odd is Sufficient

Assume that we are sorting a block p = (i1, . . . , in) of a b-banded permuta-

tion. If p is 1-banded, then it may be sorted (in 2 · 1− 1 = 1 step) by simply

swapping its two elements. Assuming that Theorem 1.1.2 holds for up to

(b− 1)-banded permutations, thus if p is less than b-banded we are done.

If p is b-banded, we will use one of the two simple sorting networks de-

scribed in Definition 1.2.3. In [6, §5.3.4], Knuth uses the following property

to show that a network of at most |p| steps is necessary.

Theorem 1.3.3 (The Zero-One Principle). An n-line comparison network

is a sorting network if and only if it sorts all length n sequences of zeros and

ones.

The following lemma and proof can be extracted from Theorem 1.3.3 and

its proof as it appears in [6].

Lemma 1.3.4. A comparison network sorts some permutation (i1, . . . , in) if

and only if, for all k, it sorts the sequences (fk(i1), . . . , fk(in)), where

fk(i) =

0 i < k

1 i ≥ k

Proof. The forward direction is the case, as if the network sorts the permu-

tation then all elements greater than or equal to any k must be moved the

right of k, elements less than k must be moved to the left. The reverse direc-

10

tion is also true. Assume the network transforms the permutation (i1, . . . , in)

into some permutation for which two elements ix and iy remain out of order.

Then (fy(i1) . . . , fy(in)) describes a binary sequence which is not sorted by

the network. �

In simple English Lemma 1.3.4 is just: a comparison network sorts a per-

mutation only if it moves all of the smaller elements to the left of all of the

larger elements, for every notion of “smaller” and “larger”. This applies to

comparison networks, and not general sorting methods, because a compar-

ison network is fixed independently of the data, whereas a general sorting

algorithm is free to make different comparisons as the data changes.

Using the permutation (4, 2, 1, 7, 5, 3, 9, 8, 6) as an example, applying con-

secutive fk’s to its elements gives us:

f0 →
(
1 1 1 1 1 1 1 1 1

)

f1 →
(
1 1 0 1 1 1 1 1 1

)

f2 →
(
1 0 0 1 1 1 1 1 1

)

f3 →
(
1 0 0 1 1 0 1 1 1

)

f4 →
(
0 0 0 1 1 0 1 1 1

)

f5 →
(
0 0 0 1 0 0 1 1 1

)
11

f6 →
(
0 0 0 1 0 0 1 1 0

)

f7 →
(
0 0 0 0 0 0 1 1 0

)

f8 →
(
0 0 0 0 0 0 1 0 0

)

f9 →
(
0 0 0 0 0 0 0 0 0

)
Lemma 1.3.5. For a b-banded permutation, application of any fk (from

Lemma 1.3.4) yields a binary sequence structured as

(0, . . . , 0, 〈mixed section〉, 1, . . . , 1)

where the “mixed section” is composed of out of order elements and has a

length at most 2b.

Proof. Given some k, all elements fk(ij) = 0, where j < k−b. If one of these

elements is 1, then the bandwidth cannot be b.

Likewise, all elements fk(ij), where j ≥ k + b are 1.

So the length of the mixed section centered between fk(ik−1) and fk(ik) is at

most 2b. �

We can ignore any mixed sections or “windows” of length less than 2b, as

an odd-even or even-odd network of depth 2b− 1 would be sufficient to sort

any of them. As a sidenote, at this point we have proven that an odd-even

or even-odd network of 2b steps will sort any b-banded permutation (not just

12

a block).

Lemma 1.3.6. The following construction factors any mixed section (gen-

erated by an application of some fk to a b-banded permutation) into at most

2b− 1 tridiagonal permutation matrices.

We start from the identity binary sequence and work backwards:

(0, . . . , 0, 1, . . . , 1) → (fk(ik−b) . . . , fk(ik−1), fk(ik), . . . , fk(in)).

1. Move the bth zero of the identity, via subsequent transpositions, to the

rightmost zero’s position in the fk’d permutation.

2. Now move the (b − 1)st zero the the next rightmost zero’s position,

starting from the second step.

3. For the (b − k)th zero, the rule is wait k steps, then apply rightward

transpositions until that zero has reached the position of the (b − k)th

zero in the permutation. This assumes that every other zero has moved

at least one space, which must be the case, as there is a one in the first

position.

Proof. Once all of the zeros are in the correct place, the ones have to be.

Additionally, no zero passes another in this construction, as the “next right-

most” zero is at least 1 space to the left of the previous zero. No zero moves

further than b steps. That is, the bth zero moves exactly b steps; if the

(b− k)th zero moves no further than position 2b− k, the (b− k − 1)st zero

13

can move no further than position (2b − k − 1). Thus the entire network is

at most depth 2b− 1, as the first zero is in position b− (b− 1) and can move

at most b steps.

But, if the first zero moves to position b + 1, then the second zero must

have moved to position b + 2, for it must move to the right of the first

zero but can move no further than its bandwidth. The same applies to

every other zero. This sequence, (1, . . . , 1, 0, . . . , 0), exactly describes the

length 2b sequence in which every element has moved its bandwidth, locally:

(b+1, b+2, . . . , b+b, 1, 2, . . . , b−1). This piece of the permutation necessarily

forms a block (in the block diagonal representation of the permutation), and

so would be separated out and sorted alone in 2b− 1 steps.

In every other case, where the first zero moves at most b − 1 steps, the

depth of the network required by the window is at most 2b−2, and is covered

by a (locally) odd-even network of depth 2b−1 or a (locally) even-odd network

of depth 2b− 2. Since any block of the permutation can be sorted in at most

2b− 1 steps, the entire permutation can be sorted in ≤ 2b− 1 steps. �

An example of binary sequence factorization is given below. This binary

sequence could have been generated by the permutation sequence (4, 5, 3, 2, 6, 3),

but that is not the only one.

14

1 0
1 �������� 0

0 �������� • 0
0 • • 1
1 • • 1
0 • 1

The next zero can be started immediately after the first, in the marked

position above. It will not go past the first zero. The the full minimal

comparison network for this particular sequence follows. Note that if we

attempted to sort our example permutation (4, 5, 3, 2, 6, 3) with this network,

we would get the out of order sequence (1, 3, 2, 4, 5, 6).

1 • 0
1 • • • 0
0 • • • • 0
0 • • • 1
1 • • 1
0 • 1

15

Chapter 2

Vertex Identifying Codes on

the Infinite Snub Hexagon Grid

2.1 Introduction

Definition 2.1.1. A vertex identifying code on a graph G, is a subset D of

V (G) which satisfies:

1. For any v ∈ V (G), the intersection of the closed neighborhood N [v] and

D is nonempty.

2. For any vertices v, w ∈ V (G), where v 6= w, N [v] ∩D 6= N [w] ∩D..

An intuitive description might be that we label only some vertices of a

graph, and can identify any vertex by calling off the labels of itself and its

neighbors, ignoring order.

16

As a simple example, if we have the 3-path:

1 — © — 2

where © is taken to be unlabeled, the left and right vertices are in the code

D. Then each vertex can be identified by only its labeled neighbors. The

leftmost vertex has {1}, the middle {1, 2}, and the rightmost {2}.

Not all graphs have a vertex identifying code. If some two vertices of

a graph have the same closed neighborhood then no code can be assigned,

as those two vertices will always be identified as the same. Only when the

closed neighborhoods of every vertex are all distinct can a vertex identifying

code be constructed. Then V (G), at least, is a vertex identifying code for

G. We then turn our attention to finding codes of minimal size, or in the

infinite case, of minimal density, defined below.

Definition 2.1.2. The density of a vertex identifying code D on graph G,

σ(D,G) is the ratio of vertices in the code to vertices in the graph. v ∈ V (G).

σ(D,G) = lim sup
k→∞

∣∣∣∪k
i=0Ni[v] ∩D

∣∣∣∣∣∣∪k
i=0Ni[v]

∣∣∣
Then the minimum density of a vertex identifying code for G may be

defined as follows:

σ0(G) = min
D⊂G

σ(D,G)

17

Karpovsky et al. [5], who introduced the problem of finding vertex iden-

tifying codes, they consider codes for the infinite triangular, square, and

hexagonal grids; they prove that the minimum density for a code on the infi-

nite triangular grid is 1/4. Cohen et al. [3] later provided an upper bound of
7/10 for the density of a code on the infinite square grid, this bound was shown

to be exact in [1]. The latest work on the infinite hexagonal grid places the

minimum density between 5/12 and 3/7 [4].

We focus on finding bounds on the minimum density of codes on the

infinite snub hexagonal grid, as shown (with a code) in Figure 2.1. As our

graph is 5-regular, we immediately know from [3] that 2/7 is a lower bound

on the density. In this chapter we will show that the minimum density for a

code on the infinite snub hexagonal grid is between 3/10 and 1/3.

In the following sections, we will give a construction for the upper bound

of 1/3, use the discharging method to prove a lower bound of 3/10, provide a

method of automating the search for a lower bound via integer linear pro-

gramming, and finally we will use a computer search based on this model to

show that the our provided lower bound of 3/10 is strict.

2.2 An Upper Bound

An upper bound was found for this code via construction. This construction

has an interesting property we will use later to prove the strictness of our

lower bound. The code is such that each of the triangles of vertices which

18

touch three hexagons have exactly one vertex in the code (Figure 2.1), thus

its density is 1/3. Note that in this construction no two vertices in the code

are adjacent.

Figure 2.1: A vertex identifying code on the infinite snub hexagonal grid.

2.3 A Lower Bound

We prove our lower bound with the discharging method. Consider each

vertex in the code as possessing 1 “charge”, and each vertex not in the code

as possessing no charge. If we can always redistribute this charge among all

the vertices such that they each have at least τ charge, then by the Definition

2.1.2, τ is a lower bound on the density of the graph.

In the the discharging method we design a discharging rule to determine

how the charge is redistributed. We then verify that in every case, after

19

application of this rule, each vertex has at least τ charge. In our proof we

use the following discharging rule:

Rule 1: If a vertex v is not in D and has k neighbors in D, then v receives 3
10k

charge from each of those neighbors.

Now we consider the final charge of each vertex.

If a vertex v is not in the code, then it has k ≥ 1 neighbors in the code

and receives k · 3
10k

= 3
10

charge.

If v is in the code we consider several cases.

If v has no neighbors in the code. Then each vertex adjacent to v must

have at least one more neighbor in the code (or its code would be just {v},

but that is v’s code). Of the five vertices in the open neighborhood N [v]\{v},

only one vertex has that all its neighbors are either members of N [v] or in the

neighborhood of one of the other vertices in N [v]. This vertex must have a

neighbor in D which is also the neighbor of another vertex in N [v]. Then at

least one vertex in N [v] is adjacent to 3 vertices in D. Then v gives at most
1/10 charge to one neighbor, and gives at most 3/20 charge to four neighbors.

Therefore the final charge on v is:

1− 1

10
− 4 · 3

20
=

3

10

If v has one adjacent vertex in the code there are several configurations

to consider. Here I diagram them all. Full circles are in the code, hollow

circles are outside the code. Each of these diagrams is explored for the worst

20

(a) 3/10 (b) 6/19 (c) 6/19

(d) 12/37 (e) 3/10

Figure 2.2: In each diagram we have at least 3/10 charge remaining on v.

case charge remaining on v, in every case note that this is at least 3/10.

If v has more than one adjacent vertex in the code then it keeps at least
9
25

> 3
10

charge.

So 3
10

is a lower bound on the density of a code for the snub hexagon grid.

2.4 Automated Proof

We can format the discharging method as an integer linear program, and

perform a computer search for possible lower bounds on the minimum density.

We are given a regular graph G, some subset of vertices A, and a function

N : V → P(V). Our discharging rule is that each vertex will receive an equal

fraction of charge from every vertex in N (v).

Our variables (all binary variables) are as follows:

21

1. For all v in G, xv is 1 if v is in the code and 0 if it is outside the code.

2. pv i is 1 if v has i neighbors in the code, 0 if it does not.

3. pv w i is 1 only if v is in the code and w has i neighbors.

We must write linear constraints that force these variables to accept these

values.

First we constrain the variables xv such that all of G is coded for.

1. For every v in G, D ∩ N [v] 6= ∅. Then the sum of all the variables in

the neighborhood of v must be at least 1, since at least one of them

must be in D. ∑
w∈N [v]

xw ≥ 1

2. For all pairs of vertices u and v in G, we have that D∩N [u] 6= D∩N [v],

that is, D ∩N [u] and D ∩N [v] differ by at least one element.

∑
w∈N [u]∆N [v]

xw ≥ 1

We will running this linear program for each possible size of A∩D, so we

add a parameter k and the constraint:

∑
v∈A

xv = k.

We constrain pv i to be the population boolean for the discharging area

22

N (v) of every vertex v. We observe that:

∑
w∈N (v)

xw +

|N (v)|∑
i=0

(|N (v)|+ 1− i) · pv i + xv + fv + f ′
v + f ′′

v + · · · = |N (v)|+ 1,

xv +

|N (v)|∑
i=0

pv i = 1,

where the fv variables are filler (they have no direct interpretation as part of

the model) which allow for the sum to be an equality in the case that v is in

the code. They have the additional constraint that xv ≥ fv ≥ f ′
v ≥ f ′′

v ≥

We see that if v is in the code (in which case we do not care how many

neighbors it has) any pv i where i < |N (v)| may be 1, and several filler may

be. If v is not in the code, then no fv may be 1, xv = 0. If v has k neighbors

in the code, then an additional (|N (v)| + 1 − k) is needed to satisfy the

equality, and this is the coefficient of only pv i. No two smaller pv i may be 1

together.

We constrain pv w i to be xv · pv i.

Now we use these variables to obtain a linear objective function which

may be minimized such that we get an expression from which we can derive

τ . We let k run from 1 to |A|, over the course of several runs. We attempt

to minimize the charge coming into A so we know the worst case for a given

23

configuration of vertices A.

min
∑
v∈A

xv −
∑
v∈A

 ∑
w∈N (v)\{v}

|N (v)|∑
i=1

1

i

The value of the objective function at the minimum is − k/τk. The upper

bound on the minimum density, τ , for this area A and rule function N , is

then the minimum of these τk for all k from 1 to |A|.

2.5 The Lower Bound is Strict

We used a computer implementation of the previous section to confirm the
3/10 lower bound and to perform an additional discharging (of radius 2) on

the double-circled area in Figure 2.3. The triangled area was held empty.

Figure 2.3: A construction of minimal τ .

The minimum density diagrammed in this figure is 15/49, slightly above
3/10. Since we know that if there are no empty triangles the minimum possible

24

density is 1/3, and we now know that if we include even a single empty triangle

the density must at least locally be 15/49, and everywhere else must be at least
3/10, no construction of density 3/10 can exist.

25

Chapter 3

Future Research

Although it is not fully discussed in this paper, the method shown in Lemma

1.3.6 transposition sorts binary sequences optimally. It is reasonable to think

we could scan along for the window which takes the longest to sort and line

our odd-even network up with that, but it’s not always the case. If there are

two such windows, they don’t always line up. Often it is possible to merge

the networks over the two windows, but I would like to have a complete

classification for when this is possible.

The entirety of Chapter 1 can be viewed as a special case of the rout-

ing number problem [8]. In that problem the allowable swaps are pairs of

positions, described as edges of a graph. The graph for our problem is a

path—only adjacent elements may be swapped. It’s perhaps easy to imagine

being additionally able to swap the first and last element (this graph would

be a cycle), or being able to swap any odd element with any even element,

26

&c. Our solution for transposition networks seems to have little relevance

for the more general problem.

Several extensions are evident for Chapter 2. Certainly the automated

part of the work can handle completely general finite graphs and general in-

finite repeating graphs, however we were limited in our ability to experiment

with the more computationally expensive discharging rules. Implementing

this method for use on a greater amount of computation resources than was

available would have been ideal.

On a general note, the discharging method in its current form is inade-

quate for proving very tight lower bounds, as many good constructions for

upper bounds use only several repeating elements, and it’s expected that

codes of minimal density will as well.

I conjecture that the problem of finding a code of a particular density for

a particular infinite grid is undecidable. It bears some superficial resemblance

to the Wang tile problem ([2][9], the problem of tiling the infinite plane given

a set of four-sided puzzle pieces is equivalent to determining if a corresponding

Turing machine halts), and does appear to be computationally very difficult.

27

Bibliography

[1] Y. Ben-Haim, S. Litsyn, Exact minimum density of codes identify-

ing vertices in the square grid, SIAM J. Discrete Math., 19 (2005),

no. 1, 69-82.

[2] R. Berger, The undecidability of the domino problem, Memoirs

Amer. Math. Soc. 66 (1966).

[3] G. Cohen, S. Gravier, I. Honkala, A. Lobstein, M. Mollard, C.

Payan, G. Z ́mor, Improved Identifying Codes for the Grid, Com-

ments on R19, Electronic Journal of Combinatorics, Vol. 6 (1999).

[4] A. Cukierman, G. Yu, New Bounds on the Minimum Density of a

Vertex Identifying Code for the Infinite Hexagonal Grid, Submitted

(2011).

[5] M.G. Karpovsky, K. Chakrabarty, L.B. Levitin, On a new class

of codes for iden- tifying vertices in graphs, IEEE Trans. Inform.

Theory 44 (1998) 599-611.

28

[6] D. E. Knuth, Art of Computer Programming, Volume 3: Sorting

and Searching (2nd Edition), Addison-Wesley (1998).

[7] G. Strang, Fast Transforms: Banded Matrices with Banded In-

verses, Proc. Natl. Acad. Sciences, Vol. 107 (2010), 12413-12416.

[8] W. Li, L. Lu, and Y. Yang, Routing Numbers of Cycles, Complete

Bipartite Graphs, and Hypercubes, SIAM J. Discrete Math. 24

(2010), no. 4, 1482–1494.

[9] H. Wang, Proving theorems by pattern recognition—II, Bell System

Tech. Journal 40 (1961).

29

	Factoring Banded Permutations and Bounds on the Density of Vertex Identifying Codes on the Infinite Snub Hexagonal Grid
	Recommended Citation

	tmp.1458839166.pdf.TpuBD

